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ABSTRACT OF THE DISSERTATION

A Bouquet of Essays

By

Michael Ryan Guggisberg

Doctor of Philosophy in Economics

University of California, Irvine, 2017

Professor Dale Poirier, Chair

This bouquet of essays contains four chapters.

In the first chapter I present a brief summary of the literature of misspecified models. I

discuss what various estimators are actually estimating when the model is misspecified.

Further I discuss corrections to standard errors and when they are useful. I briefly cover

hypothesis testing in the presence of misspecified models. I cover both frequentist and

Bayesian approached. I show that a misspecified model can indeed be useful and discuss

some misconceptions with misspecified models.

The second chapter investigates the impact of misspecification in discrete choice models. I

derive necessary and sufficient conditions for consistency of the maximum likelihood estima-

tor from the misspecified model. A corollary is that the misspecified estimator is consistent

for the correct sign, under certain conditions. It also follows that Huber-White standard

errors can be used to obtain asymptotically conservative type one errors when testing the

nullity of the coefficient.

The third chapter builds a Bayesian model for multiple-output quantiles using a commonly

accepted definition for the quantile. The prior can be elicited as the ex-ante knowledge of

Tukey depth, the first prior of its kind. I apply the model to the Tennessee Project STAR

x



experiment and find there is a joint increase in all quantile subpopulations for reading and

mathematics scores given a decrease in the number of students per teacher. This result is

consistent with, and much stronger than, the results from previous studies.

The four chapter I investigate if United States Supreme Court Justices recuse themselves

strategically. I create a new structural model of recusals. Using this model I find causal

evidence that justices recuse themselves strategically. I then calibrate and simulate the

model to find the frequency of cases where at least one justice has a conflict of interest but

does not recuse. I find at most 47% of cases have at least one justice with a conflict of

interest that did not recuse.

It was difficult to come up with an overarching theme for this bouquet of essays – hence the

title. The closest theme would be ‘model misspecification.’ The first chapter provides an

overview of misspecified models, the second chapter investigates a misspecified discrete choice

models and the third chapter purposefully uses a misspecified model to get an interesting

estimator. However, the closest the fourth chapter gets to ‘model misspecification’ is the use

of the Kullback-Leibler distance in a simulation. The Kullback-Leibler distance is often used

in the misspecified literature but there is nothing about the distance that makes it inherently

related to misspecified models.

xi



Chapter 1

A Brief Overview of Misspecified

Models

1.1 Introduction

In this chapter I provide a brief overview of the study of misspecified models within econo-

metrics. Econometrics is an inherently imprecise science. No one expects an econometric

model to be an entirely accurate representation of reality. This leads us to question if we can

still obtain useful inferences from our inherently flawed models. The answer to this question

(as almost all questions in economics) is – it depends. If we are careful about our modeling

process we can still derive economically meaningful inferences using incorrect models.

The topic of model misspecification is a very large one, thus this review makes no attempt to

be fully comprehensive. I focus attention mostly to likelihood based misspecification and will

skip discussion of missing data, measurement error and most nonparameterics. Technical

details will be omitted, but are available within the cited papers. Another survey similar to

this is one is Monfort (1996). Through 10 examples he shows how misspecified models can

1



play a role in statistical analysis.

1.2 Preliminaries

Suppose a random variable Y ∈ <N is generated from the distribution F 0(y) with density

f 0(y), which may or may not condition on covariates X ∈ <n×k. This is sometimes called

a Data Generating Process or DGP. A researcher chooses a probability model F (y|θ) with

density f(y|θ) parameterized by a possibly infinite dimensional θ ∈ Θ. The model F is

correctly specified if there exists a θ0 such that f 0(y) = f(y|θ0) almost everywhere. A model

is considered misspecified if there does not exist such a θ0. The next two examples illustrate

this definition.

Suppose N = 1 and Y is generated from Exp(1) and the researcher models Y with Exp(θ).

This model is correctly specified because F 0(y) = 1 − e−y equals F (y|θ) = 1 − e−θy for all

y when θ = θ0 = 1. Suppose instead the researcher modeled Y with N(θ, 1). This model is

misspecified because the support of Y is [0,∞) but the model N(θ, 1) produces a positive

probability for negative values of Y for any θ ∈ Θ.

Define 1(A) to be 1 if A is true and 0 if false. One key point in the definition of a misspecified

model is that equivalence is almost everywhere. For example, suppose N = 1 and Y is

generated from a Unif(0, 1) distribution (i.e., f 0(y) = 1(y∈[0,1])) but we model Y with the

density f(y|θ) = 1(y∈[0,1] and irrational). Then f is a correctly specified model because the set of

points where f 0(y) 6= f(y|θ) is the rational numbers which have Lebesgue measure 0. This

shows there can be more than one correctly specified model for any DGP.
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1.3 History

The first discussion of statistical model misspecification came from economics by Theil

(1957). Recognizing that any economic hypothesis is wrong in some way, he explored the

effects of various misspecifications in the linear model estimated by OLS. He showed that

omitting a single relevant variable can produce bias in all the remaining coefficient estima-

tors and also explored what can happen when one fails to specify a quadratic term or a

logarithmic transformation. He also discussed the conditions required to be able to cor-

rectly estimate a reduced form elasticity of substitution without using structural demand

equations.

Griliches (1957) took Theil’s framework and applied it to Cobb-Douglas production func-

tions. He provided conditions for when omission of a relevant variable will produce a positive

or negative bias. From his derivations he recommended that one aggregates microvariables

with geometric means rather than arithmetic means because it reduces potential bias. Un-

knowingly to him, this was the first discussion of model robustness.

The next step forward was taken by Rao (1971) who investigated the effects of omitting

relevant variables or including irrelevant variables on the standard error and Mean Square

Error (MSE) of remaining included estimators. He found that omitting a relevant regressor

decreases the standard error of other OLS estimators. Further the MSE is also decreased

provided the value of the omitted parameter is smaller than its standard error if it were

estimated. Inclusion of an irrelevant variable does not introduce bias but it does increase the

standard error and MSE of other included estimators. These results require the regressors

to be fixed which is generally not the case in economics. The appendix presents results

allowing for stochastic regressors. Deegan Jr. (1976) expands on Rao’s work by investigating

the bias and MSE when irrelevant variables are included and relevant variables are excluded

simultaneously.

3



The discussion of standard errors for misspecified models typically starts with Eicker et al.

(1963) who showed, with fixed regressors, that the least squares estimator is consistent with

uncorrelated errors and is asymptotically normal with independent errors. He also provided

a consistent estimator of the standard error for the coefficient estimators (i.e., the diagonal

of the full covariance matrix). These conditions are much weaker than the traditional Gauss-

Markov conditions that require independent and identically distributed errors. This allows

the researcher to be fairly agnostic about the distribution of the unobservables. Eicker (1967)

extended this result to obtain the full asymptotic covariance matrix of the estimators as well

as allowing certain types of serial correlation in the errors. White (1980a), considering only

heteroskedasticity, extended Eicker’s results to allow for stochastic regressors and derived the

asymptotic distribution for arbitrary linear combinations of the estimators. These results

do not technically belong in the misspecified model literature, as they are sets of weaker

conditions where least squares estimation can still result in correct inferences. However it

was the impetus that started the modern research in misspecified models.

The first rigorous treatment of model misspecification for likelihoods was Bayesian. Berk

(1966a,b) showed that when the assumed probability model does not contain the DGP, the

posterior concentrates (as the number of observations tends to infinity) on a set containing

the parameter(s)

θ? = argmax
θ∈Θ

E[log(f(Y |θ))].

It is important to note that in the Bayesian context Θ is defined as the parameter values

with positive prior density. Berk (1970) provides a weaker set of assumptions for the same

result and provides deeper understanding for when the limiting posterior is degenerate at a

unique θ?. The parameter θ? has an information theoretic interpretation as the parameter

minimizing Kullback-Liebler (KL) divergence of the model from the DGP (Kullback and

Leibler, 1951; Akaike, 1998). That is

4



θ? = argmin
θ∈Θ

E

[
log

(
f 0(Y )

f(Y |θ)

)]
.

The KL minimizing interpretation is the common interpretation used in modern discussions

of misspecified models. The minimized KL divergence is zero if and only if the model is

correctly specified, in that case θ? = θ0. Modern treatments of Bayesian misspecified models

are covered by Bunke and Milhaud (1998); Kleijn and van der Vaart (2006); Shalizi et al.

(2009); Lee and MacEachern (2011); Kleijn and Van der Vaart (2012); Hong and Preston

(2012); De Blasi and Walker (2013); Walker (2013); Hoff and Wakefield (2013); Müller (2013);

Lv and Liu (2014); Ramamoorthi et al. (2015) and Watson et al. (2016). See Ghosal (1997)

for a well written non-technical review of Bayesian asymptotics in the correctly specified

case. Chernozhukov and Hong (2003) provide a Baysian framework for M-estimation, which

essentially relies on using potentially misspecified likelihoods.

A related topic is the effect of prior specification on the posterior. In the well specified

case (i.e., θ0 ∈ Θ) consistency theorems require restrictive conditions on the prior (Doob,

1949; Schwartz, 1965). A common necessary condition is that open Kullback-Leibler neigh-

borhoods of θ0 must have positive prior support. However this in general is not sufficient

and more conditions are required. These conditions on the prior are not imposed just for

mathematical convenience. If they are violated then the researcher generally cannot learn

about θ0. This leads us to question for what class of priors can we come to a consensus on

θ0 in the well specified case? When the support of Y is discrete and finite it is necessary and

sufficient for the prior to give positive mass to θ0. If Y is discrete and infinite, continuous or

if Θ has infinite dimensional components then more structure is required of the prior to learn

θ0. See Berk (1966b); Freedman (1963, 1965); Freedman and Diaconis (1983); Diaconis and

Freedman (1986a,b) for examples of Bayesian inconsistency due to poorly specified priors.
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The first rigorous frequentist treatment of model misspecificaiton for maximum likelihood

was done by Huber (1967). He showed that under regularity conditions the Quasi-Maximum

Likelihood Estimator (QMLE) converges to θ?. This parameter is in general not unique.

Newey (1987) and Newey and Steigerwald (1997) provide conditions for uniqueness of θ?. In

most situations the Bayes estimator and the QMLE are asymptotically equivalent. However,

there are a few examples where they are different even in parametric models with seemingly

well specified priors (Bunke and Milhaud, 1998). Sufficient conditions for the equivalence of

the Bayes estimator to equal the QMLE are found in Bunke and Milhaud (1998) and Kleijn

and Van der Vaart (2012). Huber’s second big finding was deriving the asymptotic sampling

distribution of the QMLE. The QMLE is asymptotically Normal with covariance matrix

lim
n→∞

V ar(
√
nθ̂) = C(θ?).

Where C(θ) = A(θ)−1B(θ)A(θ)−1, A(θ) = E[d
2log(f(Y |θ))

dθdθ′
], andB(θ) = E[dlog(f(Y |θ))

dθ
dlog(f(Y |θ))

dθ′
].

The asymptotic covariance matrix is referred to as the ‘sandwich’ or ‘robust’ estimator and

is consistently estimated with its empirical counterpart. The importance of this result is

that correct standard errors can be obtained using the misspecified model alone. White

(1982) derived the same results as Huber under more restrictive, but easier to verify, con-

ditions. However, the covariance matrix he derived was inconsistent and conservative when

observations are not IID (Chow, 1984; White, 1983). However, White’s standard errors are

still used in practice with small sample corrections (MacKinnon and White, 1985; Long and

Ervin, 2000). Under a misspecified likelihood, the Bayesian can substitute the posterior

covariance with White’s covariance matrix to obtain posteriors with smaller asymptotic fre-

quentist risk (Hoff and Wakefield, 2013; Müller, 2013). Newey and West (1987) expanded

White’s results to allow for heteroskedastic and serially corrected observations and was fur-

ther refined by Andrews (1991). Freedman (2006) calls into question the usefulness of using

robust standard errors. If the model is only slightly misspecified then the robust standard
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error is approximately equal to the hessian based standard error. However, if the model is

severely misspecified the parameters could be uninteresting and uninterpretable. This will

be discussed more in the next section.

There has been much discussion on what the OLS estimator is estimating when the true

functional relationship is nonlinear. There is a common misconception that it is a consistent

estimator for the first order trend in a Taylor expansion about the mean. This is incorrect.

White (1980b) showed that the conditions for consistent estimation of Taylor coefficients

requires strong orthogonality and moment restrictions not satisfied in most applications.

It is even difficult to obtain the correct information on the sign of the Taylor coefficients

with least squares. However, White does find the ordinary least squares estimator is the

best linear approximation of the non-linear conditional mean function in mean square error.

However, this is only useful for predictive inferences and there is little information contained

in the estimated coefficients themselves.

White goes on to show the standard error estimate of the misspecified OLS estimator con-

sistently estimates the sum of the approximation error plus the variance of the independent

and identically distributed stochastic errors. Using this result and a derived asymptotic dis-

tribution for the OLS estimator, he constructs a test of misspecification. The contribution

of this test is that it only relies on the misspecified model. The researcher does not need to

consider how the model might be misspecified (conditional on some regularity conditions).

Similar tests are proposed in Ramsey (1969); Ramsey and Schmidt (1976); Hausman (1978);

White (1980a) and White (1982). Previously common tests for misspecification required the

researcher to parametrically specify how the model might be misspecified and then test those

specifications directly. However, the drawback of such a broad test such as White’s is that

it provides little information as to how the model might be misspecified. The second major

drawback of this test is it requires the researcher to choose observational weights and little

guidance is given on how to choose the weights.
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White (1981) extended these results to the non-linear least squares case. He finds the

misspecicified non-linear least squares estimator, under regularity conditions, consistently

estimates the parameter vector that minimizes mean square error of the true and misspecified

mean functions. Both of these results are special cases of White (1982) if the assumed

distribution is normal. Domowitz and White (1982) extends these results to dependent

observations.

It follows from Huber (1967) and White (1982) that the ‘robust’ Wald and score (i.e., La-

grange multiplier) tests are asymptotically chi squared and consistent for the KL minimizer.

The likelihood ratio test instead is asymptotically distributed as a linear combination of in-

dependent chi square distributions under the null hypothesis of the KL minimizer (Foutz and

Srivastava, 1977, 1978). Choi and Kiefer (2011) discuss the geometry of the likelihood ratio

statistic under misspecification. The conclusions for the Bayesian are similar to the Wald

and score tests. Bayesian hypothesis tests and model averages favor the model that min-

imizes KL divergence (Fernández-Villaverde and Rubio-Ramı́rez, 2004; Hong and Preston,

2012)

1.4 Interpretation

When the model is misspecified the researcher is estimating a parameter within the parameter

space of the assumed model that minimizes KL divergence of the assumed model from the

DGP. Since estimates are interpreted with respect to the assumed (incorrect) model, this

parameter is in general not interpretable if the model is wrong. However, if the model is only

slightly wrong (in a KL sense) then interpretation with respect to the incorrect model may be

approximately correct. Freedman (2006) critiques the widespread use of the robust standard

error and argues researchers should be focusing more on the estimand (i.e., θ?). He states “It

remains unclear why applied workers should care about the variance of an estimator for the
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wrong parameter.” However, there are situations when the assumed incorrect model could

be very different (in a KL sense) than the DGP but parameters are still interpretable.

1.4.1 Likelihood

If F is misspecified then we cannot find θ0 to recover correct inferences on the DGP. However,

there can still be parameters representing properties of the DGP that are of interest, call

these θ†. For example, θ† could be an expectation of Y or the parameters from a regression

of Y on covariates. The next example illustrates this.

Example 1.1. Suppose Y ∼ F 0 with positive support, finite first moment and is ob-

served with a random sample of N observations. Let θ† = E[Y ]−1 be the parameter of

interest. Let the assumed model be Exp(θ). Then the KL minimizer θ? = argmin
θ

−∫
...
∫
log(

∏N
i=1 θe

−θyi)f 0(y1, ..., yN)dy1....dyN . This is a regular model so the minimum is

achieved by setting the derivative to zero and passing the derivative through the integrals.

This implies d
dθ
− log(θ) + θE[Y ]

∣∣
θ=θ?

= 0 and thus θ? = E[Y ]−1 = θ†. Therefore the QML

of the assumed (potentially misspecified) exponential distribution can consistently estimate

the inverse mean of any distribution with positive support and finite first moment.

In the previous example the QMLE of the exponential distribution consistently estimated

the inverse mean of the DGP. Thus the inverse of the QMLE consistently estimates the

mean of the DGP (by Mann-Wald). However, one must be careful with interpretation.

The parameter of the correctly specified exponential distribution is interpreted as a rate

parameter for the rate of arrivals in a Poisson process. If events are not generated from a

Poisson process and the implied DGP is not exponential then the QMLE cannot (and should

not) be interpreted as a rate parameter. It can only be interpreted as a consistent estimator

for the inverse mean of the DGP. For example, if we have a random sample of person heights

then the QMLE of the exponential distribution will consistently estimate the inverse mean
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height, but interpreting the estimate in terms of rate of arrival is nonsense. Thus if there is

a θ† of interest and θ? = θ† then θ̂ is consistent for these parameter of interest, but one must

be careful with interpretation. If θ? 6= θ† then usefulness of θ̂ is unclear.

1.4.2 OLS with nonlinear mean

When the assumed model is linear, practitioners sometimes interpret the OLS estimates

as first order Taylor approximations of the true conditional mean, see White (1980b) for

examples in the literature. This is incorrect unless the true mean function is concave and

regressors are fixed, orthogonal, symmetric and have small support – an untenable assump-

tion for a practicing econometrician. However, the OLS estimator can be interpreted as

the best linear approximation to the conditional mean with squared error loss. This is a

meaningful interpretation of the conditional mean and is useful for interpreting predictions

in the face of misspecification. This result was first discovered by Myers and Lahoda (1975)

and was further developed and refined by White (1980b) and Bera (1984). However, they

provide little discussion on the interpretation of marginal effects. In light of these findings

and Freedman’s critique Buja et al. (2016b, Section 10) derive an interpretation for OLS

coefficients (e.g., marginal effects) in the presence of a non-linear true mean. They show

the OLS estimate depends largely on the covariate distribution and observed values of the

covariates. For example, two researchers performing the same experiment with the same

linear model can arrive at vastly different conclusions in the presence of a true nonlinear

mean. The discrepancy is greater than one would obtain from usual statistical variation in

the well specified case. Buja and coauthors conclude the model robust interpretation for the

OLS coefficient on the first regressor is “Adjusted for all other regressors, the mean deviation

of Y in relation to the mean deviation of X1 is estimated to average between β̂1 per 1 unit

of X1.” However, the interpretation is obscured by the fact that the averages are weighted

averages and the weights depend on the distribution of the covariates. Buja et al. (2016a)
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provides generalization to more general types of regression within the IID framework.

