Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Analysis and Development of FACE Automatic Apparatus for Rapid Identification of Transuranium Isotopes

Permalink

https://escholarship.org/uc/item/2gs442mx

Author

Sebesta, E.H.

Publication Date

1978-09-01

Analysis and Developement of FACE Automatic Apparatus for Rapid Identification of Transuranium Isotopes
$8 y$

Edward Henri Sebesta

B.S. (Iowa State University of Science and Technology) 1974

THESIS

Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE
in

Chemical Engineering
 InWherace Gmbemey anbonatiny

NOV 301978

GRADUATE DIVISION
1 BARRY NO
GITYUMENTSGEIION
of the

UNIVERSITY OF CACTFORNTA, BERKELEY

Agprowped:

ANALYSIS AND DEVELOPMENX OF THE FACE MACHTNE AUTOMATIC APPARATUS FOR RAPID IDENTIPICATION OF TRANSURANIUM ISOTOPES
Contents1,
Abstract XiiPage
List of Tables
List of Figures vi
I. The FACE Automatic Apparatus 1
The FAGE Machine 9
II. Analysis of the FACE Process 22
Platelet Heating and Droplet Drying 22
Analysis of Chromatographic Separation 39
Minimum Drying Modjification Proposal $42 a$
Extensive Drying Modification Proposal $42 d$
Analysis of Chemical Loss 4.29
Analysis of Radioactive Loss $42 k$
III Fhe FACE Computer Operations 48
Geseral Structure of a FACE Program 48
steps 50
Teletype Programming 51
Progian Bunning and Storage 56
other Teletype Commands 58
Functions and Arguments 62
FACE Machine Sensoxs 78
Pxogran Guides 87
IV. Conclumions 97

Contents Continued

Page	
Appendix A	99
Appendix B	102
Appendix C	144
Appendix D	146

ANALYSIS AND DEVELOPEMENT OF
THE FACE AUTOMATIC APPARATUS
FOR RAPID IDENTIFICATION
OF TRANSURANTUM ISOTOPES

Abstract

A description of, and operating manual for the

 FACE Automatic Apparatus has been written along with a documentation of the FACE machine operating program, to provide a user manual for the FACE Automatic Apparatus. In addition, FACE machine performance was investigated to improve transuranium throughput. Analysis of the causes of transuranium isotope loss was undertaken both chemical and radioactive.To lower radioactive loss, the dynamics of the most time consuming step of the FACE machine, the chromatographic column output droplet drying and flaming, in preparation of sample for alpha spectroscopy and counting, was investigated. A series of droplets were dried in an experimental apparatus demonstrating that droplets could be dried significantly faster through more intense heating, enabling the FACE machine cycle to be shortened by $30-60$ seconds. Proposals incorporating these ideas were provided for FACE
machine developement.
The 66% chemical loss of product was analyzed and changes were proposed to reduce the radioisotopes prow duct loss. An analysis of the chromatographic cloum was also provided.

All operating steps in the FACE machine are described and analyzed to provide a complete guide, along with the proposals for machine improvement.
List of Tables Page
Table 3 Experimental Results 35
Table 4 Experimental Results 36
Table 5 Experimental Results 37
Table 6 Teletype (TT) Commands 52
Table 7 FACE Program Functions 63
Table 8 CAMAC Command Listing (Function 56) 68
Table 9 Sensor Number and Axgument List 85
Table 10 Flag Purposes 89
Table 11 Flag Function Location 91
Table 12 Interpretation of Function 67 and 52
Print Statements 94
Table 13 Print Statements 95

List of Figures

Page
Figure 1 FACE Automatic Apparatus Schematic 4
Figure 2 FACE "Hardware" Structure 5
Figure 3 PDP-9/15 Organization for FACE 6
Figure 4 FACE machine 10
Figure 5 Droplet Drying Station 18
Figure 6 Platelet and Droplet Dimension $17 a$
Figure 7 Typical Platelet Heating Response 26
Figure 8 Platelet Heating Response to HotHelium27
Figure 9 Experimental Apparatus 31
Figure 10 Platelet Heating Response to Airgun and FACE Hot Air Jet 34
Figure 11 Chromatographic Column 40
Figure 12 Programming Structure 49
Figure 13 Schematic Representation of the
Chemistry Program 84
Pigure 14 Schematic Representation of the
FACE program 88a

I. THE FACE AUTOMATIC APPARATUS

Introduction

The FACE automatic apparatus (Fast Automatic Chemistry of Elements) is a chromatographic chemical analyzer run by a computer which is used in the investigation of man-made transuranium elements. The use of this machine and the experiment performed with it is described in Lawrence Berkeley Laboratory report UCRL-77104 (1975) "Solution Chemistry of Element $104 .^{\circ}$ by Hulet, Nitschke, Ghiorso, et al. Such apparatus is required because with the increase of atomic number. progressively shorter radioactive half-lives and smaller quantities of radioisotopes are encountered. Beyond fermium (element 100), intense neutrom flux is not used for element synthesis but instead charged-particle bombardment is used. Elements 103 (lawrencium) and 104 are produced in atom quantites and have half-lives of a minute or less. For the trans fermium elements, both the extremely small quantities and the short half-lives render the usual chemical analysis proced dures inapplicable, and necessitate innovative methods.

The FACE machine proper collects a sample containing the transuranium nuclei, isolates these elements by chromatography in a miniature ion-exchange column, and measures their relative abundance via the analysis of their radioacm tive properties.

In heavy element production, ion-exchange chromato... graphy can be used to separate and recover individual ele-
ments up to element 104 or 105. Beyond this point, the halflives fall to a second or less, and ion-exchange becomes too slaw. Chromatographic columns allow rapid separation, with the drop position indicating valence and complex strength. The strength of a metal anion complex markedly increases with valence, so that elements of different valence are most clearly separated from each other by ion exchange.

For detection purposes, a column-eluant fraction can be dried and subjected to alpha-spectroscopy. The alpha-decay energies of the radioisotopes are distinct and specific and allow the identification and measurement of a desired product atom if present. Alpha-particle detection makes it possible to measure a single-atom event.

Because of the product's short half-life, the bombardment of each target sample and the analysis of each sample are restricted to short elapse times which are roughly equal. Only a few atoms are produced in each experiment, and therefore each individual experiment in itself is insufficient to produce the required scientific information. The PACE Automatic Apparatus allows rapid sequencing and summation of enough separation and counting to provide data with a statistically significant atomic valence and complex:ing strength.

The Computer and the CAMAC Interface

The complete apparatus consists of three major sections: the PDP-9 computer and associated terminals; the

CAMAC computer interface; and the FACE machine. These sections are referred to as X, Y, and Z, respectively, on figures 1 and 2. Figure 1 shows the major elements of FACE, and Figure 2 shows the components in some detail. These figures show overall relationships of the component parts, and the reader may find it helpful to refer to them as he studies the rest of this chapter.

The computer for the FACE automatic apparatus, a Digital Equipment Corporation PDP-9 (1968), is a large 32 K memory general-purpose minicomputer. It operates in binary mode with single address, fixed word-ength(18 bits), and parallel transfer, as desribed: in Appendix D. A PDP-11 or PDP-15 could be substituted readily. Operating programs can be entered by teletype, read in from paper tape, or recalled from disk storage.

CAMAC Interface Units

The CAMAC system (Computer Automatic Measurement and Control) is internationally used and standarized. It is a switchboard system for digital information transfer, and is especially useful when several pieces of equipment must interact mutually and with a computer. There are three units: the CAMAC interface; the CAMAC crate; and the controller. The CAMAC interface system has a cycle time of $2 \mu s e c o n d s$, and the PDP-9 has a cycle time of 1μ second. The CAMAC interface ("branch driver") transfers the digital output of the PDP-9 synchronously to the CAMAC crate. As the digital output of the CAMAC system is a 24 -bit word, the extra 6 bits are not used.

FIGURE 1 pace automatic apparatus schematic
F.A.C.E. "HARDWARE" STRUCTURE

FIGURE 3 PDP-9/15 ORGANIZATION FOR F.A.C.E.

The CAMAC crate is an outlet where electronic modules can be inserted, carrying the inputs from and outputs to one or more controllers. Standard plug-ins can be read by the value of a particular bit in an 18-bit word address, indicating some particular output of a controller. The CAMAC interface transfers the digital output to the TTL logic converter. Nine bits of the 18 -bit word form a three digit octal word which uniquely addresses a particular mechanical or electrical function in the FACE system. Through a flip-flop circuit, a power booster is turned on and a mechanical element of the FACE machine is operated. In a reverse of flow information, the sensor outputs of the FACE are converted to TIL logic, which is transferred through the CAMAC interface to the PDP-9 computer. Each sensor output is one bit of an 18-bit word recieved by the PDP-9. All the sensors in the FACE machine are of a binary nature: none are analog.

The TRL unit is the sector of the entire electronics which connects directly to the "real world" of the FACE machine. A computer command results in the controller's operating relays, magnets, and motors through the CAMAC interface. The TTL logic converter is completely isolated from the CAMAC crate by photoisolators which operate in the following way: The sustained output of the TTL logic converter is converted by a photo-emitting diode to a light signal which passes through an optic fiber and is received by a photodiode connected to the CAMAC crate.

The photoisolators prevent the transfer of electrical surges to the computer.

The FACE System can also be operated manually by hand switches and an octal thumb wheel address generator which directly executes mechanical or sensory functions. A switch representing each specific octal number can be used as needed to turn a mechanical element on or off or to change a sensor output.

The FACE machine collects isotopes of heavy elements produced by accelerator bombardment of transuranium targets and subjects these isotopes to chemical analysis through ionexchange chromatography. The purpose of the chemical studies is to verify that the oxidation states and complexing equilibria of the elements 103,104 . or possibly 105 corresponds to those predicted from the position in the Periodic Table.

The FACE machine consists of two units: the target apparatus and the chemistry apparatus. The target apparatus is located in a "cave", a thick concrete-wall-enclosed room which receives a high-energy heavy-ion beam from the HILAC accelerator. The chemical analysis apparatus is located in an area adjacent to the "cave".

The FACE machine is illustrated schematicaliy in figure 4.

Element Synthesis Station

For element 104, as an example, a high-energy beam of oxygen-18 impinges on a target of curium 248 , resulting in a nuclear reaction forming an isotope of element 104 with mass number 261. The beam of oxygen-18 nuclei passes through a $0.013-\mathrm{mm}$, thick beryllium foil and a helium-filled target chamber. One the beryllium foil is the target material (curiumi248) which has been subliminated onto the foil. The area density of the curium is $13 \mu \mathrm{~g} / \mathrm{mm}^{2}$. The element 104 nucleus is"recoil-ejected" through the target foil in the forward direction.

The recoil nuclei are stopped in the target chamber, where the helium gas suspends a fine aerosol of sodium chloride produced continuously by passing helium over molten NaCl in a separate vessel. The recoil nuclei are collected by the NaCl aerosol particles. The recoil nuclei have an initial ionic charge of 30^{+}which drops (rapidly at first, more slowly later) as the ion collides thermally with the helium atoms. The isotope has a high probability of colliding with an aerosol particle. Moreover, owing partly to residual charge of the isotope atom (ion), it has a very high sticking coefficient (100% fractional retention) once it has collided with an NaCl particle. Thus, the measured efficiency of the NaCl-aerosol capture of nuclei is essentially 100%.

Aerosol-Collection Station

The aerosol particles are removed from the discharged helium in a separate location. The aerosol from the target chamber enters an upper evacuated chamber where it impinges as a jet onto the flat closed end of a polyethylene cylinder (position 2 in Fig. 4) called a "rabbit". The rabbits are positioned and later discharged by pneumatic pistons. After an appropriate time interval (currently 2 min), the rabbit is removed from this station carrying with it the NaCl particles.

Rabbit Loading Mechanism

The rabbit resevoir and rabbit loading mechanism store the rabbits until needed, and move them into and out of the aerosol collection station depositing area.

The rabbits are received from the FACE machine from where they were sent pneumatically. In the FACE machine, they are stored in a reservoir.

When a rabbit is needed, a piston moves the rabbit so that it will drop into a second loading piston which positions it over the helium-NaCl jet. The second piston functions as an airlock, so as to maintain a vacuum during the collection period. After collection, the piston retracts, withdrawing the rabbit from contact with the jet. Air pressure is then applied, shooting the rabbit via the rabbit transfer tube into Turntalbe 1 in the FACE machine (see Figure 4.).

Tray Stations

When a rabbit is received by the FACE machine, the radioactive products it carries are used for ion-exchange chromatography and for verification of the product yield by alpha-detection. To measure the yield of recoil products collected, and transferred to the FACE machine, an alphacounter station is installed above Turntable 1. If this counter is used, the sample undergoes no further analysis.

Each turntable is a plastic wheel with twelve holes in a circular array near the rim. These holes are of the diameter of the rabbits, and are called tray positions. Turntable 2 which rotates counter-clockwise is used to position the rabbit over the transfer ram. This ram is located four tray positions away, or $4 / 12$ ths of the turntable circumference from the arrival positions of the rabbit returning from the target apparatus. At the transfer position, a pneumatically operated ram pushes the rabbit upward into Turntable 1
where lever-tripped spring-tightened pincher hold the rabbit while the transfer ram recedes to its rest position. The rabbit is then rotated $1 / 6$ of the circumference (or two. tray positions) to bring the rabbit under the alphadetector where the alpha-detector, under helium blanketing, counts the alpha particles emanating from the radioactive deposits on the rabbit. The salt deposit is not thick enough to significantly attenuate the alpha particles emitted.

The beam bombarding the curium target produces not only the desired element 104, but also a variety of the isotopes. The energy of an alpha particle is specific to the type of nucleus producing it, and all events are to be identified and counted separately. The production cross section for 104 is relatively low compared to those for other elements in the lead region.

By observing the decay yield of a polonium isotope, for example, which is produced thousands of times more often than element 104, the yield of the target system can be monitored to some extent. Every run of a group of rabbits is started with a yield check of the first rabbit to check that recoil nuclei are being produced, and that salt aerosol is present and has collected recoil nuclei.

After yield counting is completed, Turntable 1 is rotated to the discharge position which contains an outlet under the turntable. In the discharge position the pincher lever is tripped and the rabbit released to drop through a hole under Turntable 1. To assist the rabbit in dropping, a
ram is present which will forcibly discharge the rabbit.

Wash Station

The rabbit is received from the target by Turntable 2 and transferred to the wash station by rotation of the turn. table through two positions (1/6 of Tumtable 2 circumference). When the rabbit is in the wash station position, a pneumatic ram propels the rabbit upwards against the wash station head, a hollowed-out Lucite half-sleeve with three metal capillaries entering it from the top:

The rabbit now completes an air-tight enclosure. The three capillaries provide respectively a vent, a feed line of wash solution (12 M aqueous HCl) supplied by a syringe, with a vent branching off the feed line; an air line; and a transfer line to the chromatographic column, reaching almost to the face of the rabbit. Each capillary line is connected to a 1/16-inch Tygon tubing and is opened or closed by pneumatic pinch valves.

With the rabbit in place, $70 \mu \mathrm{l}$ of liquid is deposited on the rabbit face to dissolve the deposited aerosol which contains the redissolved products. The resulting washing has been observed to remove 80% of the recoil nuclei.

The vent and feed line are then closed, and the connecting transfer tube to the chromatographic column is opened. The wash station enclosure is pressurized with air and the droplet is forced into the transfer line, and through it to the chromatographic column. This wash operation is repeated once.

After the rabbit is washed, Turntable 2 is rotated to a position where the rabbit drops through a hole into a catch beaker.

Chromatographic Column

The chromatographic column performs the separation of the different radioactive species dissolved off the rabbit face.

The chromatographic column, illustrated in Figure 11, is 2 cm . long and has a 2 mm . inside diameter. The column packing is 0.25 F trioctylmethyl ammonium chloride diluted with ortho-xylene, supported on an inactive fluorocarbon powder. There are five Tygon lines going to the chromatographic column. They have the following functions: an air line for pressure; the transfer line from the wash station: and one line from each of three HCl solution-supply syringes, of which only two are actually used. The air line provides pressure to drive the wash solution and elutants through the column. A vent allows the release of residual pressure when solutions and elutants are being transferred into the chromatographic column vessel.

The effluent from the chromatographic column is monitored by a conductivity drop counter. A platinum wire within the column connects the solution to a voltage source. When an effluent drop is ejected, it makes contact with another platinum wire as it falls, and a pulse of current signals the computer.

Chromatographic Chemistry

A variety of metal cations dissolves from the rabbit into the 12 M HCl solution. The aerasol supplies Na , and the others come from target nuclear reactions or from radioactive decay of the original product nuclei. The actinides, nobelium, fermium, and curium are present, the last of these deriving directly from the curium target.

Metal cations exhibit the following equilibrium chemistry in aqueous HCl solutions:

$$
M^{+n}+(n+1) \mathrm{Cl}^{-} \Longrightarrow \mathrm{MCl}_{n+1}^{-}
$$

The complexing strength of metal cations increases in the following order of element groups: IA<IIA<IIIB(including actinides)<IVB.

For a 12 M solution the anionic chloride complexes: especially from a metal (element 104), are strongly bound to the stationary organic phase in the column. The other metal groups complex less strongly, so that an elution sequence for different elements can be established.

After passing the wash solution liquid through the column, elution with 6 M HCl is performed in which the anionic chloride complexes are less favored and hence the group IVB element is eluted. The residual wash solution (12M) is collected as a single fraction (5 free-column volumes) and is followed by two smaller elutriant fractions (6M, each 2.5 column volumes. One free-column volume is approximately $30 \mu \mathrm{l}$).

Each fraction from the chromatographic column is
collected and dried on a platelet, as illustrated in Figure 5.

Falling onto the platelet dimple, it lands in a cupped depression and is dried by the action of a hot helium jet above the platelet and a hot air jet below. When the droplet is dried, another leaves the column and dried on the same plateletuntil the entire fraction is collected. The droplets evaporate, leaving the solutes, including element 104.

The 12 M HCl fraction consists of approximately 8 droplets, and the two 6M fractions are four droplets each. Each droplet measures $20 \mu l$ based on the estimated free column in each fraction. From each rabbit, a total of 16 droplets is dried on three platelets.

Flaming Station

When the column fraction is collected, Turntable 3 transfers the platelet to the flamer station 90° counterclockwise from the fraction collection station. At this point, another hot helium jet removes any residual moisture. Then the platelet is flamed from below by a gas burner, driving off any residual organics and raising the platelet. to a red heat.

Alpha Detection and Counting

After the platelet is flamed, it is rotated 90° counter-clockwise to the alpha-detection station, illustrated in Figure 4. In this position, a pneumatically activated alpha-detector arm slides out and over the platelet to

PIGURE 6 PLATELET \& DROPLET DIMENSION: DIMPLE LENS VOLUME 8.7 ul, DROPLET VOLUNE 19 ul; dIMPLE RADIUS 13.8 mm .

Figure 5 . Droplet Drying Station.
adhere to the detector head. The arm then returns to the conting position with the platelet.

During counting, helium is supplied to the space between the platelet and counter. Helium, with hydrogen, nas the lowest rate of nuclear stopping of alpha particles because of its low density. The alpha-particle detector is of the surface ba,rier type with an area of $50 \mathrm{~mm}^{2}$ and a gold coating of 40 microgram $/ \mathrm{cm}^{2}$. It is positioned directly over the platelet depression. When a radionuclide decays, a certain fraction (about $1 / 3$) of the emitted alpha-particles strike the crystal and are detected, while the others follow trajectories into the platelet and are lost. The alpha partio cles are emitted with specific kinetic energies which iden tify the parent radionuclides. The crystal, in detecting the alpha particle, measures its energy and thus provides information about the number of counts, energies, and times of emissions from the dried column fraction. There are twenty alpha-detectors: When FACE is operating, each arm is used in rotation in numerical order to retrieve the platelets. When all the counters are in use, the next platelet is picked up by the arm which has been counting the longest, i.e.. the nest arm in numerical rotation. After counting, the platelet. released by turning off its electromagnet, falls through a hole beneath the counter into a catch cup. This method of counting ensures that each platelet sample will be counted as long as possible.

