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Abstract

Alternating recurrent event data arise frequently in clinical and epidemiologic studies, where two 

types of events such as hospital admission and discharge occur alternately over time. The two 

alternating states defined by these recurrent events could each carry important and distinct 

information about a patient’s underlying health condition and/or the quality of care. In this paper, 

we propose a semiparametric method for evaluating covariate effects on the two alternating states 

jointly. The proposed methodology accounts for the dependence among the alternating states as 

well as the heterogeneity across patients via a frailty with unspecified distribution. Moreover, the 

estimation procedure, which is based on smooth estimating equations, not only properly addresses 

challenges such as induced dependent censoring and intercept sampling bias commonly 

confronted in serial event gap time data, but also is more computationally tractable than the 

existing rank-based methods. The proposed methods are evaluated by simulation studies and 

illustrated by analyzing psychiatric contacts from the South Verona Psychiatric Case Register.

Keywords

accelerated failure time model; alternating renewal process; gap times; recurrent events

1. Introduction

Recurrent event data analysis focuses on modeling and estimation of the risk of event 

occurrence over time and has a wide range of applications in a variety of fields including in 
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reliability, medicine, social sciences, economics, and criminology. In many applications, the 

study endpoints can be characterized by two different alternating events. For example, 

patients with chronic diseases may be repeatedly admitted to and discharged from hospital, 

thus creating an alternating sequence of care periods and break periods. In studies of 

depression, participants may cycle back and forth between periods of normal mood and 

depressive episodes. Another important example is the relapse phase and the remission 

phase of a reversible disease, where patients may alternate between the two disease states. 

Such data structure is referred to as alternating recurrent event data in this paper to 

distinguish from its univariate counterpart where all recurrent events are of the same type. It 

is important to point out that the duration of the two types of time periods can each carry 

distinct information about the underlying health condition of patients and/or the quality of 

care. For example, a shorter hospital stay can indicate better treatment effect or quality of 

care, while a short break period would suggest ineffective maintenance strategies in 

chronically ill patients. Therefore, it is of interest to develop efficient statistical methods that 

can make full use of the observed data to evaluate the effects of treatment and risk factors on 

the two alternating states.

When the gap time, that is, the duration between consecutive events, is the outcome of 

interest, it is known that the sequential structure of recurrent events generates analytical 

challenges [1, 2]. For example, because the observable region of the jth gap time (j ≥ 2) is 

given by the difference between the overall censoring time and the j − 1th event time, the 

second and higher order gap times are subject to induced dependent censoring as recurrent 

gap times of the same subject are usually correlated. This is the case even when the overall 

censoring time is independent of the recurrent event process. In addition, because longer gap 

times are more likely to be censored, the last censored gap times tend to be longer than the 

observed uncensored gap times; the phenomenon is known as length bias due to intercept 

sampling. Finally, the number of gap times is informative about the underlying recurrent 

event process, as high-risk patients tend to have shorter times between consecutive events, 

thus more gap times. In the literature, various statistical methods have been developed for 

analyzing gap time data in the setting of univariate recurrent events. In particular, some 

authors considered nonparametric estimation of the gap time distribution [1, 3, 4], while 

others have studied various semiparametric regression models for evaluating covariate 

effects on the gap times [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Note that the aforementioned 

methodologies for univariate recurrent events are not directly applicable to analyzing the 

pooled gap times between alternating recurrent events, as the two states of an alternating 

recurrent event process usually have distinct biological meanings and hence different 

distributions. It is also not appropriate, as discussed in [15], to apply these models to the two 

different types of gap times separately due to the induced dependent censoring. It is 

theoretically justifiable to apply these methods to the sum of the two states; for example, one 

may consider the elapse times from one hospital admission to the next hospital admission of 

a patient by ignoring the information about the time of discharge. This simplified approach, 

however, can not determine if the covariates are associated with the length of the care 

periods or the break periods, or both, and thus the rich information available from the 

alternating recurrent gap time data is not fully utilized. In fact, a treatment that shortens the 

care periods and at the same time prolongs the break periods could be deemed as ineffective 
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if the treatment effect is evaluated based on the elapse times between hospital admission 

times using univariate recurrent gap time methods.

The development of statistical methods for alternating recurrent event data has been scarce. 