1.4.3 Omitted Variable Bias

One common form of misspecification taught in an introductory econometrics class is om-

mitted variable bias. That is, it is the ‘bias’ induced on the OLS estimator when relevent

regressors are omitted. However, the use of the word ‘bias’ is a misnomer. There is no bias

in the true sense of the word. If the researcher has two models E[Y |X1, X2] = β1X1 + β2X2

where β2 6= 0 and E[Y |X1] = δ1X1 and is unsure which one he wants to use he only

needs to ask himself what regressors he wants inferences to be conditioned on. If he wishes

for his inferences to condition on X1 and X2 then the first would be the correct model,

if he just wants to condition on X1 then the second would be the correct model. The

two are related by iterated expectations. Let (X1, X2) be joint normal random variables

with E(X1) = E(X2) = 0, V ar(X1) = σ2
1, V ar(X2) = σ2

2 and Corr(X1, X2) = ρ. Then

E[Y |X1] = E[E[Y |X1, X2]|X1] = E[β1X1 + β2X2|X1] = β1X1 + β2E[X2|X1] = β1X1 +

β2(σ2

σ1
ρX1) = (β1 + β2

σ2

σ1
ρ)X1 = δ1X1. The term β2

σ2

σ1
ρ is taught as the bias from omitting

X2. But this is incorrect, (β1 + β2
σ2

σ1
ρ)X1 = δ1X1 is exactly what the mean is supposed to

be when not conditioning on X2, and (β1 + β2
σ2

σ1
ρ) = δ1 is exactly the marginal effect of X1

without controlling for X2.1

When would someone want to condition on X1 and X2 or just X1? This is a common

scenario when trying to do causal modeling with observational data. For example, if one

were looking to investigate if there is sexual discrimination at a firm, the outcome, Y could

be wages, X1 a female binary variable and X2 a managerial binary variable, indicating if

the individual is a manager. One would anticipate the β1 parameter to capture the effect

of discrimination. The managerial variable would be causally related to wages but should

1It would only be bias if one were interpreting their results as if they conditioned on X1 and X2. Meaning,
they are trying to interpret β1 and not δ1.
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not be included. Under the hypothesis of sexual discrimination β2 would capture some of

the effect the discrimination since women would be less likely to be hired or promoted to a

managerial position. Thus one would not want to include X2 in the model and would only

want to interpret marginal effects of X1 unconditional on X2.

1.4.4 Estimand focus

Another approach is to focus interpretation on the estimand. This is common practice in

applied econometrics where only moment conditions are required for a model. For example

if one were interested in the conditional mean E[Y |X] = g(x) it is sufficient to assume

normality of Y |X to consistently estimate the mean via maximum likelihood or Bayesian

methods. This holds even if the DGP is non-normal. In fact, this property is shared for

all distributions in the exponential family (Gourieroux et al., 1984b). See Gourieroux et al.

(1984a) for an application to the Poisson distribution. In another example, the quantile

function can be estimated by minimizing the risk function E[ρτ (Y − θ)] where ρτ (x) =

x(1 − 1(x≤0)). This minimizer is equivalent to the maximizer of the likelihood from an

asymmetric Laplace distribution. Thus one can consistently estimate the quantiles of Y |X

by assuming Y |X is distributed asymmetric Laplace whether or not the DGP is asymmetric

Laplace (Yu and Moyeed, 2001; Yu and Zhang, 2005; Sriram et al., 2013). Yang et al.

(2016) provide an asymptotic correction to the variances of the Bayes estimator in the face

of misspecification.

1.5 Conclusion

This chapter provided a brief non-technical overview of the literature for misspecified models.

In most cases the estimator converges to a value that minimizes KL divergence. If this
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parameter is meaningful then consistent standard errors can be obtained using a robust

standard error estimator. If the researcher does not know if his model is misspecified he

need not throw up his hands and give up. If he is careful with his modeling approach and

interpretations then useful inferences can still be obtained in the face of misspecification.

13



Chapter 2

Misspecified Discrete Choice Models

and Huber-White Standard Errors

2.1 Introduction

There are many tools available to statisticians and econometricians to provide reliable infer-

ences for different models. However, these tools come with many nuances and assumptions

that can be easily missed or forgotten. One such tool is the Huber-White standard error

correction. The Huber-White correction, under certain conditions, can correct a misspecified

variance of an asymptotically unbiased maximum likelihood estimator (Huber, 1967; White,

1982). Thus Huber-White standard errors provide asymptotically correct Wald confidence

intervals and hypothesis tests. The maximum likelihood estimator of the misspecified con-

ditional logit is not necessarily asymptotically unbiased. The usefulness of a correction for

standard errors around an asymptotically biased estimator is unclear (Freedman, 2006). Yet,

the Huber-White correction is recommended for misspecified discrete choice models (Train,

2009, pg. 201) and used in practice, see Gartner and Segura (2000); Gould et al. (2004); Ja-
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cobs and Carmichael (2002); Lassen (2005). The primary goal of this paper is to investigate

the efficacy of the Huber-White correction in discrete choice model and provide conditions

when the maximum likelihood estimator of the misspecified model is of interest.

When performing maximum likelihood estimation on a misspecified model (called Quasi-

Maximum Likelihood estimation or QML estimation) the estimator is consistently estimating

the parameter values that minimizes the Kullback-Leibler (KL) divergence of the misspecified

model from the correct model (Huber, 1967; Kullback and Leibler, 1951; White, 1982).1 The

parameter space of the KL minimizer is equivalent to the parameter space of the assumed

misspecified model, not the Data Generating Process (DGP). Hence interpretation is reliant

on the assumed misspecified model and not the DGP. Thus the KL minimizing values are

not necessarily of interest unless there is some econometric information to say otherwise.2

If the parameter value minimizing KL divergence is not of interest then it is hard to justify

the use of the Huber-White correction (Freedman, 2006).3

This paper confirms that in general KL minimizer value in misspecified discrete choice mod-

els is not a value of interest under most forms of misspecification. I provide necessary and

sufficient conditions for when the KL minimizer value is equivalent to parameter value from

the DGP.4 Using this result, I find the misspecified conditional logit consistently estimates

the sign of the data generating parameter. It follows that asymptotically correct hypothe-

sis tests and confidence intervals for null coefficients can be obtained using a misspecified

1Under some regularity conditions, Huber (1967) finds that the QML estimator is asymptotically normal
with standard error that is different than standard maximum likelihood asymptotics. White (1982) derives
the same results from Huber (1967) under less general (but more easily verified) assumptions. For the special
case of linear models see Eicker (1967) and White (1980a).

2For example, the QML estimator for linear exponential families can consistently estimate mean functions
as long as the mean of DGP exists (Gourieroux et al., 1984b). The QML estimator of the (misspecified)
asymmetric laplace distribution can consistently estimate quantile function as long as the DGP is continuous
Yu and Moyeed (2001).

3Further, if there is no small sample bias the Huber-White correction can still lead to inconsistent standard
errors, requiring adjustment (White, 1983; MacKinnon and White, 1985).

4Even though the values will be equal, they are still different parameters. The interpretation of the KL
minimzer is with respect to the assumed model and not the DGP. Thus one must take care in how strongly
they interpret the resulting estimates.
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conditional logit with Huber-White standard errors. These results generalize to arbitrary

parametric discrete choice models. Further, if the misspecification is ‘small’ then the mis-

specified conditional logit choice probabilities have a smaller Mean Square Error (MSE) than

the correctly specified model.

Gourieroux et al. (1984b) provide necessary and sufficient conditions for when the conditional

mean function from a misspecified model is consistent for the conditional mean of the DGP.

It requires the researcher to correctly specify the conditional mean function and estimate it

by maximum likelihood using a member from the linear exponential family. Ruud (1983)

provides sufficient conditions for consistency up to a non-zero scale parameter of QML esti-

mators for misspecified binary choice models. Yatchew and Griliches (1985); Cramer (2005)

find omitting relevant variables results in inconsistent estimators biased toward zero. How-

ever, there is little effect on logit predictions (Ramalho and Ramalho, 2010). My findings

agree with and strengthen all these previous studies.5 Dubin and Zeng (1991) provide a para-

metric model for incorporating heteroskedasticity which can be used to test for the presence

of heteroskedasticity.6 In practice determining the correct form of heteroskedasticity is not

an easy process. McFadden and Train (2000) provide a test for detecting misspecification of

random parameters.

Section 2.2 presents the conditional logit and its derivation as a random utility model.

Section 2.3 presents the theoretical results for the QML estimator of misspecified discrete

choice models. Section 2.4 outlines the simulation procedures for verifying the results in

section 2.3. Section 2.5 presents the results from the simulation and section 2.6 concludes.

5Ruud (1983) and this paper provide context to the results from ? for a discrete choice setting. Ruud
(1983) provides sufficient conditions for consistency whereas I provide necessary and sufficient conditions. In
addition, Ruud (1983) state parameters are identified up to a non-zero scaler. Using the same assumptions
and generalizing to multinomial choice I strengthen the result for identification up to a positive scaler, thus
preserving sign information

6 A simulation study by Hole (2006) finds the likelihood ratio and Hessian based Wald tests perform
best for detecting heteroskedasticity. Davidson and MacKinnon (1984) conduct a similar study and find
the Hessian based score has more reliable performance than the outer product of gradient based score or
likelihood ratio tests.
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2.2 Models

In this section I present the random utility and conditional logit models.

2.2.1 Random utility

The random utility model is the foundation for much of discrete choice analysis. In this

model agent n receives utility Unj from alternative j. If the agent makes only one choice,

then they choose the utility maximizing alternative, j?, denoted j? = argmax
j

Unj. The

choice of individual n is represented by ynj? = 1 and ynj = 0, ∀j 6= j?. This leads to the

probability agent n chooses alternative j represented as Pnj = Pr(Unj > Uni, ∀i 6= j). Thus

choices are distributed multinomial with likelihood

L(β|X, y) =
N∏
n=1

J∏
j=1

P
ynj
nj =

N∏
n=1

Pnj?

and log likelihood l(β|X, y) ≡ log(L(β|X, y)) =
∑N

n=1 log(Pnj?). The utility function con-

sidered in this study is additively separable, Unj = Vnj + εnj. The observable utility is Vnj

and the unobservable utility is εnj. The observable portion is a function of observable data

and unknown fixed or random parameters.

2.2.2 Conditional logit

Using the setup from above, the conditional logit model assumes the unobserved utility is

distributed independent extreme value type 1 (i.e., Gumbel) with location parameter of 0

and scale parameter of 1.7 This produces the moments E(εnj) = γ and V ar(εnj) = π2

6
,

7There are other assumptions that can be used for the distribution of the unobserved utility. A common
one is the normal distribution which leads to the probit model. The probit model has some advantages over
the logit model such as not having independence of irrelevant alternatives, allowing for individual specific
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where γ is Euler’s constant.8 The observable utility is typically assumed to be linear in

(fixed) parameters (i.e., Vnj = Xnjβ). Then the probability agent n chooses alternative j is

Pnj = eXnjβ

J∑
i=1

eXniβ
. 9

2.3 Misspecification of the conditional logit

In this section I provide an (open form) solution to the KL minimizer of the conditional

logit (Lemma 2.1). This leads to necessary and sufficient (open form) conditions for the

KL minimizer of the conditional logit to be equivalent to the data generating parameter

(Theorem 2.1). I extend this result for the KL minimizer for any assumed parametric random

utility model (Theorem 2.2). Lastly, I provide a commonly satisfied sufficient condition for

the KL minimizer to have the same sign as the DGP parameter (Theorem 2.3) and how this

result can be used in practice (Corollary 2.1 and 2.2). Proofs are in the appendix.

Let G be the data generating process with choice probabilities P 0
nj and F be the assumed

model with choice probabilities Pnj(β) = Pnj (e.g., conditional logit). Then the KL diver-

gence of F from G is

KL(G||F ) =
∑
y1∈Y1

· · ·
∑

yN∈YN

log


N∏
n=1

J∏
j=1

P 0ynj
nj

N∏
n=1

J∏
j=1

P
ynj
nj


N∏
n=1

J∏
j=1

P 0ynj
nj .

where ynj is the jth element of yn, Yn = {[1, 0, . . . , 0], [0, 1, . . . , 0], . . . [0, 0, . . . , 1]} and each

correlation over time and random taste variation. However, the interpretation of probit parameters are not
as clear as logit parameters, which enjoy a log odds interpretation.

8Note that these parameter assumptions are not restrictive since location and scale are unidentified (i.e.,
Pr(U1 > U2) = Pr(a+bU1 > a+bU2)). However, the assumption of the unobserved utility being distributed
extreme value 1 can be argued.

9The logit probability form can be derived from the independence of irrelevant alternatives axiom (Luce,
1959). See Train (2009) for a derivation of the conditional logit. The conditional logit can be estimated using
iterative maximum likelihood techniques. The conditional logit can be estimated by Bayesian procedures as
well (Koop and Poirier, 1993).
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element in Yn has length J (note this is the standard basis in <J). Due to independent but

not identical likelihood this a very large summation with JN terms. Fortunately, it simplifies

nicely.

Lemma 2.1. KL(G||F ) =
N∑
n=1

J∑
j=1

log
(
P 0
nj

Pnj

)
P 0
nj

Thus the KL minimizing value is10

β? = argmin
β

KL(G||F ) = argmin
β

[
−

N∑
n=1

J∑
j=1

log(Pnj(β))P 0
nj

]
.

Theorem 2.1 provides conditions for the KL minimizer to be equivalent to parameters from

the DGP (i.e., lim
n→∞

β̂ = β? = β0). Some assumptions and definitions need to be presented

first. The first assumption is a DGP assumption providing the framework for how choices

could have originated. It is a necessary assumption for β? = β0 to have any meaning.

Assumption 2.1. The choices are generated from a random utility model where the utility

that individual n receives from alternative j is denoted by U0
nj = Xnjβ

0 + ηnj, ηnj ∼ Fη for

some Fη. This results in choice probability P 0
nj, conditional on Xnj.

The distribution Fη is independent over individuals but can be dependent over alternatives.

It could include unmeasurable variables, random effects or different assumptions on the

unobserved utility. The next assumption makes explicit the assumed model is conditional

logit.

Assumption 2.2. The assumed choice probability that individual n chooses alternative j is

of the form Pnj = eXnjβ∑J
i=1 e

Xniβ
.

10Notice the minimizer does not necessarily converge with infinite sample size. I suspect under some weak
conditions (say covariates satisfy Lindeberg’s condition) convergence can be guaranteed.
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The covariates, Xnj, in Assumptions 2.1 and 2.2 must be the same for β? = β0 to have any

useful meaning. Define W (β) =
N∑
n=1

J∑
j=1

(
Pnj(β)− P 0

nj

)

X

(1)
nj

...

X
(p)
nj

, p ≡ length(β) and X
(k)
nj the

kth element of the row vector Xnj. Theorem 2.1 is now presented

Theorem 2.1. Suppose Assumptions 2.1 and 2.2 hold then lim
n→∞

β̂ = β? = β0 iff W (β0) = 0.

This is not an existence result. There might not exist a β0 or β? such that W (β0) = 0 (e.g.,

probit data generating process with β0 6= 0). If W (β0) = 0 exists, then the above holds.

The result in Theorem 2.1 can be generalized such that Pnj is derived from any random

utility model with observable utility Vnj = Xnjβ. This can be done using a result from

McFadden and Train (2000) that shows the mixed logit can approximate any random utility

model. We will need to restrict ourselves to a convenient class of random utility models that

are of the same form as those in Assumption 2.1. Again, this provides meaning to β? = β0.

Assumption 2.3. The model is assumed to be a random utility model where the utility that

individual n receives from alternative j is denoted by Unj = Xnjβ + εnj and εnj ∼ Fε for

some Fε. This results in choice probability Pnj(β).

Assumption 2.3 is a generalization of Assumption 2.2. The more general theorem is now

presented.

Theorem 2.2. Suppose Assumptions 2.1 and 2.1 hold then lim
n→∞

β̂ = β? = β0 iff W (β0) = 0.

Theorems 2.1 and 2.2 are difficult to operationalize because β0 and P 0
nj are not known.

Additional, Pnj might not exist in closed form for Theorem 2.2. Fortunately, it is fairly

simple to find when the KL minimizer has the same sign as the DGP parameter. It is

sufficient for the KL minimizer to have the same sign as the DGP parameter when the

assumed model is conditional logit.
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The next assumption is a common identification assumption made in random utility models.

It is usually implicitly assumed, but I use it explicitly, so I state it explicitly.

Assumption 2.4. The fixed covariates vary over alternatives (i.e., ˆV arj(Xnj) > 0).

If Assumption 2.4 cannot be satisfied (e.g., the covariate is a measure of an individuals

income) then one can interact it with alternative specific constants. Finally, we arrive at the

result that assuming the model is conditional logit is sufficient to identify the signs of the

coefficients in the data generating process.

Theorem 2.3. Suppose Assumptions 2.1, 2.2 and 2.4 hold then sign(β?) = sign(β0) element

by element.

Therefore QML estimation of the conditional logit is consistent for the correct sign of the

fixed parameters in any random utility framework that is generated according to Assumption

2.1. A corollary follows for the special case of the DGP parameters being 0.

Corollary 2.1. Suppose assumptions 2.1, 2.2 and 2.4 hold. If β0
k = 0 then β?k = 0 for any

k ∈ {1, 2, ..., p}.

It follows that hypothesis tests about β0
k = 0 can be conducted with the misspecified condi-

tional logit.

Corollary 2.2. Suppose assumptions 2.1, 2.2 and 2.4 hold then hypothesis tests of the form

H0 : β0
k = 0 vs Ha : β0

k 6= 0, H0 : β0
k ≥ 0 vs Ha : β0

k < 0 and H0 : β0
k ≤ 0 vs Ha : β0

k > 0 can

be consistently performed with β̂k for β?k = β0
k using the Huber-White standard errors. The

type one error rate will be asymptotically conservative (i.e., lim
n→∞

Pr(reject|H0) ≤ α).

Thus if choices are generated according to Assumption 2.1 a researcher can test for non-

zero coefficients using the (possibly misspecified) conditional logit and obtain asymptotically
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correct type one errors. This test is only justified for the cases presented in the corollary. It

is unclear what the asymptotic type one errors are from testing for some arbitrary non-zero

constant (e.g., H0 : β0
k ≤ c vs H0 : β0

k > c where c 6= 0). I make no claims for the power level

of the tests.11

2.4 Simulation

In this section I verify several results under three different data generating processes: condi-

tional logit, mixed logit and heteroskedastic logit. First, I show the Huber-White standard

error provides asymptotically correct type one error rates for null coefficients in the con-

ditional logit despite misspecification. Then I show the KL minimizer from the assumed

conditional logit model is not equal to the data generating parameters under misspecifica-

tion. Next I show confidence intervals with Huber-White standard errors do not cover the

data generating parameter, β0, with the appropriate coverage probability. However, they do

cover the KL minimizer, β?, with the appropriate coverage probability. Lastly, I compare the

MSE of the estimated choice probabilities with the correctly specified models. Subsections

5.1 and 2.5.2 present the mixed logit and heteroskedastic logit data generating processes.

Subsection 2.5.3 presents the simulation design.

2.4.1 Mixed logit

The first form of misspecification is a failure to specify the random component in the mixed

logit model. The utility function for the mixed logit is Unj = Vnj +Znjbn + εnj with random

parameter vector bn
iid∼ Fb and E[bn] = 0, where Fb is the mixing distribution. The conditional

11However, I would anticipate the power of detecting the correct sign to be an increasing function of the
magnitude in the correct direction.
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probability agent n chooses alternative j is Pnj|bn = eVnj+Znjbn

J∑
i=1

eVni+Znibn
.The unconditional choice

probability is Pnj =
∫

eVnj+Znjbn

J∑
i=1

eVni+Znibn
dFb.