When 20 alpha counters are in use, the cycle time
until an arm will be used again is approximately 18 minutes. Since the half-life of element 104 (isotope 261) is 65 seconds, the amount of initial isotope decaying after the platelet has been dropped is less than one part in 10^{5}. Nobelium 257, the alpha daughter, has a half-life of 26 seconds and is almost completely gone when the platelet is discarded.

Either of two alpha energies indicates element 102。 One is from the decay of the daughter nobelium, element 102, at $8.22-8.27 \mathrm{Mev}$ (any nobelium formed directly by target bombardment would be eluted in the 12 M HCl wash fraction). Efficiency of Product Recovery

The FACE machine is automatically run by the computer using the FACE program. The rabbits are irradiated and the sample processed with a cycle time of approximately 180 seconds (3 minutes).

Approximately 120 rabbits were run with the FACE machine in the last 1975 chemistry experiment with element 104*. The six events detected with the alpha counters constituted a production rate of one event per 20 rabbits.

An additonal 122 rabbits were counted with our chemistry with the Turntable 1 alpha-counter, for which 132 events from alpha decay of either element 102 (nobelium) or element 104 were observed. The low number of events detected after processing the rabbits is due to chemical loss and radioactive loss. Measurements with hafnium 181 indicated a
*"Solution Chemistry of Element 104.", Hulet, Nitschke, Ghiorso, et al., Report UCRL-77104 (1975)
66% loss processing of a chemical nature during the process steps, by spattering, adsorption, vaporization, and/or precipitation. The removal of radionuclei from the rabbit in the wash station had an efficiency of 80%, accounting for 20% of the 66% processing loss.

The balance can be attributed to radioactive loss. Since the nobelium to element 104 production ratio of element 102 to element 104 is $1.1 \pm .4$, about half of the 10 ss is due to radioactive decay of nobelium before it is collected, dried, and received by the alpha counters. The time between isotope production and the collection of the first eluant fraction is 105 seconds. The half-life of nobelium 257 is 26 seconds. About four half-lives will occur before it is collected for counting, resulting in a loss of $15 / 16$ of the produced nobleium and element 104 is more thoroughly described in a later section.

II. ANALYSIS OF THE FACE PROCESS PLATELET HEATING AND DROPLET DRYING

Problems and objectives

It is desired to increase the FACE machine output by decreasing the rabbit processing cycle time. Since droplet drying and column-fraction flaming account for most of the FACE machine cycle time, these therefore are the steps to investigate. Reduction of cycle time is important to avoid radioactive loss of the output. The product element, 104, and its daughter nobelium have half-lives of 65 seconds and 25. seconds respectively. The time lag for processing before Fraction 2 (see preceeding section on "Chromatographic Chemistry") arrives at the counter is about 150 seconds. By gaining 30 seconds in processing time, 38% more element 104 would reach the alpha counters for the same beam exposure conditions.

In processing a rabbit sample, approximately 16 droplets are dried. The reduction in time for drying each droplet is multiplied by 8,12 , or 16 to give the total time reduction for the first, second, or third column fraction respectively. Thus, even a small amount of time saved for each droplet is an important improvement. If the time required for flaming is also reduced from the present 25 seconds, perhaps even to as little as 5 seconds, the flaming station might be combined with the droplet drying station so as to enable each fraction to reach the counter approximately 30 seconds earlier than at present.

Present Methods. Droplets leaving the chromatographic column are placed, on a platelet containing a small dimple, and are dried with hot helium from above and hot air from below in the apparatus illustrated in Figure 5. The platelet is made of Hastelloy sheet 0.10 mm thick with a soft-iron outer ring for magnetic lifting (shown in Figure 6), and weighs 15 grams.

The hot air is supplied through a glass tube which houses a 200-watt resistance heater with manual control. The air heater is red-hot initially (about $850^{\circ} \mathrm{C}$), but visibly cools with the air flowing such that the air leaves at slightly over $100^{\circ} \mathrm{C}$.

The helium is supplied through a metal ring above the platelet with an array of small holes focusing it onto the center of the platelet. The helium temperature is controlled indirectly through regulation of a thermocouple attached to the housing of the heating resistor. Helium is chosen since its thermal conductivity and diffusivity are greater than any alternate non-flammable gas. The helium temperature is initially $80-100^{\circ} \mathrm{C}$ and rises to approximately $200^{\circ} \mathrm{C}$ in about 2 minutes. The low temperatures are due to heat loss to the ring nozzle.

When a droplet leaves the chromatographic column and falls onto the platelet, the not air and hot helium are switched on and the drop is evaporated. The time allotted for drying each droplet is constant at 7 seconds; the first drop to be dried starts at room temperature, whereas
succeeding droplets contact a prewarmed platelet. In the operation of the FACE machine, 8.3 seconds are allocated per drop including the time for drop formation.

FACE Machine Experimental Results. The heating of a platelet by hot helium and air jets, separately and in combination, was investigated in the FACE machine drying station. A chromel-alumel thermocouple was fastened onto the upper side of the depression in the platelet and soldered on to provide thermal contact; the thermozcouple output was monitored by a recording voltmeter.

The thermal response of the platelet should be greater than that of a platelet with a column droplet for the following reasons. The thermocouple connection weighs a couple of grams and compared to the 15 gram weight of the platelet is not a significant change in the overall heat capacity of the platelet. The thermocouple solder droplet is smaller than the column droplet and has a lower heat. capacity. Finally, although the thermocouple wires conduct heat away from the solder droplet, this is less than heat removed by evaporative effects. The importance of the thermocouple measurements is to compare the heating of the experimental apparatus to the FACE machine gas jets.

The hot-air heater was used at a constant resistor setting in the experimental runs. The results were found to reproducible and consistent, and summarized in Table 1 and Figure 7. The droplets will concentrate to the HCl azeotrope concentration (6.1 M , boiling at $110^{\circ} \mathrm{C}$) on drying.

The slow heating and low final temperature of the platelet ${ }_{8}$ which never reaches the azeotrope boiling point, shows that the heat flow is insufficient to evaporate the droplets. It was found that the helium contributes little toward heating the platelet in combined helium and air-heating experiments. The thermocouple responses to hot helium at 10.20. and 30 cubic feet per hour flows is show in Figure 8. The results indicated a slow raise of helium temperature as the ring nozzle warms up.

These results showed the need for more extensive experiments to observe droplet evaporation and flaming and to develop methods for accomplishing these steps in minimum time without radioactive product loss. Rapid drying of droplets has two operating constraints. First, boiling is undesireable. Bubbles breaking on a liquid surface nearly always eject an aerosol which, in this case could contain an element 104 atom. Secondly the droplet must remain in the platelet dimple depression. Since the alpha-detection silicon cxystal is placed immediately over the depression during counting, and decay occurring elsewhere on the platelet is not detected. To advoid laterally displacing the droplets, a practical limit is imposed on hot gas velocity. In all experiments, it was noted whether these two criteria were met. Droplet Drying with Hot Gas Jet Above. The evaporation of a droplet cools the droplet and insulates it from the not ges in contact with it. The droplet is insulated from the hot gas by the evaporated liquid; that provides a material

FIGURE 8 PLATELET GEATLG RESPOLSE TO HOT :ELIUM: $600^{\circ} \mathrm{C}$ setting
flow away from the droplet surface against which the heat must conduct. Thus, heating supplied from hot gas impinging on the droplet is safe and self-limiting with respect to advoidance of bulk boiling.

With an increase of gas temperature immediately above the droplet, the vapor pressure (and, hence, the interface gas phase content) of the droplet fluid increases, resulting in a larger mass flow from the droplet, without much increase in the liquid temperature.

Platelet Heating From Below. Heat transfer from the platelet is a means of supplementing the heat supplied through the droplet surface. As this heating enters the droplet from below, it will tend to cause boiling, with the attendant risk of loss. To minimize this problem, it is desireable to have the heat conduct from the platelet into the edges of the droplets instead of the platelet beneath the droplet.

The vigorous forced convection currents do not reach the edge of the droplet and are circular, and parallel to the plane of the platelet. Whether the heat-transfer mechanism is conduction or convection, the resistance is proportional to droplet thickness.

The droplet is lens-shaped and rests in the platelet in a dimple depression. The platelet metal is 0.10 mm thick. The droplet has a diameter of 7 mm and a depth of 1.0 mm (see Figure 6). When heat is supplied by using hot gas from underneath the platelet, heat must conduct through the droplet at
its maximum depth before reaching the droplet surface. When heat is supplied from the platelet circumference (by RF or other source), conducting toward the center, the heat conducts into the thinnest part of the droplet. The thinness of the platelet lessens the rate of horizontal heat conduction compared to vertical heat transfer into the droplet. From this, it appears that most of the heat conduc ting toward the center of the platelet will be transferred into the droplet within 1 mm of its outer boundary. Conduction of heat from the rim to the center of the platelet is reviewed in Appendix A. If the droplet boils along its outer edge rather than merely evaporating at its surface, it is likely that much less spatter (or aerosol formation) will occur than with central bulk boiling of the droplet.

Experimental Apparatus and Procedure

An experimental apparatus was set up to investigate the use of higher-temperature overhead gas and of RF heating, and the behavior of the drying droplets.

The Air Gun. The air gun used had a 6" long, $\frac{1}{2}$ ". wide nozzle to avoid interfering with the RF heating and to restrict its air flow, and the air intake orifice was reduced to $1^{\prime \prime}$ to further restrict the air flow. The restricted air. flow allowed much higher temperatures.

Radiofrequency Induction Heating. In RF induction heating, an alternating magnetic field induces eddy currents in the platelet, and its resistance to currents produced ohmic heating. The experimental apparatus had an $R F$
frequency of $350-400$ kilohertz which supplies heat only through induction, not by dielectric excitation, and thus only affects conducting objects. The RF apparatus can be controlled on a time scale of milleseconds, and is capable of heating the platelets at an initial rate of over $600^{\circ} \mathrm{C}$ per second. The eddy currents are located near the surface and near the outer rim of the platelet, and the interior is shielded. Under strong RF heating, the platelet rim is the first part to reach red heat.

Platelets. Two types of platelet were used. One was the circular platelet presently used by the FACE machine. The other was a slotted platelet with the rim cut inward, almost to the center dimple, along three radii $120^{\circ} \mathrm{C}$ apart. The tri-cut platelet was used only for RF heating and drying. The RF heat was produced at three yellow-hot points at the end of the cuts, and thus had the advantage of heat input closer to the droplets.

Platelet Heating. The heating rates of the air gun and the RF coil were measured with a chromel-alumel recording thermocouple affixed to a platelet. Comparison was made then with the results from the exiting FACE machine droplet-drying assembly.

Droplet Drying. The apparatus was then used to dry a. series of 6 M HCl droplets on platelets placed in the interior of the RF coil (see Figure 9). Droplets were dried with hot air alone, RF alone, and both in conjunction. The goal of the experiments was primarily to search for a min-

FIGURE 9 EXPERIMENTAI APPARATUS
imum droplet drying time and only secondarily to establish base line data for the droplet size of the FACE apparatus.

Two sizes of droplets were used in the experiments. First, an effort was made to put $20 \mu \mathrm{I}$ into the platelet dimple, this being close to the FACE droplet size (a symmetrical lens of liquid resting in the dimple is about $20 \mu \mathrm{l}$ in volume). These droplets were formed by touching the eyedropper to the platelet, they showed a considerable size variation within the range of 20 to $30 \mu \mathrm{l}$. Droplets falling from the eyedropper, on the other hand, were fairly constant in size and were measured to be $40 \mu \mathrm{l}$ by counting the number needed to total 1 ml .

The droplet drying time was measured, and the droplets were viewed under a magnifying glass to observe boiling behavior.

Results

Platelet Heating. The heating response of a platelet to the modification air gun is illustrated in line 3 in Figure 10. Lines 1 and 2 in Figure 10 illustrate the heating response of the platelet to the airgun unmodified (Iine 1) and with a restriction to a $3 / 4$ inch air intake orifice. All three heating responses are much stronger than the present FACE machine. In the experiments, the air gun nozzle was held approximately $1^{\prime \prime}$ above the droplet being dried. The air flow of the air gun was considerably greater than 30 CFH (viz. approximately 10 CHM). At no time was there
any indication that this flow was likely to horizontally displace the droplets.

Droplet Drying. A series of droplets were dried for general observation, then 37 droplets were dried under specified conditions to measure droplet drying times. A difference in drying times was noted between a platelet "warm" from drying a previous droplet $\left(150-200^{\circ} \mathrm{C}\right)$ and a room-temperature "cold" platelet. Tables 3, 4, and 5 list the results of the droplet drying. Tables 3 and 4 list results for droplets near the size of the actual FACE machine droplets of 20-30 $\mu \mathrm{l}$, and Table 5 for $40 \mu \mathrm{droplets}$.

In general, it was observed that a pre-warmed platelet reduced droplet times by approximately 10 to 20%. By applying hotter gas and RF heating, it was possible to dry 20-30 $\mu \mathrm{l}$ droplets in 5 to 6 seconds with a regular warm platelet and 4 to 5 seconds with a tri-cut platelet. It was possible to dry $40 \mu \mathrm{droplet}$ in 6 seconds with only a few bubbles appearing.

General Observations of Boiling. In observation of boiling during droplet drying, two previously stated droplet drying theories were substantiated. First, in boiling a droplet, bubbles form around the edge and boiling does not occur toward the center without significantly increased RF heating.

Second, $380^{\circ} \mathrm{C}$ gas suppressed boiling of a RF heated droplet. This showed that the gas, with a much higher than liquid boiling temperature, acts as a cooling gas through

Table 3 Experimental Results
For the following results the droplet size is $20-30$ $\mu \mathrm{l}$ and the platelet type is regular.

Table 4 Experimental Results

For the following results the droplet size was 20-30 pl.

Table 5 Experimental Results

Dxy ${ }^{\circ} g$ Time Sec	Resis tor Set'g	Initial Platelet Temp.	$\left\lvert\, \begin{aligned} & \text { Air } \\ & \text { Gun } \end{aligned}\right.$	$\begin{array}{\|l\|} \text { Drop- } \\ \text { let } \\ \text { Size pl } \\ \hline \end{array}$	Boiling	Platelet Type
12	70\%	Cold	no	40	none	regular
10.5	70\%	Warm	1	"	"	"
9	75\%	11	11	"	\cdots	"
11	70\%	Cold	yes	"	"	\cdots
7	59\%	Warm	yes	\cdots	"	"
8	70\%	Warm	"	*	"	n
8.5	80\%	Cold	"	"	boiling	"
5	80\%	Warm	"	"	boiling	"
6	*	Cold	"	"	slight	"
6	*	Warm	"	"	\cdots	"

* Turned to 100% resistor setting for 1 second, then reduced to 70%.
its evaporation of the droplet. This also shows that a much higher gas temperature could be used when RF heating is not being used. Additionally, it was observed that boiling was gentle, without bumping or flashing, in the form of fine bubbles.

Conclusions. The results in Tables 3, 4, and 5 demonstrate that more intense heating can be applied to droplet drying, without problems, to achieve shorter times and accelerate the operation of the FACE machine. The results of the tri-cut platelet show that intense heating can be applied horizontally without boiling, as long as air is supplied from above. With $600^{\circ} \mathrm{C}$ helium instead of $380^{\circ} \mathrm{C}$ air, improvement over the results of Tables 3. 4, and 5 should be quite possible. To allow boiling is not intolerable: the possible loss of 1 or 2% of yield, an estimate based on my professional judgement and experience, since the boiling is gentle, is more than compensated by a savings in radioactive loss by faster fraction collection and drying. The experiments were executed in an attempt to avoid boiling, further experiments would show possible gains by tolerance of boiling.

ANALYSIS OF CHROMATOGRAPHIC SEPARATION

The FACE machine chromatographic column is shown, with specifications, in Figure 11. The column separates the metal ions in the wash solution according to their valences. The rabbit is washed with $140 \mu \mathrm{l}$ of 12 M HCl , and the wash solution is run through the column, collected on a platelet as the first column fraction, and dried. The column is then eluted with $160 \mu \mathrm{l}$ of 6 M HCl , which is split into the second and third fractions. About 90% of the divalent- and tri-valent-metal ions leave the column in the first fraction. Element 104 (with any other four valent metal) is removed from the wash solution by the column and is eluted in the second and third washes. The differentiation of the ions is based upon the differences in binding strength to the ionexchange resin; in chloride complexing strengths; and in stoichiometric complexing ratios. The reaction and equilibrium equations for the column are as follows:

$$
\begin{aligned}
& \mathrm{M}^{+4}+6 \mathrm{Cl}^{-} \leadsto \mathrm{MCl}^{=} \frac{}{6} \\
& K_{4}=\frac{[M C 16]}{\left[M^{+4}\right]\left[L^{-6}\right]} \\
& 2 \mathrm{RCL}+\mathrm{MCl}_{6}^{=} \underset{6}{ } \mathrm{Cl}^{-}+\mathrm{R}_{2} \mathrm{MCl}_{6} \\
& \mathrm{M}^{+3}+4 \mathrm{Cl}^{-} \longrightarrow \mathrm{MCl}_{4}^{-} \\
& K_{3}=\frac{\left[\operatorname{MCL}_{4}^{-}\right]}{\left[M^{+3][C l}-4\right]} \\
& \mathrm{RCl}+\mathrm{MCl}_{4} \mathrm{Cl}^{-}+\mathrm{RMCl}_{4}
\end{aligned}
$$

PIGURE 11 CHROMATOGRAPHIC COLUMN SPECIFICATIONS

$$
\begin{aligned}
& R=\text { organic amine group } \\
& K_{n}=\text { equilibrium for } n \text {-valent metal ion } \\
& M=\text { metal ion }
\end{aligned}
$$

Column Binding. Four valent metals form bi-negative complexes. Such complexes bind ionically to two cations of the resin, with approximately twice the binding energy of the mononegative complexes formed by three valent metals.

Anion Complexing. The strength of complexes increases with valence, thus generally at any given chloride concentration the four valent metal will be more strongly complexed than the three valent metal.

Chloride Stoichiometry. The selective uptake and el, ution of the ions is also due to the dependence of complexing on different powers of chloride concentraions, to the 6th power for the four valent metals versus to the 4 th power for the three valent metals. This effect makes it possible for the four valent metal to attach to the resin in 12 M HCl and to disassociate in 6 M HCl. For the following reaction:

$$
M^{+4}+4 C 1^{-}+2 R C 1 \leftrightharpoons R_{2} M_{6 C l}
$$

The ratio of resin complexing strength at 12 M HCl and 6 M HCl solution concentration is:

Thus the change of chloride concentration has a stronger effect on four valent anion complexes. Also, the equilibrium concentration of four valent complexes will
decline by a factor of 64 resulting in its elution.
Conclusions. From the experimental results, it appears that the column is adequate for purposes now desired. Separation appears to be clear cut, any retained valence-3 metal ions in fraction 2 is probably due to liquid retained between resin beads. The solution is likely to equilibrate : in a few seconds with the resin. As the solution will be stagnant for 4 seconds or more before it is displaced, the shortening of droplet drying will not affect column performance appreciably. Since the void volume of the column is now slighty less than 2 droplet volumes, the difference in exposure to resin for different portions of each droplet could be corrected by increasing column volume from $50 \mu \mathrm{l}$ to $65 \mu \mathrm{l}$. Solution residing above the resin bed is inactive. So that a larger bed would allow better contact without change in the actual retention time.