Huang and Wang [2] considered nonparametric estimation of the joint distribution of the two 

alternating states. While nonparametric estimation can serve as a basis for exploring the 

underlying recurrent event process, regression methods would be more attractive to 

researchers who are interested in identifying risk factors that are related to the duration of 

each state. In an early work by Xue and Brookmeyer [16], a semiparametric bivariate frailty 

model was proposed for the two types of gap times, where a parametric assumption for the 

joint distribution of the frailties is imposed for deriving maximum likelihood estimator. 

More recently, Yan and Fine [15] proposed a temporal process regression method focusing 

on the frequency and the cumulative length of one of the two alternating states. Chang [6] 

considered accelerated failure time (AFT) models for both types of alternating gap times and 

employed a rank-based estimating equation approach for model estimation. However, the 

rank-based estimating equation approach for AFT models is seldom used in applications due 

to the lack of efficient and reliable computational methods for obtaining parameter estimates 

and the corresponding variance estimates [17, 18]. The main difficulty in the implementation 

of rank-based estimation procedure lies in the nonsmoothness of the estimating functions. 

Unfortunately, the same argument applies to the estimation procedure proposed by Chang 

[6], making it less attractive for practical use.

In this paper, we propose a semiparametric estimation approach under the AFT model. We 

adapt the multi-state model studied by Huang [19] to the first pair of gap times from 

alternating recurrent gap time data and extend it to include the recurrent pairs using a within-

subject averaging technique [11]. The proposed methodology is based on U-statistics that 

are continuous and compactly differentiable, and as a result, is expected to be more 

computationally tractable than that proposed by Chang [6]. The remainder of the article is 

organized as follows. In Section 2, we introduce the data structure and assumptions of the 

proposed model. In Section 3, we briefly review the estimation method developed by Huang 

[19] for multi-state data and introduce our proposed method for alternating recurrent events 

with large sample properties being established. In Section 4, we conduct a series of 

simulation studies to demonstrate the performance of the proposed method and compare it 

with the rank-based estimation procedures proposed by Chang [6]. Application of our 

proposed method to a psychiatric case register (PCR) data is presented in Section 5. Some 

concluding remarks can be found in Section 6.

2. The Model

To facilitate our discussion, we take the alternating sequence of care and break periods in 

hospitalization data as an example. Suppose that a group of patients are recruited to a study 

when they are admitted to a hospital due to a certain disease and followed up on any 

recurrent hospitalizations due to the same disease until the end of the study. In the absence 

of censoring, we denote the duration of the care and break periods due to the jth 

hospitalization episode of subject i as  and , respectively, then the recurrent 

hospitalization process of subject i’s can be denoted by 
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,i=1,…,n. Let a p × 1 vector Ai denote the baseline 

covariates and γi = (γi1, γi2)⊤ a subject-specific latent vector. We assume that conditioning 

on Ai and γi, the bivariate pairs , j=1,2,…, are independently and identically 

distributed (i.i.d.) within subject i. Thus, the pairs of durations of the care and break periods 

can be viewed as an alternating renewal process [20] given the baseline covariates and the 

latent random vector.

To assess the association between covariates and the lengths of care and break periods, we 

assume that each period is linearly related to covariates in the logarithmic scale:

(1)

(2)

where β1 and β2 are the regression coefficients for the care and break periods, respectively; 

and εijk, i = 1,…, n, j = 1, 2,…, and k = 1, 2, are mutually independent random errors with 

mean zero. The distributions of γi and εijk are left unspecified. The latent vector γi 

characterizes the correlation among the gap times within a subject. Specifically, the 

association between  and  is characterized by the correlation of γi1 and γi2, whereas 

the variances of γi1 and γi2 account for the degree of association within the same type of 

gap times, ’s and ’s, respectively.

Let Ci denote the censoring time of the ith subject. Suppose Ci has a survival function G(·) 

with a maximum support τC defined by τC = sup{t : G(t) > 0}. We assume that the censoring 

time Ci is independent of Ni, Ai, and γi. Denote by mi the number of observed (censored or 

uncensored) episodes of bivariate pairs, so that mi satisfies

By definition, the observation of the mith pair of gap times is always incomplete and the gap 

times of a lower order, that is,  for j = 1,…, mi − 1, are observed completely if mi > 

1. Although the duration of the first care period  is subject to independent censoring Ci, 

the second and higher order gap times, , j>1 and , j≥1 are likely to be dependent on 

their corresponding censoring times,  and 

where , respectively. Hence, it is not 

appropriate to naively apply clustered survival data methods [21], on the pooled recurrent 

gap times since the clustered survival data methods typically require that the times from the 
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same cluster are all subject to independent censoring. Moreover, mi is informative of the 

underlying distribution of the elapse times between two adjacent hospital admissions.