12

2.4.2 Heteroskedastic logit

The second form of misspecification is failing to account for the heteroskedastic parameter

in the heteroskedastic logit model. The heteroskedastic logit model introduces heteroskedas-

ticity by allowing the scale parameter of the extreme value type 1 distribution to vary over

individuals and alternatives (i.e., θnjεnj ∼ EV 1(1, θnj), θnj > 0). 13 Thus the utility function

is Unj = Vnj + θnjεnj. Heteroskedasticity over individuals, θnj = θn, can represent differing

abilities for individuals to understand the presented alternatives. This type of heteroskedas-

ticity leads to a simple closed form solution, Pnj = eVnj/θn

J∑
i=1

eVni/θn
.14 The heteroskedasticity is

parameterized θnj = γ0e
ZTn γ1 , (γ0, γ1) ∈ <++×<k where Zn are data and γ’s are parameters.

15 When heteroskedasticity is only over individuals then γ0 = 1 for identification.16

12The integral can be evaluated by quadrature, simulation or MCMC methods (Lange, 1999; Train, 2009;
Jeliazkov and Lee, 2010). This paper uses Newton-Rhapson based maximum simulated likelihood by halton
methods to mimic STATA procedures from the ‘mixlogit’ command (Haan and Uhlendorff, 2006; Hole, 2007).
Since the integral is simulated, the number of simulations needs to scale appropriately with sample size for
asymptotic normality to be achieved. I set the number of integral simulations equal to N0.85. Estimation
can also be performed using hierarchical Bayesian methods (Dumont and Keller, 2015).

13Dubin and Zeng (1991) provides such a model for the generalized extreme value family of models.
14Dubin and Zeng (1991) mistakenly reports Pnj = eVnjθn

J∑
i=1

eVniθn
. Alternatively, heteroskedasticity can be

over individuals and alternatives, θnj , representing choice fatigue or different channels to view alternatives.
If θnj then the choice probability does not exist in closed form. It can be evaluated by quadrature (Bhat,
1995) or by laplace transform (Dubin and Zeng, 1991).

15A common alternative parameterization is θnj = (1 + ZTnjγ)2, γ ∈ <k.
16This is estimated using iterative maximum likelihood techniques.
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2.4.3 Simulation design

The form of the observable utility for all DGPs is Vnj = X
(1)
nj β

0
1 + X

(2)
nj β

0
2 , with data gener-

ating parameters (β0
1 , β

0
2) = (0, 1) for determining type one error rates of a null coefficient

(Corollary 2) and (β0
1 , β

0
2) = (−2, 1) for all other simulations. The data is simulated from

X
(1)
nj ∼ χ2

1, representing alternative price, and X
(2)
nj ∼ Bernoulli(.8), representing an alter-

native specific constant. I simulate N individuals choosing from J alternatives. The values

for (N, J) used in this study are presented in Table 2.1. The number of simulations for each

(N, J) pair is 1, 000.

Table 2.1: Total individuals and alternatives

(N,J) Individuals, N

Alternatives, (100, 2) (500, 2) (1000, 2)
J (100, 3) (500, 3) (1000, 3)

(100, 5) (500, 5) (1000, 5)

Misspecification is introduced in two different forms. The first form is where the choices are

generated according to the mixed effects logit, but the random effect is not modeled. The

second form is where the data is generated according to the heteroskedastic logit, but the

coefficient against the unobservable utility is not modeled. The form of the random effect in

the mixed logit is an alternative specific constant where

Znjbn =

 bn ∼ N(0, σ2) if j = 1

0 if j 6= 1

This represents a random preference for an alternative that is presented once to every indi-

vidual. The values for σ2 are σ2 ∈ {0.52, 12, 22}. In the second DGP choices are simulated

from a heteroskedastic logit where the heteroskedastic parameter is θn = eγ1Wn . Where Wn

is drawn from a discrete uniform with support from -2 to 2 and γ1 ∈ {.5, 1, 1.5}.

The efficacy of the Huber-White correction in this study is determined by type one errors
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and coverage probabilities of the β0 and β? coefficients from the DGP and KL minimization

respectively. If the Huber-White correction provides a ‘good’ coverage probability then the

correction could be useful. Coverage probabilities for Wald-based 80% confidence intervals

are computed for the misspecified and correctly specified models. Hessian, Huber-White and

simulated standard errors are used. The comparison of interest is to see if the 0.80 coverage

probability is better targeted with the Hessian or Huber-White standard errors. Simulation

based standard errors are included as a check to see if the distribution of the maximum

likelihood estimator (of the correctly specified model) is approaching normality.17 Since the

minimizing parameter changes with the data, the data is kept fixed and only the unobserved

utility is redrawn in each simulation.

2.5 Results

The results from the simulation study are presented in this section. All tables can be found

in the appendix.

2.5.1 Type one error of null parameter

If the data generating parameter is null (β0
1 = 0) then the Huber-White standard error should

provide an asymptotically conservative type one error rate with the misspecified conditional

logit model (Corollary 2.1). Tables B.1 and B.2 show simulated type one errors of H0 : β1 = 0

in conditional logit. Table B.1 is the mixed logit DGP and Table B.2 is the heteroskedastic

logit DGP. A type one error rate close to 0.20 shows good performance.

I find Hessian and Huber-White standard errors result in similar inferences and neither

appear to dominate the other. Additionally, the correct type one error seems to be achieved

17Note this is only a necessary, not a sufficient, condition for normality.
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in most environments except when the random effect is large (σ2 = 22) then the type one

errors are erratic.

Thus the misspecified conditional logit model usually provides correct type one errors for

null coefficients. However, there does not seem to be any guidance as whether to use the

Hessian or Huber-White standard errors since both perform similarly.

2.5.2 KL minimizing parameter

When the model is misspecified the QML estimator is estimating the parameter minimizing

the KL divergence of the assumed model from the DGP. Tables B.3 and B.4 show the KL

minimum and minimizer from the simulation where the researcher fails to specify a random

effect (Table B.3) or a heteroskedastic effect (Table B.4). The KL minimizer is found by

directly minimizing the KL divergence using numerical methods. Simulation standard errors

of the QML estimates around the KL minimizing parameter are also included.18

As σ2 and γ1 increase, there is an increase in the KL divergence of the conditional logit

(evaluated at the KL minimizer) from the DGP. The KL divergence (evaluated at the min-

imizer) can be used to measure the degree of misspecification since the divergence becomes

0 as the DGP converges to the conditional logit. As the divergence increases the KL mini-

mizer attenuates toward 0. This complements the results from Cramer (2005); Yatchew and

Griliches (1985). Lastly, the standard error of the QML estimator around the KL minimizing

parameter decreases. This result is fairly surprising. It is saying a more misspecified model

is more informative about the KL minimizer.

As the number of individuals increases (N increases) the distance between the KL minimizer

and the DGP parameters fluctuates. This can be explained by the possibility the KL mini-

18 Calculated by taking the standard deviation over the monte carlo simulation. The confidence intervals
based on this standard error assumes normality.
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mizer does not necessarily converge with N . As mentioned earlier, I anticipate convergence

under some (unspecified) mild conditions.

As the number of alternatives increases (J increases) the distance between the KL minimizer

and the DGP parameters tends to decrease. This can be explained by the fact that the

misspecification for the random effect is only a misspecification on the first alternative,

and hence, the misspecification gets ‘washed out’ as the number of alternatives increases.

Likewise the misspecified heteroskedasticity is a misspecification over individuals and hence

becomes ‘less misspecified’ as the number of alternatives increases.

2.5.3 Coverage probabilities of β0

Coverage probabilities of the DGP parameters, β0, are presented in Tables B.5, B.6, and

B.7. The tables show the coverage probabilties for 80% confidence intervals using Hessian,

Huber-White and simulation based standard errors. Misspecified and correctly specified

models are considered.

Coverage probabilities from the correctly specified conditional logit can be seen in Table B.5.

The Hessian and Huber-White confidence intervals appear to perform the same and are close

to the target coverage probability.

Coverage probabilities from the misspecified conditional logit when the DGP is mixed logit

and heteroskedastic logit are presented in Table B.6 and B.7. Coverage probabilities of the

correctly specified mixed and heteroskedastic logit models are also included in the tables.

There tends to be little difference between the coverage probabilities of Hessian and Huber-

White standard errors. As σ2 and γ1 increase the coverage probabilities for the misspecified

model decrease and the coverage probabilities of the correct models are erratic. For small

σ2 (σ2 = 0.52) the misspecified model target the 0.80 coverage probability better than the
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correctly specified mixed logit.

As the number of individuals increase (N increases) the confidence intervals for the misspec-

ified model cover the DGP parameters less. This is more apparent the larger σ2 or γ1 is.

The coverage probabilities for the correct mixed logit are erratic and do not show any sign

of converging to the targeted value.

A surprising finding was that the misspecified conditional logit performed better than the

correctly specified mixed logit for small σ2. This is likely caused by the increased estimation

error induced by simulation of the integral in the likelihood. This also confirms the finding

in Keane (1992) and Ruud (1996) that if the random effect is not ‘big enough’ the model

is nearly unidentified (these papers only explored this result for the probit). It was also

interesting to note that the coverage probabilities for the parameters estimated by maximum

simulated likelihood of the correctly specified model were erratic. This might be fixed by

using a different scaling for the number of integral simulations.

While the Huber-White standard errors provided slightly better coverage in the misspecified

heteroskedastic model, they did not provide a reliable correction to obtain the target 0.80

coverage probability. The finite sample coverage from the correctly specified heteroskedastic

logit model using Huber-White standard errors performed was slightly worse than the Hessian

standard errors (but did asymptotically target the 0.80 coverage probability). In general,

the coverage probabilities were less affected by failing to specify the random effect than the

heteroskedastic effect. This could be since the random effect is on an alternative specific

constant for only one presented alternative. A random coefficient against a continuous

covariate might produce a larger deviation from the targeted coverage probability.
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2.5.4 Coverage probabilities of β?

The results from Huber (1967) and White (1982) tell us that under certain assumptions

the QML estimator in the misspecified model is asymptotically normal centered on the KL

minimizing parameter with Huber-White covariance. The KL minimizing parameter is not

necessarily the DGP parameter value. If the coverage probabilities are calculated for the

KL minimizing parameter instead of the DGP parameter then the confidence intervals with

Huber-White standard error should target the 0.80 coverage probability. Tables B.8 and

B.9 show the coverage probabilities of the KL minimizing parameter in confidence intervals

from the misspecified models. The KL minimizing parameter is calculated by using numerical

methods to minimize the KL divergence of the misspecified model from the correctly specified

model.19

Coverage probabilities based on the Huber-White standard error tend to be conservative

(greater that 0.80) especially for larger σ2 and γ1. This verifies the result in White (1983).

The Hessian standard errors tend to lead to anti-conservative coverage probabilities (less

than 0.80). As σ2 and γ1 increase, the coverage probabilities based on the Huber-White

estimator tended to increase and become more conservative. Coverage probabilities based

on the Hessian would fluctuate. The simulation based standard errors show that finite sample

approximate normality appears to occur for the QML estimator.

The Huber-White standard errors tend to perform slightly better (although conservatively)

at capturing the KL minimizing parameters. However, this estimand may not be of interest.

19 Coverage of the KL minimizer of the correctly specified conditional logit is not included because the
model is correctly specified and thus the KL minimizer is equivalent to the DGP parameters.
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2.5.5 MSE of choice probabilities

Previous research has found model misspecification has little effect on the estimated choice

probabilities Ramalho and Ramalho (2010). To investigate if this is true, I compare the MSE

of the choice probabilities from the misspecified conditional logit with the properly specified

mixed logit (Table B.10) and heteroskedastic logit (Table B.11).

The MSE of the misspecified conditional logit for the mixed logit DGP is lower than the

correct model; this holds for all N, J, σ2. The conditional logit has a decreasing MSE with

increased sample size. The mixed logit has a fluctuating MSE. The MSE of the misspecified

conditional logit for the heteroskedastic logit DGP has a smaller MSE than the correctly

specified heteroskedastic logit for small heteroskedasticity (γ1 = 0.5), but this relationship

flips for larger heteroskedasticity (γ1 ∈ {1, 1.5}).

The MSE of the misspecified conditional logit decreases with increasing number of alterna-

tives but fluctuates with increasing number of individuals. The MSE of the correctly specified

heteroskedastic logit tends to decrease with increase number of individuals or alternatives.

These results suggest that unless the misspecification is ‘large enough’ the added noise from

simulating a random effect or estimating additional parameters adds excessive error. Thus

it is better to estimate a a misspecified conditional logit in that case.

2.6 Discussion

If a researcher believes to have misspecified a discrete choice model, the Huber-White cor-

rection will not help recover correct inferences on the DGP parameters in general. If the

researcher believes they specified the model correctly but wishes to use the Huber-White

correction ‘just to be safe’ then the correction will work just-as-well (at best) as the Hessian
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based confidence interval. The KL minimizer appears to diverge from the data generating

parameters with increasing misspecification and it is unclear when the KL minimizer will

equal the DGP parameter in general. However, if the DGP parameter is zero then the

KL minimizer is also zero. Thus the Huber-White correction can be justified for obtaining

conservative type one errors when testing for positive, negative or zero coefficients with a

conditional logit. If the researcher is interested in estimating choice probabilities then the

researcher should use the possibly misspecified conditional logit unless they think that model

is excessively ‘far’ from the DGP.

A possible extension is to find more interpretable conditions when the KL minimizer equals

the data generating parameter. Finding bounds on the difference of the DGP parameter and

the KL minimizer could provide guidance as to what misspecified parametric discrete choice

models would be preferred. Lastly, the effect of misspecification on marginal effects was not

explored in this paper. While marginal effects are of secondary interest (compared the sign

of the parameter), they do provide rich economic interpretations and it would be interesting

to see how they would be affected.
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Chapter 3

A Bayesian Approach to

Multiple-Output Quantile Regression

3.1 Introduction

Univariate quantile regression was originally proposed by Koenker and Bassett (1978) and

has since become a popular mode of inference among empirical researchers (see Yu et al.

(2003) for a survey). Additionally, econometricians and statisticians have brought many

methodological advances to the field. One such advance was the introduction of quantile

regression into a Bayesian framework (Yu and Moyeed, 2001). This advance opened the

doors for Bayesian inference and generated a series of applied and methodological research.1

The literature on multivariate quantiles has been growing slowly but steadily since the early

1900s (Small, 1990). Much of the reason for the slow growth is because a multivariate

quantile can be defined in many different ways and there has been little consensus on which

1For example, see Alhamzawi et al. (2012); Benoit et al. (2014); Benoit and Van den Poel (2012); Feng
et al. (2015); Kottas and Krnjajić (2009); Kozumi and Kobayashi (2011); Lancaster and Jae Jun (2010);
Rahman (2016); Sriram et al. (2013); Taddy and Kottas (2010); Thompson et al. (2010).
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is the most appropriate (Serfling, 2002). Further, the literature for Bayesian inference in this

field is sparse. Only two papers exist and neither use a commonly accepted definition for a

multivariate quantile.2

I present a Bayesian framework for multivariate quantiles defined in Hallin et al. (2010).

Their ‘directional’ quantiles have theoretic and computational properties not enjoyed by

many other definitions. My approach uses an idea similar to Chernozhukov and Hong (2003),

it assumes a likelihood that is not necessarily representative of the Data Generating Process

(DGP). However, I show the resulting posterior converges almost surely to the true value.3

By performing inference in this framework one gains the advantages of a Bayesian analysis.

The Bayesian machinery provides a principled way of combining prior knowledge with data

to arrive at conclusions. This machinery can be used in a data-rich world, where data is

continuously collected, to make inferences and update them in real time.4

The prior is a required component Bayesian analysis where the researcher elicits their pre-

analysis beliefs for the population parameters. The prior in this model is closely related to

the Tukey depth of a distribution (Tukey, 1975). Tukey depth is a notion of multivariate

centrality of a data point. This is the first Bayesian prior for Tukey depth. Once a prior is

chosen, estimates can be computed using MCMC draws from the posterior. If the researcher

is willing to accept prior joint normality of the model parameters then a Gibbs MCMC sam-

pler can be used. Gibbs samplers have many computational advantages over other MCMC

algorithms. Consistency of the posterior and a Bernstein-Von Mises result are verified via a

small simulation study.

2 Drovandi and Pettitt (2011) uses a copula approach and Waldmann and Kneib (2015) uses a multivariate
Asymmetric Laplace likelihood approach.

3Posterior convergence means that as sample size increases all the probability mass for the posterior is
concentrated in smaller neighborhoods around the true value. Converging eventually to a point mass at the
true value.

4Additionally, Bayesians can make exact finite sample inferences, the Bayesian posterior interval has a
more intuitive interpretation than a Frequentist confidence interval and full predictive distributions can be
obtained using Markov Chain Monte Carlo (MCMC) draws. There is a host of other advantages including
computation, hypothesis testing, handling nuisance parameters and introducing hierarchy into a model.
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Lastly, the model is applied to the Tennessee Project STAR experiment (Finn and Achilles,

1990). The goal of the experiment was to determine if classroom size has an effect on learning

outcomes.5 I compare the results of class size on test score by estimating the quantiles of

mathematics and reading test scores for students in the first grade. I find all quantile sub-

populations of mathematics and reading scores improve for students in smaller classrooms.

This result is consistent with, and much stronger than, the result one would find with mul-

tivariate linear regression. An analysis by multivariate linear regression finds mathematics

and reading scores improve on average, however there could still be subpopulations where

the score declines.6 The multiple-output quantile regression approach confirms there are no

quantile subpopulations where the score declines. This is truly a statement of ‘no child left

behind’ opposed to ‘no average child left behind.’

3.1.1 Quantiles and quantile regression

Quantiles sort and rank observations to describe how extreme an observation is. In one

dimension, for τ ∈ (0, 1), the τth quantile is the observation that splits the data into two

bins: a left bin that contains τ ·100% of the total observations that are smaller and a right bin

that contains the rest of the (1−τ)·100% total observations that are larger. When expanding

to higher dimensions, the notion of partitioning the data into two sets is maintained. The

entire family of τ ∈ (0, 1) quantiles allows one to uniquely characterize the full distribution

of interest. A population univariate quantile is defined as follows: let Y ∈ < be a univariate

random variable with Cumulative Density Function (CDF), FY (y) = Pr(Y ≤ y) then the

5Students were randomly selected to be in a small or large classroom for four years in their early elementary
education. Every year the students were given standardized math and reading tests.

6A plausible narrative is a poor performing student in a larger classroom might have more free time due
to the teacher being busy with preparing, organization and grading. During this free time the student might
read more than they would have in a small classroom and might perform better on the reading test than
they would have otherwise.
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τth quantile is

QY (τ) = inf{y ∈ < : τ ≤ FY (y)}. (3.1)

If Y is a continuous random variable then the CDF is invertible and the quantile is QY (τ) =

F−1
Y (τ). Whether or not Y is continuous, QY (τ) can be defined as the generalized inverse

of FY (y) (i.e. FY (QY (τ)) = τ).7 The definition of sample quantile is the same as (3.1) with

FY (y) replaced with its empirical counterpart.

Quantiles can be computed via an optimization based approach. This is somewhat surprising

because quantiles are a notion of ranking and sorting—a link to optimization is not imme-

diately clear. This relationship between quantiles and optimization was first shown in Fox

and Rubin (1964). Define the check function to be

ρτ (x) = x(τ − 1(x<0)), (3.2)

where 1(A) is an indicator function for event A being true. It can be shown the τth population

quantile of Y ∈ < is equivalent to QY (τ) = argmin
a

E[ρτ (Y −a)]. Note this definition requires

E[Y ] and E[Y 1(Y−a<0)] to be finite. The corresponding sample quantile estimator is

α̂τ = argmin
a

1

n

n∑
i=1

ρτ (yi − a). (3.3)

If the moments of Y are not finite, an alternative but equivalent definition can be used

instead (Paindaveine and Šiman, 2011).