In analyzing the response of a platelet to the FACE machine heating jets, both air and helium, it was observed that the temperature of the gas streams were lower than optimal. The maximum gas temperatures are approximately $110^{\circ} \mathrm{C}$ for the hot air and $200^{\circ} \mathrm{C}$ for the helium. The helium jet would be a much more effective droplet drying agent if its temperature were raised to $600^{\circ} \mathrm{C}$. The heat from the helium jet is very unlikely to induce bulk boiling of the droplet. Experiments with $380^{\circ} \mathrm{C}$ gas show only surface evaporation.

The helium temperature is controlled by a thermocouple attached to the gas heating chamber housing. The helium gas, initially at $600^{\circ} \mathrm{C}$, is cooled in passing through the metal ring nozzle - which is not insulated or heated, is initially quite cold, has a high heat capacity, and loses heat to the surroundings by convection and radiation. The $200^{\circ} \mathrm{C}$ temperature is not reached until the nozzle has been in operation for about 60 seconds.

The hot air below the platelet reaches $110^{\circ} \mathrm{C}$. At the present llow and temperature, the hot air heats the platelet only to $85^{\circ} \mathrm{C}$. Hotter air, used in conjunction with hot helium, could provide enough heat to complete the drying in 4 seconds and still avoid bulk boiling.

To accelerate the drying of droplets, the metal nozqle xing of the helium jet should be wrapped with an electrical-resistor heating element and insulated with care that it does not obstruct the jet or column. This would
permit maintaining the helium jet at a constant temperature of $600^{\circ} \mathrm{C}$. The hot air temperature should be increased, by either stronger heating or restricted flow, so that it reaches $125^{\circ} \mathrm{C}$ within 4 seconds. The more intense heating which will result, should match or outdo the 4 -second drying time achieved in the airgun-RF heating experiments for a larger-than-average drop, since the proposal is to use helium at $600^{\circ} \mathrm{C}$ rather than at $380^{\circ} \mathrm{C}$. With a shorter drop-drying time of 4 seconds, time (e.g. 12 seconds) can be allotted for flaming at the droplet drying station, allowing the elimination of the flaming station.

The flaming station results in a time delay of 33 seconds for the first and second fractions, and 25 seconds for the third fraction; once in the flaming station, the platelet can not be moved independently. If flaming were conducted without moving and cooling the platelets, the flaming time could be cut from the present 15 seconds to $10-12$ seconds. A dual-feed combination hot-air nozzle and Busen burnex, equipped with an ignitor, could be installed to supply both the hot air for droplet drying and the heating by burnex for the flaming operation.

To reduce heat conduction to the arm of Turntable 3, the platelet should rest on an insulating washer.

It should be noted that, with $600^{\circ} \mathrm{C}$ helium, adeqaute pyrolysis and removal of residual water of hydration might even make the flaming operation unnecessary.

In sumnary, consolidation of the flaming station with
the droplet drying station, with the increased gas temperatures, would allow elimination of the flaming-station time delay and more rapid drying of each droplet.

Extensive Drying Modification Proposal

The minimum FACE machine modification proposal is the most expedient, but not the optimum, method of droplet drying. The method proposed here is a more radical change.

For the reasons given in the minimum-modification proposal, the helium-gas ring nozzle needs to be insulated and wrapped with an electrical-resistor heating element to provide $600^{\circ} \mathrm{C}$ helium.

It is also desired to heat the platelet in such a way thet heat is provided to the edge of the droplet rather than underneath. This method would permit more intense heating: without bulk boiling. When using hot air, a temperature limit exists, above which the droplet becomes superheated and bulk boiling begins (with a risk of liquid ejection). RF heating, directly and instantancously, generate heat at the edge of the platelet, where it encounters the edge of the droplet. The heat transfer path from the platelet to the droplet suriace is shortex at the droplet edge than at its center. Thus, heating the droplet edges reduce the bulk heating.

Because RF heating allows a precise amount of enexgy to be induced into the metallic platelet with millesecond timing, it can also be used as a substitute for flaming and can bring the platelet to flaming temperatures in as little as 0.5 seconds.

A temperature below that of a Bunsen burner, approximately $450^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$, would suffice to oxidize the non-volatile oxganic residue, while reducing the risk of losing
desired product isotopes.
For RF heating, the platelet will rest on an insulating ceramic washer set in a fiberglass-reinforced (or other) high-temperature-resistant plastic. The need for non-metalic arms is to avoid RF inductance anywhere except for the platelet. Stray inductance of the helium-gas ring nozzle will necessitate fractionally higher power input, but this will not prevent platelet heating and the lost energy. will aid in keeping the ring hot. With the RF coil below the platelet, the current induced in the platelet will shield the helium ring nozzle from the RF flux.

The power output of a RF heating coil is proportional to the square of the coil current and the square of the coil turns. The RF induction coil should consist of 2 to 5 coil turns, have a diameter of about 25 mm , and be located immediately underneath the Tumtable 3 arm holding the platelet.

In summary, the RF heating method will allow more intense heating, better heating control, and faster (1-second) flaming.

ANALYSIS OF CHEMICAL LOSS

Introduction

Most of the atoms of element 104 produced in the target axe lost before reaching the alpha-detectors by both radioactive decay and chemical loss in sample processing. FACE processing yield is approximately 5%, thus any small improvement will mean a great increase in FACE machine output.

The chemical and radioactive losses are independent which, when multiplied together, give the overall FACE machine yield. Approximately $60 \infty 70 \%$ of the element 104 is lost through chemical processes. This estimate is based on an expeximent with hafnium 181. This experiment is described in the previously mentioned report on the chemistry of element 104.

There are five stages to consider in the handling of element 104 and nobelium in the analysis of the loss of these two elements. These stages are: collection of elements 104 and nobelium on the rabbit: the transfer of the radioactive nuclides to the columng elution and collection on a platelet: flaming the platelet: and finally, alpha counting of the platelet.

Harnium Experiments. Hafnium 181 was used to test these chemical losses. The isotope is beta emitting with a halfolife of 42.4 days, so radioactive loss during the experm iment is not significant.

The chemical loss was 66% of hafnium deposited on the rabbits. Of the 66% loss, 20% was accounted for by hafnium left on the rabbit, indicating incomplete dissolution.

The remaining 46% loss was unaccounted for. The following loss mechanisms after rabbit washing are possible: precipitation or adsorption onto the Tygon transfer lines; possible precipitation or adsorption onto the glass walls of the column; incomplete desorption from the column; and finally volatilization in either the drying or flaming operations on the platelets.

Rabbit Washing. Element 104 is deposited with the salt aerosol on the rabbit. The chemical state of the element 104 atoms is not known. When the rabbit is washed, a few films of wash solution remains on the rabbit, adhering to the surface rather than being transferred to the column.

To reduce loss on the rabbit face, a wash solution of 1M HNO_{3} and $11-12 \mathrm{M} \mathrm{HCl}$ should be used. The HNO_{3} will not bind or precipitate any solute, since all nitrates are very soluble in an aqueous solution. Also, it will insure the oxidation and dissolving of all element 104 on the rabbit, mild aqua regia being a strong stripping agent.

The nitric acid will also reduce the surface tension of the wash solution, greatly aiding in mechanical transfer to the column, and better wetting of the rabbit surface.

When the solution is finnally dried, it should aid in oxidiring any trace organies present.

Tygon Tubing. Tygon tubing is a polyvinyl chloride polymer with trinolyl phosphate plasticizer, typically 20$40 \%$, to make it flexible. This plasticizer is leachable even in aqueous solutions of pH 7 , significant enough to exclude Tygon from use on solutions for human use in ingestion or intraveneous injection. In the FACE machine, the concentra-: tion of heavy metal chlorides is extremely small, so that even an extremely weak solution of phosphates has the potential to complex a large part of the element 104 present. Hafnium is known to form an insoluble strong phosphate compound which precipitates from solution. Trinonyl phosphate has the following formula, $\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right){ }_{3} \mathrm{PO}$, molecular weight 377. As an ester, trinonyl phosphate is hydrolyzed by acid, so the high acidity of the wash solution is likely to promote rapid dissolution of the phosphate and perhaps other organics. (Plasticizers, in the lygon tubing and oligomers in the plastic storage bottles are the probable cause of the need for fllaming step to remove organics.)

The writer recommends polyethylene or even Teflon tubing, even though it is less flexible. It should be pretreated by boiling in HCl and thorough washing afterwards with distilled water.

Possible Loss on Chromatographic Vessel Walls

Glass, an alkali silicate, dissolves quite slowly in strong acids, producing an alkali chloride salt and silicic acid. The etched glass surfaces may then adsorb various salts or ions. However, heavy metals in a strong HCl solution are not expected to precipitate onto the glass walls, and the possibility of chemical loss in the column is not very likely.

The column material is 0.25 E trioctylmethylammonium chloride, dispersed by orthomylene onto an inactive flurocarbon powder. When hafnium 181 was run on the column, the second fraction eluted more hafnium. 57% of the amount chaxged, and the third fraction eluted 29%. It is therefore possible that 10 to 20% is being retained as an anion complex bound to the stationary phase.

Losses from the Platelet

Evaporation and flaming are suspected as a cause of chemical Joss. The chemical properties of element 104 are expected to be homologous with zirconium or hafnium. The chemical behavior of hafnium was considered in the design of the FACE machine, and possible pathways of loss for hafnium. would be mechanisms of loss for element 104.

Hainium and zirconium tetrachlorides are volatile,
and sublime under one atmosphere pressure at $331^{\circ} \mathrm{C}$ and $319^{\circ} \mathrm{C}$, respectively. The vapor pressure of hafnium is estimated to double for every $10^{\circ} \mathrm{C}$. The vapor pressure at $100^{\circ} \mathrm{C}$ is then 10^{-6} atmospheres, and loss through droplet batch distillation is not expected for hafnium or element 104 .

When the droplet is being brought to dryness, the final dehydration is illmdefined. The tetrachloride of element 104 is expected to hydrolyze to 104 oxychloride. in analogy to the behavior of hafnium tetrachloride. This compound is not vexy volatile and should remain on the platelet as it is heated to higher temperature during flaming.

In the flaming operation, residual contamination can be expected to dehydrate, and organics to oxidize. The dynamics of this change with its out gassing of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} is not known. Whether there is flaking of the dried precipitate and scattering when the platelet is being dehydrated or moved is not known. Therefore is would be desireable to monitor the hafnium 181 radioactivity before and after each processing step, to vexify the retention during processing.

ANALYSIS OF RADIOACTIVE LOSS

The analysis of radioactive loss will be investigated step by step in the FACE machine.

Collection of Element 104 on the Rabbit. The half-Iife of element 104 is 65 seconds, and the half-life of nobelium is 26 seconds. This gives exponential decay coefficients of $k_{1}=0.01066$ for element 104 , and $k_{2}=0.02666$ for nobelium.

Let P be the production rate of element 104. Let Rf be the amount of element 104, and No, the amount of nobelium. The rate of increase in the amount of element 104 on the rabbit. minus the rate of decay of the material already on the rabbit:

$$
\frac{d(R f)}{d t}=p-k_{1}(R f)
$$

The solution to this equation is:

$$
(R t)=P / k_{1}\left(1 \infty e^{-k_{1} t}\right)
$$

The rate of increase of nobelium on the rabbit is equal to the rate of decay of element 104 minus the rate of decay of nobeliums

$$
\frac{d(N O)}{d t}=k_{1}(R f)-k_{2}(N O)
$$

The solution to this equation is as follows:

$$
\left(N_{0}\right)=p\left[1 / k_{2}-\frac{e^{\infty k_{1} t}}{k_{2}-k_{1}}\right]+p\left[1 / k_{2}-1 /\left(k_{2}-k_{1}\right)\right] e^{-k_{2} t}
$$

The following table illustrates the increase of element 104 and nobelium on the rabbit.

$t($ sec. $)$	$R f / P$	$(R f / P) / t$	No / P
0	0	0	0
15	13.86	0.92	1.00
30	25.68	0.86	3.35
45	35.74	0.79	6.35
60	44.32	0.74	9.60
75	51.64	0.69	12.80
90	57.87	0.64	15.83
105	63.18	0.60	18.62
120	67.71	0.56	21.14
180	80.04	0.44	28.12
	93.81	0.00	37.51

The ratio of No to Rf after 120 seconds is 0.31 , and the infinite time ratio is 0.40 . The actual ratio is 1.1 ± 0.4. Why this is so is not explained. This will be used in the calculations which follow. (No) will be the initial amount of nobelium and (Rf) will be the initial amount of element 104, after the rabbit is removed from the aerosol collection station.

Fixst Fraction. After element 104 is collected on the rabbit, the amount at any time in the future is a simple exponential function as follows:

$$
(R f)=(R f)_{0} e^{m k_{1} t}
$$

Whe amount of element 104 that will be detected by the alpha detectors is the amount of 104 remaining when the platelet is retrieved by an axm. The rate of increase of nobelium,
expressed as before, yields the following equation.

$$
(N O)=(N O)_{0} e^{-k_{2} t}+\frac{k_{1}\left(R_{x}\right)_{0}}{k_{2}-k_{1}} e^{-k_{1} t}-e^{-k_{2} t}
$$

For calculation, it is assumed that all the nobelium present in the column (either initially as such, or produced from element 104 by decay) is immediately eluted onto the platelet. This means that any nobelium eluted onto the next platelet is from decay of element 104 in the column subse quent to the previous elution. It is also assumed that no element 104 is eluted in the first column fraction. Eighty seconds after the rabbit has been removed from the aerosol collection station, the first fraction is collected and dried on the platelet. At this moment. the amount of nobelium in? on the platelet is given by the following formulas

$$
\left(N_{0}\right)=\left(N_{0}\right)_{0}(0.11851)+(R f)_{0}(0.2050)
$$

The amount 33 seconds later when the platelet is retrieved by an arm after flaming is as follows:

$$
\begin{aligned}
& (N O)=(N O)_{0}(0.11851)+(R \mathrm{R})_{0}(0.2050) e^{-k_{2}(33)} \\
& \text { or } \quad(N O)=(N O)_{0}(0.0492)+(R \mathrm{P})_{0}(0.0851)
\end{aligned}
$$

The first alpha-detector will recieve the following amount of nobelium:

$$
\left(N_{0}\right)=\left(N_{0}\right)_{0}(0.0492)+(R f)_{0}(0.0851)
$$

This, with (NO) $=1.1(R f)_{0},(N O)=(R f)_{0}(0.14276)_{\text {. }}$
Second Fraction. In calculating the amount of element 104 and nobelium in the next two fractions, it is assumed that each fraction will receive 50% of the element 104 on
the resin. This 50% fraction is the chemical division of the element 104 assuming an infinite half-life. The real division will be different due to the radioactive decay of element 104. and to the exact column behavior.

All the nobelium produced in the column between the first platelet and the second platelet is assumed to be eluted onto the second platelet. At the time beginning with column droplet collection onto the second platelet, the amount of element 104 on the column is as follows:

$$
(R f)=(R f)_{0} e^{-k_{1}(80)}=(R f)_{0}(0.4262)
$$

The rate of increase of nobelium is equal to the rate of decay of element 104 minus the rate of decay of nobelium. - The equation is as follows:

$$
\begin{aligned}
& \frac{d(N O)}{d t}=k_{1}(R f)-k_{2}(N O) \\
& (N O)=0 \quad \text { for } t=0 \\
& (R f)=(R f)_{0}(0.4262) \text { for } t=0
\end{aligned}
$$

The solution of this equation is as follows

$$
(N O)=\frac{k_{1}\left(R_{t}\right)_{0}(0,4262)}{k_{2}-k_{1}} \quad\left[e^{-k_{1} t}-e^{-k_{2} t}\right]
$$

The nobelium presert on the second platelet 33 seconds later when the second elution is finished, i。e. 133 seconds after the beginning of the current FACE batch is:

$$
(N 0)=0.082(R f)_{0}
$$

After the elution is Iinished, the rate of increase of No is again equal to the decay of the element 104 minus the rate of decay of the nobelium.

The conditions at this time are:

$$
\begin{aligned}
& (N o)=0.082(R f)_{0} \\
& (R f)=(R f)_{0} e^{-k_{1}(113)}(0.5)=(R f)_{0}(0.1499) \quad t=0
\end{aligned}
$$

After an additional 33 seconds, when the platelet is moved to the alpha counter, the values are:

$$
\begin{aligned}
(N O)= & {\left[(0.082)(R f)_{0}\right] e^{-k_{2}(33)} } \\
& +\frac{k_{2}}{k_{2}-k_{1}}(R f)_{0}(0.1499)\left[e^{-k_{1}(33)}-e^{-k_{2}(33)}\right] \\
(R f)= & (R f)_{0} e^{-146 k_{1}}(0.5)=(R f)_{0}(0.10545) \\
(N O)= & (0.0340)(R f)_{0}+(0.02882)(R f)_{0}=(0.0628)(R f)_{0}
\end{aligned}
$$

Third Fraction. In a total of 58 seconds all the remaining element 104 is eluted, along with all nobelium produced, onto a platelet and dried, flamed, and retrieved by the platelet. The amount of element 104 on the final platelet is as follows:

$$
(R f)=(R f)_{0}(0.5) e^{-171 k_{1}}=(0.0808)(R f)_{0} .
$$

The amount of nobelium present is:

$$
\begin{aligned}
(N o) & =\frac{k_{1}}{k_{2}-k_{1}}(R f)_{0}(0.1499)\left[e^{-58 k_{1}}-e^{-58 k_{2}}\right] \\
& =(0.66625)(R f)_{0}(0.1499)(0.21304)=(R f)_{0}(0.0212)
\end{aligned}
$$

in summary, the results for the three platelets are 2s follows:

First Fraction

$$
\begin{aligned}
& (N O)=(N O)_{0}(0.0492)+(R f)_{0}(.085) \\
& (R f)=(R f)_{0}(0.10545) \\
& (N O)=(R f)_{0}(0.0628)
\end{aligned}
$$

Third Fraction

$$
\begin{aligned}
& (R f)=(R f)_{0}(0.0808) \\
& (N o)=(R f)_{0}(0.0213)
\end{aligned}
$$

Since element 1.04 will ultimately result in two alphas in the energy band of interest, the counts on each platelet will be as follows:
$c_{n}=$ Counts of fraction n
$z=$ detector geometry factor
First Fraction $\quad C_{1}=Z(N o)_{0}(0.0492)+(R f)_{0}(0.0851)$
Second Fraction

$$
c_{2}=Z(R f)_{0}(0.2737)
$$

Third Fxaction

$$
c_{3}=2(R f)_{0}(0.183)
$$

Total Counts (assuming (NO$)_{0} /(\mathrm{Rf})_{0}=1.1$) $=$

$$
Z(R f)_{0}(0.59592)
$$

The relative xatio of counts for the three fractions is as follows for the two (No) ${ }_{0} /(\mathrm{Rf})_{0}$ ratios.

Calculated Counts
 Observed Counts*

$(\text { No })_{0} /(\mathrm{Rf})_{0}$	0.3	$\frac{1.1}{}$	Increment	$\frac{\text { Cumulative }}{}$
First Fraction	0.42	0.58	1	1
Second Fraction 1.00	1.00	2	3	
Third Fraction	0.62	0.62	3	6

If the flaming step is eliminated, the final fraction quantities are as follows:

First Fraction $\quad(N o)=(N o)_{0}(0.1185)+(R f)_{0}(0.2050)$
Second Eraction $\quad(\mathrm{No})=(\mathrm{Rf})_{0}(0.082)$
$(R f)=(R f)_{0}(0.1499)$
Third Fraction $\quad(N a)=(R E)_{0}(0.0288)$

$$
(R f)=(R f)_{0}(0.1055)
$$

The counts are as follows, assuming $(N o)_{0} /(R f)_{0}=1.1$.

First Fraction	$C_{1}=Z(R f)_{0}(0.3354)$
Second Fraction	$\mathrm{C}_{2}=2(\mathrm{Rf})_{0}(0.3818)$
Third Fraction	$C_{3}=2(R f)_{0}(0.2398)$
Total Counts	$=\mathrm{Z}(\mathrm{Rf})_{0}(0.9570)$

Thus the calculated increase in total counts would be 60.5% with the elimination of the flaming step.
III. THE FACE COMPUTER OPERATIONS

Computer "software" is loaded into the PDP-9 to allow programing to be done in FACE language. The FACE programs which operate the FACE machine in experimental runs are written in the FACE computer language.