A typical recurrent hospitalization process is illustrated in Figure 1, where the censoring 

time for the care period of the last hospitalization of the ith subject is denoted by 

. Due to right censoring, the observed data of subject i are 

 where , and  for j < mi; 

and , , 

, and . The break period in the mi th hospitalization is always 

censored and can be unobserved if censoring occurs during the care period.

3. Estimation Methods

3.1. A Brief Review of an Existing Method for Bivariate Non-Recurrent Gap Time Data

We first consider model estimation based on the first bivariate gap time pairs 

 by adapting the methods for multi-state model developed 

by Huang [19] to our data structure. For the sake of simplicity, we suppress the order of gap 

time pairs and use  in notation to denote the first pair throughout this 

section.

Model (1) implies that, given the covariate values Ai and  for any two subjects i and i′, 

the two transformed random variables  and  have the same 

distribution. Define the transformed gap time , where 

 is the contrast between subjects i and i′ in terms of baseline covariates. It is 

easy to see that, given Ai and ,  and  have the same joint 

distribution when β1 is the true regression parameter. Let OL(·,·) be a symmetric, continuous 

function on {(t, s) : 0 ≤ t ≤ L, 0 ≤ s ≤ L}, where OL(s, t) is monotonic in t given s and vice 

versa. By symmetry of OL, we have

(3)

Next, we define , the elapse time between the first two consecutive hospital 

admissions, and the transformed gap time , 

where . Arguing as before, conditional on Ai and ,  and 

 share the same joint distribution, where  are the true regression 

parameters. Then, it follows that
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(4)

In the absence of censoring, estimating equations using observed data can be constructed 

directly based on (3) and (4). Under right censoring, we define  the time 

from the first hospital admission to the next hospital admission or censoring. Analogously, 

the observed counterparts of  and  are defined as  and 

, respectively. Under the independent 

censoring assumption, we derive

by the idea of inverse probability of censoring weights, where a ⋀ b = min(a, b). Following 

(3) and (4), unconditional on Ai and , we have

(5)

(6)

Then, a system of estimating functions can be constructed with the observed bivariate gap 

times:

(7)

(8)
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where  and  are the Kaplan-Meier estimators of the survival function G(·) based on the 

data  and , respectively. As 

pointed out in [19],  can be used in (7) in place of , but this often leads to a greater 

variance of D1(b1). The limits L1 < τC and L2 < τC are imposed to address the problem of 

 and  having maximum support greater than τC. One can inductively solve the 

estimating equations D1(b1) = 0 and D2 (b) = 0 to obtain the estimates for β1 and β2. 

Conventional methods for survival analysis under the AFT model (see [22], and reference 

therein) are not directly applicable to the estimation of Model (2). In our setting, the break 

period  is subject to induced dependent censoring because it is censored by max 

, which is informative due to the correlation between  and . By 

considering the elapse time between consecutive admissions  and the sum of transformed 

care and break periods  instead of the break period  solely, we circumvent the induced 

dependent censoring issue.

3.2. The Proposed Estimation Method

We now extend the method in Section 3.1 to deal with alternating recurrent gap time data. 

As pointed out in [2], the mi th pair of gap times tends to be longer than the uncensored pairs 

of gap times due to bias induced by intercept sampling (also see [20], p.65 for the example 

of textile fiber sampling). As a result, naively including all observed data in the estimation 

procedure usually leads to inconsistent estimation. In this section we extend the method for 

multi-state models proposed by Huang [19], which was reviewed in Section 3.1, to the 

setting of alternating recurrent events.

Define . Thus for patients with no completely observed bivariate gap 

time pairs, ; for patients with at least one completely observed gap time pair,  is the 

number of complete pairs. Let the elapse time between two consecutive hospital admissions 

be denoted as  and its observed counterparts as , for j = 1,…, . 