Univariate linear conditional quantile regression (generally known as ‘quantile regression’)

was originally proposed by Koenker and Bassett (1978). They define the τth conditional

7There are several different ways to define the generalized inverse of a CDF and each has different
properties (Embrechts and Hofert, 2013; Feng et al., 2012).
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population quantile function to be

QY |X(τ) = inf{y ∈ < : τ ≤ FY |X(y)} = X ′βτ (3.4)

which can be equivalently defined as QY |X(τ) = argmin
b

E[ρτ (Y − X ′b)|X] (provided the

moments E[Y |X] and E[Y 1(Y−X′b<0)|X] are finite). The parameter βτ is estimated in the

frequentist framework by solving

β̂τ = argmin
b

1

n

n∑
i=1

ρτ (yi − x′ib). (3.5)

This optimization problem can be written as a linear programming problem and solutions

can be found using the simplex or interior point algorithms.

There are two common motivations for quantile regression. The first is its estimates and

predictions are robust to outliers and certain violations of model assumptions.8 The second

is specific quantiles can be of greater scientific interest than means or conditional means (as

one would find in linear regression).9 These two motivations also apply to multiple-output

quantile regression. See Koenker (2005) for a well written survey of the field of univariate

quantile regression.

There have been several approaches to generalizing quantiles from a univariate to a multi-

variate case. This generalization is difficult because the univariate quantile can be defined as

a generalized inverse of the CDF. Since a multivariate CDF has multiple inputs and hence,

is not one-to-one, then a definition based off inverses can lead to difficulties. See Serfling and

Zuo (2010) for a discussion of desirable criteria one might expect a multivariate quantiles to

have and Serfling (2002) for a survey of extending quantiles to the multivariate case. Small

8For example, the median of a distribution can be consistently estimated whether or not the distribution
has a finite first moment.

9For example, if one were interested in the effect of police expenditure on crime, one would expect there
to be larger effect for high crime areas (large τ) and little to no effect on low crime areas (small τ).
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(1990) surveys the special case of a median.

This paper follows a framework of multivariate quantiles using a ‘directional quantile’ ap-

proach introduced by Laine (2001) and rigorously developed by Hallin et al. (2010). A

directional quantile of Y ∈ <k is a function of two objects: a direction vector u (a point on

the surface of k dimension hypersphere) and a depth τ ∈ (0, 1). A directional quantile is then

uniquely defined by τ = uτ . The τ directional quantile hyperplane is denoted λτ which

is a hyperplane through <k. The hyperplane λτ generates two quantile regions: a lower

region of all points below λτ and an upper region of all points above λτ . The lower region

contains τ ·100% of observations and the upper region contains the remaining (1− τ) ·100%.

Additionally, the vector connecting the probability mass centers of the two regions is parallel

to u. Thus u orients the regression and can be thought of as a vertical axis.

3.1.2 Bayesian single-output quantile regression

A Bayesian approach to quantile regression may seem inherently contradictory to Bayesian

principles. Bayesian methods require a likelihood and hence a distributional assumption, yet

one common motivation for quantile regression is to avoid making distributional assumptions.

Yu and Moyeed (2001) introduced a Bayesian approach by using a (possibly misspecified)

likelihood of an Asymmetric Laplace Distribution (ALD), whose maximum likelihood esti-

mate is equal to the estimator from (3.5). The Probability Density Function (PDF) of the

ALD is

fτ (y|µ, σ) =
τ(1− τ)

σ
exp(− 1

σ
ρτ (y − µ)). (3.6)

A Bayesian assumes Y |X ∼ ALD(X ′βτ , σ, τ), selects a prior, and performs estimation using

standard procedures. Sriram et al. (2013) showed posterior consistency, meaning as sample

size increases the probability mass of the posterior concentrates around the values of β that
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satisfy (3.4). Yang et al. (2016) found consistent variances can be achieved using a simple

modification to the posterior using the draws from the MCMC algorithm. If one is willing to

accept joint normality of βτ then a Gibbs sampler can be used to obtain random draws from

the posterior (Kozumi and Kobayashi, 2011). If regularization is desired, then an adaptive

Lasso sampler can be used (Alhamzawi et al., 2012). Nonparametric Bayesian approaches

to quantile regression have been proposed by Kottas and Krnjajić (2009) and Taddy and

Kottas (2010).

3.2 Multiple-output quantile regression

This section presents the multiple-output quantile regression and discusses some of its prop-

erties. An example is presented at the end of this section to aid in the explanation. The

rest of the exposition follows closely from Hallin et al. (2010). Let [Y1, Y2, ..., Yk]
′ = Y be

a k-dimension random vector. The direction and magnitude of the directional quantile is

defined by τ ∈ Bk = {v ∈ <k : 0 < ||v||2 < 1}. Where Bk is a k-dimension unit ball centered

at 0 (with center removed). Define || · ||2 to be the l2 norm. The vector τ= τu can be broken

down into two components: direction, [u1, u2, ..., uk]
′ = u ∈ Sk−1 = {v ∈ <k : ||v||2 = 1}

and magnitude, τ ∈ (0, 1).

Let Γu be some k× (k− 1) matrix such that [u
... Γu] is an orthonormal basis of <k. Further

define Yu = u′Y and Y⊥u = Γ′uY. The matrix Γu is used to form a basis of the space

orthogonal to the direction u. Then the τ th directional quantile of Y is a hyperplane

λτ = {y ∈ <k : u′y = β′τΓ
′
uy + ατ} where

(ατ , βτ ) ∈ argmin
a,b

E[ρτ (Yu − b′Y⊥u − a)].

Denote X ∈ <p to be random covariates. Define Ψ(a,b) = E[ρτ (Yu − b′yY⊥u − b′xX − a)].
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The τ th quantile regression of Y on X (and an intercept) is λτ = {y ∈ <k : u′y =

β′τyΓ′uy + β′τxX + ατ} where

(ατ , βτ ) = (ατ , βτy, βτx) ∈ argmin
a,by,bx

Ψ(a,b). (3.7)

It is clear that the definition of the location case is embedded in definition (3.7) where bx

and X are of null dimension. Note that βτ is a function of Γu. This relationship is of little

importance, the uniqueness of β′τΓ
′
u is of greater interest; which is unique under assumption

3.2 presented in the next section.

Any given quantile hyperplane, λτ , separates Y into two halfspaces, commonly referred to

as regions. An open lower halfspace quantile halfspace,

H−τ = H−τ (ατ , βτ ) = {y ∈ <k : u′y < β′τyΓ′uy + β′τxΓ′uX + ατ}, (3.8)

and a closed upper quantile halfspace,

H+
τ = H+

τ (ατ , βτ ) = {y ∈ <k : u′y ≥ β′τyΓ′uy + β′τxΓ′uX + ατ}. (3.9)

Under certain conditions, a distribution Y can be fully characterized by a family of hyper-

planes Λ = {λτ : τ = τu ∈ Bk} (Kong and Mizera, 2012, Theorem 5).10 There are two

subfamilies: a fixed-u subfamily, Λu = {λτ : τ = τu, τ ∈ (0, 1)}, and a fixed-τ subfamily,

Λτ = {λτ : τ = τu,u ∈ Sk−1}. The fixed-τ subfamily generates a fixed-τ region. The

τ -quantile regression region is defined as

R(τ) =
⋂

u∈Sk−1

∩{H+
τ }, (3.10)

10The conditions required are the directional quantile envelopes of the probability distribution of Y with
contiguous support have smooth boundaries for every τ ∈ (0, 0.5)
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where ∩{H+
τ } is the intersection over H+

τ if (3.7) is not unique. The boundary of R(τ) is

called the τ quantile regression contour.

The boundary has a strong connection to Tukey (i.e. halfspace) depth contours. A depth

function is a multivariate notion of centrality of an observation. Consider the set of all

hyperplanes in <k that pass through some fixed point y ∈ <k. The Tukey depth of y is the

minimum percentage of observations separated by all hyperplanes passing through y. Hallin

et al. (2010) show the fixed-τ region is equivalent to the Tukey (or halfspace) depth region.11

This is advantageous because previous numerical approaches to Tukey depth contours were

computationally expensive, however computation of directional quantiles is relatively easy.

If Y (or Y and X for the regression case) is absolutely continuous with respect to Lebesgue

measure, has connected support and finite first moments then (ατ , βτ ) and λτ are unique

(Paindaveine and Šiman, 2011). This is assumption 2, which is stated formally in the next

section.12 Under this assumption the ‘subgradient conditions’ required for consistency are

well defined. Further, Ψ(a,b) is convex and continuously differentiable with respect to a

and b. The target parameters (ατ0, βτ0) are defined as the parameters that satisfy the two

subgradient conditions:

∂Ψ(a,b)

∂a

∣∣∣∣
ατ0,βτ0

= Pr(Yu − β′τy0Y
⊥
u − β′τx0X− ατ0 ≤ 0)− τ = 0 (3.11)

and

∂Ψ(a,b)

∂b

∣∣∣∣
ατ0,βτ0

= E[[Y⊥u
′
,X′]′1(Yu−β′τy0Y⊥u−β′τx0X−ατ0≤0)]−τE[[Y⊥u

′
,X′]′] = 0k+p−1. (3.12)

The first condition can be equivalently written as Pr(Y ∈ H−τ ) = τ which maintains the

11Mathematically, the Tukey (or halfspace) depth of y with respect to probability distribution P is defined
as HD(y, P ) = inf{P [H] : H is a closed halfspace containing y}. Then the Tukey halfspace depth region is
defined as D(τ) = {y ∈ <k : HD(y, P ) ≥ τ}. Hallin et al. (2010) show R(τ) = D(τ) for all τ ∈ [0, 1).

12This assumption can be weakened to only requiring moments to exist for X by using an alternative but
equivalent definition of (3.7) based projection quantiles.
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idea of a quantile partitioning the support into two sets, one with probability τ and one with

probability (1− τ). The second condition can be written as

τ =
E[Y⊥ui1(Y∈H−τ )]

E[Y⊥ui]
for all i ∈ {1, ..., k}

τ =
E[Xi1(Y∈H−τ )]

E[Xi]
for all i ∈ {1, ..., p}

This condition can be interpreted as the probability mass center in the lower halfspace for

the orthogonal response is τ · 100% that of the probability mass center in the entire space.

Likewise, the probability mass center in the lower halfspace for the covariates is τ · 100%

that of the probability mass center in the entire space.

Note E[[Y⊥u
′
,X′]′] = E[[Y⊥u

′
,X′]′1(Y∈H+

τ )] +E[[Y⊥u
′
,X′]′1(Y∈H−τ )], then the second condition

can be written as

diag(Γ′u, Ip)

[
1

1− τ
E[[Y′,X′]′1(Y∈H+

τ )]−
1

τ
E[[Y′,X′]′1(Y∈H−τ )]

]
= 0k+p−1.

The first k − 1 components,

Γ′u

[
1

1− τ
E[Y1(Y∈H+

τ )]−
1

τ
E[Y1(Y∈H−τ )]

]
= 0k−1,

show 1
1−τE[Y1(Y∈H+

τ )]− 1
τ
E[Y1(Y∈H−τ )] is orthogonal to Γ′u and thus, is parallel to u. This

states that the difference of the weighted probability mass centers of the two spaces is parallel

to u.

Figure 3.1 shows an example of these subgradient conditions with 1, 000 draws from Y

when Y is distributed independently over the uniform unit square centered on (0, 0). The

directional vector is u = (1/
√

2, 1/
√

2), which is the orange 45◦ degree arrow pointing to

the top right. The depth is τ = 0.2. The hyperplane λτ is the red dotted line going from

the top left to the bottom right. The lower quantile region H−τ are the red dots lying below
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Figure 3.1: Lower quantile halfspace for u = (1/
√

2, 1/
√

2) and τ = 0.2

λτ . The upper quantile region H+
τ are the black dots lying above λτ . The probability mass

centers of the lower and upper quantile regions are represented by the solid blue dots in their

respective regions. The first subgradient condition states that 20% of all points are red. The

second subgradient condition states that the line joining the two probability mass centers is

parallel to u.

Figure 3.2 shows an example of fixed-τ regions (left) and fixed-u (right) halfspaces using

the same simulated data as above. The left plot shows fixed-τ quantile upper halfspace

intersections of 32 equally spaced directions on the unit circle for τ = 0.2. The points on the

boundary are all the Tukey depth points whose depth is 0.2. All the points within the shaded

blue region have a Tukey depth greater than or equal to τ = 0.2 and all points outside the

shaded blue region have Tukey depth less than τ = 0.2.

The right plot of figure 3.2 plot shows 13 quantile hyperplanes λτ for a fixed u = (1/
√

2, 1/
√

2)
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Figure 3.2: Example of a fixed-τ region and fixed-u halfspaces. Left, fixed τ = 0.2 quantile
region. Right, fixed u = (1/

√
2, 1/
√

2) quantile halfspaces.

for various τ (provided in the legend). The orange arrow shows the direction vector u. The

legend gives the value of τ used for each hyperplane. The hyperplanes split the square such

that τ · 100% of all points lie below the hyperplanes. Note the hyperplanes do not need to

be orthogonal to u. However, the weighted probably mass centers (not shown) are parallel

to u.

Figure 3.3 shows an example of a fixed-τ regression tube through a random uniform pyramid.

The left plot is a 3 dimensional scatter plot of the uniform pyramid.13 The right plot

shows the fixed-τ regression tube of Y1 and Y2 regressed on Y3 with cross-section cuts at

Y3 ∈ {0, 0.15, 0.3}. As Y3 increases the tube travels from the base to the tip of the pyramid.

This causes the tube to pinch as the Y3 increases. As in the one dimensional regression case,

the regression tubes are susceptible to quantile crossing. Meaning if one were to trace out

13A uniform pyramid is a regular right pyramid where, for a fixed ε, every ε-ball contained within the
pyramid has the same probability mass. The measure is normalized to one.
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Figure 3.3: Example of a fixed-τ regression tube through a uniform pyramid. Left, a random
uniform regular pyramid. Right, three slices of a fixed τ = 0.2 regression tube.

the entire regression tube along Y3 for a given τ and τ † > τ , the regression tube for τ † might

not be contained in the one for τ for all Y3.

3.2.1 Bayesian multiple-output quantile regression

The Bayesian approach assumes

Yu|Y⊥u ,X, ατ , βτ ∼ ALD(ατ + β′τyY⊥u + β′τxX, 1, τ)

whose density is

fτ (Y|X,ατ , βτ , στ ) =
τ(1− τ)

στ
exp(− 1

στ
ρτ (Y − ατ − β′τyY⊥u − β′τxX))

and then chooses a prior Πτ (ατ , βτ ) on the space (ατ , βτ ) ∈ Θτ ⊂ <k+p. The ALD dis-

tributional assumption likely does not represent the data generating process and is thus a
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misspecified distribution. However, as more observations are obtained the posterior proba-

bility mass concentrates around neighborhoods of (ατ0, βτ0), where (ατ0, βτ0) satisfies (3.11)

and (3.12). Theorem 3.1 shows this posterior consistency.

Denote the ith observation of the jth component of Y to be Yij and the ith observation of

the lth covariate of X to be Xil. The assumptions used are below.

Assumption 3.1. The observations (Yi,Xi) are i.i.d. with true measure P0 for i ∈

{1, 2, ..., n, ...}.

The density of P0 is denoted p0. Assumption 3.1 states the observations are independent.

This still allows for dependence among the components within a given observation.

The next assumption assures that the population parameters,(ατ0, βτ0), are well defined by

assuring the subgradient conditions exist and are unique.14

Assumption 3.2. The measure of (Yi,Xi) is continuous with respect to Lebesgue measure,

has connected support and admits finite first moments, for all i ∈ {1, 2, ..., n, ...}.

The next assumption describes the prior.

Assumption 3.3. The prior, Πτ (·), has positive measure for every open neighborhood of

(ατ0, βτ0) and is

a) proper, or

b) improper but admits a proper posterior.

Case b includes the Lebesgue measure on <k+p (i.e. flat prior) as a special case (Yu and

Moyeed, 2001). Assumption 3.3 is satisfied using the prior suggested in section 3.3 for the

Gibbs sampler.

14It is likely this assumption can be weakened (Serfling and Zuo, 2010)
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The next assumption bounds the covariates and response variables.

Assumption 3.4. There exists a cx > 0 such that |Xi,l| < cx for all l ∈ {1, 2, ..., p} and all

i ∈ {1, 2, ...., n, ...}. There exists a cy > 0 such that |Yi,j| < cy for all j ∈ {1, 2, ..., k} and all

i ∈ {1, 2, ...., n, ...}. There exists a cΓ > 0 such that sup
i,j
|[Γu]i,j| < cΓ.

The restriction on X is fairly mild in application, any given dataset will satisfy these restric-

tions. Further X can be controlled by the researcher in some situations (e.g. experimental

environments). The restriction on Y is in conflict of the quantile regression attitude to re-

main agnostic about the distributional of the response. However, like X, any given dataset

will satisfy this restriction. The assumption on Γu is innocuous since Γu is chosen by the

researcher, it is easy to choose such that all components are finite.

The next assumption ensures the Kullback Leibler minimizer is well defined.

Assumption 3.5. E log
(

p0(Yi,Xi)
fτ (Yi|Xi,α,β,1)

)
<∞ for all i ∈ {1, 2, ..., n, ...}.

The next assumption is to ensure the orthogonal response and covariate vectors are not

degenerate.

Assumption 3.6. There exist vectors εY > 0k−1 and εX > 0p such that

Pr(Y⊥uij > εY j,Xil > εXl,∀j ∈ {1, ..., k − 1},∀l ∈ {1, ..., p}) = cp 6∈ {0, 1}.

This assumption can always be satisfied with a simple location shift as long as each variable

takes on two different values with positive joint probability. Let U ⊆ Θ, define the posterior

probability of U to be

Πτ (U |(Y1,X1), (Y2,X2), ..., (Yn,Xn)) =

∫
U

∏n
i=1

fτ (Yi|Xi,ατ ,βτ ,στ )
fτ (Yi|Xi,ατ0,βτ0,στ0)

dΠτ (ατ , βτ )∫
Θ

∏n
i=1

fτ (Yi|Xiατ ,βτ ,στ )
fτ (Yi|Xi,ατ0,βτ0,στ0)

dΠτ (ατ , βτ )
.
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The main theorem of the paper can now be stated.

Theorem 3.1. Suppose assumptions 3.1, 3.2, 3.3a, 3.4 and 3.6 hold or assumptions 3.1,

3.2, 3.3b, 3.4, 3.5 and 3.6. Let U = {(ατ , βτ ) : |ατ − ατ0| < ∆, |βτ − βτ0| < ∆1k−1}. Then

lim
n→∞

Πτ (U c|(Y1,X1), ..., (Yn,Xn)) = 0 a.s. [P0].

The proof is presented in the appendix. The strategy of the proof follows very closely to the

strategy used in the conditional one dimension case (Sriram et al., 2013). First construct an

open set Un containing (ατ0, βτ0) for all n that converges to (ατ0, βτ0), the target parameters.