Programming in FACE is done through a teletype terminal.

General Structure of a FACE Program

The general structure of the programs is illustrated in Figures 3 and 4. Each FACE program is composed of operatis tions, up to 20 in number, which in turn are composed of steps, numbering more than 1000 total, for all operations. Each operation also has its own internal indicator, or internal flag, specifically dedicated and limited to switch: ing that operation in and out. The internal flag for Operation 1 is set by a teletype command "GO" which initiates all programs. All other operations have their internal flags set or cleared by premprogrammabe steps.

When a progam starts, the computer goes to Operation 1 and executes Step 1. Step 2, Step 3. ect. until it reaches the end of the operation. If the next operation ${ }^{\circ}$ f flag is Beb Operation 2 is executed; if not, the computer moves to the flag fox Operation 3, and so. on through Operation 20. If all the internal flags are unset, the program terminates. otherwise, the computer goes through Exit and on to Continue. After a 50 msec . pause, the sequence of operations is repeated. The 50 msec . cycle time is an important figure to remems ber.

FIGURE 12 FAA.C.E. PROGRAMING STRUCTURE

for several purposes to be explained later. Execution of steps is not necessarily in numerical order: certain functions in a given step will cause the computer to skip forward or backward several steps within any one operation. Internal flags are set or cleared through pre-programmed come mands in the steps. Certain functions in a given step will cause the computer to skip Iorward or backward several steps within any one program. External flags, which are addressable, displayable, and usually related to the machine operation, will be discussed later.

Steps

Each function is identified by a specidic number. . Associated with each function is an argument specifying the element number (flag, counter, sensor, of step) or the measure (time, number of steps) required to execute the function.

The teletype reports a step in the following formats Step No. Function No. Argument Meaning 23 24 49 101 1. 10

Zero counter one.
Count to "10" time units (50 msec. each, or 500 msec . total)

Each of the functions will be explained at a later point.

Teletype Commands and Programming
There axe 18 teletype (TM) commands. Each teletype
command is identified by a two-letter mneumonic code. The teletype commands listed in Table 1 are used to load, alter, and execute a program. To use a teletype command, you type the two letter code and then press the ALT key. The name stands for alternative mode, but in this machine language, the key is arbitraily selected as a "load" key to instruct the computer. The computer will request more information if needed to execute the command.

Teletype Programming

To start a program, the following teletype command would be typed by the computer:

$$
\mathrm{GO}=0 / 1
$$

- The "1" has the effect of correcting the "0". To start the program, you type:

GO
The program then begins with Step 1, Operation 1.
To illustrate how to program via the teletype, the programming of Operation 1 of the FACE program will be shown.

First, you give the command IS and acknowledge (type ALT Key). Unless you have been programmin in another operation, the computer will assume Operation 1 is involved, and will type

$$
\text { IS } O P=1 /
$$

You again acknowlege, and the computer will add to the line: IS $\mathrm{OP}=1 / \mathrm{STEP}=0 /$

The step number is the one just ahead of the point where your progxam step is to be inserted.

Table 6
 Tf Commands

CFwehange or list state of flag.
Comcontinue where halt occurred.
CS-change or list a step.
DS-delete a step
GO-staxt operation 1. step 1. (does not zexo counters)
Hr whalt Rube Goldberg
ISoinsert a step
Lo-dist steps in an operation.
ONATum on an operation.
SSasingle step execution.
Tr-tape in. (not implemented)
TO mape out (not implemented)
xI-list integrator.
OFotum oft an operation. (not implemented)
WW - numbex of washes
CXwehange status of XTAL
C6ochange or list contents of a counter.
OTooperation in (from paper tape).
00-operation out (to paper tape).
PToprogram in from disk.
PO-progxam out to disk.

After you acknowledge, the computer responds with
IS $O P=1 / S T E P=0 / \therefore$ FUN $\#=0 /$
At this point, you type in the function (58) and acknow Ledge, The computer will then respond by adding the argument

IS $O P=1 / \quad S T E P=0 / \quad F U N: / F=0 / 58 \quad A R G=0 /$
You type in 3 for the argument, so that a complete line follows

IS $O P=1 / \operatorname{STEP}=0 /$ FUN $\#=0 / 58 \quad A R G=0 / 3$
With acknowledgement, the computer will store the command as Step 1 in Operation 1.

Starting the process again, the computer will
xespond to IS with the cesulting line:
Is $0 p=1 /$
Afterwards with acknowledgement, the computer responds:

$$
\text { IS } 0 \text { PEi/ } \quad \mathrm{SmEP}=1 /
$$

After this, you again program the function, then the arguement. The full programming of Operation 1 of the FACE progrom would appear as follows:

$$
\begin{array}{lllll}
\text { IS } & O P=1 / & \mathrm{STEP}=0 / & \mathrm{FUN} /==0 / 58 & \mathrm{ARG}=0 / 3 \\
\text { IS } O P=1 / & \mathrm{STEP}=1 / & \mathrm{FUN} \#=0 / 58 & \mathrm{ARG}=0 / 6 \\
\text { IS } O P=1 / & \mathrm{STEP}=2 / & \mathrm{FUN} / 4=0 / 62 & \mathrm{ARG}=0 / 4 \\
\text { IS } O P=1 / & \mathrm{STEP}=3 / & \mathrm{FUN} \#=0 / 62 & \mathrm{ARG}=0 / 5 \\
\text { IS } O P=1 / & \mathrm{STEP}=4 / & \mathrm{FUN} \#=0 / 57 & \mathrm{ARG}=0 / 1
\end{array}
$$

To see what you have in Operation 1 , you type Lo (1ist operation). If the teletype command were the first one, the computer would xespond with:

LO $\mathrm{OP}=1$ /
Acknowledgement causes the computer to print out the program sequence:

LO $\mathrm{OP}=1$ /
STEP FUN\# ARG
$1 \quad 58 \quad 3$
$2 \quad 58 \quad 6$
$3 \quad 62 \quad 4$
$4 \quad 62 \quad 5$
$\begin{array}{lll}5 & 57 & 1\end{array}$
To delete a step, say Step 4, you would type:
DS
The computer would respond with: DS OP=1/

You would again acknowledge, and the computer will respond: $D S$ OP=1/ $\quad S T E P=5 /$.
Step function and argunent numbers are proposed by the computex, depending on the teletype command. You would type "h and acknowledge. The final line is as follows:

$$
D S \quad O P=1 / \quad S T E P=5 / 4
$$

fifter acknowledgement, step 4 will be delted and ensuing steps will be advanced. A LO command and acknowledgement of line 1 will yield the print-outs

> LO $08=1 /$
> STIEP FUN/\# ARG
$\begin{array}{lll}1 & 58 & 2\end{array}$
$2 \quad 58 \quad 6$
$3 \quad 62 \quad 4$
$4 \quad 57 \quad 1$
In deleting or inserting a step or steps, the following steps will move either up or down to fill or open the gap.

To reinsert a step, the following command sequence would be useds

LO $0 . \mathrm{P}=\mathrm{R} /$
STEP FUN\# ARG

1. $58 \quad 2$
$2 \quad 58 \quad 6$
3624
4625
$5 \quad 57 \quad 1$
To change a step, you type
CS
and the computer responds:
CS OP=1/
With acknowledgement, the computer would add:
CS OP=1/ STEP=4/
In this case, it is STEP=4/. Another acknowledgement would gives

CS $O P=1 / \operatorname{STEP}=4 / \quad$ FUN $\#=62 /$
You could now change the FUN\# by typing in another number and acknowledging, or keep it the same by just acknowledging it. The computer would respond with:

CS OP=1/ STEP=4/ \quad UUN $/=62 / \quad A R G=5 /$

Typing in "6" and then acknowledging; followed by a lo $O P=1 /$, a teletype command statement would give the following print outs
CS $O P=1 / \quad \mathrm{STEP}=4 / \quad \mathrm{FUN} \#=62 / \quad \mathrm{ARG}=5 / 6$
LO. $O P=1 /$
STEP FUN\# ARG

1583
$2 \quad 58 \quad 6$
3624
$4.62 \quad 6$
$\begin{array}{lll}5 & 57 & 1\end{array}$
IS, $D S_{,} C S$, and Lo are four basic programming teletype commands used to write FACE language programs.

Since an operation may be many steps long, its listing can be terminated by a P control command (depressing both the control key and P key) if desired. When a control P command is used to terminate any action, the computer prints a two-line statement to signify completion. Control P has the disadvantage that no HLT statement will be made and all load information in counters and flags is lost.

Program Running and Storage

Programs can be loaded by being typed in, read in from paper tape, or read in from disk. The TI and TO commands are not implemented.

To cead in from paper tape, you type the command
OI
After typing the ALT mode key, the computer responds with:

OI $O P=1 /$
The operation number desired is typed in. For all $O P=/$ statements, as any step is loaded, the number printed by the computer will be 1 , unless for any earlier step in the sequence, another number has just been specified. In that case, $O P=/$ statement will then list that number instead of 1.

To print the program on paper tape, command 00 is typed.

00
The computer responds
00 OP=1/
If the operation is not Operation 1 , the operation number is desired is typed in. The paperpuch is turned on and the AJT mode key is typed. The paper tape is then produced.

Whereas the paper tape loads or prints one operation at a time, the PI and PO commands involving disk storage can store and load entire programs composed of many operations.

To store a program on a disk, the PO command is typed, and the computer responds with:
po PROGRAM OUT TO DISK
The program is now on the disk. This command wipes out a preexisting program on the disk.

As mentioned before, the GO command starts a program running,

To load a stored program, typing in PI and pressing the AlT mode key produces the following response:

PI PROGRAM IN FROM DISK
The program is now loaded to run.
To halt a program, you type the command
HT
The computer halts operation and prints the operation and step number at which the halt occurred.

HLT 1002
The first digit is the operation number and the last three digits are the step number. The HT command will be ignored if the teletype is occupied with printing other function outputs: there must be a pause for HT to be used.

Other Teletype Commands:

Besides these basic operating teletype commands, there are other commands to assist in programming, debugging, and running the FACE machine.

To list or change the state of a flag, you type $C F$, followed by ALT mode. The computer response is:

CF
You then type the desixed flag number and its status is shown:
$C F \neq 5=1 /$
II the flag needs to be set or cleared, you can then type the appropriate signal. 1 stands for a set flag, and 0 stands fox a cleared Plag.

To restart a program where a previous halt (HLT) occurred, you use the command CO. This allows the programmer to restart the program after making a mechanical
correction in the operation of the FACE machine or a correction in a program parameter. The teletype command ON wint ALT mode ackowledgement has the computer reponse $O N \quad O P=1 /$

After you specify the operation and press the AIr mode key, the computer will respond as follows:
$O N \quad O P=1 / 3 \quad S T E P=1 /$
After you specify the step and press the ALT mode key, the computer will execte the specific operation starting with the specified step. With this command, you can start any operatation at any step. The GO command starts the program only at the first operation at the first step.

To do single-step execution, you type S, then ALT. The computer responds:

$$
S S \quad O P=1 /
$$

After you type the desired operation number and acknowledge, the computer responds:

SS $0 P=1 / \quad S T E P=1 /$
Changing the step number if necessary, and acknowleg. ing the computer response three more times, will give the following computer printout:

$$
\operatorname{SS} O P=1 / \operatorname{STEP}=1 / \quad F U N \#=/ \mathrm{ARG}=/
$$

With the thixd acknowledgement, the computer will execute the step. All teletype commands with the following format will increment the step number by one automatically:

$$
O P=/ S T E P=/ F U N H=/ \quad A R G=/
$$

Thus, another SS command will respond with the same opera-
tion,
SS OP=3/
and upon acknowledgement, with:
SS $O P=3 / \quad S T E P=2 /$
The SS teletype command is extemely usefull in debugging a new program, or interpreting an unfamiliar program, by following it through step by step.

To read out the total amount of accelerator beam received by the target apparatus in coulomb units, you type the command $L I$, then acknowledge. The computer responds, for example:

INT 26213 X10-00009 COULOMBS
INP indicates the integral or cumulative amount, and this amount is printed as five digits times a power of 10. Thus, the example figured corresponds to 2.6213×10^{-5}.

Command NW controls how many fractions the chromatographic column output is to be divided into for purposes of computer memory allocation. The machine has twenty alpha-detector sensors. The computer will group the detectors as follows (for a particular group of rabbits):

$123 / 4 \quad 67 / 8 \quad 10 \quad 12 / 131415 / 16 \quad 1819 / 201$

* non-operable alpha counter in need of repair in an hypothetical situation

The $N W=3$ command tells the computer to assemble the sensor outputs in groups of three; and for data collection
purposes to sum all data for the number-1 labeled sensor (the first chemical fraction) as one data output and similarily for the number 2 and 3-labeled sensors. This TT command is for the data analysis by the computer, not for operation of the FACE machine. NW, though a mnemonic for number of washes, is more accurately referred to as number of column rractions (usually 3 effluents) which is determ mined by the FACE program.

CX is the TT command to change the status of the crystal (XTAL). CX is typed in with ALT mode and the computer responds with:

CX \#=
The desired crystal number is typed in and with ALT mode the computex responds:

CX $\#=3=1 /$
The first number (3) gives the silicon-crystal detector number. The last number (1 or 0) tells whether the crystal is operable (1) or not (0). To change the crystal status, the alternative number (0 or 1) is typed after the /. This command gives the computer the needed information for the NW command to group the counters as explained above.

Command CC lists the contents of a counter, which in certain cases can be changed. A CC command, with the Als mode, will have the computer respond with:

CC $\#=$
The desired counter number (e.g., 8) is typed in,
and ALT mode is depressed. The computer responds with: $\mathrm{CC} \#=8=0 \%$

OF is a ITP command not now implemented which could be used to turn off an operation.

Functions and Arguments

As has already been seen, each step involves a function and an argument. The various FACE functions are listed in Table 2. The argument indicates which one (the element number in a sequence), or how much (time, number of steps).

Functions number 1 through 40 are for counters 1 through 40. If the values of the counter is equal to the argunent of the function of the same number, the computer will omit the following step, and will skip from step N to step $N+2$. For instance, in the following example:
$31 \quad 22 \quad 10$
32. 59.8
$33 \quad 52 \quad 0$
When the computer reaches Step 31 and the value in counter 22 is 30 , the computer will go to Step 33, otherwise, to step 32.

Function 41 is more complex. The FACE machine has a collection of sensors assigned numbers 1 through 67. Sensors (discussed in a following section) are either set or cleared as a machine operation is completed and thus reflect the existing states of the particular element. An example is given by the listing:

Table 7
Functions

FUN\# FUN DESCRIPTION
1 Skip if counter \#1=argument
2. Skip if counter \#2=argument

- • • • • •
-

40 Skip if counter $\# 40=$ argument
41 Skip if sensor \# in counter is set SK3
42 Pxint step and content of entro\#3 PS3
43 Stoptresettstarttelectrometerttape SEL
44 Put value of electrometer on tape TEL
45 Put x-tal in proper sum on scope SUM and increment counter \#3

46 X-tal I.D. on tape with time and ION content of counter 1

47 Beam off on tape with time and BOF content of counter 1

48 Beam on tape with time
49 zero a counter 26
50 Increment a counter
51 Pxint value of a counter
52 Print operation and step no.
53 Jump forward N steps
54 Jump backward N steps
55 Skip if sensor set
56 CAMAC command
57 Halt operation
58 Staxt an operation at step one

BON IC $J F$
ABBR. FUN ARG.
SKC1 $\max .=1024$
SKC2 $\max _{0}=1024$

$2 C$ counter no. counter no. counter no. none

$$
\mathbb{N}
$$

N
sensor. no. command no. operation no. operation no.

FUNH FUN DESCRTPTION

59 Exit and return forward \mathbb{N} steps
60 Exit and return backward N steps
61 Clear a flag
62 Set a flag
63 Check flag
64．Load axguments of the next N steps
65 Call subroutine

66 Return from subroutine to next step after function 65

67 HOP and print OP and SIEP
68 Continue OP after HOP
69 IDm－xal－off on tape

ABBR FIUN ARG．
$\mathrm{RF} \quad \mathrm{N}$
$R B \quad \mathbb{N}$
CF Ilag \＃
SF Ilag \＃
SKF flag \＃
LD N
CS step \＃of subroutine

RS none

HOPS xestart step\＃
COP OP \＃
IOF if the arg． 0 it is ta． ken as the I。D。

70－100 unsused
101 Delay iv time increments using ontr． \＃1

DL1 \mathbb{N}（increment＝ 50 msec ．）

102 Delay N tirne increments using cntr． H2

DL 2 N（increment $=$ 50 msec ．）
。
－
140 Delay in tine increments using entr．㳯40

141 Skip N steps if X－tal \＃1 incorrect
142 Skip N steps if X－tal \＃2 incorrect
－
－
160 Skip N steps if X－tal \＃20 incorrect

DU40 N（increment $=$ 50 msec．$)$

SKX1 \mathbb{N}
SKX2 N

SKX20 N

37410
$38 \quad 59 \quad 8$
$39 \quad 52 \quad 0$
For Function 41, no argument is needed. If the sensor of the same number as the value in Counter 3 is set, then Function 41 will cause the computer to skip a step. For example, counter 3 has a value of 12 and Sensor 12 is set, then the computer will go to Step 39, otherwise, the computer will go to Step 38. Function 41 is only found in Operation 5 of the FACE program.

Function 42 prints the step of the operation and content of counter 3. For example:
$38 \quad 420$
Step 38 would print 0038 and then the value of counter 3.
Function 43 stops, resets, and starts the electrom meter and tape.

Function 44 puts the value of the electrometer on tape.

Function 45 puts the alpha detector crystal data on the scope and increments counter 3.

Function 46 puts the crystal identity on tape with the time and content of counter 1.

Function 47 turns the beam on, and the time of Function 47 execution is stored on tape.

Function 48 turns on beam with time stored on tape.
Function 49 zeroes a counter. It is used especially in conjunction with Functions 101 to 104 (discussed below)
for timing purposes.
Function 50 increments a counter by unity. It is used in loops for repetitive actions. A typical loop will be illustrated with Functions 55 and 60 .

Function 51 prints the value of a counter. It is not used in the entire FACE program. It is however valuable for diagnostic purposes.

For example, the following steps:
11491
12501
$\begin{array}{lll}13 & 51 & 1\end{array}$
would first zero counter one, then increment the value to one, then print CTR 1001. The first 1 stands for the counter number.

Function 52 is a diagnostic funćtion. The presence of Function 52 will print the step number.

37520 (A step in a hypothetical Operation 4)
The computer, when it comes to this step, will print the following:

4037
The first number is the operation; the rest of the digits are the step number. This function will give information about the computer's operation of FACE. Table 12 gives Function 52 print-outs in terms of their diagnostics for FACE mechanical malfunction.

Functions 53 and 54 tell the computer to shift forward (53) or backward (54) the number of steps specified
in the argumento Great care must be taken in using Function 54 which may enable the computer to loop (or lock-up) endlessly. Usually, in lock-up, the operation cannot even be halted manually and the entire program must be aborted, because the loop may take only a few milleseconds, whereas about 2 seconds are needed to insert an HLT command.

Function 55 enables the computer to be "informed" of the FACE machine status, by inspecting one of the sensors (explained in another section).