The observed transformed times are defined as

Under our model assumption, conditioning on mi, γi, and Ai, the observed bivariate pairs, 

 are i.i.d. when mi ≥ 2. Thus, replacing 

 with  for any  in (5) 

and (6) should give unbiased estimating equations. We propose to apply the idea of weighted 

risk-set method [11] to assign a weight  to each pair of bivariate gap times and sum 

over  to construct more efficient estimating functions. Specifically, arguing as in 
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[11], we can prove that the weighted averages of  and  over the conditional 

i.i.d. bivariate pairs have the same expectations as their counterparts for the first bivariate 

gap time pair only data:

It follows directly that

(9)

(10)

By using data only up to the  th pair in the above formulation for subjects who have at 

least one completely observed gap time pair, we exclude the potentially longer gap time 

pairs and avoid intercept sampling bias. Hence, , either censored or uncensored, and 

, which is always censored, are not used for such subjects in (9) and (10). For subjects 

who have no completely observed gap time pairs, we only use their data for constructing 

consistent estimators for G(·) if the first gap time is censored (i.e., ), otherwise (i.e., 

) the data of such subjects are used in both the estimation of G(·) and the numerator in 

the expectation in (9). Therefore, we can construct a system of estimating functions as 

follows:

(11)

(12)
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where  and  are Kaplan-Meier estimators based on the first pair of bivariate gap times 

(censored or uncensored) as in (7) and (8). The proposed estimators  and  can be 

obtained by inductively solving  and . Following [19], we 

choose OL (t, s) = log [min{max(t, s), L}] − log(L) to yield monotonic estimating functions 

which guarantee a unique solution. Further discussions on the selection of OL can be found 

in [19]. Compared with the method for bivariate non-recurrent gap time data reviewed in 

Section 3.1, the proposed estimation method is expected to be more efficient because the 

information beyond the second hospital admission time of each patient is utilized.

3.3. Asymptotic Properties

In this section, we establish the consistency and the asymptotic normality of the proposed 

estimator . Following Huang [19], we begin by rewriting the estimating 

functions (7) and (8) as

(13)

(14)

where , , and  are the empirical estimators of

and H(a2) = Pr(Ai ≤ a2), respectively. Note that Pr(Ai ≤ a) = Pr(Ai1 ≤ a1,…,Aip ≤ ap), where 

Ai = (Ai1,…, Aip)⊤ and a = (a1,…, ap)⊤. Huang showed that D1 and D2 are continuous and 

compactly differentiable functionals through the properties of the components, , , , 

, and . Based on the re-expression in (13) and (14), both  and 

 converge almost surely and uniformly in b1 and in b to

(15)
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(16)

respectively. It can be shown that the estimating functions  and  in (11) and (12) 

converge uniformly to the same limit as D1 and D2, respectively. Thus, it follows that 

 and  also converge almost surely to (15) and (16). 

Since (15) equals 0 when b1= β1,  is consistent for β1. Given the consistency of , the 

consistency of  follows from the fact that (16) equals 0 when b2 = β2.

To prove the asymptotic normality of , it suffices to establish the asymptotic normality and 

linearity of . Huang [19] showed that n1/2 D(β) is 

asymptotically normal with mean zero and variance Ω using the compact differentiability of 

(13) and (14), where . For the variance, we define

in which

, , 

, 

, and  and  are the Nelson–Aalen 
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estimator corresponding to  and , respectively. The variance Ω is the limit of 

. Now, we show the asymptotic normality of 

D*(β) following the approach in [19]. We note that  and  are continuous and compactly 

differentiable. By applying the functional delta method and the influence function approach, 

n1/2 D*(β) converges weakly to a normal distribution with mean zero and variance Ω*. 

Define

in which,

, , 

, and 

. By 

exchangeability, the weighted average , , , and  converge uniformly to the same 

limit as their counterparts, ξik, Uk, Rk, and Mik, for k = 1,2. Thus, the variance Ω* can be 

estimated by . By the Glivenko-

Cantelli theorem in [23],  converges 

uniformly and almost surely in b to a limiting function continuous at b = β. Hence, the 

variance estimate  is consistent for Ω* given the consistency of .
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The estimating functions (11) and (12) can be rewritten as  and  by replacing 

 and  in (13) and (14) with their weighted counterparts

respectively. We note that  is not everywhere 

differentiable. Thus, the first-order Taylor expansion cannot be directly used. Instead, we use 

the generalized law of mean, proposed in [24], to accommodate the nondifferentiable 

functions. By applying the generalized law of mean, we have

for b converging to β, where Σβ is the limit of the left and right partial derivative of . 