Define Bn = Πτ (U c
n|(Y1,X1), ..., (Yn,Xn)). To show convergence of Bn to B = 0 almost

surely, it is sufficient to show lim
n→∞

∑n
i=1E[|Bn−B|d] <∞ for some d > 0, using the Markov

inequality and Borel-Cantelli lemma. The Markov inequality states if Bn − B ≥ 0 then for

any d > 0

Pr(|Bn −B| > ε) ≤ E[|Bn −B|d]
εd

for any ε > 0. The Borel-Cantelli lemma states

if lim
n→∞

n∑
i=1

Pr(|Bn −B| > ε) <∞ then Pr(lim sup
n→∞

|Bn −B| > ε) = 0.

Thus by Markov inequality

n∑
i=1

Pr(|Bn −B| > ε) ≤
n∑
i=1

E[|Bn −B|d]
εd

.

Since lim
n→∞

∑n
i=1E[|Bn−B|d] <∞ then lim

n→∞

∑n
i=1 Pr(|Bn−B| > ε) <∞. By Borel-Cantelli

Pr(lim sup
n→∞

|Bn −B| > ε) = 0.

To show lim
n→∞

∑n
i=1E[|Bn − B|d] <∞, I create a set Gn where (ατ0, βτ0) 6∈ Gn. Within this

set I show the expectation of the numerator is less than e−2nδ and the expectation of the
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denominator is greater than e−nδ for some δ > 0. Then the expected value of the posterior

is less than e−nδ, which is summable. This exposition is a simplification from what is shown

in the formal proof.

3.2.2 Choice of prior

A new model is estimated for each unique τ and thus a prior is needed for each one. This

might seem like there is an overwhelming amount of ex-ante elicitation required. However,

simplifications can be made to make elicitation easier. If the prior is centered over H0 :

βτ = 0k+p−1 for all τ then the implied ex-ante belief is Y has spherical Tukey contours

and X has no relation with Y.15 Under this hypothesis (H0 : βτ = 0k+p−1 for all τ ), ατ

is the shortest euclidean distance of the τth Tukey contour from the Tukey median. Since

the contours are spherical, the distance is the same for all u. The variance of the prior

expresses the researcher’s confidence in the hypothesis of spherical Tukey contours. A large

prior variance allows for large departures from H0. If one is willing to accept joint normality

of θτ = (ατ , βτ ) then a Gibbs sampler can be used. The sampler is presented in the next

section.

Further, if data is being collected and analyzed in real time, then the prior of the current

analysis can be centered over the estimates from the previous analysis and the variance of the

prior is the willingness the researcher is to allow for departures from the previous analysis.

Arbitrary priors not centered over 0 require a more detailed discussion. I will restrict to

15A sufficient condition for a density to have spherical Tukey contours is for the PDF to have spherical
density contours and that its PDF (with a multivariate argument, Y) can be written as a monotonically
decreasing function of the inner product of the multivariate argument (i.e. Y′Y) (Dutta et al., 2011). This
condition is satisfied for the location family for the standard multivariate Normal, T and Cauchy. The
distance of the Tukey median and the τth Tukey contour for the multivariate standard normal is Φ−1(1−τ).
Another distribution with spherical Tukey contours is the uniform hyperball. The distance of the Tukey
median and the τth Tukey contour for the uniform hyperball is the r such that arcsin(r) + r

√
1− r2 =

π(0.5 − τ). This function is invertible for r ∈ (0, 1) and τ ∈ (0, .5) and can be computed using numerical
approximations (Rousseeuw and Ruts, 1999).
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the 2 dimensional case (k = 2). There are two ways to think of appropriate priors for

θτ = (ατ , βτ ). The first is a direct approach to think of, θτ as the slope of Yu against Y⊥u ,

X and an intercept. The second approach is to think of it in terms of the implied prior

of φτ = φτ (θτ ) as the slope of Y2 against Y1, X and an intercept. The second approach is

presented in the appendix.

In the direct approach the parameters relate directly to the subgradient conditions (3.11)

and (3.12).16 Under the hypothesis H0 : βτy = 0 the hyperplane λτ is orthogonal to u

(and thus λτ is parallel to Γu). As |βτy| → ∞, λτ converges to u monotonically.17 A δ

unit increase in βτy tilts the λτ hyperplane.18 The direction of the tilt is determined by the

vectors u and Γu and the sign of δ. The vectors u and Γu always form 2 angles: a 90◦ and

270◦ angle. For positive δ, the hyperplane travels monotonically through the triangle formed

by the 90◦. For negative δ the hyperplane travels monotonically in the opposite direction.

The value of |ατ | is the euclidean distance from the Tukey median to the point where λτ

intersects u. A δ unit increase in ατ results in a parallel shift in the hyperplane λτ by

δ
u2−βτyu⊥2

units.

16The vector Yu is the scalar projection of Y in direction u and Y⊥u is the scalar projection of Y in the
direction of the other (orthogonal) basis vectors.

17Monotonic meaning the angular distance between λτ and u is always decreasing for strictly increasing
or decreasing βτy.

18Define slope(δ) to be the slope of the hyperplane when β is increased by δ. The slope of the new
hyperplane is slope(δ) = (u2 − (β + δ)u⊥2 )−1(δu⊥1 + (u2 − βu⊥2 )slope(0).
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Figure 3.4: Hyperplanes from various hyperparameters (τ subscript omitted). Top left,
positive β. Top right, negative β. Bottom left, different αs. Bottom right, different αs and
βs.

Figure 3.4 shows the prior hyperplanes from various hyperparameters. For all four plots

k = 2, the directional vector is u = ( 1√
2
, 1√

2
) and Γu = (− 1√

2
, 1√

2
). The top left plot shows

the hyperplanes for βτ increasing from 0 to 100 for fixed ατ = 0. At β = 0 the hyperplane is

perpendicular to u as it increases the hyperplane travels counterclockwise until it becomes

parallel to u. The top right plot shows the hyperplanes for βτ decreasing from 0 to −100 for

fixed α = 0. At βτ = 0 the hyperplane is perpendicular to u as it decreases the hyperplane
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travels clockwise until it becomes parallel to u. The bottom left plot shows the hyperplane

for ατ ranging from −0.6 to 0.6. The Tukey median can be thought of the point (0, 0), then

|ατ | is the distance of the intersection of u and λτ from the Tukey median.19 For positive

ατ the hyperplanes are moving in the direction u and for negative ατ the hyperplanes are

moving in the direction −u. The bottom right plot shows the hyperplanes for various ατ

and βτ . The solid black hyperplanes are for βτ = 0 and the dashed blue hyperplanes are

for βτ = 1 and ατ takes on values 0, 0.3 and 0.6 for both values of βτ . This plot confirms

changes in ατ result in parallel shifts of λτ while βτ tilts λτ .

3.3 Computation

If one is willing to accept joint normality of the prior distribution for the parameters then

estimation can be performed using the Gibbs sampler developed in Kozumi and Kobayashi

(2011). The approach is to assume Yui = β′τyY⊥ui + β′τxXi + ατ + εi where εi
iid∼ ALD(0, 1).

The random component, εi, can be written as a mixture of a normal and exponential, εi =

ηWi + γ
√
WiUi where η = 1−2τ

τ(1−τ)
, γ =

√
2

τ(1−τ)
, Wi

iid∼ exp(1) and Ui
iid∼ N(0, 1) are mutually

independent (Kotz et al., 2001). Then Yui|Y⊥ui,Xi,Wi, βτ , ατ is normally distributed. If

the prior is θτ = (ατ , βτ ) ∼ N(µθτ ,Σθτ ) then a Gibbs sampler can be used. The m + 1th

MCMC draw is given by the following algorithm

1. Draw W
(m+1)
i ∼ W |Yui,Y

⊥
ui,Xi, Zi, θ

(m)
τ ∼ GIG(1

2
, δ̂i, φ̂i) for i ∈ {1, ..., n}

2. Draw θ
(m+1)
τ ∼ θτ |~Yu, ~Y

⊥
u ,
~X, ~Z, ~W (m+1) ∼ N(θ̂τ , B̂τ ).

19The Tukey median does not exist in these plots since there is no data. If there was data, the point where
u and Γu intersect would be the Tukey median.
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where

δ̂i =
1

γ2
(Yui − β′(m)

τy Y⊥ui − β′
(m)
τx Xi − α(m+1)

τ )2

φ̂i = 2 +
η2

γ2

B̂−1
τ = B−1

τ0 +
n∑
i=1

[Y⊥ui,Xi][Y
⊥
ui,Xi]

′

γ2Wi

β̂τ = B̂τ

(
B−1
τ0 βτ0 +

n∑
i=1

[Y⊥ui,Xi]
′(Yui − ηW (m+1)

i )

γ2W
(m+1)
i

)

and GIG(ν, a, b) is the Generalized Inverse Gamma distribution whose density is

f(x|ν, a, b) =
(b/a)ν

2Kν(ab)
xν−1exp(−1

2
(a2x−1 + b2x)), x > 0,−∞ < ν <∞, a, b ≥ 0

and Kν(·) is the modified Bessel function of the third kind. An efficient sampler of the Gen-

eralized Inverse Gamma distribution was developed in Dagpunar (1989). An implementation

of the Gibbs sampler for R is provided in the package ‘bayesQR’ (Benoit et al., 2014). The

sampler is geometrically ergodic and thus the MCMC standard error is finite and the MCMC

central limit theorem is well defined (Khare and Hobert, 2012). This guarantees that after

a long enough burn-in draws from this sampler are equivalent to random draws from the

posterior.

3.4 Simulation

In this section I show the consistency of the procedure as well as show its robustness to

violations of Assumption 3.4. Consistency is verified by checking for convergence of the

subgradient conditions. I consider four DGPs

1. Y ∼ Uniform Square
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2. Y ∼ Uniform Triangle

3. Y ∼ N(µ,Σ), where µ = 02 and Σ =

 1 1.5

1.5 9



4. Y = Z +

 0

X

 where

X
Z

 ∼ N


µX
µZ

 ,
ΣXX ΣXZ

Σ′XZ ΣZZ


,

ΣXX = 4, ΣXZ =

[
0 2

]
, ΣZZ =

 1 1.5

1.5 9

, µX = 0 and µZ = 02

The first DGP has corners at (0, 0), (0, 1), (1, 1), (1, 0). The second DGP has corners at

(−1, 0), (1, 0), (0,
√

3). DGPs 1,2 and 3 are location models and 4 is a regression model.

DGPs 1 and 2 conform to all the assumptions on the data generating process. DGPs 3

and 4 are cases when Assumption 3.4 is violated. In DGP 4, the unconditional distribution

of Y is Y ∼ N


0

0

 ,
 1 1.5

1.5 17


. To verify consistency I check for convergence of the

subgradient conditions (3.11) and (3.12). Define Ĥτ to be the empirical lower halfspace where

the parameters in (3.8) are replaced with their estimators. To check the first subgradient

condition (3.11), I verify

1

n

n∑
i=1

1(Yi∈Ĥτ ) → τ. (3.13)

Since Yu is one dimension, computation of 1(Yi∈Ĥτ ) is simple. To check the second subgra-

dient condition (3.12), I verify

1

n

n∑
i=1

Y⊥ui1(Yi∈Ĥτ ) → τE[Y⊥u ] (3.14)
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and

1

n

n∑
i=1

Xi1(Yi∈Ĥτ ) → τE[X]. (3.15)

Similar to the first subgradient condition, computation of Y⊥ui1(Yi∈Ĥτ ) and Xi1(Yi∈Ĥτ ) is

simple. For DGPs 1-4, E[Y⊥u ] = 02 and for DGP 4, E[X] = 0.

Two directions are considered u: ( 1√
2
, 1√

2
) and (0, 1). The first vector is a 45o line between Y2

and Y1 in the positive quadrant. The second vector points vertically in the Y2 direction. The

sample sample sizes are n = 100, 1, 000 and 10, 000. The depths are τ = 0.2 and τ = 0.4.

The prior is θτ ∼ N(µθτ ,Σθτ ) where µθτ = 0k+p−1 and Σθτ = 1000Ik+p−1.

Data Generating Process
n 1 2 3 4

100 4.47e-02 2.91e-02 1.52e-02 1.75e-02
Sub Grad 1 1,000 5.44e-03 4.59e-03 2.48e-03 2.60e-03

10,000 9.29e-04 8.66e-04 5.42e-04 5.12e-04
100 6.34e-03 1.43e-02 4.34e-02 7.06e-02

Sub Grad 2 1,000 2.01e-03 3.29e-03 1.32e-02 2.05e-02
10,000 5.82e-04 8.00e-04 3.59e-03 4.91e-03

Table 3.1: RMSE of subgradient conditions for u = (1/
√

2, 1/
√

2)

Data Generating Process
n 1 2 3 4

100 2.02e-02 1.89e-02 1.16e-02 1.36e-02
Sub Grad 1 1,000 3.38e-03 3.61e-03 1.96e-03 1.98e-03

10,000 7.71e-04 9.32e-04 3.87e-04 4.68e-04
100 9.74e-03 1.35e-02 2.59e-02 2.29e-02

Sub Grad 2 1,000 2.08e-03 3.24e-03 7.11e-03 6.51e-03
10,000 6.15e-04 9.89e-04 2.01e-03 1.83e-03

Table 3.2: RMSE of subgradient conditions for u = (0, 1)

Tables 3.1, 3.2 and 3.3 show the results from the simulation. Tables 3.1 and 3.2 show

the Root Mean Square Error (RMSE) of (3.13) and (3.14). The first three rows show the

RMSE for the first subgradient condition (3.13). The last three rows show the RMSE for

the second subgradient condition (3.12). The second column, n, is the sample size. The
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next five columns are the DGPs previously described. Table 3.1 is using directional vector

u = (1/
√

2, 1/
√

2) and Table 3.2 is using directional vector u = (0, 1). It is clear that as

sample size increases the RMSEs are decreasing, showing the convergence of the subgradient

conditions.

Direction u

n (1/
√

2, 1/
√

2) (0, 1)
100 5.17e-02 5.17e-02

1,000 1.41e-02 1.41e-02
10,000 3.90e-03 3.90e-03

Table 3.3: RMSE of regressor subgradient condition for DGP 4

Table 3.3 shows RMSE of the covariate for DGP 4 (3.15) for convergence of subgradient

condition (3.12). The three rows show sample size and the two columns show direction. It

is clear that as sample size increases the RMSEs are decreasing, showing convergence of the

subgradient conditions.

3.5 Application

I apply the model to educational data collected from the Project STAR public access

database. Project STAR was an experiment conducted on 11,600 students in 300 classrooms

from 1985-1989 with interest of determining if reduced classroom size improved academic

performance. Students and teachers were randomly selected in kindergarten to be in small

(13-17 students) or large (22-26 students) classrooms.20 The students then stayed in their

assigned classroom size throughout the fourth grade. The outcome of the treatment was

measured using reading and mathematics test scores that were given each year. This dataset

has been analyzed many times before, see Finn and Achilles (1990); Folger and Breda (1989);

Krueger (1999); Mosteller (1995); Word et al. (1990).21 The studies performed analyses on

20Some large classrooms also had a teaching assistant, I do not consider those classrooms in this paper.
21 Folger and Breda (1989) and Finn and Achilles (1990) were the first two published studies. Word et al.

(1990) was the official report from the Tennessee State Department of Education. Mosteller (1995) provided
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either univariate test score measures or on an average of math, reading and word recogni-

tion scores. Univariate analysis ignores important information about the relationship the

mathematics and reading test scores might have with each other. Analysis on the the aver-

age of scores better accommodates joint effects but obscures the source of an effect. Using

multiple-output quantile regression I can obtain inferences on the joint relationship between

scores for the entire multivariate distribution (or several specified quantile subpopulations).

My results agree with and strengthen all previous studies.

A student’s outcome was measured using a standardized test called the Stanford Achievement

Test (SAT) for mathematics and reading.22 This paper compared the outcomes of small and

large classrooms on the subset of first grade students resulting in a sample size of n = 6, 379

(after removal of missing data). The results for other grades were similar.23

Define the vector u = (u1, u2), where u1 is the math score dimension and u2 is the reading

score dimension. The u directions have an interpretation of relating how much relative

importance the researcher wants to give to math or reading. Define u⊥ = (u⊥1 , u
⊥
2 ), where

u⊥ is orthogonal to u. The components (u⊥1 , u
⊥
2 ) have no meaningful interpretation. Define

mathi to be the math score of student i and readingi to be the reading score of student i.

a review of the study and Krueger (1999) performed a rigorous econometric analysis focusing on validity.
22The test scores have a finite discrete support ranging from . Computationally, this does not effect the

Bayesian estimates, however prevents asymptotically unique estimators. So I perturb each of the scores with
a uniform(0,1) random variable. I would like to thank Brian Bucks for this idea.

23The data analysis in this paper is used to explain the concepts of Bayesian multiple-output quantile
regression, not to provide rigorous causal econometric inferences In the later case, a thorough discussion of
missing data would be necessary. For the same reason first grade scores were chosen. The first grade subset
was best suited for pedagogy. This experiment has been analyzed by many other researchers.
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The model is

Yui = mathiu1 + readingiu2

Y⊥ui = mathiu
⊥
1 + readingiu

⊥
2

Yui = ατ + βτY
⊥
ui + εi

εi
iid∼ ALD(0, 1, τ)

θτ = (ατ , βτ ) ∼ N(µθτ ,Σθτ ).

Unless otherwise noted, µθτ = 02 and Σθτ = 1000I2, meaning ex-ante knowledge is a weak

belief that the joint distribution of math and reading has spherical Tukey contours.
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Figure 3.5: Various directional vectors for τ = 0.2
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The directional vectors, u, are interpretable in the context of of this example. Figure 3.5

shows several hyperplanes for four different u directions with a fixed τ = 0.2. The lower

contour halfspace for u = ( 1√
2
, 1√

2
) pointing 45◦ to the top right is interested in the halfspace

with the τ ·100% students who performed the worst on the tests giving equal weight to math

and reading. This u direction results in the solid black line and the lower quantile halfspace

are all values that lie below it. Conversely, lower contour halfspace for u = (− 1√
2
,− 1√

2
)

pointing 225◦ to the bottom left is interested in the halfspace with the τ · 100% of students

who performed the best on the tests giving equal weight to math and english. This u

direction results in the dashed green line and the lower quantile halfspace are all values that

lie to the right of it.

The lower contour halfspace for u = (0, 1) pointing 90◦ straight up is only interested in

the worst performing τ · 100% of students for math. This u direction results in the dotted

blue line and the lower quantile halfspace are all values that lie below it. The lower contour

halfspace for u = (−1, 0) pointing 180◦ to the left is only interested in the best performing

τ · 100% of students for reading. This u direction results in the dash-dot red line and the

lower quantile halfspace are all values that lie below it.

Even though u can be interpreted as a weight vector, the slope of the hyperplanes are

governed by the relative probability masses of the data. Note that the first two directions

are 180◦ degrees of each other and their hyper planes are roughly parallel. This is not a

requirement of the model. If it were, one might suspect that two orthogonal directions

would result in orthogonal hyperplanes, but this is not that case. The second two directions

are orthogonal but their hyperplanes are not. How the tilt is determined can better be

understood with fixed-u hyperplanes, presented next.