Function 56 is the function which turns on and off FACE machine equipment, sets or clears sensors. Each mechanical operation has two associated arguments. There is an even argument number which turns on the mechanical operation, and an odd argument number (the even number plus one), which turns it off. For instance, 250 turns on linear valve is 251 turns it off. Each sensor has only a single address number which clears the sensor if clearable and sets it it settable. The following example illustrates both funce tion of Function 56.
$34 \quad 56 \quad 292$
$\begin{array}{llll}35 & 56 & 224\end{array}$
36491
3710120
$\begin{array}{lll}38 & 56 & 225\end{array}$
Step 34 will clear sensor 292. Step 35 will turn on the main FACE instrunent air supply. Steps 36 and 37 will provides a time lag of 1 second. Step 38 will turn off the air

> Table 8
> CAMAC Command Listing (Function \# 56)

Decimal Qctal FACE Machine Element
000 to 000 Amplifiexs for Alpha Counters
046056

048	060 Magnets for Alpha Counting sample arms
$090^{\text {to }}$	132
096	140 Alpha counting sample arms
$138^{\text {to }}$	$212^{\text {to }}$
140	214
142	216
144	$220 \quad$Sable one release, labled spare one Main air to rabbit control system and Counter arms

146222 Shoot rabbit Irom FACE to target, 90° valve 148224 Main Inst. aix (low pressure for column, ect.)

150226 Main air for all pneumatic relays
152 230 Hot aix jet under plate at column position
154232 PK
156 Slosyn Syxinge \#1 Dispense
158236 Slosyn Syringe \#2 Dispense
164 244 Motor 3
166 246 Motor 4
168 . 250 Linear Valve 1
170252 Iinear Valve 2
172254 Linear Valve spare
174256 Snoots rabbit Irom taxget to FAGE
176260 Removes rabbit from irrad. or reverse of 177
177261 Moves soln. $\# 2$ in opposite direction of 176

Decimal Octal

178 . 262 Drops rabbit in soln. \# 2 from rabbitstorage column at target

179264 Reverse motion from 178
180 264: Spare 4
182266 Spare 5
184270 Solonoid spare
186 272 Beam
256 to ${ }_{400}$ to Set microswitch for arms \#1 through 21
276 424
277 Turntable \#3 (90 position microswitch)
278426 Upper drum step counter and position indicator
279 427 Lower drum step counter and position indicator
280 . 430 Piston in shoot position micrsw.
281. 431 Piston in irrad position microsw.

288 440 Clear Photocell \#1

290
291
292
293
294
295
296
297
320
321
322
$289441 \quad$ " \#2
\#2
\#3
\#4
\#5
\#6
\#7
447 " " \#8
450 Level sensor in column
451 Drop Counter
500 Plate is in Turntable \#3 sensor
501 Plate slide mechanism sensor
502 Lower plate hopper (almost out of plates) sensor

Decimal Octal
323503 Upper plate hopper sensor
324. 504 Turntable \#1 position microswitch

325505 Turntable \#2 position microswitch
332514 Turntable \#3 (30° turn microswo, sets at off position)
$404 \therefore 624$ Rabbit ram (removes rabbit from turntable \#2 to Turntable \#1)

406626 Pneumatic Ram (Seats rabbit against dissolver)
408630 Flamer on
410632 Air pressure on dissolver
412634 Close dissolver vent
416640 Spare pneumatic relay:Slosyn 3/Dissolver
418.642 0pen line between dissolver and column

420644 Air pressure on column
422 646. Open valve from Slosyn \#1 syringe
424650 Open valve from Slosyn \#2 syringe
426.652 Close vent to columin
$428 \quad 654$ Spare pneumatic relay
486 946 Turn Turntable ${ }^{3} 1$ CCW (counting table)
$488 \quad 750$ Turn Turntable \#2 CCW (xabbit table)
490 752 Tum Turntable \#2 CW (rabbit table)
492754 Tium Turntable \#3 30° (sample table)
494. 756 Helium Jet \#1 on

496760 Helium Jet \#2 on
$498 \quad 762 \quad$ Slosyn 3
supply. Arguments associated with Functions 55 and 56 are listed in Tables 8 and 9 with their associated FACE machine sensors or mechanical elements. Function 56 is a CAMAC command and Table 8 is a CAMAC command listing by argument number in both decimal and octal.

Function 57 clears an internal flag associated with the operation, which has the same number as the Function. For example:
$\begin{array}{lll}51.57 & 2\end{array}$
Step 57 will cause the computer to by pass Operation 2 . that is to discontinue or terminate.

Function 58 sets an internal flag associated with the operation having the same numbers as the function's argument. This turns on an operation. For example:
$\begin{array}{llll}59 & 58 & 3\end{array}$
$60 \quad 57 \quad 2$
Step 59 would set the internal flag for Operation 3, which would burn on Operation 3 and Step 60 would turn off Operation 2.

Functions 59 and 60 allow the computer to exit to the next operation, and at the same time set the rementry point for return to the present operation as a specified number of steps forward (59) or backward (60) in relation to the step performed just before the exit occurs.

Functions 61, 62, and 63 concern the use of flags to communcate information between operations.

Function 61 clears a flag, Function 62 sets a flag, and Function 63 instructs the computer to skip a step if the flag is set. The flags store and communicate information about execution of the FACE operations. The completion of a FACE program sequence or FACE machine task can result in a flag being either cleared or set. Another operation is informed whether that task has been done by having a step where the set or cleared flag is checked, and a step is skipped or not skipped. depending on the flag status. This would be used as follows, which is from Operation 12 in the FACE machine program.
$33 \quad 63 \quad 2$
$14 \quad 53 \quad 2$
$15 \quad 53 \quad 3$
$16 \quad 58$ 14
$17 \quad 57 \quad 12$
$18 \quad 58 \quad 13$
$19 \quad 57 \quad 12$
In Step 13. Function 63 checks Flag 2 to see if it is set. It it is set. the computer skips to Step 15 which in Fum jumps to Step 18, which turns on Operation 13. Step 19 shen tuxns off Operation 12. If in Step 13, Flag 2 is not set o the computer skips the step 14 which sends the computex to step 16. In step 16. Operation 14 is turned on and then. in Step 1\%. Operation 12 is terminated.

Functions 64, 65, and 66 are used for subroutines. The followixg example illustrates the use of these three

07 Tor mumber sequence oniy
functions:

11	59	6	(contol		
12	49	1	21	15	30
13	101	20	22	65	12
14	49	2	23	64	4
15	101	20	24	12	3
16	66	0	25	13	20
17	64	4	26	14	4
18	12	2	27	15	20
19	13	30	28	65	12
20	14	2			

Steps 12 through 15 are the steps making up the subroutine. Step 11 instructs the computer to go to Step 17. Sunction 64 in Step 17 instructs the computer to load the arguments of the next four steps, 18 to 21 , into the argunents of the 4 steps of the subroutine. The function number of the step instructs the computer into which subroutine step to load the argument number.

Function 65 transfers the computer to the subroutine. Function 66 at the and of the subroutine returns the computer to the next step after the step containing Function 65.

Steps 18 to 21 change Steps 12 to 15 as follows Step 11. causes a skip of 6 steps to Step 17. Step 17 initiates the loading of axguments from the next soux steps.
Step 18 Loads argument 2 into Step 13. etc.

Step 22 transfexs the computer to Step 12 so as to execute the subxoutine.

Step 16 returns the computer to Step 23 (next after 22). Step 23 initiates the loading of arguments from the next soux steps. etc.

Al though the illustration does not show a programming advantage in using this subroutine, cases arise in the actual FAGE program where a fairly long subroutine has only a Iew arguments that need to be changed between repetitions. Function 67 halts the computer execution of the program and prints the step and operation number of the step containing the 67 function. Fox examples

3467 (a hypothetical step in an operation 9) would print out:

9034
After a step containing a Function 67 halts the progyam, a following step containing a Function 68 will restart the program. For example:
$35 \quad 670$
$36 \quad 68 \quad 3$
Step 35 will stop the program. Step 36 will restart the program with Operation 3.

Function 69 puts the identification number of the alphawdetector which has been turned off on the magnetic tape to inform the computer to close the data file for that detector.

Thece are no Functions 70 through 100.

Functions 101 to 140 will exit and return from continue and increment the counter. The following steps are given as an examples
$77 \quad 49 \quad 5$
$78 \quad 10520$
Step 77 will zero counter five. Step 78 will increment counter 5 by one and exit and return to 5 tep 78 via continve this function will repeat this operation until counter 5 is equal to 20 . The cycle time is 50 msec . Since the argument of Function 105 is 20 , the total time delay will 20 times 50 msec. , or one second. Counters are not zeroed before use. The initial values of the counter after a TT command of "GO" is not zero.

To be used as a timer, Function 49 must be executed to zero the counter that the timer function will use. An example using the timer function for counter 13 follows:
$\begin{array}{lll}33 & 49 & 13\end{array}$
$34 \quad 113 \quad 30$
Step 33 sets counter 13 equal to zero. Step 34 will delay the execution of the current operation by $30 \times 50 \mathrm{msec}=$ 1.5 seconds. The computer will execute the other executable steps in other on-going operations, and return to increment counter 13 every 50 msec . When counter 13 is equal to 30, the computer will execute step 35.

Function 141 through 160 ensure that the siliconcrystal alpha detectox is the correct on to read the sample. These functions are used in Operation 5 of the FACE program
only. Functions $141-160$ search for the proper file in which data from the current siliconocrystal alpha detector is to be stored. This search terminates after the proper detector is erased.

FACE MACHINE SENSORS

To facilitate computer monitoring of the mechanical functioning of the FACE machine, it is equipped with 36 mechanical sensors and 8 photocell sensors. In the CAMAC program, each sensor is assigned one bit in the sensor words read by the PDP -9 . Each sensor either is set (on, symbol one) or cleared (off, signal zero) by a CAMAC function 56 command, and a change in the sensor ${ }^{\circ} s$ status is observed with a 55 function. The Function 55 skips a step if the sensor corresponding to its argument is sets othere wise, the computex proceeds to the next step in the program. When a sensor is cleared in a program command, the computer program may later check to see if the sensor is set. A set sensor usually signifies the completion of some mechanical operation in the FACE machine. In the opposite case, the sensor is set and the computer then later checks to observe that the sensor has been cleared by a mechanical operation in the FACE machine. By using the sensors, the FACE program is informed when mechanical opexations have been completed and when to proceed to the next step. Also several FacE machine operations can be coordinated through information from the sensors.

Alphampetector Arms--Sensors 1-21

Sensoxs 1 through 20 are used for position-sensing of the respective alphardetector arms numbers 1 through 20 . Sensor 21 is for sensing contact between an arm and a center contact ring around the plateletstation, where the platelet
are retrieved by the arms. The arm sensor is unse ttable when the arm is in the retracted position, and is settable when the arm is extended. An electromagnet over the arm in retracted position keeps the sensor switch closed so it can not be opened (set) by a CAMAC command. Sensor 21 is settable when the arm is in electrical contact with the center platelet pickup station's rim.

It is important that an arm complete its mechanical task of extending and picking up a platelet, but it is also important that one arm does not collide with another disabled arm still extended. The arms are forcefully extended and retracted by air pressure and a collision can be quite damaging to the arms. The arms should be operated with extreme care to avoid damaging them.

Sensor 1-20, when settable, communicate that the respective arm is still extended and, until retrieved, that no further arm extensions should take place. Sensor 21 communicates that an arm is extended, with the alpha-detector head over the platelet, and the arm ${ }^{\text {i }}$ s electromagnets will be turned on to pick up the platelet.

Murntable 3-Sensors 22. 67

Sensors number 22 and 67 monitor mechanical switches. Sensor 67 indicates whether a 30° rotation increment of the Turntable 3 has been completed. Sensor 22 checks whe ther Turntable 3 is in a 90° position. Turntable 3 has four arms that are 90° apart. Each station around Turntable 3, the platelet hopper, droplet drying station, flaming station and
platelet retrieval station, are 90° apart, and to insure that Turntable 3 is in alignment with these stations, Sensor 22 is provided.

When sensors 22 and 67 are not in position, they are settable. Sensor 67 will remain set until Turntable 3 has rotated 30°, and then the sensor will be cleared. Sensor 22 is settable when out of alignment with the 90° station positions. When in aligment, the sensor will clear. Sensor 22 is a switch, located at a 90° position at the drying station, which is closed mechanically by a Turntable 3 arm when in 90° alignment.

Rabbit Transfer and Target Apparatus Loading Sensors 25,26 , and 33 , through 39
Rabbits are transferred from the FACE machine pneumatically to the target apparatus and back. Their movement is monitored with photocells i through 7, corresponding to sensors 33-39.

The flip-ilops associated with the photocells are cleared by a CAMAC command, and are set by interruption of a light beam across the path of the rabbit.

Photocell number 6 is set by the rabbits in the shooting reservoir waiting to be shot to the target area. When photocell 6 is clearable, there are no more rabbits in the reservoir. Photocell $\%$ is set by a rabbit which as leaving the shooting mechanism on its way to the target apparatus, thus indicating that the shooting mechanism has operated correctly.

Photocells 1 and 2 are near the top and bottom, respectively, of the target apparatus cabbit reservoir. Photocell 3 is beneath the reservoirs. When a rabbit arrives in an empty reserwoir, it sets two photocells. When the target-apparatus rabbit reservoir is full, Photocell 1 is unclearable, and no more rabbits are sent to the reservoir. Photocell 1 also tells the computer program that the rabbit has arrived and is not clogged in the transfer tube; also, it tells the computer that the next rabbit can be sent over.

Photocell 2, when clearable, indicates that the target apparatus is low on rabbits. Photocell 3, clearable in the retracted position, indicates that the rabbit shuttle contains a rabbit, Also, extending the rabbit-loading shuttle will set Photocell 3.

Photocell 4 will indicate either the dropping of a rabbit into the imadiation position, or the shooting of a rabbit to the FACE machine. The rabbit which drops down into the irradiation piston is,after irradiation, shot back out the same way into another transfer tube back to the FACE machine.

Photocell 5 is set when the rabbit arrives at Turntable 2 and indicates that the rabbit has avoided being stuck in the transfer tube

The rabbit irxadiation piston has two mechanical sensorss one for the retracted shoot position, number 25. When the irradiation piston is being retracted to shoot the
rabbit to the FACE machine, sensor 26 has just been cleared and sensor 25 will be cleared. Similarly, the extension of the irradiation piston will clear sensor 25.

Turntalbe 1 and $2-$ Sensors 59,60
Turntable 1 is monitored by mechanical sensor 59 and Turntable 2 by mechanical sensox 60 . Each of these sensors is settable when the tumatable is rotating between tumtable positions. Turntable 1 rotates in one 30° jncrement, Turntable 2 in two 30° increments. The sensors are used to count the increments through which the tumtables rotate. When the tumtables are in positiono the sensors are cleared and unsettable.

Chromatographic Column-Sensors 41 through 44

Sensor 44 is the level sensox, and is settable if the column vessel becomes empty.

Sensor bits 41, 42, and 43 are for the column drop. counter sensor, and make up a three digit binaxy number (maximum counts is seven drops). One CAMAC command number clears all three sensor bits. The dropmeounter sensor detectsa current pulse when a drop leaving the chromatographic column strikes a platinum wire between the column and the platelet.

When the fixst drop is detected by the drop-counter, bit 41 is set to 1 : when the second drop is counted, bit 42 is set to 1 and 41 is cleared; and so on the following table illustrates the counting of drops.

Bit Numbers
434241
First Drop $0 \quad 0 \quad 1$
Second Drop $0 \quad 10$
Third Drop 011
Fourth Drop 1.0
Fifth Drop $\quad 1011$
Sixth Drop 110
Seventh Drop
111

Platelet Delivery Sensors- 57.58 , and 40

Whese three sensors monitor the platelet hopper inventory and verify the transfer of the platelet from the hopper to Tumntable 3.

Sensors 57 and 58 are the lower and upper platelet hopper sensors. Both are photocells which are interrupted by astack of platelets in the hopper. As the platelets are used by the FACE machine, the level drops and the sensor can be set. This allows the FACE program to print a Function 52 statement and notify the FACE machine operator of the impending shortage.

Sensor 40 (photocell 8) is located 30° clockwise from the droplet drying station. The photocell is interrupted and set by the presence of a platelet, verifying successPuI transier from the hopper to Murntable. 3.

PIGURE A S SCHEMATIC REPRESENTATION OF THE CHEMISTRY PROGRAM

Table 9
Sensor Number and Arpument Jisst

Function $\# 55$	CAMAC \＃${ }^{\text {\％}} 56$	Equipment Identification
Argument no．\＆	Argument no．	
Sensor no．	Decimal	
1	256	Alphamdetector Arm 住1
2	257	＂＂\％淮2
3	258	－\％${ }^{3}$
4	259	$\cdots{ }^{\circ}$
5	260	\cdots－ 0 \＃ 5
6	261	
7	262	${ }^{\circ}$ \％ 7
8	263	
9	264	${ }^{*}$ \＃ 9
10	265	＊\＃10
11	266	${ }^{\text {\％}}$ \＄11
1.2	267	＂mi2
13	268	\cdots＂壮3
14	269	$\because \quad 3 \quad 414$
15	270	\＃\＄15
16	271	\％\＄16
17	272	$\cdots \cdots$
18	273	${ }^{98}{ }^{89}$－${ }^{818}$
19	274	\％${ }^{\text {\％}} 19$
20	275	\％\＃20
21	276	Center Contact Sensor
22	277	Turntable \＃3（ 90° position microswitch）
23	278	Tumntable $\# 1$ step counter and position indicator
24	279	Turntable ${ }^{4}$ Step counter and position indicator
25	280	Load piston in shoot position
26	281	Load piston in imradiation positition
27 therough 30	t implemented	

33	288
34	289
35	290
36	291
37	292
38	293
39	294
40	295
41	297
42	297
43	297
44	296
57	322

Photocell 腯1

11	\％ 72
\because	\＃3
0	\％ 4
8	\＃5
0	\％${ }^{1} 6$
${ }^{9}$	济7
${ }^{9}$	洺8

Drop couster

Level Sensor for column
Lowers platelet hopper sensor

Argument no. \& Argument no. Sensor no.

59

61 through 66 not implemented
67

Function \#55 CAMAC \#56 Equipment Identification

324

325

332 Decimal

Turntable \#1 position microsw. (30°) sets in non-aligned position
Turntable \#2 position microsw。 (30°) sets in nonwaligned position

Tumtalbe \#3 position microsw. (30°) se ts in non-aligned position

PROGRAM GUIDES

The FACE machine is run with a program written in the FACE language. The FACE program is composed of 15 operations. The FACE program, when running, is often executing two or more processes or operations simultaneously. For example, while a fraction is being collected on a platelet, another platelet might be undergoing flaming. The simultaneous rumning of the operations is coordinated through the use of filags and counters.

In reality, the computer can execute only one step at a time, but because of the computer ${ }^{2}$ s speed, the execution of the operations appears to be simultaneous to the FACE machine operator. All the executable steps in each Operation, which has been turned on are executed every 50 milleseconds.

Each step requires, on the average, 60 microseconds. Approximately 800 steps can be executed in every 50 mille seconds cycle without a time problem. The exit and return functions, numbers 59 and 60, allow the computer to go on to the next operation and will provide the operation, in which the computer is exiting from, a 50 millesecond pause. Timer functions also provide an exit and return.

To illustrate the general structure of the FACE program, Figure 13 is provided, showing the interrelations between the operations via the $58,61,62$, and 63 functions. In each rectangle, which represent an Operation, is a listing of each step which involves a flag function, and
whether that flag involved is being set, cleared, or checked for whether it is set or cleared. Also listed in each rectangle is the number of steps in the Operation and whether it halts itself. The arrows connecting the Operation rectangles indicate which Operations turn on which Operation. The arrow represents a 58 function.

Table 10 lists the purpose of each Flag, by Flag number. Table 11 lists the location of each Flag by Flag number. Table 11, under each Flag number, lists where each flag is cleared, set, or checked.

In Operations 3, 4, and 5, there are Function 52 statements provided to help diagnose frequent mechanical failures. If there is a failure of a certain type in the operation of the FACE machine, the computer will execute a 52 function. The Function 52 print out of the operation and step number will enable the operator to look up that number on table 12 and see what the problem is.