It follows that D*(b) is asymptotically linear at b = β.

The asymptotic normality of  naturally follows from the asymptotic normality and linearity 

of D* (β). Thus,  converges weakly to a normal distribution with mean zero and 

variance consistently estimated by  where  is the derivative matrix of 

 evaluated at .

4. Simulation Studies

We conducted a series of simulation studies to assess the performance of the proposed 

method. For each setting, we simulated 1000 datasets with sample sizes of n = 150 and 300 

from the assumed models (1) and (2). Two covariates A = (A1, A2)⊤ are generated from a 

Bernoulli distribution with probability 0.5 and a uniform distribution (0, 1), respectively. We 

set the true regression parameters as β1 = (0.5, 0.5)⊤ and β2 = (0, −0.5)⊤ to account for the 

distinct covariate effects on the two alternating states. We consider two scenarios where (1) 

the subject-specific latent vector (γi1, γi2) follows a bivariate normal distribution with 

varying levels of correlation; and (2) the latent variables γi1 and γi2 are from different 

distributions. The error terms εij1 and εij2 are simulated from independent normal 

distributions with mean zero and variance 0.1. Since the recurrent event process is subject to 

right censoring, we generate the censoring time Ci from a uniform distribution that yields 

15% or 30% of subjects to have their first bivariate gap time pairs censored on average. 

Under each setting, we evaluate the performance of the proposed method relative to the 

rank-based method by Chang [6] (referred to as Chang’s method). For the latter method, we 

present the perturbation-based variance estimates adopted in the original paper [6]. For both 

methods, we present the mean of the point estimates (Mean), the empirical standard 

deviation of the point estimates (SD), the empirical average of the standard error estimates 

(SE), and the coverage probability based on the 95% confidence intervals (CP).
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Simulation Scenario 1

In the first scenario, we generate the subject-specific latent vector (γi1, γi2) from a bivariate 

normal distribution with unit mean vector and variance-covariance matrix 

We consider ρ =1,0.5, and 0. When ρ = 1, the two latent variables γi1 = γi2; when ρ = 0, γi1 

and γi2 are independent. The simulation results are summarized in the upper panels of 

Tables 1 and 2 for sample sizes of n = 150 and 300, respectively. The proposed estimator 

provides virtually unbiased point estimates, and the SE’s are close to the SD’s across all 

settings. The CP’s are reasonably close to the nominal level. We observe that the SD’s and 

SE’s increase as the censoring rate increases from 15% to 30% because fewer bivariate gap 

time pairs are observed. We note that the level of association between alternating gap times 

has little impact on the point estimation or the variance estimation. As expected, the variance 

decreases with the sample size.

As discussed earlier, the point estimation and the resampling-based variance estimation with 

rank-based, nonsmooth estimating equations tend to be unstable [25]. Under our simulation 

settings, the proportion of datasets that converged for Chang’s method is as low as one third 

to almost one half of the simulated datasets, depending on the different simulation 

parameters. Note that the summary results in the tables are based on converged datasets only 

for the point estimation, and the variance estimation is based on converged perturbation 

samples only. For the converged datasets, the point estimates based on Chang’s method are 

biased in the estimation of β2 for the covariate A2, especially when the sample size is small. 

The inconsistency between the SD’s and the SE’s for this variable may be due to the bias in 

its point estimation.

Simulation Scenario 2

In this scenario, we consider a situation in which the subject-specific latent variables follow 

different distributions. Specifically, γi1 and γi2 are independently generated from a normal 

distribution with mean 1 and variance 0.5 and a Gamma distribution (1/θ, θ) with the scale 

parameter θ = 0.5. The results are presented in the lower panels of Tables 1 and 2. Again, the 

proposed method is virtually unbiased and the SE’s are close to their corresponding SD’s. 

As expected, the SD’s (and the SE’s) increase as the censoring rate increases. We note that 

whether the latent variables are generated from the normal distribution or the Gamma 

distribution does not affect the proposed estimation by comparing the results of Scenario 2 

with the results when ρ = 0 under Scenario 1. Since we impose no parametric assumption for 

the subject-specific latent vector in our model assumption, the proposed estimator is robust 

to the distributions of the latent variables.