Figure 3.6 are fixed-u contours for various τ along a fixed u direction. Two directions are

used: u = (1/
√

2, 1/
√

2) (left) and u = (1, 0) (right). The direction vectors are represented

by the orange arrows. The values of τ are {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}.
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Figure 3.6: Left, fixed u = (1/
√

2, 1/
√

2) contours. Right, fixed u = (1, 0) contours.

The hyperplanes to the far left of either graph are for τ = 0.01 and as one travels in the

direction of the arrow, the next hyperplanes are for larger values of τ , ending with τ = 0.99

hyperplanes on the far right.

The left plot shows the hyperplanes initially bend to the left for τ = 0.01, go nearly vertical

for τ = 0.5 and then begin bending to the left again for τ = 0.99. On the other hand the

hyperplanes in the right plot are all parallel (roughly). To visualize why this is happening,

imagine you are traveling along u = (1/
√

2, 1/
√

2) through the Tukey median. Data can be

thought of as a viscous liquid that the hyperplane must travel through. When the hyperplane

hits a dense region of data, that part of the hyperplane is slowed down as it attempts to

travel through it, resulting in the hyperplane tilting towards the region with less dense data.

Since the density of the data changes as one travels through the u = (1/
√

2, 1/
√

2) direction,

the hyperplanes are tilting. However, the density of the data in the u = (1, 0) direction does

not change much, so the tilt of the hyperplanes does not change.
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Figure 3.7: Fixed-τ contours. Left, small classrooms. Middle, large classrooms. Right, small
and large classrooms overlaid.

Figure 3.7 shows the fixed-τ quantile regions for τ = 0.05, 0.20 and 0.40. The data is stratified

into two sets: smaller classrooms (left) and larger classrooms (middle). The quantile regions

are overlaid on the third (right) plot. The innermost contour is the τ = 0.40 region, the

middle contour is the τ = 0.20 region and the outermost contour is the τ = 0.05 region.

Contour regions for larger τ will always be contained in regions of smaller τ . All the points

that lie on the contour have a Tukey depth τ of the given contour. The contours for larger τ

capture the effects for the more extreme students (e.g. students who perform expceptionally

well on math and reading or expceptionally poorly on math but well on reading). The

contours for smaller τ capture the effects for the more central or ‘median’ or ‘average’ student

(e.g. students who do not stand out from their peers). It can be seen that all the contours

shift up and to the right for the smaller classroom. This states that the centrality of reading

and math scores improves for both for smaller classrooms compared to larger classrooms.

Further, this also means all quantile subpopulations of scores improve for students in smaller

classrooms.
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Figure 3.8: Regression tubes (linear). Left, fixed τ = 0.2 regression tube. Right, fixed
τ = 0.05 regression tube.

Up to this point only quantile locations have been estimated. When including covariates the

fixed-τ regions become ‘tubes’ that travel through the the covariate space. Since teachers

were randomly assigned as well, we can treat teacher experience as exogenous. Then we can

estimate the impact of the experience on student outcomes. The new model is

Yui = mathiu1 + readingiu2

Y⊥ui = mathiu
⊥
1 + readingiu

⊥
2

Xi = years of teacher experiencei

Yui = ατ + βτY Y⊥ui + βτXXi + εi

εi
iid∼ ALD(0, 1, τ)

θτ = (ατ , βτ ) ∼ N(µθτ ,Σθτ ).

Figure 3.8 shows the fixed-τ quantile regions with a regressor for experience. The values τ
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takes on are 0.20 (left plot) and 0.05 (right plot). The tubes are sliced at 1, 10 and 20 years of

teaching experience. The left plot shows reading scores increase with teacher experience for

the more ‘central’ students but there does not seem to be a change in mathematics scored.

The right plot shows a similar story for most of the ‘extreme’ students. However, the top

right portion of the slices (students who perform best on mathematics and reading) decreases

with increasing teacher experience. The best students seem to be performing slightly worse

the more experienced a teacher is. A possible story is more experienced teachers try to focus

on the class as a whole and tend to focus on the struggling students instead of the high

achieving students. The downward shift is small and likely not statistically significant.

Previous research has shown strong evidence that the effect of teacher experience on student

achievement is highly non-linear. Specifically the marginal effect of experience tends to be

much larger for teachers that are at the beginning of their career than mid-career or late-

career teachers (Rice, 2010). We can investigate this non-linearity by adding a quadratic

term to the regression equation. The new model is

Yui = mathiu1 + readingiu2

Y⊥ui = mathiu
⊥
1 + readingiu

⊥
2

Xi = years of teacher experiencei

+ years of teacher experience2
i

Yui = ατ + βτyY
⊥
ui + βτxXi + εi

εi
iid∼ ALD(0, 1, τ)

θτ = (ατ , βτ ) ∼ N(µθτ ,Σθτ ).

The results are shown in Figure 3.9. It is clear there is a larger marginal impact on student
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Figure 3.9: Regression tubes (quadratic). Left, fixed τ = 0.2 regression tube. Right, fixed
τ = 0.05 regression tube.

outcomes going from 1 to 10 years of experience than from 10 to 20 years of experience. This

marginal effect is more pronounced for the more central students (τ = 0.2).

Figure 3.10 shows posterior sensitivity to different prior specifications of the location model

with directional vector u = (0, 1) pointing 90◦ in the reading direction. The priors are

compared against the frequentist estimate (solid black line). The first specification is the

(improper) flat prior (i.e. Lebesgue measure) represented by the solid black line and cannot

be visually differentiated from the frequentist estimate. The rest of the specifications are

proper priors with common mean, µθτ = 02. The dispersed prior has covariance Σθτ = 1000I2

and is represented by the solid black line and cannot be visually differentiated from the

frequentist estimate or the estimate from the flat prior. The next three priors have covariance

matrices Σθτ = diag(1000, σ2) with σ2 = 10−3 (dashed green), σ2 = 10−4 (dotted blue) and

σ2 = 10−5 (dash dotted red). As the prior becomes more informative βτ is converging to
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Figure 3.10: Prior influence ex-post

zero with resulting model ˆreadi = ατ .

3.6 Conclusion

This paper provides a Bayesian framework for estimation and inference of multiple-output

directional quantiles. The resulting posterior is consistent for the parameters of interest,

despite having a misspecified likelihood. By performing inferences as a Bayesian one inherits

many of the strengths of a Bayesian approach. The model is applied to the Tennessee Project

STAR experiment and it concludes that students in a smaller class perform better for every

quantile subpopulation than students in a larger class.
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A possible avenue for future work is to find a structural economic model whose parameters

relate directly to the subgradient conditions. This would give a contextual economic interpre-

tation of the subgradient conditions. Another possibility would be developing a formalized

econometric test for the distribution comparison presented in Figure 3.7. This would be a

test for the ranking of multivariate distributions based off the directional quantile.
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Chapter 4

Strategic Recusals at the United

States Supreme Court

4.1 Introduction

In February 2016 Justice Scalia, the leader of the Supreme Court’s conservative block, unex-

pectedly passed away. This vacancy left the court with four liberal justices, three conservative

justices and one arguably independent justice (Kennedy). This opened conversation on how

outcomes of future cases were going to change without Scalia’s presence. Are there going

to be more tied outcomes? Are decisions going to be more narrow to prevent ties? Will

the threat of a tie pressure justices to switch sides? Are justices going to switch sides with

‘under the table’ agreements? These last three questions are examples of strategic behavior.

This paper investigates strategic behavior in the justice recusal process. A recusal is when

a justice removes himself from a case. A justice is supposed to recuse himself if there is

sufficient conflict of interest between himself and the case they are presiding over. Justices

at the United States Supreme Court have full power to recuse or not recuse themselves. This
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opens the possibility of a justice deciding on a case despite potentially having a conflict of

interest. For example, in the 2011 Affordable Care Act case, Justice Thomas and Justice

Kagan had the media calling for their recusals because both had a legitimate indication of

a conflict of interest, but neither recused. The outcome of the case could have changed if

there was a recusal by either one. I expound on this example later.

The Supreme Court has at most nine justices that hear and decide on a case. The decision of

the court is given by the decision of the majority of the justices. Thus, if even one justice in

the majority has their decision altered by an outside influence, but does not recuse himself,

it might effect the decision of the court (especially if it is a 5-4 vote). However, if the justice

recuses himself and the court ends with a tied 4-4 vote, then the decision of the lower court is

upheld but no precedent is set. This may not have been the decision of the court if there was

no conflict of interest. This creates an incentive for a justice to hear a case even though they

might have a conflict of interest, this can be rationalized under the guise of the “duty-to-sit”

doctrine.1 See the appendix for a more detailed explanation of the Supreme Court process.

In this paper I construct a simple structural model for strategic recusals that accounts for

several possible selection effects. Using this model I provide evidence that justices sometimes

fail to recuse themselves when they have a conflict of interest and they might change their

vote after a recusal. Next, I calibrate the model and investigate how often justices fail to

recuse themselves. I find that roughly 45% to 57% of cases have a justice with a conflict of

interest, and 44% to 47% of cases have a justice who remain on the case despite having a

conflict of interest. Previous research lack a clear identification strategy and has only been

able to provide non-causal evidence for the existence of strategic recusals. No research has

attempted to measure the frequency of cases that have a conflict of interest but no recusal.

1 “Duty to sit” was popularized from a memorandum written by Justice William Rehnquist who refused
to recuse himself from a case that would likely have ended in a split vote. The origin of “duty to sit” is to
prevent judges and justices from recusing themselves to avoid controversial or burdensome cases. However,
it can be abused by a justice to remain on a case where they should have recused (Stempel, 2009).
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4.1.1 Recusal

Justices remove themselves from a case if there is a conflict of interest, this is called a recusal.2

Title 28 section 455 of the United States Code (28 U.S.C. §455) provides guidance on when

a justice, judge or magistrate should disqualify themselves from a proceeding. They should

disqualify themselves when any of the below are true.

• Their impartiality might be reasonably questioned (waivable, to be explained).

• They have a personal bias or prejudice concerning a party or personal knowledge of

disputed evidentiary facts.

• They have involvement in the matter as a material witness, in private practice or as a

government employee.

• They had previous professional association with lawyers in the case.

• They expressed an opinion concerning the merits of the case.

• Anyone in their household has a financial interest related to the case.

• Anyone in their household is within 3 degrees of relationship to individuals involved in

the case.

The first item is waivable, meaning a justice can still hear and decide on the case as long

as there is full disclosure on the record of the basis of disqualification. Justices that recuse

themselves are not required to provide reasons for why they recused themselves. However,

occasionally, they will voluntarily disclose why they recused themselves. Additionally, if a

2 Recusal also occurs in courts below the Supreme Court. Parties can request a recusal. If requested
and the judge refuses to recuse himself then the party can submit an appeal to a higher court. This appeal
can be done while the case is still under review. The higher court then makes a judgment on if recusal is
necessary.
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justice is requested to recuse himself and refuses to, he is not required to provide reasons

why.

Since the Supreme Court has no higher court, each individual justice has full control in

deciding to recuse himself or not. This leads to a conflict of interest in resolving conflicts of

interest. The Affordable Care Act mentioned in the introduction is a good example. Justice

Thomas’s spouse was politically active in groups opposing the law and Justice Kagan was

holding the position of Solicitor General and could have knowledge of the administration’s

litigation strategy.3 Democrats called for recusal of Justice Thomas and Republicans called

for recusal of Justice Kagan. Neither recused themselves.

The Affordable Care Act had an ‘individual mandate’ that required individuals to obtain

minimum health insurance or pay a penalty. The Court needed to determine the constitu-

tionality of the individual mandate. The mandate could have been deemed constitutional

under the Commerce Clause, the Necessary and Proper Clause or under Congress’ taxing

power. A 5-4 majority with Justice Thomas decided that the mandate was not constitutional

under the Commerce Clause or the Necessary and Proper Clause. This affirmed the lower

court’s decision and was a win for Republicans. If he would have recused the decision of the

lower court would have been affirmed, but no precedent would have been set. Thus allowing

the issue to come back to the court. The individual mandate was granted constitutionality

under Congress’s taxing power in a 5-4 vote with Justice Kagan’s vote. This decision re-

versed the lower court’s decision and was a win for Democrats. If Justice Kagan had recused

herself and the Court voted in a 4-4, the Court would have affirmed the lower court and

concluded that the individual mandate was unconstitutional. Sample (2013) defends the

view that it was appropriate for Justices Kagan and Thomas to not recuse themselves in

this case.

3 Solicitor General represents or delegates representation of the federal government before the Supreme
Court.
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Removing a justice who has a conflict of interest seems to be uncontroversial. A justice is

supposed to be impartial. If a justice with a conflict would have changed his legal opinion of

a case due to the conflict then he cannot be impartial and should be removed. However, if the

justice’s opinion is unaffected from a conflict then the conflict has no effect on the outcome

of the case (if the justice does recuse himself). Title 28 U.S.C. §455 does make some effort

to allow for this second situation by allowing a justice to remain on the case “...in which his

impartiality might reasonably be questioned” as long as there is “full disclosure on the record

of the basis for disqualification.” This is rarely done and recusal usually takes place following

the non-waivable portion of 28 U.S.C. §455. If there is no replacement for a justice this could

cause concern. By removing a justice, there is a potential to change the decision the court

would have had even if the conflict would not have effected the justice’s judgement. This

possibility puts pressure on justices to not recuse themselves even when there is a conflict of

interest.

This raises the question if there should be an authority over the Supreme Court to handle

recusal concerns. One potential authority is the United States Congress. Arguments in favor

congressional oversight usually stem from the Necessary and Proper clause of the constitution

authorizing congress to bring the “Supreme Court into being” (Virelli, 2012). This authority

has been used before for congress to determine items such as the Court’s term, size, and

support offices. There have been bills introduced to change the recusal process but they do

not typically get much traction.4 An argument against congressional oversight states that

recusal is a judicial concern and thus the decision belongs to the Court.5

4 In 2009 a house judiciary subcommittee wanted to remove the recusal decision from the justice by
allowing each party one automatic disqualification. There was resistance to this proposal since this would lead
to judge-shopping (Ingram, 2009). In 2011, a bill, H.R. 862, was introduced (but did not pass). The bill would
have made it mandatory for a justice who recuses himself to disclose the reasons for recusal. Additionally,
if a justice denies a request for recusal they must provide why they denied the request. Unsuccessful recusal
requests would be appealed to a committee of current and retired justices. This was controversial because
this could be a violation of the Supreme Court being the highest court. However, there are arguments that
reviewing an individual justices recusal decision is not a review of the Court’s decision, thus maintaining the
Supreme Court as the highest court (Wheeler, 2014).

5 These debates for or against oversight usually resort to some argument based on judicial ethics. Instead,
III (2011) uses constitutionality to argue against oversight.
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4.1.2 Strategic behavior

In this section I explore some possible avenues of strategic behavior (not limited to recusals).

By strategic behavior, I mean that a justice will follow the rules and professional norms

except in circumstances where it is personally suboptimal. For example, strategic behavior

could be not recusing oneself in order to influence a case despite having a conflict of interest.

Another example would be agreeing with the minority but voting with the majority in order

to influence the written opinion.

There has been previous research into justices behaving strategically. Supreme Court Justices

are appointed for life or until retirement. Over their tenure they get to know each other well.

This added experience allows them to be able to predict how other justices will vote. A

justice might be able to anticipate when a case may end in a precarious 5-4 vote or a

more coherent 9-0 vote. They may also be able to anticipate if the Court will affirm or

reverse a case (Arrington and Brenner, 2004). Thus a majority justice anticipating 5-4

split might be hesitant to recuse himself since he would be the deciding justice. Black and

Epstein (2005) and Hume (2014) perform analyses exploring this ‘strategic recusal’ behavior.6

They find non-causal evidence for strategic recusals. Black and Epstein (2005) explores the

differences in the number of recusals among different justices and natural courts. They find

that there is substantial variation in recusals. Hume (2014) performs a logit regression of

recusal against sets of variables for statutory, policy and institutional concerns. He finds

considerable variation in the number of recusals for different types of cases, tenure of a

justice and political leaning of a justice. My paper addresses the same question, but using a

structural model.

Black and Epstein (2005) and Hume (2014) also found there was a suspiciously low number

of cases that had a recusal and ended in a tie. In other words, if there was a recusal, a

6 By strategic recusal, I mean not always recusing one’s self when one should.
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Figure 4.1: 3-5 vote diagram

case was very unlikely to end in a tied 4-4 or 3-3 vote. This could be explained by strategic

justice behavior. For example a justice might fail to recuse himself if he anticipates the

resulting vote ending in a tie. Alternatively, if a vote is anticipated to end in a tie then the

two parties may try to persuade a member of the other party to join their side. A justice

might be persuaded by either changing his legal opinion on the case or striking a tit-for-tat

deal, voting against his legal opinion. The new member in this (new) majority party will

have power to influence the written opinion of the court. If the justice changed his vote to

strike a tit-for-tat deal then 3-5 and 5-3 votes might have justices voting against their legal

opinion. Thus it is difficult to determine what this vote would have been without recusal

or persuasion. For the moment consider no persuasion in a tie, see Figure 4.1. This figure

shows how a 3-5 outcome can originate from a 4-5 or 6-3 (without persuasion). There are

nine justices (labeled 1,2,3,4,5,6,7,8 and 9) that can vote to affirm or reverse (blue or pink).

Justice 4 has a conflict of interest and removes himself from the case, the outcome is a 3-5

vote.

Now consider a variation on a narrative presented in Black and Epstein (2005), suppose that
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Figure 4.2: 3-5 vote diagram with switching

justices might try to persuade each other to change their vote to prevent a tie. Figure 4.2

depicts this scenario. A vote that ended in a 3-5 could have originated from a 5-4, 4-5, or 6-3.

If a vote was going to end in a tie and successful persuasion ensued convincing the marginal

(or undecided) justice to join the (new) majority, then the vote could have originated from

a 5-4 or a 4-5. Therefore a potential 4-5 vote could result in persuasion or no persuasion

depending on who has the conflict of interest. If there was a recusal but no tie, the outcome

could have originated from a 4-5 or a 3-6. If a justice did not participate and the observed

outcome was a 3-5 then it is hard to tell if the vote was subject to persuasion or not. The

story for 5-3 votes is analogous.

If a 3-5 vote was subject to persuasion then I would anticipate it to have a long deliberation

reflecting the persuasion process. Deliberation is defined as the number of days between the

last oral argument and issuing of the opinion of the court. This duration includes writing of

the opinion plus any possible persuasion. Thus a case with no persuasion could still have a
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long deliberation if the writing of the opinion takes a long time. Table 4.1 shows the median

deliberation for different splits. With one recusal, the shortest deliberation is the 4-4 tie

with 29.5 days and the second shortest are the coherent 8-0 and 0-8 votes with 62 days. The

longest deliberation with a recusal are the 3-5 and 5-3 votes with 91 days. This provides

evidence that 3-5 and 5-3 outcomes were supposed to be 4-4 but were subject to persuasion.

The 4-4 vote had the shortest deliberation. This could be due to there being no marginal

or undecided justices. The 8-0 and 0-8 votes were second shortest which is likely due to

there being no justices in minority to persuade. When all justices participate the longest

deliberation is for 4-5 and 5-4 votes with 94 days. As with 4-4, this could be explained by

two four-person parties trying to convince the last justice to join their party.

Maj/Min Split (1 recusal) 0 2 4 6 8
Median Deliberation (days) 29.5 91 83.5 84 62
Maj/Min Split (0 recusals) 1 3 5 7 9

Median Deliberation (days) 94 85 83 69 63

Table 4.1: Median deliberation by split

Spriggs et al. (1999) investigates more general contentions in forming a majority on a case.