Table 13 lists the location of the counter functions steps which are not used for timing.

These tables and the figure will enable the FACE machine user to understand the FACE program, by pointing out the more important interconnecting functions.

Table 10 Flag Purposes
Flag 1. Vestigial.
Flag 2. Flag 2 is set by Op. 3 for when the counter 6
equals 1 and the flag is cleared when counter 6 is equal to any other number. The set Flag 2 in 0 p. 12 will decide that the rabbit will be a yield rabbit and that 0 p. 13 will be executed.

Flag 3. Flag 3 is set by teletype and aborts the rabbit. Causes irradiation to be bypassed. Op. 3 skips steps $89-97$ which is the timer for irradiation. Flag 3 also starts $0 p .8$. 0p. 8 discharges aborted rabbits.
Flag 4. Flag 4 is set by Op.'s 1, 11, and 13. Flag 4 tells the machine that it is ready for next rabbit if set. After next rabbit is started, Op. 12 clears Flag 4. An unset Flag 4 in 0 p. 3 causes the computer to lock up in steps 112-111 and will not execute the program.

Flag 5. Flag 5 is set in 0p.'s 1 and 5. It skips in 0p. 11, 16. 17, and 18. It is cleared in 0p. 17. Flag 5 insures that 0 p. 5 is completed so that the counters are ready when wet chemistry starts.
Flas 6. Flag 6 sets in 0 p. 12 and 0p. 17. It clears in 0p. 18, and skips in 0p. 18. Op. 12 sets the flag to prevent use of Helium jets until things are ready as notified by 0p. 15. Flag. 7. Flag 7 sets in 0p. 12, and is cleared in 0p. 18. It skips in Op. 18. Flag 7 communicates whether the plate position has been checked. An internal communication in 0p. 18 started every time by 0p. 12.

Flag 8. Flag 8 sets in 0p. 18, and is cleared in 0p.12. It skips 0p. 18. It is an infracommunicating flag in 0p. 18. It tells the latter portion of $0 \mathrm{p}, 18$ that three platelets have been discharged and to call counters. Op. 12 clears to start second half of program.
Flag 9. Set in Op. 2, Flag 9 is cleared in Op.'s 11, 12 and 18. It skips in 0p. 11. After every run, 0p. 2 is run to check system. Flag 9 is set if lower plate hopper is empty. Op. 11 stops with set flag. Op. 12 clears for new run. Platelets in hopper in Op. 18 will clear flag.
Flag 10. Flag 10 is set in Op. 2 and is cleared in 0p. 11. Op. 2 sets flag, if any of the Slosyns are empty. It causes Op. 11 to halt. Clearing of flag is after correction of problem.
Flags 11-30. These flags are used in 0p. $5 \& 6$. Use is straight forward.
Flag 31. Flag 31 stops rabbit production. It is set by teletype.

 Function Location
61 clear -

62 Set Op. 13 Step 42
stot moond hat of momer
63 check ---
FLAG 2
Function Location

63 Check 0p. 12 Step 13 p . w .
FLAG 3.

Function Location

61° clear op. 3 step 139

62 set

63 Check Op. 3 Steps 89,136

FLAG 4
Function Location
61 Clear Op. 12 Step 2
62 Set Op. 1 Step 3 Op. 11 Step 4 0p. 13 Step 43

63 Check Op. 3 Steps 97, 109, 111, 146

FLAG 5

Function Location
61 Clear Op. 17 Step 9
62 Set 0p. 1 Step 4 0p. 5 Step 63

63 Check 0p. 11 Step 33 Op. 16 Step 45 Op. 17 Steps 47, 55 0p. 18 Step 76

FLAG 6
 Function Location

61 Clear 0p: 15 Step 32
62 Set 0p. 12 Step 3 Op. 17 Step 54

63 Check 0p. 18 Step 59
FLAG 7
Function Location
61 clear 0p. 18 step 63
62 set 0p. 12 Step 4
63 Check op. 18 Steps 33, 55, 64
FLAG 8
Function Location
61. Clear Op. 12 Step 5

62 Set 0p. 18 Step 69
63 Check Op. 18 Step 70
FLAG 9
Function Location
61 clear 0p. 11 Step 32 $\begin{array}{lll}\text { Op. } & 12 \text { Step } 6 \\ \text { Op. } & 18 & \text { Step } 7\end{array}$

62 set Op. 2 step 9
63 Check Op. 11 Step 29
FLAG 10
Function Location
61 Clear 0p. 11 Step 28
62 Set op. 2 Step 12, 14, 16
63 Check op. 11 Step 25
FLAGS 11 to 30 Flags 11 through 30 are set in 0p. 5 and skiped and cleared in op. 6.

FLAG 31
Function Location
61 Clear 0p. 3 Step 149
62 Set
63 Check 0p. Step 142

Table 12- Interpretation of Functions 67 and 52 Print

Statements

Operation 3

Number Message

3034 No rabbits in loader (starts op. 4)
3045 Loader is not in loader position
3056 Piston has not moved into load-shoot position (before irradiation)
3064 Rabbit has not dropped into piston
3082. Piston is not in irradiation position

3108 Piston is not in loadwshoot position (after ixradiation)
3110 Lower drum is not in place (waits for Flag 4)
3123 Rabbit is stuck in loader or piston
3134 Rabbit is slow or stuck in tube
3140 Halt after aborting rabbit
3144 Interxuption of rabbit production
3150 Required no. of runs has been made
3152 Required no. of rabbits has been produced
Operation 4

Number Message

4009 No more rabbits in reservoir, load last two rabbits
4022 Rabbit stuck in 90° valve
4028 Rabbit slow or stuck in tube
Operation 5
The second message number is the restart step no. The two numbers are always printed together.

Number Message

$5008 / 9 \mathrm{Arm}$ \#h is stuck $\frac{1}{2}$-way
$5013 / 14$ Arm 苭 is already out
5016/17 Arm ifn is trying to come out, but another axm is already out
$5031 / 32 \mathrm{Arm}$ \#n which is out, is slow or stuck
$5039 / 40$ Read switch \#n is malfunctioning
$5053 / 54$ Arm \#n which is ing is slow or stuck

Table 13 Counter Function Location List (Not Including Timers) Counter 1 Counter ? Operation Step Fun.\# Arg.

Op.	3	10	49	1
op.	3	50	50	1
Op.	3	150	1	10
Op.	3	153	50	1
Counter 2				

Op.	3	11	49
op.	3	148	50
Op.	12	12	50
Counter		2	
Coperation			
Otep Fun.\# Arg.			

Op. 3	86	49	4
Op. 3	94	50	4
Op. 3	95	4	130

Counter 5 Operation Step Pun.\# Arg.

Op.	3	87	49
op.	8	58	50
op.	5		
op.	92	5	21
op. 3	115	49	5
op. 3	116	50	5
op. 3	120	5	10
op. 3	126	49	5
op. 3	127	50	5
op. 3	131	5	40

Counter 6 Operation Step Fun.\# Arg.

Op.	3	12	49
Op.	3	14	50
Op.	3	15	6
Op.	3	21	49
Op. 3	154	50	6

0p. 4	23	49	7
0p. 4	24	50	
0p. 4	25	7	40
Counter 8			
Operation Step Fun.\#\# Ar			
0p. 5	24	49	8
Op. 5	25	50	8
0p. 5	46	49	8
0p. 5	47	50	8

Counters 2, 10, 11, 12, and 13
Coun
Counter 14
Operation Step Fun.\# Arg.

op.	12	1	49	14
op.	18	2	50	14
op.	18	13	14	1
op.	18	61	14	3
op.	18	67	14	3

Counter 15 peration Step Fun.\# Arg.

0p. 16	49	15
0p. 16	3450	15
0p. 16	3515	7
0p. 16	48.49	15
Op. 17	1.49	15
Op. 17	43 50	15

Counter 16
Operation Step Funo\# Arg.
Op. $16 \quad 2 \quad 49 \quad 16$
Counter 17 Operation Step Funo\# Arg.
$\begin{array}{lllll}\text { Op. } & 8 & 1 & 49 & 17 \\ \text { Op. } & 8 & 11 & 50 & 17\end{array}$

Counter 17 Continued

Cornter 32

IV. CONCLOSIONS

The considexable achievenent, that is the wace Automactic Apparetus, can be made even more usetull through zuprovement of its Low element hok throughput yicldo

Chemical loss, which results in 70% appoximately of the alement 104 to be missing in addition to the radiow active loss dactor, necas to be systematically investigated with a Banium 181 sample Lollowed through the sace machine processing steps. This will allow the identilication of the cyucial steps in which chemical loss occuss 2nd subsequent mnelysis and eliminationoumis thesis has reviewed possible causes. with the wygon tubing being paxticularyy suspect.

Go reduce radioactive Loss ax accelerate the FACE machine operation (the same thing), the time consuming steps of droplet drying and Ilaming need to be shor teno At the present time great gains can schieved by more intense heatixg The present hesting is too mild fox wery repid dxying (4玉econds or less per droplet) The experiments wese Iinited by the maximum temperatures gexesctable by the ecsipnent. Futher cems are sibil to be achieved by even moxe intense heating. The mportant restrotion is to apply the heat at or neax the gasmiquid intexace to avoid violent boilingo

Flaming shows promise of being eliminated by either bhe new dxylne conditions ox a few per cent addition of SmO_{3} \% the HCl solutions used in the columno

In sumary, the throughput can be at least doubled. in consideration of improved droplet drying now demonstrated to be possible, and fuxther improvements are very likely.

In order to mathematically model the thermal behvior of a kF heated platelet, a differential heat balence equation is derived as follows:

$$
\begin{aligned}
& r \\
& \text { Heat in } \text { Heat }_{\text {out }}{ }^{\text {meat }} \text { Ace. } \\
& n 2 \pi(x+d x) k \frac{d T}{d r \mid}-\left.h(2 \pi r) k \frac{d T}{d r}\right|_{x}-g\left[2 \pi(r+d r)^{2}-2 \pi r^{2}\right]\left[T-T_{\infty}\right] \\
& =h\left[2 \pi(x+d x)^{2}-2 \pi r^{2}\right] \propto \frac{d T}{d t} \\
& \begin{array}{ll}
T=\text { temperature } & d=\text { Platelet meta } \\
x=\text { radius } &
\end{array} \\
& k=\text { thexmal conductivity of platelet } \\
& h=t h i c k n e s s \text { of platelet } \\
& g=\text { thermal coefincient of heat transfer to } \\
& \text { the aix } \\
& \text { Te }=\text { temperature at ininnity }
\end{aligned}
$$

consolidating texmss
$\left.(r+d r) k \frac{d r}{d r}\right|_{r+d r}-\left.r k \frac{d r}{d r}\right|_{r}-\frac{g}{h}(2 x d r)\left(T m P_{\infty}\right)=2 r d r \alpha \frac{d T}{d t}$
$k=\left(\frac{\partial T T}{\partial r}\right)-\frac{E}{\partial} 2 r\left(T \cdots T_{\infty}\right)=2 r \alpha \frac{\partial T}{\partial t}$

The right hand term is set equal to zero in the assumption of steady states

$$
\frac{\partial T}{\delta t}=0
$$

$$
k \frac{\partial\left(r \frac{\partial T}{\partial r}\right)}{\partial r}-\frac{g}{h} 2 r\left(T-T_{\infty}\right)=0
$$

Dividing through by ks
$\frac{\partial\left(r \frac{\partial T}{\partial r}\right)}{\partial r}-\frac{2 g}{k h} r(T-T \infty)=0$

Variable substitutions

$$
\theta=T-T_{\infty}
$$

$\frac{\partial\left(r \frac{\partial \theta}{\partial r}\right)}{\partial r}-\frac{2 g}{k h} r \theta=0$

Further differentiating the right most quantity:
$\frac{\partial^{2} \theta}{\partial r^{2}}+\frac{\partial \theta}{\partial r}-\frac{2 g}{k h^{\prime}} r \theta=0$

Vaxiable substitution:

$$
\theta=y
$$

$$
x=\mathrm{x}
$$

$x y^{\prime \prime}+y^{-} \frac{2 g}{k h} x y=0$
$x y^{\prime \prime}+y^{8}-\frac{2 g x y}{k h}=0 \quad z=(2 g / k h)^{\frac{1}{2}} x$

The ordex of the Bessel solutions to the above equation is zero, that is $p=0$.

The solution to the equation is as follows:

$$
y=z_{0}(i z)=c_{1} Y_{0}(z)+c_{2} K_{0}(z)
$$

$I_{0}(2)$ is known as the modified Bessel function of the first kind, of order zero.

$$
I_{0}(z)=\sum_{m=0}^{\infty} \frac{(z / 2)^{2 m}}{(m!)^{2}}
$$

$K_{0}(z)$ is known as the modified Bessel function of the second kind, of order zero.

$$
K_{0}(z)=\frac{X i}{2} H_{0}^{(1)}(i z)
$$

Fixs oyaration is only sun once to staxt the program by faxasug on Oraxations 3 and 6 and sotting plags 4 and 5.

081

| 1 | 58 | 3 |
| :--- | :--- | :--- |\quad Start operation 3 at step one

 syas asm adxegs ampty Also providos a socond dolay in prograno O8
STEP FUNA ARG

135	58	Slefp to step 3 if sensor 58 is set, Low on plates, Upper plate hopper
252	0	Pxint operation and step no.
350	39	Incsement counter 39
456	282	Cleax sensor 27, upper limit Slosyrn Syringe I\#
$5 \quad 56$	283	Cleax sensor 28, upper limit slosyn Syringe \#2
656	333	Dscentimued, doos nothing
756	322	Clear sensor 57, Lower plate Hopper (almost out or plates)
856	323	Cleas sensor 58, Upper plate Hopper (low on plates)
955	57	Slip to step 17 if sensor 57 is set
1062	9	Set Plog 9
1155	27	Sluig if sensor 27 is set, to step 13
2262	10	Set flag 10
1355	28	Shis in sensor 28 is set to step 15
14. 62	10	Set glag 20
$15 \quad 55$	68	Esscoskinued does nothing
$16 \quad 62$	10	Set flag 10
1739	20	Skip it counter 39 equals 20 to step 19
1860	25	Erit and return backwards 15 steps to step 3
2950	40	Tncxement counter 40
20.49	39	Zero counter 39
2160	28	Erit and return backwaxds 18 steps to step 3

Oparation 3. Rabbit Contral Oposation.

Trwadiatas the rabbit at the targat epparatus and thon transfors
the rebbet to the FACE nackingo

SIEP FUN\# ARG

1	56	187	Turn off beam
2	56	176	Removes rabbit from irrado, target soln. \#3
3	49	5	Zexo countex no. 5
4	205	16	Count to 16 with counter 5, 800 ms .
5	56	174	Shoots rabbit from taxget to FACE Target soln. 1
6	49	5	Zero counter 5
7	105	50	Count to 50 with counter $5,2.5$ sec.
8	56	175	Stop shoot rabbit from target to FACE target soln. 1
9	58	8	Start operation 8 at step one
10	49	1	Zexo counter one
11.	49	2	Zexo counter two
12	49	6	Zero counter six
23	50	1	Increment counter 1 by one
14	50	6	Increment counter 6 by one
25	6	1	If countes 6 is equal to 1 skip to step 17
16	53	2	Jump forward 2 steps to step 18.
17	53	3	Jway forward 3 steys to step 20
18	6.1	2	Clear flag 2
19	53	3	Junp forwaid 3 steps to step 22
20	62	2	Set a fag , flag no. 2
21.	49	6	Zero countex. 6
22	56	288	Clear photocell No. 1
23	56	290	Clear photocell No. 3
24	56	291.	Clear photocell No. 4
25	55	35	Check photocell No. 3, skip to step 27 if set
26	53	2	Juap forvard 2 steps to step 28
27	53	12	Jump forward 12 steps to step 39
28	49	5	Zero counter 5
29	105	10	Count to 20 with countex no. 5, 500ms.
30	56	290	Cleax photocell 3

STE $\mathcal{E O N}$ ARG

3.	55	35	Skip to step 33 if ghotocell No. 3
32	53	2	Jump forward 2 steps to step 34
33	53	6	Jump forward 6 steps to step 39
34	52	0	Print operation and step no.
35	58	4	Start operation 4 at step one
36	49	5	Zero counter 5
37	105	200	Count to 200 with counter 5, 10 sec 。
38	60	16	Exait and return backwards 16 steps to step 22
39	56	280	Set microswitch for piston in shoot posi.tion, at target
40	56	281	Set microswitch for piston in ixrad. position, at target
40	56	286	
42	56	287	
43	55	32	Skip if sensor 32 is set
44	53	2	Jump forward 2 steps to step 46
45	67	39	HOP and print OP and STEP, restart step 39
46	56	176	Removes rabbit from irrad, or takes rabbit from soln. 3 for losding with comand 261 oct.
47	49	5	
48	205	20	Count to 20 with counter 5, I sec.
49.	56	280	Set microsuitch for piston in shoot position, at target
50	56	281	Set mieroswitch for piston in irrad. position, ot terget
58	55	25	Skip if sensor 25 is set, plston in shoot position.
22.	53	4	Jump forwaxd 4 steps to step 56.
53	55	26	Skip in sensor 26 is set, piston in irrad. position.
54	53	2	Jung forward 2 steps to step 56
55	53	2	". " " " " 57
56	67	49	HOP and print OP and Sxep, restart step 49
57	56	178	Drop rabbit into soln. 2 from rabbit storage column
58	49	5	Zero counter 5
59	105	20	Count to 20 with counter 5, 1 sec.
60°	56	179	Reverse motion of CAMAC command 178, 262 Octal
62	49	5	Zero counter 5
62	2.05	20	Count to 20 with counter 20, 2 sec.
63	55	36	Skip to step 65 lif photocell No. 4 is set

\$2EP Mrn in Ang

643	67	57	HO and print OP and STEP, restart step 57.
65	56	288	Clear photocell No. 1
66	55	33	Check if photocell No. 1 is set, if set skip to step 68
67	58	4	Start operation 4 at step one
68	56	277	Moves soln. No. 2 in direction opposite for 260 (octal). loods rabbit into irrad. step.
69	49	5	Zero counter 5
70	105	40	Count to 40 with counter $5,2 \mathrm{sec}$.
71	56	281	Set micro switch for piston in irrad. position at target
72	55	26	Skip to step 74 if sensor 26 (piston in irrad. position) is set
73	53	10	Jump Sorward 10 steps to step 83
74	56	176	Removes rabbit from irrad. or takes rabbit from soln. 3 for loading with comand 261. pushes soln. in.
75	49	5	Zero counter 5
76	105	20	Count to 20 with counter 5,1. second
77	56	277	Moves soln. No. 2 in direction opposite for 260. Loads rabbit into irrad. step.
78	49	5	Zero counter 5
79	205	40	Count to 40 with counter 5, 2 sec.
80	55	26	Skip if sensor 26 is set to step 82, (Piston in irrad. position)
81	53	2	Juny forward 2 steps to step 83
82	67	71	HOP and print OP and STEP, 71 restaxt step
83	56	186	Turn on beam
84	48	0	Bear on tape with time.
85	43	0	Stop + reset+ start electrometer+tape
86	49	4	Zero counter 4
87	49	5	Zero counter 5
88	50	5	Increment counter 5
89	63	3	Skip to step 91 if flag 3 set.
90	53	2	Jump forward 2 steps to step 55
91	53	6	Jump forward 6 steps to step 97 .
98	5	21	If counter equal to 21 skip to step 94
93	60	5	Exit and return backwards 5 steps to step 88
94	50	4	Increment counter 4 by one
95	4	130	If counter 4 is equal to 130 skip to step 97