Similar to the results in Scenario 1, about the same amount of datasets failed to converge 

based on Chang’s method and the summary of the converged datasets shows biased 

estimates for one covariate. Based on our simulation results from both scenarios, the bias in 

the point estimation of Chang’s method decreases and the number of converged datasets 

increases as the sample size increases, so we expect Chang’s method to be more reliable 

when the sample size is large.
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5. Analysis of Psychiatric Case Register data

In this section, we present the analysis of a subset of the South Verona PCR data [26] to 

illustrate the proposed method. We studied a total of 336 patients who were diagnosed with 

schizophrenia or related disorders and contacted the register for the first time between 1981 

and 1995 in South Verona, Italy. Among the patients, 47.9% were male, 59.8% received 

secondary or higher education, and the age of the patients at onset ranged from 13.7 to 84.0 

(median: 37.2). Ten patients who had missing values in education level were excluded from 

analysis. During the follow-up, patients were in either a care period or a break period, and 

the two states alternated repeatedly over time. According to the definition in [27, 28], a 

break period is when no mental health service is used for over 90 days between consecutive 

mental health services, and a care period begins from the time a psychiatric contact is made 

until a break occurs. A total number of 1035 bivariate pairs were observed from the 336 

patients with the follow-up time ranging from 6 to 5817 days (median: 2406 days). On 

average, each patient experienced about 3.1 care-and-break episodes (range: 1 – 18).

We are interested in evaluating the effects of demographic and socioeconomic factors on the 

length of care and break periods. Specifically, it is of interest to identify patient 

characteristics that are associated with longer care period and/or shorter break period 

because patients with such characteristics may require more medical attention and care. The 

results of simple regression analyses using the proposed method (Table 3, left panel) show 

that patients who received secondary or higher education tended to have longer care periods 

than less educated patients, and patients with an older disease onset age tended to have 

longer break periods. Multiple regression analyses with all three covariates (Table 3, right 

panel) yield similar results: when holding the other covariates fixed, the length of break 

periods increased by 28% (= exp(0.25) − 1) when the age of onset was delayed by a decade. 

Also, patients with a secondary or higher education tended to have 1.78 (= exp(0.58)) times 

longer duration of care than patients with lower level of education. A previous study 

conducted on costs of community-based psychiatric care [29] has shown that for patient with 

schizophrenia, higher education was positively associated with costs of care, which is in line 

with our finding because extended duration of care would inevitably trigger more costs. 

When the misspecified rank-based method for univariate recurrent gap time data [6] was 

implemented, patient’s education was not significant in either the simple or multiple 

regression analyses (results not shown). We also tried Chang’s method for alternating 

recurrent gap time data, but it failed to converge.

6. Concluding Remarks

In this article, we proposed a semiparametric regression model to make inference about the 

covariate effects on alternating recurrent event data. The proposed model allows the 

covariates to have different effects on the two alternating states, hence can provide a better 

understanding of the underlying recurrent event process than methods that do not distinguish 

the two different states within a recurrence episode. In the example of hospitalization data, 

we could identify which risk factors extend or shorten the actual care periods and what 

factors prolong or speedup the time from one hospital discharge to the next admission. This 

can provide useful information for studying patients’ quality of life and medical costs, 
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especially when direct measures of these data are not available or difficult to obtain. In either 

case, hospitalization time data can usually be retrieved relatively easily and economically.

In this article, the dependence structures between the two alternating states and among 

different bivariate gap time pairs within each subject is treated as nuisance. However, when 

the dependence structure is of interest, estimation methods using copula models may be 

considered.

In our simulation studies, we compare the performance of the proposed estimator with the 

rank-based estimator under the same model assumptions considered by Chang [6]. The 

results show that the proposed estimator is more favorable than the rank-based estimator 

since the convergence of the rank-based estimator is not guaranteed. In addition to the non-

convergence problem in the point estimation, the variance estimation also suffers from such 

problem. As discussed in [25], the resampling-based variance estimates for rank-based 

estimators, such as those in [6], could be influenced by extreme solutions and become 

unstable. Unfortunately, this problem would not be resolved by increasing the size of 

resampling. Tools such as induced smoothing [18, 30] and efficient resampling methods [25] 

may be considered to improve the rank-based method in future research.
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Figure 1. 
An illustration of a typical alternating recurrent event process.
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