Once the opinion is written it needs a signature of a majority of justices before it becomes

the official opinion of the court. Thus the opinion can go through several revisions before it

obtains the necessary number of signatures. They find that a given justice in the majority

will sign onto the first draft of the opinion 80% of the time. In the other 20% of cases there is

some delay in a justice’s signing. In 58% of cases there is some form of bargaining that could

delay the signing of an opinion. Additionally, a justice’s decision to influence the opinion

of the majority is not based entirely off ideological distance from the writer, factors such as

size of coalition and previous interactions with the author of the opinion play a role as well.

There are other kinds of strategic behaviors at the Supreme Court. Since justices vote in

descending order of seniority, junior justices could be influenced by senior justices. This

invites a possibility for junior justices to change their opinion and switch their vote to side
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with senior justices after seeing their vote and hearing their reasoning. However, it is difficult

to determine if a justice switched their vote with the intent of siding with senior justices or

because they were persuaded by the arguments made by the senior justices. Arrington and

Brenner (2004) find that switching does not occur often. Since justices provide reasoning for

their decision during the voting process, if a justice is unsure on his decision he can ‘pass’

and vote at the end, after hearing the others opinions. This feature of the voting process can

be abused by passing with the intention to vote with the majority. By being in the majority

the justice can then influence the opinion of the court. Johnson et al. (2005) find that

Chief Justice Burger, Chief Justice Rehnquist, Justice Douglas, and Justice Brennan used

their ability to pass in order to vote with the majority and influence the opinion. However,

Arrington and Brenner (2004) conclude it is rare. Even though all justices in the majority

contribute to the opinion, it is written by one justice. The writing of the opinion is assigned

by the senior justice in the majority. The senior justice in the majority may strategically

assign the opinion to the justice most closely aligned in ideology with himself. Wahlbeck

(2006) finds evidence of this in the Rehnquist court from terms 1986 to 1993.

The take away from this section is that there are many ways justices could be behaving

strategically and there is evidence to support it. Thus there it is suspect that justices

behave strategically with respect to the recusal process as well.
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4.2 Data

The majority of the data used in this analysis comes from the Supreme Court Database7

and the rest is from the U.S. Supreme Court Justices Database.8

The model presented in section 3 requires vote-level data for two variables to show that

justices recuse themselves strategically. The first variable is an indicator for when a justice

recuses himself and the second is the total number of votes affirming for a given case. The

Supreme Court Database only records when a justice did not vote, it does not record why

the justice did not vote. Usually a justice misses a vote due to sickness, recusal, or being

appointed to or leaving the court midterm. Following Black and Epstein (2005) and Hume

(2014) I classify a missing vote as sick when a justice misses all oral arguments for at least 4

cases for 2 or more consecutive days of oral argument. Appointment and withdrawal dates

are available in the U.S. Supreme Court Justices Database. All votes missed that were not

due to sickness, midterm appointment, or midterm withdrawal were labeled as recusals.9

4.2.1 Data exploration

On a given case presented to the Supreme Court there may be multiple issues that have

to be voted on. These are called ‘case issues,’ but I will simply call them ‘cases’ for ease

of reading. The justice level vote data on cases dates back to 1946. Since then there been

7 The database contains vote level data on Supreme Court case issues dating back to 1946 and is updated
annually. It is free and publicly available at http://supremecourtdatabase.org. A Supreme Court case may
contain multiple issues that need to be voted on separately, these are called case issues. The analysis done
in this paper is done with respect to votes on given case issues. For ease of readability I will referred to them
just as cases instead of case issues.

8 The database contains demographic, biographical, and professional data on Supreme Court Justices.
The data is free and publically available at http://epstein.wustl.edu/research/justicesdata.html.

9 This method of classifying missing votes does not classify recusals with perfect accuracy. For example,
if a justice were to recuse himself from all cases totaling 4 or more over 2 or more consecutive days of oral
arguments, then those missing votes would be classified as sickness and not recusal. Alternatively, if a justice
misses 2 votes from one day of oral arguments from being sick and votes on cases from immediately previous
and future arguments then those votes will be labeled as recusals and not sickness.
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12,907 different cases with a total of 113,401 votes. Of those 3,323 instances where a justice

did not vote and 2,010 were due to recusal. Of the recusals 1,680 cases had 1 justice recuse

himself, 302 cases had 2 justices recuse themselves, 27 cases had 3 justices recuse themselves

and 1 case had 4 justices recuse themselves. There were no cases with more than 4 justices

recusing themselves.

If a case had a recusal and resulted in a tie, the recusal made a difference in the outcome.10

There have been total 12,907 cases, and 97 had ended in a tie vote (0.75%). Thus the decision

of the lower court in those cases was upheld, no opinion was written and no precedence was

established. Of the 97 ties, 71 cases had at least one recusal. If there were multiple recusals

in a case then the decisive outcome of a case have flipped (e.g. a 5-4 turning into a 3-4 after

recusal). There 53 case issues with this potential outcome. Thus, if there was no strategic

behavior, a total of 124 cases could have had a different outcome if justices did not recuse

themselves.11

Recusal rates among justices is highly heterogeneous. Some will recuse themselves quite

often and some very rarely. See Figure 4.3 for a comparison of recusals by justice. The

x-axis of both plots is the first (and second) initial followed by the last name of a justice.

The top bar plot shows the total number of recusals a justice makes over their entire tenure

at the court. The justices with the most recusals are Thurgood Marshall (328 recusals),

William O. Douglass (260 recusals), and Lewis Powell (250 recusals) and the justices with the

least number of recusals are Ruth Bader Ginsburg (2 recusals), Earl Warren (5 recusals)and

Charles Evans Whittaker (5 recusals).12 The bottom bar plot shows the percentage of recused

10 If the court would have voted to reverse the lower court, the recusal clearly made a difference. If the
court would have voted to affirm the lower court then the vote would not have made a difference but the
opinion could have changed policy outcomes.

11124 = ties + flips.
12 Some recusals are more procedural than others. For example, if a justice served as Solictor General or

as a judge on a lower court before being appointed to the supreme court, they will recuse themselves for
any cases they were apart of on their previous appointment. Thus it is quite common for justices to have a
large number of recusals early in their tenure at the Court. For example, Justice Thurgood Marshal served
as Solicitor General prior to his Supreme Court appointment. Over his 23 year tenure at the Supreme Court
he had 328 recusals. However, 152 recusals were during his first year (46% of his total). In his first 3 years
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votes over the total number of votes a justice made. The justices with the largest percentage

of recusals are Elena Kagan (11.4%), Abe Fortas (10.4%) and Robert H Jackson (9.8%) and

the justices with the smallest percentage of recusals are Ruth Bader Ginsburg (0.08%), Earl

Warren (0.15%), and Potter Stewart (0.20%). William J. Brennan had 8,041 total votes and

no recusals over his entire career.
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Figure 4.3: Top, number of recused votes over tenure per justice. Bottom, percentage of
recused votes per justice.

There is also much heterogeneity in the number of recusals over time. See Figure 4.4 for

a comparison of recusals by court term. The solid black line shows number of votes that

were recused during the given term and the gray dotted line shows the percentage of votes

he had 217 recusals (66% of total). For the last 20 years of his tenure he had 111 recusals, which was 34%
of his total.
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that were recused during a given term. It can be seen that recusals were more common

before 1988. This is because the Court heard more cases (annually) before 1988 than after.13

Another observation is the total number recused and percentage recused move proportionally

to each other. If the percent of cases with a conflict of interest was constant, then the

percentage of recusals should be flat.14 This percentage could be changing due to changes

in the type of cases the court hears, which justices are on the court, or the philosophy on

recusals (e.g. not granting cert to cases where there might be recusals).
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Figure 4.4: Recused votes per term

4.3 Recusal decision model

In this section I develop the model used to investigate the existence of strategic recusals.

My strategy is to show that the difference between votes to affirm and votes to reverse

is independent of recusal if justices always recuse themselves when they have a conflict of

13 From 1946 to 1988 the court heard between 150-300 cases a year. Starting in 1988 till mid 2000’s the
court tended to hear less cases each year and eventually settled on hearing about 100 cases a year, which
continues till 2014.

14 This can formally be tested. The hypothesis is H0 : #recusals
#votes = c for some constant c. This can be

performed by regressing log(number recused votest) = β0 + β1log(number total votest) and testing for
significance of H0 : β1 = 1 vs H0 : β1 6= 1. Which is strongly rejected (p-value = 3.12× 10−3).
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interest. I then show that independence does not hold and argue that it is due to justices

recusing themselves strategically. I then provide robustness checks. Proofs and some lemmas

are in the appendix.

I assume that justices have a definite opinion on a case and they have no uncertainty in

their own opinion.15 Thus for a fixed justice I assume a justice knows his own vote but other

justices’ votes are random from his perspective and all votes are random to the researcher.

For a given case, let X be the number of votes affirming and let Y be number of votes

reversing. X and Y are random to the researcher. For now assume all 9 justices vote.

Notice that the decision of the court is determined by X − Y . Where X − Y ≥ 0 means the

court affirms and X − Y < 0 means the court reverses. Also note that Y = 9 −X implies

X − Y = 2X − 9. Thus the decision of the court is uniquely identified by knowing X.

Let ci be an indicator for when justice i has a conflict of interest.16 Let CX be the number

of justices with a conflict of interest affirming and let CY be the number of justices with

a conflict of interest reversing. The support of CX is {0, 1, ..., X}, likewise the support for

CY is {0, 1, ..., 9−X} and the support for total conflicts of interest, CX + CY =
∑9

i=1 ci, is

{0, 1, ..., 9}. The first assumption states that in a given case each justice has some random

probability of having a conflict of interest (allowing for heterogeneity across justices and

cases).

Assumption 4.1. Suppose X
iid∼ Multinomial(1, q) where q = (q0, q1, ..., q9) and ci|pi

⊥∼

Bernoulli(pi) for i ∈ {1, 2, ..., 9} where pi
⊥∼ Fpi, and E[pi] = µpi for i ∈ {1, 2, ..., 9}. Where

Fpi is some unknown CDF.

This assumption is fairly general and I would not anticipate it generating much controversy.

Assumption 4.1 will need to be restricted for a lemma required later on. Assumption 1.1b

15 If this assumption is violated then effects of justices changing their opinion and justices voting against
their opinion are confounded.

16 It is not necessary to define what exactly a conflict of interest is, but it is fine to define it according to
28 U.S.C. §455 for the context of this paper.
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is this restriction. It says that each justice has a random probability of conflict of interest

and common mean probability, µp.

Assumption 1.1b. µpi = µpj = µp for i, j ∈ {1, 2, ..., 9}

Assumption 1.1b does not allow for heterogeneity in mean of the probability of conflict of

interest over justices. I will defer further discussion of Assumption 1.1b till later. I can now

present the main theorem.

Theorem 4.1. Suppose Assumption 4.1 holds then CX + CY ⊥ X. Thus CX + CY |X ∼

CX + CY . This result still holds for Assumption 1b as well.

This theorem is of interest because it gives a testable implication, CX+CY ⊥ X (to be tested

using a χ2 test of independence). However, CX + CY might not be observed. Additionally,

if there is a recusal then X might not be observed because X − Y is not observed due to

X and Y counting the votes for when all justices vote. The next assumption is assumed for

the sake of contradiction and allows us to observe CX + CY .

Assumption 4.2. If a justice has a conflict of interest he will recuse himself.

Under Assumption 4.2, CX+CY is observed where the number of conflicts of interest is equal

to the number of recusals (which is observed). Define X? = X − CX and Y ? = Y − CY to

be the observed votes under Assumption 4.2. Thus X = X? +CX is potentially unobserved

under Assumption 4.2. This is problematic for testing Theorem 4.1 since I need to observe

X when CX + CY = 0 and CX + CY = 1 (it is sufficient to consider only these cases and

ignore CX + CY > 1). Given CX + CY = 1, X could take on two different values (X = X?

or X = X? + 1). Using this, I can impute X when CX + CY = 1. Given the observed

X?, I can count each potential vote (i.e. X? and X? + 1) as an observation and weigh them

appropriately (i.e. count w0∗X? and w1∗(X?+1) with weights w0 and w1). The weights can

be equated to the probability for each potential vote. That is w0 = Pr(CX = 0|CX+CY = 1)
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and w1 = Pr(CX = 1|CX + CY = 1). The next lemma provides a distribution used to

calculate the weights.17

Lemma 4.1. Suppose Assumptions 4.1, 1.1b and 4.2 hold then Pr(CX = 0|X,CX + CY =

1) = 1− X
9

and Pr(CX = 1|X,CX + CY = 1) = X
9

.

Since X is not observed we take its expectation, E[X|X?]. Conditioning on X? is just a

truncation. The support of X|X? becomes {X?, X? + 1}.

Lemma 4.2. Suppose Assumptions 4.1, 1.1b and 4.2 hold, CX + CY = 1 then E[X|X?] =

X? +
qX?+1

qX?+qX?+1
.

Thus the weights are w0 = 1 −
X?+

qX?+1
qX?+qX?+1

9
and w1 =

X?+
qX?+1

qX?+qX?+1

9
. The parameters qX?

and qX?+1 can be replaced with their sample estimates.18

Lemmas 4.1 and 4.2 used Assumptions 4.1 and 1.1b which restricted the mean probability

of conflict of interest to be homogeneous over justices. This implies that for a given case

each justice will have the same average probability of having a conflict of interest. It’s clear

from Figure 4.3 that justices recuse themselves at different rates. However, the key word is

average, the ‘realized’ probabilities are free to vary among justices. Assumption 1b is used

to simplify the distribution of CX |CX +CY which was used to calculate the weights w0 and

w1. Without it the weights would have to be calculated on observation-by-observation basis

and would likely not change the resulting aggregate counts much.

Using Lemma 4.2 the weighted votes can be imputed and the contingency table is presented

in Table 4.2. The columns are the number of justices who voted to affirm, this ranges from

17 Notice that this lemma requires Assumption 1.1b, the strengthened version on Assumption 4.1. Without
Assumption 1.1b, I would have to impose restrictions on the distribution of probabilities of conflict for
individual justices, Fpi . Additionally, the resulting distribution of CX |X,CX+CY would be very complicated.

18The maximum likelihood estimate is just the sample proportion for each X value for the cases where all
9 justices vote. The estimate is q̂ = (0.241, 0.070, 0.091, 0.109, 0.114, 0.103, 0.073, 0.051, 0.039, 0.110). There
could be some contamination from strategic behaviors but the resulting inferences are robust to the choice
of weight. The weights w0 = 1− X?

8 and w1 = X?

8 result in the same inferences.
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0 to 9. The ‘Recusal’ row is the number of votes to affirm when there was a recusal. Notice

that there were no outcomes with 9 votes to affirm, this is since only 8 justices participated.

The ‘Recusal Imputed’ row is the (rounded) imputed counts from the row above it (e.g.

there was an imputed count of 129 outcomes for when there was 3 votes to affirm with a

recusal, 129 = round
((

1− 3+ 0.114
0.109+0.114

9

)
144 +

(
2+ 0.109

0.091+0.109

9

)
147
)

). The ‘No Recusal’ row

are the counts to affirm when all 9 justices participated.

0 1 2 3 4 5 6 7 8 9
Recusal 344 150 147 144 67 80 98 90 194 0

Recusal Imputed 335 132 132 129 90 65 76 85 80 188
No Recusal 2158 623 817 974 1024 919 657 454 348 990

Table 4.2: Contingency table of votes
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Figure 4.5: Distribution of affirmations stratified by recusal
(with imputation)

The bottom two rows are used

to test Theorem 4.1 (using a

χ2 test of independence H0 :

CX + CY ⊥ X vs Ha : CX +

CY 6⊥ X). The resulting

test rejects the null hypothe-

sis (p < 2.2 × 10−16) and con-

cludes CX + CY 6⊥ X. Re-

jection of the null hypothesis

is unsurprising. By inspecting

barplots of the relative frequencies (see Figure 4.5 using imputing and Figure 4.6 not using

imputing), it is clear that they are not independent. If they were independent, each pair

of bars would be approximately the same height. Thus, either (1) Theorem 4.1 does not

hold and thus Assumption 4.1 is violated or (2) the test did not test Theorem 4.1.19 These

concerns can be addressed with robustness checks (presented below). I first address (2) then

19 By (2) I mean H0 : CX +CY ⊥ X vs Ha : CX +CY 6⊥ X was not tested because what really was tested
was H0 : 9 −X? + Y ? ⊥ Ximputed vs Ha : 9 −X? + Y ? 6⊥ Ximputed. If 9 −X? + Y ? 6⊥ Ximputed does not
imply CX + CY 6⊥ X, then Theorem 4.1 was not tested.
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(1). The results from the robustness checks are organized in Table (4.3).
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Figure 4.6: Distribution of affirmations stratified by recusal
(without imputation)

If (2), the χ2 test did not

test Theorem 4.1, there could

be several reasons for this.20

Consider a fixed case i, the

realized vote could change

for different counterfactuals of

conflicts of interest. Mathe-

matically, (X = xi|CX +CY =

c1) 6= (X = xi|CX + CY = c2)

where c1 6= c2, meaning that

the number of (possibly unobserved) votes to affirm changes with the counterfactual number

of conflicts. Alternatively the population of cases is heterogeneous with respect to conflicts

of interest, Pr(X|CX + CY = c1) 6= Pr(X|CX + CY = c2) where c1 6= c2.

There is a dynamic aspect to the recusal and voting process, they do not occur at the same

time. This leads to the possibility that for a given case, X can change with the counterfactual

number of conflicts (I am thinking 0 to 1 conflicts). This model is implicitly assuming that

for any given case the number of votes affirming, X, is fixed whether it is observed or not.

However, this can be a controversial assumption. A simple counterexample is to suppose

there was a recusal and the vote ended in a 3-5 due to persuasion. The persuasion process

changed the outcome (which would have been 4-4), this was directly due to the recusal (and

20This could be the case if Assumption 4.2 was violated. Then the number of recusals would not equal
number of conflicts of interest. This is the argument I am making, but this is not the only reason why the
test may have rejected the null hypothesis.

One of the simpler alternative explanations could be the algorithm to determine recusals was incorrect.
Any misclassification of the algorithm would be random enough that it would not affect the test. For example,
it would affect the test if misclassification was not independent of votes to affirm, but this is ridiculous.

The second simpler explanation is a greater concern. The imputing of the vote did not capture the
distribution of the true (unobserved) X. The imputation could have been incorrect by using the wrong
weights. I re-ran the test using a grid of weights, w1 ∈ {0, 0.1, 0.2, ..., 1.0} and w2 = 1 − w1, the test
overwhelmingly rejected each time. However, there are numerous other potential weighing schemes.
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hence the conflict of interest). This counterexample would mean that votes imputed for X =

3 or 5 when there was a recusal did not reflect the ‘true’ votes. The first counterexample can

be avoided by combining the values of X for 3,4,5 and 6 into one category and rerunning the

test, which results in a p-value less than 2.2×10−16 rejecting the null hypothesis. The problem

with combining X = 3, 4, 5, 6 to avoid the first counterexample is these are the situations

when a justice would be more likely to fail to recuse himself despite having a conflict of

interest. This is because his vote is more likely to make a difference in the outcome in these

instances. Thus this specification can be thought of as a conservative conclusion. However,

by not combining these values the test is effectively testing for strategic recusal or vote

switching.