STEP EUN ABG

231	5	40	Count to 40 with counter $5,2 \mathrm{sec}$.
232	60	5	Exit and return backwards 5 steps to step 127
133	56	275	Stop shoot rabbit from target to FACE
234	67	117	HOP and print OP and STEP restart step 117
235	56	275	Stop shoot rabbit from target to FACE
236	63	3	Skip. to step 139 if flag 3 is set
137	53	4	Jump forward 4 steps to step 141
238	58	8	Start operation 8 at step one
239	61.	3	Clear flag 3
140	67	246	HOP and print OP and STEP
142	58	12	Start operation 12 at step one
142	63	31	Skip to step 144 if flag 31 is set
143	53	7	Jump forvard 7 steps to step 150
144	67	249	HOP and print OP and STEP restart step 149
145	53	7	Jump forwerd 7 steps to step 152
146	63	4	Skip to step 148 if flag 4 set
147	60	1.	Exit and return backwards 1 step
148	50	3	Increment counter 2
249	61	31.	Clear flag 31
150	1	10	If counter 1 is equal to 10 skip to step 152
151	53	2	Jump forward 2 steps to step 153
752	67	\bigcirc	HOP and print OP and STEP restart step 0
353	50	1	Tacrement counter 1
154	50	6	Increment countex 6
1.55	60	140	Exit and return backwards 140 steps to step 15

Oparation \& Rabbit lesexvoir Operation
 wntiz $2 t 25$ 51120d.
09^{4}

156	146	Shoots rabbit ixom Face to target area, 90° valve
249	7	Zero counter no. 7
3207	13	Count to 13 with counter 7, 650 milleseconds
456	147	Stops shoot rabbit from FACE
$5 \quad 49$	7	Zero counter seven
6207	10	Count to $10,500 \mathrm{~ms}$., with counter 7
756	293	Cleax photocell No. 6
853	2	Jump forwaird 2 steps to step no. 10
967	7	Halt operation (HOP) and print OP and STEP, restart no. 7
$10 \quad 56$	170	Turn on linear valve no. 2
1249	7	Zero counter 7
12.107	6	Count to 6 with countex 7, 300 ms .
1356	172	Turn off linear valve no. 2
1449	7	Zero counter 7
$\begin{array}{ll}15 & 207\end{array}$	6	Count to 6 with counter 7, 300 ms .
1656	294	Clear photocell No. 7
17. 56	289	Clear photocell No. 2
$18 \quad 56$	246	Shoot rabbit from FACE to target orea, 90° valve
2949	7	Zero counter no. 7
20207	20	Count to 20 with counter 7, 1 sec.
2155	39	Check photocell no. 7
22.67	14	HOP and grint OP and Step, restart step no. 14
2349	7	Zexo counter 7
2450	7	Increment. counter 77 by one
25 7	40	If counter 7 is equal to 40 skip to step 27
$26 \quad 53$	3	Jump torward 3 steps to step 29

玉TEP SUN ARG

27	56	147	Stop shoot rabbit from FACE to target area, 90° valve
28	67	16	HOP and print OP and STEP, restart step 16
29	55	34	Skip step to step 37, if photocell No. 2 is set
30	60	6	Exit and return backwards six steps
32	56	147	Stop shoot rabbit from FACE, 90° valve
32	49	7	Zero counter 7
33	107	6	Count to 6 with counter $7,300 \mathrm{~ms}$.
34	56	289	Clear photocell No.2
35	55	34	Check photocell No. 2, skip to step 37 if set
36	60	32	Exit and return backward 31 steps to step 5
37	57	4	Halt operation 4

Operation 50 Alphnemotactor Arm Opration.

Shat oparation cuns the aphaedetector axus to pick up

TACP mocknc wash samplos and adubs thois alphe decays.


```
OS 5 cont.
STEP FON肴 ARG
99 3 258
100}199
102 20 53
102 23 200.
103 30 101
104 34-258
30542 52
206 45 101
107 52 100
308 58 4
10961 23
120 62. 13
117 65 2
112}144,1
123 64 12
124}
115 19 7
116 20 55
177}2
128}30310
1 2 9 ~ 3 4 ~ 2 5 9 ~
120 42 54.
121.45 103
122. 52 102
123 58 6
124 61-24
125\quad62 24
126 65 2
127}1245\quad2
128 64 12
124 3 300
330 19 9
132 20 58
132 23 104
133 30 105
234 34 260
```

Call sub-routine, first step 2
Skip 15 steps to step 127, if x-tal \#4 incorrect
Load arguments of the next 12 steps

Call subroutine, first step no. 2
Skip 15 steps to step 142 if x tal \#5 incorrect
Load arguments of the next 12 steps


```
Om5 conco
```


$\begin{array}{lll}272 & 148 & 15\end{array}$
17364.12
$17433 \quad 303$
$\begin{array}{lll}175 & 19 & 25\end{array}$
$176 \quad 20 \quad 63$
$177-210$
$278 \quad 30 \quad 111$
$179 \quad 34 \quad 263$
180 42 62
$181 \quad 45 \quad 111$
$182 \quad 52 \quad 110$
$\begin{array}{lll}283 & 58 & 14\end{array}$
$\begin{array}{lll}184 & 61 & 28\end{array}$
$\begin{array}{lll}185 & 62 & 18\end{array}$
$\begin{array}{lll}186 & 65 & 2\end{array}$
$\begin{array}{lll}187 & 249 & 15\end{array}$
$\begin{array}{lll}288 & 64 & 12\end{array}$
$189 \quad 3 \quad 304$
$\begin{array}{lll}990 & 29 & 27\end{array}$
$29220 \quad 65$
$292 \quad 23 \quad 172$
$293 \quad 30 \quad 113$
$294 \quad 34 \quad 264$
3954264
$295 \quad 45113$
$597 \quad 52 \quad 112$
298 58: 16
19961 29
$200 \quad 62 \quad 19$
$20165 \quad 2$
$202 \quad 250 \cdot 25$
203646
2043305
$205 \quad 19 \quad 19$
20620.67
$207 \quad 23 \quad 124$
$208 \quad 30 \quad 225$

Skip 15 steps to step 187 if x-tal \#8 incorrect
Load axgments of the next 12 steps

Call gubroutine, first step no. 2
Skip 15 steps to step 202 if $x-t a 1$ \#9 incorrect
Load arguments of the next 12 steps

Call subroutine, first step NO. 2
Skip 15 steps to step 217 if x wtal \#10 incorrect Load axgwents of the next 12 steps

```
OP 5 cont.
3TEP FUN軘 ARC
209 34 265
210 42 66
213 45 125
212
213}588\quad1
214 61 30
225 62 20
216 65 :2
217 151 15
218 64 12
2\9 3.306
220. }192
221 20 69
222 23 216
223 30 }21
224 34 2665
22542 68
226 45 117
227 52 116
228. 58- 20
22961 32
230 62 21
232.65.2
232.}252\quad1
233 64 12
234}3330
235 19 23
236 20 71
237 23 148
238}303012
239
240 42 70
24i 45 }21
242 52 1138
243 58 22
244 61 32
245 62 22
246 65 2
```

Call subroutines, first step no. 2
Skip 15 steps if x-tal \#12 incorrect
Load argunents of the next 12 steps

```
08 cont.
$TEP IUN/# ARG
218
```

```
247 153 15
```

247 153 15
248 64 12
248 64 12
249 3 308
249 3 308
250}19\quad2
250}19\quad2
251 20 73
251 20 73
252. 23 120
252. 23 120
253 30 121
253 30 121
254 34:268
254 34:268
255 42.72
255 42.72
256 45 121
256 45 121
257 52 120
257 52 120
258 58 24
258 58 24
25961. 33
25961. 33
260 62 23
260 62 23
261 65 2
261 65 2
262}1354\quad1
262}1354\quad1
26364 12
26364 12
264 3 309
264 3 309
265}19
265}19
266. 20 75
266. 20 75
267 23 122
267 23 122
268 30 123
268 30 123
269.34 269
269.34 269
270}42%7
270}42%7
272 45 123
272 45 123
272 52 122
272 52 122
273 58 26
273 58 26
274 62.34
274 62.34
275 62 24
275 62 24
276 65, 2
276 65, 2
2%7 255 15
2%7 255 15
276 64 12
276 64 12
279}3031
279}3031
200 19 29
200 19 29
28.4 20 77
28.4 20 77
285. 23 224
285. 23 224
283 30 125
283 30 125
284 34. 270
284 34. 270
285 42 76

```
285 42 76
```

085 comis.
G2TE EONT ARG
28645 125
$287 \quad 52$ 124
$288 \quad 58$ 28
28961 35
29062 25
29165 2
$292 \quad 156 \quad 15$
$293 \quad 64 \quad 12$
294311
29819 31
296 79
29723 126
29830 127
299.34 272
$300 \cdot 42$ 78
30245 127
302 52 126
30358 30
30461 36
30562 26
$\begin{array}{ll}306 & 65 \quad 2\end{array}$
$307 \quad 257$ 15
$308 \quad 64 \quad 12$
3093 312
$310 \quad 19$ 33
32120 89
$312 \quad 23$ 128
31330 129
34434 272
31542 80
31645 2.29
37752 128
34858 32
31961 37
32062 27
322652

CaII subroutine, step 2 first step in subroutine Srip 1.5 steps to step 307. iff xital \# 16 incorrect Load arguments of the next 12 steps
085 cont.120
STM
$\begin{array}{lll}322 & 158 & 15\end{array}$ 15
$323 \quad 64 \quad 12$
3243 323
32529 35
32620 83
$327 \quad 23$ 130
32830 131
329 $34 \quad 273$
33042 82
33345 132
33252 230
33358 34
334 38
33562 28
$336 \quad 65$.$\begin{array}{lll}337 & 159 & 15\end{array}$
338 $64 \quad 12$
339 3314
340 1937
342 2085
342.23 132
34330 233
344 34 $2 u^{4}$
34542 84
34645 133
347 52 132
$348 \quad 58$ 36
34967 39
3506% 29
$35165 \quad 2$ 2
352 $160 \quad 25$
353 12
354 $3 \quad 315$
3559.9 39
35620 87
35723 234
35830 135
35934 275

Skip 25 steps to step 337, if $x-t e l \# 18$ incorrect Load the arguments of the next 12 steps

085		cosis.		828
STEP FON: ARG				
360	42	86		
361	45	135		
362	52	234		
363	58	38	:	
364	61	40		
365	62	30		
366	65	2	Call subroutine, first step no.2	
367	54	366	Jung backwards 366 steps, to step no. 1	

Oparation 6. Data Retrieval Oparationa

Oparation turns off alphaedetectors and collects alphe decay data.

OP 6
step fun\# arg

1	49	9
2	109	20
3	63	11
4	53	7
5	50	21
6	21	20
7	53	4
8	56	1
9	69	0

$10 \quad 61 \quad 12$
$11 \quad 63 \quad 12$
$1253 \quad 7$
$13 \quad 50 \quad 22$
$34 \quad 22 \quad 20$
$\begin{array}{lll}15 & 53 & 4\end{array}$
$16 \quad 56 \quad 3$
$27 \quad 69 \quad 0$
$18 \quad 61 \quad 12$
$19 \quad 63 \quad 13$
$\begin{array}{lll}20 & 53 & 7\end{array}$
$22 \quad 50 \quad 23$
$\begin{array}{lll}22 & 23 & 20\end{array}$
$23 \quad 53 \quad 4$
$2456 \quad 5$
25690
$\begin{array}{lll}26 & 61 & 13\end{array}$
$\begin{array}{lll}27 & 63 & 1.4\end{array}$
$\begin{array}{lll}28 & 53 & 7\end{array}$
29 50. 24
30 24 20
32 534
Zero countex No. 9
Count to 20 with counter $\mathrm{NO}_{0} 9$, one second
Skip a step if flag is set, flag no. 11
Jump forward seven steps to step No. 11
Increment counter No. 21 one
If counter No. 21 is equal to 20 skip
Jump forward four steps to step No. 11

IDax-tal moff on tape, if the arg. is \#O, it is taken as the ID.
Clear flag NO. 11
Skip a step, to step NO. 13, if flag No. 12 is set.
Jump forward seven steps to step No. 19
Increment counter No. 22 by one
Skip a step, to step No. 16 , if counter No. 22 is equal to 20
Juxp forward four steps to step No. 19

Mox-taj-orf on tape, in the arge is \#O, it is taken as the m_{D}.
Clear rlag No. 12
Skip a step, to step No. 21, if flag No. 13 is set
Jump forward seven steps to step No. 27
Increment countex twenty three by one
If counter twenty three is equal to 2θ, skip to step No. 24
Jump forward foux steps to step No. 27

Doox-talooff on tape, if the arg. is O\#, it is taken as the m.
Clear flag No. 13
Skip a step to step No. 29, 1f flag No. 14 is set
Jump forward seven steps to step No. 35
Increment counter 24 by one
If counter 24 is equal to $20, \mathrm{skip}$ to step NO。 32
Jumg forward foux steps to atep No. 35

086	cont.	123
STEP FUN边	A8c	
32. 56	7	
3369	0	Dounotalmoff on tape, if the arg. is \#o, it is taken as the TD
3461	14	Clear Plag No. 14
3563	15	Skip a step to step No.37, if flag No. 15 is set
3653	7	Jump Lorward seven steps to step No. 43
3750	25	Increment counter No. 25 by one
$38 \quad 25$	20	If counter 25 is equal to 20, skip a step to step No. 40
3953	4	Jump forward four steps to step No. 43
$40 \quad 56$	9	
4169	0	TDmintalmofe on tapeg if the argo is \#O, It is taken as the TD
4262	25	Cleax ilag No. 15
43.63	16	Skip a step forward to step No. 45 , if flag No. 16 is set
4453	7	Jump forward seven steps to step NO. 51.
4550	26	Increment counter No. 26 by one
46.26	20	If counter 26 is equal to 20 skip a step to step No. 46
$47 \quad 53$	4	Juray forward four steps to step No. 51
4856	11	
49.69	0	IDmx-talmofi on tape, if the arge is OH, it is taken asthe D
50.61	16	Clear flag No. 16
51.63	17	Skip a step forward to step NO. 53, if flag No. 17 is set
$52 \quad 53$	7	Jump forward seven steps to step NO. 59
5350	27	Increment counter No. 27 by one
$\begin{array}{ll}54 & 27\end{array}$	20	If counter No. 27 is equal to 20, skip to step No. 26
$55 \quad 53$	4	Jump forward your steps to step No. 59
5656	13	
5769	0	Doxmbalmoff on tape, ip the arge is \#o, tt is taken as the Tin
5861	17	Clear flag No. 17
5963	1.8	Skip a step to step No. 61 if flag No. 18 is set
$60 \quad 53$	7	Jump forward seven steps to step No. 67
6150	28	Increment counter No. 28 by one
$62 \quad 28$	20	If counter 28 is equal to 20 skip to step No. 64
$63 \quad 53$	4	Jump forward four steps to step No. 67
6456	1.5	
6569	0	Mox-talmoff on tape, if the arg. is \#0, it is taken as the in

OP 6 cont.

STEP RONH ARG

Oparatica 8. Rabbit Discaerge Operstion.

seres Eurntable 2 oight positions to discharge washad rabbits.
$O P 8$
STEP FUN\# ARG
$\begin{array}{llll}1 & 49 & 17\end{array}$
Zero counter 17
$2 \quad 56 \quad 312$
$356 \cdot 490$ Turn Turntable 2\# CW (rabbit table)
456325 Turntable 2\# (position microswitch)
$55560 \quad$ Skip if microswith is set, go to step No. 7
6602 Exit and return backward two steps, to step No. 4
756325 Turntable 2\# (position microswitch)
$85560 \quad$ Skip if microswitch is set, go to step No. 10
9592 Exit and return forward two steps, step No. 11
10602 Exit and return backward two steps, step No. 8
115017 Increment counter No. 17 by one
12174 Skip if counter is equal to four, to step No. 14
$13609 \quad$ Exit and return backward nine steps to step No. 4
1456491 Turn off Iurntable 2\# CW (rabbit table)
$\begin{array}{lll}15 & 56 & 313\end{array}$
16578 Halt operation No. 8,

Oparation if. Columen Pxeparati on Operaction.

lataiog colum, chocks syminge number 3. and choks plate hoppore

Renses columi.

0811

STEP FUN\# ARG

Operstion 12 . Second Half of Prograv Control Operation.

```
            Infilally seros counters, gets and clears Nlags to start
        gecond balf of program. Decides whothos sabbit will go to gield
        countrag os to chomstry%
    08 12
STEP FUN# STEP
14 14 Zero counter 14
2
3 62 6 Set flag 6
4 62 7 : Set flag 7
5 61.8 Clear flag 8
6 61 9 clear flagg 9
7 49 39 Zero counter 39
8 49 40 Zero counter 40
9.58 2 Start operation 2 at step one, after execution return to step 10
10.49: 12 Zero counter 12
11.}111216 Zero counter 16 
12 50 2 Increment counter 2 by one
13.63 2 Skip a step if a flag 2 is set to step 15
14 53 2 Jump forward 2 steps
15 53 3 Jump forwasid 3 steps
16 58 14 Start operation 14 at step one, after execution return to step 17
17 57 12 Halt operation 12
18 58 13 Start opexation 13 at step one and return to step 19
19 57 12 Halt operation 12
```


Quargetion 13: Rabbit Tield Oparation.

Oparation 14. Rabbit Wash Operation.

Bobstos sumatable 2 to place sabbit in wash station. Washes rabbst sin wash station. Washes rabbit. whth slest wash and transfors it to the coluses snd washos the rabbit whth tho socond wash.

```
0544.
```

STES FOM ${ }^{\prime \prime}$ ABG

1	56	312	
2	56	490	Tura on turntable \#2 CW (rabbit table)
3	56	325	Set truntable \#2 position microswitch
4	55	60	Check Turntable \#2 microswitch, if set skip to step 6
5	60	2	Exit and return backward 2 steps to step 3
6	56	325	Set turntable \#2 position microswitch
7	55	60	Check Turntable \#2 microswitch, if set skip to step 9
8	59	2	Exit and return forward 2 steps to step 10
9	60	2	Exit and return backwards 2 steps to step 7
10	56	491	Turn off turntable \#2 CW
12	49	12	Zero counter 12
12	172	4	Count to 4 with counter 12, 200 ms .
23	56	325	Set tuxntable \#2 position microswitch
14	55	60	Check turntable \#2 microsw-, if set skip to step 16
15	59	2	Exit and return forward 2 steps, to step 17
16	60	3	Exit and return backwards 3 steps to stepl3
27	56	313	
18	. 56	406	Turn on pneumatic ram (seats rabbit against dissolver).
19	49	12	Zero counter 12
20	112	5	Count to 5 with counter 12, 250 ms .
21	56	416	Turn on spare pneunatic relay
22	56	498	Murn on Slosyn 3
23	49	12	Zero counter 12
24	112	15	Count to 15 with counter 15, 750 ms .
. 25	56	4,99	Turn off Slosyn 3

Thansforg socond wash to colun aftex first wash is xun through the colvine The second wash is then ran through column.

STEP	FUNA	arg	
27	55	44	If level sensor set skip to step 29
28	59	2	Exit and return forward 2 steps to step 30
29	60	3	Exit and return backwards 3 steps to step 26
30	56	427	Open vent to column
31	56	421	Stop air pressure to column
32	61	6	Clear flag 6
33	58	18	Start operation 78 at step one and return to step 34
34	58	16	Start operation 16 at step one and return to step 35
35	57	15	Halt operation 15

Opepation 16. Colum Panning and Fraction Collaction Oparation.

Collacts coluran on pistelots.

0 P 16			
STEP	Fun\#	STEP	
1	49	15	Zero counter 15
2	49	. 16	Zero counter 16
3	56	421	Tuxn off alr pressure to column
4	56	427	Open vent to column
5	56	426	Close vent to column
6	49	32	Zero counter 12
7	112	2	Count to 2 with counter 12
8	56	158	slosyn \#2 dispense
9	49	12	Zero counter 12
10	112	20	Count to 20 with counter 12
12	56	159	Slosyn \#2 stop dispense
12	56	425	Close valve from slosyn \#2 syringe
13	56	426	Glose vent to column
14	56	420	Turn on air pressure for column
15	49	12	zero counter 12
16	112	20	Count to 20 with counter 12.
1.7	56	296	Set level sensor in column
18	56	297	Set drop counter
19	55	44	Skip to step 21. if level sensor is set
20	60	37	Exit and return beckwards 17 steps to step 3
21	49	12	Zero counter 12
22	112	1.	Cornt to 1 with counter 12
23	55	41	If drop 1 set skip to step 25
24	60	7	Fixit and return backwards 7 steps
25	56	296	Set level sensor in column
26	56	297	Set drop sensor \& counter
27	55	44	Skip to step 29 if level sensor is set
28	60	24	Exit and return backwards 24 steps to step 4
29	49	12	Zero counter 12
. 30	112	1	Count to 1 with counter 12

0886	cont
\$5\%	ALG

STES SON ARG

31	55	42	Cheels drop 1 sensor, if set skip to step 33
32	59	2	Exit and return forward 2 steps to step 34
33	60	8	Exit and return backwards 8 steps to step 25
34	50	15	Increment counter 25 by 1
35	15	7	If countex 15 is equal to 7 skip to step 37
36	60	19	Exit and return backwards 19 steps to step 17
37	50	26	Increment countex 16 by 1
38	26	2	If counter 16 is equal to 1 skip to step 40
39	53	2	Junp forward 2 steps to step 41
40	53	10	Jump Sowwaxd 10 steps to step 50
4	566	408	Flaner on
42	49	12	Zexo counter 12
43	122	40	Count to 40 with counter 12, 2 secos
$4{ }^{4}$	56	409	Flamer off
45	63	5	Skip to step l? if flag 5 is set
46	60	1	Exit and return backwards to step 45
H7	58	18	Start operstion 18 at step one, and return to step 48
48	49	15	zero counter 15
49	60	32	Bxit and return backwards 32 steps to step 19
50	. 56	422	turn off aire pressure on column
52	56	427	Open vent to column
52	58	17	Start operation 77 at step one and return to step 53
53	89	26	Halt operation 16

0888			
STEP	FUNT\#	ARG	
2	49	15	Zero countex 15
2	53	6	Jump forward 6 steps to step 8
3	56	408	Flamer on
4	49	12	\%exo counter 12
5	212	40	Count to 40 with counter 12
6	56	409	Flamer of
\%	66	54	Retum from subroutine (to next step after funit65)
8	65	3	Call subxoutine, first step number 3
9	63	5	
30	60	2	Extt and return to step 9
21	58	18	Staxt operation 18 at atep 12 and return to step 12
12	56	421	stop air pressure on column
13	56	427	Open veat to colums
14	56	424	Open valve from slosym \#2 syringe
15	49	12	Zero counter 12
16	172	20	Count to 20 with counter 12
1.7	56	158	Slosyn \#2 syringe dispense
18	49	12	Zero counter 12
29	122	20	Count to 20 with counter 12
20	56	159	Stop Slosyn \#2 syringe dispense
21	56	425	Close valve from Slosyn \#2 syringe
22	56	426	close vent to columm
23	56	420	Apply aix pressure to column
24	49	12	Zero counter 12
25	212	20	Count to 20 with countex 12
26	56	297	Set drop countex
27	56	286	Set lever sensor in colum
28	55	44	It level sensor set, skip to step 30
29	60	17	Extt and return backwards to steg 12
30	89	12	Zero countex 12
37	112	2	Count to 1 with counter 12
32	55	4	cre droo I set skip to step 34
33	60	\%	Extt and returrs backwards 7 steps to step 26
34	56	296	Set Level sensor
35	56	297	Set drop counter
36	55	44	If Level sensor set skty to step 38

0888
SMEE FUN\# ARG

O817 00nto			
STEP		Arg	
37	60		Exit and return 24 steps to step 13
38	49	12	Zero counter 12
39	112	1	Count to 1 with counter 12
40	55	42	If dxop one counter set skip to step 42
8	59	2	Brit and return forward to step 43
42	60	8	Exit and return backwards to step:34
43	50	35	Increment counter 15 by one
4	15	7	If conater 15 is equal to 7 skip to step 46
45	60	19	Exstit and return brekwayds 19 steps to step 26
46	65	3	Call subroutine step 3
47	63	5	Skip a step to step 49 if flag:5 is set
48	60	1	Brit and return a step to step 47
49	58	18	Saxt ogeration 18 at step one and return to step 50
50	58	12	Start opexation 31 at step one and return to step 51
51	49	12	Zexo countex 12
52	112	400	Count to 400 with counter 12, 20 sec .
53	65	3	Call subroutine step 3
54	62	6	Set slag 6
55	63	5	Skip to stey 57 if flag 5 is set.
56	60	1	Exit and return 1 step to step 55
57	58	28	Staxt operation 18 at step 1 and return to step 58
83	57	37	Halt opexation 17

Oporation 18. Platalot Drspansing Oparation.

Denonses platolots and controls Iumtable 3 notation.

088
STES FUNA ARE

O8 88				142
578	FONT	A AR		
	60	2	Fret and return backwards 2 steps to step 27	
30	50	17	Tncrement counter 17 by one	
32	17	2	If counter 17 is equal to 1 skip to step 33	
32.	53	17	Juxag forward 17 steps to step 49	
33	63	7	Skip a step to step 35 if flag 7 is set	
34	53	25	Junp forward 15 steps to step 49	
35	56	320	Set plate is on turntable 3 sensor.	
36	55	55	II plate on turatable sensor set, skip to step 38	
37	59	2	Exit and retaxn foxward 2 steps to step 39	
38	99	21	Buit and return forware 11 steps to step 49	
39	56	493	Turn of ef turntable \#3 30° (sample table)	
40	67	14.	HoP and print of and stre	
42	59	25	Hait operetion 15	
42	57	26	Halt opexation 16	
43	57	17	Hait operation 27	
44	56	492	Tura on turntable \#3	
45	68	15	Continue op after Hop	
46	68	16	Continue Of after hop	
47	68	37	Continue OP after Hop	
48	59	3	Exit and return forward 3 steps to step 57	
49	77	2	$x 8$ counter 17 is equal to 2 skip to step 51	
50	60	27	Exit and return backwards 27 steps to step 23	
51	56	493	Turn off turntable \#\#	
52	49	13	Zexo counter 13	
53	133	20	Count to 10 with counter 13	
54	56	313	Turn oss ADC	
55	63	7	Skip a atep to step 57 is rlacg 7 is set	
56	53	3	Jump rownard 3 steps to step 59	
5 ?	56	152	Tuen on hot air jet under plate at column position	
58	56	494	Helium Jet \#\# on	
59	636	6	Skip to step 61 if flag 6 is set	
60	56	496	Helium Jet \#2 on	
681	143	3	If counter 14 is equal to 3 skip to step 63	
625	532	2	Jung soxwaxd 2 steps to stey 64	

0818		cont.	
STEP	\%89\%	ARG	
63	61.	7	Clear llag 7
64	63	7	Skip to step 66 if flag 7 is set
65	53	2	Jump forward 2 steps to step 67
66	65	4	Call subroutine step 4
67	34	3	If counter 34 is equal to 3 skip to step 69
68	53	2	Jump forward 2 steps to step 70
69	62	8	Set flag 8
70	63	8	Skip to step 72 if flag 8 set
71	57	18	Halt operation 18
72	56	277	Set turntable \#3 (90° position microswitck)
73	55	22	Check turntable \#3 microswitch (900 position)
4	53	2	Jump forward 2 steps to step 76
75	67	66	HOP and print OP and SIEP
76	63	5	Skip a step if flag 5 is set to step 78
97	60	1	Exit and return backwards 1 step to step 76
T8	56	312	Turn off ADC
79	58	5	Start operation 5 at step one
80	57	38	Halt operation 18

144
Appendix C Comparison Chart of the Physical
Properties of Air and Helium

Temperature	Density $\times 10^{4}$	$\left(\mathrm{~g} / \mathrm{cm}_{0}{ }^{3}\right)$	$C_{p}\left(\mathrm{cal} / \mathrm{gm}^{\circ}{ }^{\circ} \mathrm{C}\right)$				
F	C	Air	Helium	He/Air	Air	Helium	He/Air
400	204.4	7.40	1.02	0.1379	0.245	1.24	5.061
600	315.6	5.99	0.86	0.1382	0.251	1.24	4.940
800	426.7	5.05	0.70	0.1394	0.257	1.24	4.825
1000	537.8	3.25	0.60	0.1852	0.263	1.24	4.715

Temperature	u $\times 10^{5}$	(centipoise)	(stokes)				
0_{F}	0_{C}	Air	Helium	He/Air	Air	Helium	He/Air
400	204.4	2589.	2745.	1.06	0.35	2.70	7.72
600	315.6	2976.	3125.	1.05	0.50	3.75	7.55
800	426.7	3333.	3467.	1.04	0.66	4.91	7.43
1000	537.8	3661.	3807.	1.04	0.84	6.30	7.48

Temperature		k $\times 10^{6}$ ($\left.\mathrm{cal} \cdot / \mathrm{cm}^{2} \sec ^{\circ} \mathrm{C}\right)$			$\left(\mathrm{cm}^{2} / \mathrm{sec}.\right)$		
o_{F}	${ }^{\circ} \mathrm{C}$	Air	Helium	He/Air	Air	Helium	He/Air
400	204.4	3.05	15.46	5.07	0.52	3.72	7.20
600	315.6	3.66	17.60	4.81	0.74	5.32	7.15
800	426.7	4.11	19.69	4.79	0.97	7.12	7.36
1000	537.8	4.57	21.57	4.72	1.22	9.16	7.52

Appendix C Continued

	$\mathrm{D}_{\text {AB }}{ }^{\text {P }}$		
Temperature ${ }^{0} \mathrm{~K}$	$\mathrm{Aix}-\mathrm{H}_{2} \mathrm{O}$	Helium $-\mathrm{H}_{2} \mathrm{O}$	Ratio He/Air
313.0	0.288	0.902	3.223

* Fundamentals of Momentum, Heat and Mass Transfex, by Welty, Wicks, and Wilson. Publisher: John Wiley \& Sons, Inc.

CHAPTER 1

SYSTEM INYRODUCTION

The PDP-9 ${ }^{(1)}$ programmed data processing system is a general purpose computer, incorporating FLIP CHIP hybrid integrated circuits throughout. The PDP-9 features:

- High performance at low cost

Demonstrated reliability
Simple input/outpus interfacing
Extensive software
Flexible, high capacity, input/output provisions coupled with a complete line of peripheral equipment allow system planning to satisfy a variety of applications. PDP-9 can be easily configured to perform equally well the role of central dato processing facility, control element, or satellite processor. The ease with which its modular hardware and software adapt to the requirements of dafa acquisition, process control, and on-line processing in real-time environments makes it the ideal small scale system for : scientific and industrial use.

The PDP-9 system is a single address, fixed word length (18 bits), parallel binary computer. The minimum system configuration (see frontispiece) has 8192 words of core memory storage; paper tape input at 300 cps and output at 50 cps ; console teleprinter keyboard input and printer output at 10 cps ; and a real-time clock.

The system readily interfaces to optional peripherals such os punched card equipment, line printers, magnefic tape transports, analog-to-digital converters; digital-to-analog converters, CRT displays, data cormmunication equipment, and magnetic drum and disc systems. Equipment of special design is easily: adapted for interfacing to the PDP-9. The FLIP CHIP module line offers proven reliability plus simple ${ }_{p}$, inexpensive fabrication of compatible interface controls for special equipment, or for the specialpurpose equipment itself. Peripherals can be interfaced to the system as processing requirements expand, without modification of the central processor.

CHARACTERISTICS

Complete cycle time of $1 \mu \mathrm{sec}$ for the rondom access, ferrite core memory.
Real-fime clock generates a clock pulse every 16.7 msec (every 20 msec for 50 Hz systems) to increment o fime counter stored in system memory. The counter initiates a program interrupt when a programmed preset time interval is completed. The clock can be enabled or disabled under program control.
(1) PDP is a registered trademark of the Digital Equipment Corporation.

True direci oddressing is provided for all 8192 18-bit word locations in the basic core memory module configuration or any memory module appended to the system. The system allows indirect addressing up to the memory expansion limit of 32,768 locations. Core memory is expanded in increments of 8192 words. Mesmory parity can be optionally included. With the parity option, memory cycle time is approximaiely $1.2 \mu \mathrm{sec}$. System sofiware expands to make efficient use of all available core memory sforage.

Power failure protection can be optionally implemented to protect against data loss due to internal power inferruptions. With this option, the PDP-9 is unaffected by power interruptions of less than 25 msec duration. In the event of a longer interruption, the option can save the active register confents and outomatically restart the interrupted program at a specified address when power is restored. Wishour the "power failure profection" ophion, power interruptions of 10 msec duration, or longer, may resulf in loss of acfive register contents and memory contents.

Ausomatic readin is provided of binary-coded programs from paper tape via the paper tape reader. A user-initiated and hardware-implemented control transfers 18-bit words (three tape lines) from tape to a block of sequentially addressed core memory locations, and executes the instruction defined by the last word without further user intervention.

A builf-in iest program, user-initiafed and hardware-implemented, circulates a self-incrementing count phrough all central processor registers for the purpose of validating both their operation and the internal fransfer paihs. The user can monitor and verify register operation by observing the respective register display on the conirol console.

All input/output transfers are execuied in parallel bytes up to 18 bits in length. The system's $1 / 0$ focilities can service data transfer rates up to one million bytes per second.

Bidirectional inpul/oulpu bus is provided for program controlled data/command transmissions between the central processor and up to 256 external devices. All program controlled 1/O transfers pass through She ceniral processor's accumulator (AC), the 18-bit primary arithmetic register. Memory referencing instructions convey data between the AC and system core memory. IOT (input/output transfer) instrucfions seleet appropriate devices and effect the data transfer between the $A C$ and information registers in the devices.

Four buffered data channels allow fast, non-overlapping data transmission between system core memory and four devices inferfaced to the I / O bus. Daid channel transfers occur via the memory buffer (MB)
register in the ceniral processor and do not disturb the contents of other major registers in the processor. Thus, a data channel tronsfer suspends rather than interrupts execution of the program in progress. The maximum transfer capacity of the data channel facility is between 250,000 and 333,333 words per second. depending on the mix of input and output transfers (each output transfer steals four machine cycles; each input transfer steals three cyeles). Provisions are made in system memory for word counter pegisters and current address registers unique to each data channel. The data channel facility can be expanded for multiplexed servicing of up to four additional devices.

Direct memory access channel (DMA) bypasses the central processor, allowing direct, cycle stealing, data fransmission between core memory locations and external devices via a separate entry port bo system memory module(s). DMA transfers have priority over all other system actions. An optional multiplexer/ odapter will interface to and allocote priority of service among up to three devices.

Program interrupt control frees the program in progress from the necessity of monitoring the status of peripheral devices. The program continues until a device signals a request for service. A subroutine, enfered automatically upon the processor's granting of the interrupt request, stores the interrupted program's status, determines the device making the request, and transfers control to the appropriate service subroutine. At completion of the device servicing, the interrupted program is restored to control. The program interrupi control facility is suitable for those peripheral devices having low data rates.

Multilevel automalic priority inferrupt option (API) affords immediate access to device handing and data handling subroutines on a ranked priority basis. Of the eight priority levels added by this option the four higher levels ore assigned to device use, and the lower four are assigned to software use. The priority levels are fully nested; i.e.; a higher priority request can interrupt in-process senvicing of a lower priority. The restoration of an interrupted service subroutine does not require additional programming considerations. Likewise, the return to an interrupted main program segment is easily implemented.

The gronting of priority interrupt requests, at completion of the current instruction, is rated above program and program inferrupt activity and below data channel or direct memory access channel activity, or real-rime elock counting.

The API system has 32 channels of which 28 are allocated to external device interrupting (hardware priority levels) and 4 are allocaied to programened interrupting (software priority levels). A channel assignment defines the core memory location of the unique entry to an interrupt subroutine. Device channels function independently of priority; up to eight device channels may be assigned to the same
priority level. Device channels also may be multiplexed without limit, in which case the channel address defines the enfry to a search routine rather than unique entry to one routine.

Additional provisions include dynamic reallocation of device priority level assignments (device control mus: be designed with logic circuits to accomplish reassignment) and programmed raising of the active inferrupt to a priority level higher than the normal assignment, when the situation requires exclusion of inferrupt requests at specific priority levels. The API is program enabled or disabled. Specific devices can be inhibited from interrupting by appropriate control inputs to their interfaces.

The basic machine has fixed-point hardware capability and floating-point software capability for performing binary arithmetic in 15 and 2s complement notations. Floating-point software offers chaice of 6 or 9 decimal digit precision. The program library supplied includes exiensive repertoire of multi- and single-precision subroutines.

Add or subtract (complementary addition) is performed in $2 \mu \mathrm{sec}$ with feich of operand from effectively addressed core memory location. Overflow indication is furnished for is complement addition where absolute value of algebraic summed result exceeds capacity of the accumulator (2 ${ }^{17}-1$). Algorithms for 2.s complement addition and subtraction treat overflow from accumulator as a carry into a l-bit register called the "link".

Exfended arithmefic element option offers fast, flexible; hardware execution of the following as signed or unsigned functions:

Shifting the contents of the primary arithmetic registers (AC or $M Q$), right or leff, in 2 to $17 \mu \mathrm{sec}$.

Normalizing the quantity in the primary arithmetic registers; i.e., shifting the contents left to remove leading binary 0_{S} for the purpose of preserving as many significant bits as possible. Time required is 2 to $17 \mu \mathrm{sec}$.

Multiplication in 3 to 11 usec.

Division, including integer and fractional, in 3 to $12 \mu \mathrm{sec}$. Divide overflow indication is furnished when division would praduce quotient exceeding $2^{17}-1$ magnifude.

DESIGN

The compactness of the PDP-9 affords maximum computing facility in a minimum of space; its modular construction provides for ease of system growth to meet future processing requirements -- external devices and additional core memory append with minimum effort and no effect on the central processor. (Secfion 4, Interface, presenis complete details on interfacing special purpose or user-designed external devices to the PDP-9 input/output facilities.) PDP-9 is completely self-contained, and does not require special air conditioning or humidity control. Internal power supplies generate all required operating voltages from a single input source of $115-\mathrm{volt}, 60-\mathrm{Hz}$ single-phase power. Systems can be supplied to operate with 50 Hz power ot a variety of voltage levels.

CONFIGURATIONS

The basic PDP-9 configuration (figure 1-1) cansists of the following .

1. Central processor with integrated cantrol console, work shelf and chair.
2. Core memory stack of 8192 18-bit words. Includes interface connection for direct memory access of memory locations by high data rate peripherals.
3. Three peripheral devices: a 300 character/second paper tape reader; a 50 character/ second paper tape punch; and an input/output teleprinter, Teletype Model KSR 33. (Teletype Model KSR 35 can be optionally supplied and is recommended for applications where extreme use is to be made of the teleprinter's output function.)
4. Real-time clock.
5. Input/output facilities: $1 / \mathrm{O}$ bus, four data channels, direct memory access channel, program interrupt control, I / O status word provision, and conditional skip on exiernal device status.

Figure 1-1 Basic PDP-9

The PDP-9 expands into a variety of configurations by:
Increasing system core memory from the basic-supplied 8192 words up to 32,768 words in increments of 8192 words. Memory parity may be optionally added.

Adding peripheral equipment selected from the PDP-9 line, or interfacing the system to special purpose or user-designed equipment.

Interfacing a basic or expanded PDP-9 to a data processing complex.
Incorporating central processor options to increase the system's computing and data handling power.

Figure 1-2 illustrates a typical expanded PDP-9 system.

Figure 1-2 Expanded PDP-9 System Configuration, Block Diagram

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