Another counterexample is if X was going to be 1 or 8, leaving 1 justice in the minority, then

that justice might switch his vote to align with the majority and show solidarity with the

court (Epstein et al., 2013).21 This counterexample would mean that 0 or 8 votes to affirm

with a recusal and 9 votes to affirm without a recusal might not reflect the ‘true’ votes.

The second counterexample can be avoided by combining X = 0,1 and 8, 9 and rerunning

the test, resulting in a p-value less than 2.2 × 10−16 . This test can be interpreted as a

test for strategic recusal or vote switching controlling for solidarity. By combining 0,1 and

3,4,5,6 and 8,9 both counterexamples can be avoided and the resulting p-value is less than

2.2× 10−16, rejecting the null hypothesis.

If (1) then Assumption 4.1 is violated and either the either conflicts of interest are not

independent between justices, the distribution of the probabilities of conflict is causally

related to X or the votes are not independently and identically distributed. Depending

on the mechanism of dependence, lack of independence of conflicts between justices would

not necessarily invalidate Theorem 4.1. For example, if two justices have large investment

portfolios that are very similar then they would have correlated conflicts of interest but this

21 Notice that this is unrelated with recusals or conflicts of interest. It is a measurement error that would
affect the vote whether or not there was a recusal.
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would not necessarily cause CX +CY 6⊥ X. The other option is for pi = pi(X) meaning that

the probability of a conflict of interest is (partially) determined by the number of justices

who vote to affirm. While there might be a possibility of a spurious correlation between pi

and X, I am unsure why there might be a causal connection.

If (1) is true due to the distribution of votes not being independent and identically distributed

this test might not be testing Theorem 4.1 is due to a heterogeneity in the population.

Specifically, the distribution of the votes to affirm for cases without a conflict of interest

is inherently different than those cases with a conflict of interest. Three potential (non-

exhaustive) sources of this heterogeneity are the composition of the court, term of the court,

and the issue a case pertains to. Term and issue can be separately controlled for, however

there is not enough data to effectively control for composition of the court.22 The analysis

used cases dating back to 1946, but looking at Figure 4.4 it appears there were much less

recusals after 1988. While the reason for this is unclear, there was some sort of structural

change in the Court causing a reduction in recusals.23 To focus on the more modern court I

can restrict the counts to cases after 1988. The resulting p-value is 8.47 × 10−4. See Table

4.3 for p-values with restrictions on the support of X as well.

In addition to time, another source of heterogeneity is the type of issue a case is addressing.

There are 14 categories of issues that a case could pertain to. I will restrict myself to ones

that have counts of 1,000 or more cases. This leaves five categories, 1 Criminal Procedure,

2 Civil Rights, 3 First Amendment, 4 Economic Activity, and 5 Judicial Power. Restricting

myself to each one of these categories the resulting p-values can be seen in Table 4.3. The

columns represent the category that the counts are restricted to. The rows represent if there

22 The court rarely goes longer than a couple years without there being a change in the justices that
comprise the court. There is one uninterrupted 11 year frame where there was no change, this was from
terms 1994 to 2004. By restricting the counts to this frame I would wish to test the hypothesis controlling
for changes in the composition of the court. However the resulting contingency tables do not satisfy the
finite sample conditions.

23 One possible explanation is the Court became less willing to grant cert to cases where there was a
conflict of interest. Another explanation is that justices became less likely to recuse themselves when they
had a conflict of interest.

86



was any support restrictions. The value in each cell is the p-value from the χ2 test. A cell

has a ‘·’ if a finite sample condition was violated and the test was not performed.24 An

interesting (and somewhat ironic) result was that category 5, Judicial Power, has the largest

p-values showing the least evidence for strategic recusals.

Count Restriction
Support Restriction None Post 1988 1 2 3 4 5

None < 2.20e-16 8.47e-4 6.25e-6 2.10e-4 2.35e-5 7.05e-7 0.364
3,4,5,6 combined < 2.20e-16 3.91e-4 2.91e-6 2.22e-5 · 1.64e-7 0.549

0,1 and 8,9 combined < 2.20e-16 4.51e-3 1.08e-6 6.28e-4 8.19e-5 7.15e-4 0.353
Both Restrictions < 2.20e-16 2.01e-3 3.24e-7 5.27e-5 2.30e-5 2.24e-4 0.574

Table 4.3: P-values with robustness checks

The conclusions from these individual tests cannot be held simultaneously without a cor-

rection. This is because when performing multiple hypothesis tests the type 1 error rate

increases with the number of tests. A correction for this is the Bonferroni correction, which

is a conservative correction.25 If a researcher wishes to test at a certain alpha level, the

correction rejects if the alpha level divided by the number of tests is less than the p-value.

Since 27 tests were performed, the p-value is checked against the alpha level divided by 27

(e.g. an alpha level of .05 should adjust to .05/27 = 1.85e-3 and .01 to .01/27 = 3.70e-4).

Thus most tests reject at the .05 or .01 levels (with correction) and due to the conservative

nature of the correction, it is likely that all tests reject (except for type 5 cases).

24 The condition for a 2× 2 table is all expected counts are greater than 10. For tables larger than 2× 2,
80% of the expected counts must be greater than 5 and all must be greater than 1. If the condition was
violated then the test was not performed. The Yate’s correction was not used.

25 In this situation it is very conservative. The Bonferroni correction provides accurate type 1 errors when
the tests are independent, meaning that the result of one test provides no information about the result
of another test. The correction provides conservative type 1 errors when there is some dependence in the
tests (which is the case here). There is shared observations between the tests performed, so there is some
dependence.
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4.3.1 Simulation study

In the previous section I showed justices might be recusing themselves strategically. This

invites the question, “how often are justices not recusing themselves when they should?”

This is not an easy question to answer since it requires observing two unobservables; the

probability of conflict of interest (denoted φ1) and probability of recusal given conflict of

interest (denoted φ2). I obtain an approximate solution by simulation of a calibrated model.

This model considers only one mechanism (strategic recusals) to generate predictions. As

discussed in the previous section, this might not be the only mechanism generating the

observed results. Thus conclusions drawn from the simulation should only be considered

rough estimates.

Define R ≡ 9− (X? +Y ?) to be the number of recusals. In the last section I showed R 6⊥ X.

This is equivalent to X|R = r 6∼ X. Using Kullback-Leibler divergence I can measure ‘how

violated’ the independence condition (i.e. R ⊥ X) is by looking at how ‘different’ X|R = r

and X are.26 I’ll only focus on the case with no recusals, r = 0, for reasons that will be

clear later. The difficulty from comparing X|R = r with X is the unconditional X is not

observed (even when r = 0 we observe X|R = 0). I derive conditions where X|R = 1 can be

used as a proxy for X. I then simulate strategic recusals by generating a random variable

W with structural parameters φ1 and φ2 to mimic X|R = 0. I keep the values of φ1 and φ2

that generate the same Kullback-Leibler divergence of W from X|R = 1 equivalent to the

divergence of X from X|R (Usine X|r = 0 and Z|r = 1).

The Kullback-Leibler divergence is a function used to measure how different two distributions

are. Its foundations are in information theory and it is a common measure used in the study

26 There are many ways other than Kullback-Leibler divergence to quantify how dissimilar two random
variables are (e.g. Hellinger Distance, Total Variation Distance, etc.). I choose Kullback-Leibler because it
measures the amount of information lost when random variable B approximates random variable A. Loosely,
it measures the ‘distance’ between A and B in terms of A. This lets A be act as a reference distribution, in
this case A is the marginal X and B is X|R.
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of misspecified models (?). Define A and B to be discrete random variables where A is

dominated by B.27 The Kullback-Leibler divergence of B from A is

KL(A;B) =
∑
a

Pr(A = a)log

(
Pr(A = a)

Pr(B = a)

)

Note that the Kullback-Leibler divergence is non-symmetric and non-negative. If two random

variables have the same distribution almost everywhere, their Kullback-Leibler divergence

will be 0. The larger the Kullback-Leibler divergence is, the ‘further apart’ the two distri-

butions are. Also note that KL(A;B) = KL(A;C) does not necessarily imply B ∼ C, this

is a desirable feature that I will elaborate on later.

Define the estimated Kullback-Leibler divergence to be K̂L(A;B), where Pr(·) is replaced

with its relative frequency counterpart P̂ r(·). It is clear that if A and B are discrete and A

is dominated by B then K̂L(A;B) is strongly consistent for KL(A;B).

As previously mentioned, the distribution of X is never directly observed, we only observe

X|R = r. Even when there are no recusals, X|R = 0 is observed but the marginal X is

not (remember X|R 6∼ X). How can I measure the Kullback-Leibler divergence of X|R = 0

from X when X is unobserved? The next two assumptions are used to find an observable

random variable with the same distribution as X.

Assumption 4.3. If a justice recuses himself, then there was a conflict of interest.

This assumption is to prevent the situation where a justice recuses himself for things other

than a conflict of interest (e.g. to avoid controversial cases). This assumption is the con-

verse of Assumption 4.2 and is not very controversial for the Supreme Court.28 The next

27 Meaning Pr(B = a) = 0 implies Pr(A = a) = 0.
28 This assumption would be more controversial at lower courts. A major reason why a judge might recuse

himself despite not having a conflict of interest is because the case is controversial (Stempel, 2009). If the
case is controversial then the judge would get media attention and this attention might hurt his chances of
getting reappointed or reelected after his term is up. The idea of ‘duty to sit’ is to prevent this. However,
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assumption is necessary for the proof of the main theorem in this section. This assumption

states that there is no more than one conflict of interest.

Assumption 4.4. CX + CY ∈ {0, 1}

This assumption is very restrictive. It is clear Assumptions 4.3 and 4.4 cannot both hold

when there are 2 or more recusals in a case (which occurs in about 16% of cases where

there is recusal). This appears to be damning, but it can be avoided by using data after

1988 where there was rarely more than 1 recusal in any given case (a robustness check used

later).29 Note, it is possible that there was no change in the number of conflicts but there

were less recusals. If this is correct, then inferences may be incorrect. Now I present the

main theorem for this section.

Theorem 4.2. Suppose assumptions 4.1, 4.3 and 4.4 hold. If X? +Y ? = 8 then X|R = 1 ∼

X.

Thus I can measure the Kullback-Leibler divergence of X|R = 0 from X using the estimated

Kullback-Leibler divergence of X|R = 0 from X|R = 1. Since X|R = 1 is unobserved, I

replace it with its imputed version (from the previous section). The estimated Kullback-

Leibler divergence of X|R = 0 from X imputed|R = 1 is 0.049.

Now that I can observe the proxy distribution for X, I can generate W using structural

parameters, φ1 and φ2, such that KL(X;W ) ≈ KL(X;X|R = 0) = KL(X imputed|R =

1;X|R = 0). Note that KL(X;W ) = KL(X;X|R = 0) does not necessarily imply W ∼

X|R = 0. This feature is desirable since I am modeling only one potential mechanism and

there are additional possible reasons why X 6∼ X|R = 0. One last assumption needs to

be made before simulation. In this model, if a justice were to fail to recuse himself for all

Supreme Court Justices are appointed for life and no amount of negative media attention would hurt his
tenure at the court (unless it was a controversy that could lead to impeachment).

29 From 1988 to 2014 there were only 8 cases with more than 1 recusal.
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possible X, it would look like he is randomly recusing himself and not being ‘strategic’ about

his recusals.

Assumption 4.5. If R = 0 and CX + CY = 1 then X ∈ {2, 3, 4, 5, 6, 7}

This assumption can be thought of as a foresight assumption. It says that a justice may

fail to recuse himself properly if there might be some contention in the court (and hence his

vote might make a difference in the outcome). If the court is going to be fairly unanimous

in its decision (X ∈ {0, 1, 8, 9}), then the justice does not have much incentive to fail to

recuse himself since it would not make a difference. Since recusal is typically done before

arguments, the justice may have some idea how the others may vote, but does not have

perfect foresight. Hence, why the values of 2,3,4,5,6 and 7 were chosen instead of just 4 and

5.

Define φ1 ≡ Pr(CX + CY = 1) and φ2 ≡ Pr(R = 1|CX + CY = 1) (note under Assumption

4.4 , Pr(CX + CY = 0) = 1− φ1). Using Assumptions 4.1,4.3,4.4 and 4.5, the simulation of

W is as follows.

Simulation of W

1. Draw w′ from W ′ ∼ multinomial(1, η)

2. Draw from CX + CY

3. If CX + CY = 0 then store w′ as a draw from W

4. If CX + CY = 1 then draw from R|(CX + CY = 1)

(a) If R|(CX + CY = 1) = 0 then store w′ as a draw from W if w′ ∈ {2, 3, 4, 5, 6, 7}

(b) If R|(CX + CY = 1) = 1 then discard w′
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5. Repeat 1-4 10,000 times

The parameter η needs to be calibrated such that Pr(X = i) = ηi for i ∈ {0, 1, ..., 9}. By

Theorem 4.2, η can be calibrated using the maximum likelihood estimate from X imputed|R =

1, which is η = (.255 .101 .101 .098 .069 .050 .058 .065 .061 .143). To find the appropriate φ1

and φ2, I run the above simulation using pairs of (φ1, φ2) over the grid (φ1, φ2) ∈ [0, 1]× [0, 1].

I keep the pairs of (φ1, φ2) that generate the appropriate Kullback-Leibler divergence of 0.049.
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Figure 4.7: Estimated Kullback-Leibler diver-
gences

The results of the simulation can best

be shown in two figures. The first, Fig-

ure 4.7, is a contour plot showing the

estimated Kullback- Leibler divergence

of W from X|R = 1 for a given (φ1, φ2)

pair. The x-axis is φ1, the probability

of there being a conflict of interest in a

case. The y-axis is φ2, the probability of

recusal given there is a conflict of inter-

est in a case. The colors represent the

estimated Kullback-Leibler divergences

of W from X|R = 1 for the given parameters. Darker colors are a smaller divergence and

brighter colors are a larger divergence. The black line is a Kullback-Leibler divergence of

X|R = 0 from X|R = 1 which is 0.051. I keep all pairs of (φ1, φ2) on the black line as

potential parameters and discard all others.

The second, Figure 4.8, shows predictions arising from the selected potential parameters for

a court that hears 100 cases in a year. The Supreme Court hears less than 100 cases a year,

but 100 was chosen so that estimates can easily be interpreted in terms of percentage of

cases. The x-axis is the number of cases that have a conflict of interest. The left y-axis is the
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number of cases that have a conflict and a recusal and corresponds to the black line. The

right y-axis is the number of cases that have a conflict but no recusal, it corresponds to the

dashed red line. The two y-axes have the same scale. The pairs of (φ1, φ2) on the black line

from Figure 4.7 trace out the black and dashed red lines on Figure 4.8. The vertical dotted

black line represents where recusals equals 10. Every pair of parameters that predicts more

than 10 recusals is not supported by the data because the court never has had more than

10% of cases with a recusal in a given term (see Figure 4.4). Thus only the values to the left

of the dotted line are supported by the data. Table 4.4 shows these values.
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Figure 4.8: Simulated conflicts of interest
and recusals

Table 4.4 shows predictions from the simulation

for a court that hears 100 cases a term. The first

two columns are the parameters selected from the

simulation that are supported by the data. The

next three columns are the number of cases where

a justice has a conflict of interest, the number of

cases with a recusal, and the number of cases

where a justice has a conflict of interest but does

not recuse. The number of cases with a conflict

of interest ranges from 45 to 57 and the number

of recusals increases from 0 to 11, increasing with

the number of conflicts. The number of cases with a conflict but no recusal hovers between

44 and 47. These are quite large estimates for the number of conflicted cases and cases

with a conflict but no recusal. The reason is likely because I am only considering one

mechanism for the observed data (strategic recusals) and I am ignoring all other possible

selection mechanisms that could result in the observed data. This mechanism must then

absorb all the other possible sources of selection. Additionally, this procedure results in

a set of potential point estimates, it does not provide estimates of error. Therefore these

results can be thought of as a rough estimate of the number of conflicts and conflicts without
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recusals.

φ1 φ2 #Conf #Rec #NonRec
.45 .01 45 0.6 44.4
.46 .04 46 1.7 44.3
.47 .05 47 2.4 44.6
.48 .07 48 3.5 44.5
.49 .09 49 4.3 44.7
.50 .10 50 5.2 44.8
.51 .08 51 3.9 47.1
.52 .10 52 5.1 46.9
.53 .12 53 6.2 46.8
.54 .13 54 7.0 47.0
.55 .15 55 8.2 46.8
.56 .17 56 9.4 46.6
.57 .19 57 10.7 46.3

Table 4.4: Simulation results

I perform an alternative specification where the support for X is constrained by combining

0, 1 and 3, 4, 5, 6 and 8, 9 and the counts are constrained to terms after 1988 in accordance

with the robustness checks in the previous section. This specification is also more favorable to

Assumption 4.4 because there were less recusals after 1988 which could be explained by there

being a low number of conflicts. By restricting the support and the counts, the estimated di-

vergence is 0.044 and the calibrated η is η = (.250 .080 .074 .069 .074 .064 .064 .074 .037 .213).

The simulation is ran the same as before except there is an additional step between 5 and 6

where the values from W are combined according to the support restriction. The results are

presented in Table 4.5. This specification resulted in a slightly more conservative estimate.

The number of cases where a justice has a conflict ranges from 47 to 56 cases. The number

of cases where a justice has a conflict but does not recuse himself ranges from 45 to 46 cases.

Again, these results should be interpreted as a rough estimate.
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φ1 φ2 #Conf #Rec #NonRec
.47 .00 47 0.0 47
.48 .01 48 0.7 47.3
.49 .03 49 1.4 47.6
.50 .05 50 2.5 47.5
.51 .09 51 4.4 46.6
.52 .10 52 5.4 46.6
.53 .13 53 6.7 46.3
.54 .15 54 7.9 46.1
.55 .16 55 9.1 45.9
.56 .18 56 1.4 45.7

Table 4.5: Simulation results with robustness check

4.4 Discussion

It is plausible that Supreme Court Justices might not always recuse themselves when they

are supposed to. Some studies in the past did provide evidence that justices recuse them-

selves strategically. Compared to previous literature this paper uses a structural approach

to investigate strategic recusals and agrees there is evidence that Supreme Court Justices

sometimes recuse themselves strategically. Under certain assumptions, this paper finds that

the percent of cases with conflict of interest ranges from 45% to 57%, it follows that about

44% to 47% of cases will have a conflict of interest but no recusal. Future research could

bring more precision to these estimates. Additionally, there is likely to be some changes in

these results by further exploiting heterogeneity in justices, types of cases, and time. Lastly,

future research could explore the question of “is strategic recusal bad?” and “how bad is it?”
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Appendix A

Chapter 1

A.1 Standard error and MSE under omitted stochastic

variables

Rao (1971) investigates the properties of ordinary least squares estimators when the truth

is Y = α1X1 + ... + αkXk + αk+1Xk+1 + ε but a misspecified model Y = β1X1 + ... +

βkXk + η is used. He derives results for the effects on the standard errors and mean square

error. However he assumes regressors are fixed which is usually not the case for economic

models. In this appendix I update his results for when regressors are stochastic. Define

σ2
ε = V ar(Y |X1, ..., Xk, Xk+1) and σ2

η = V ar(Y |X1, ..., Xk). Then by the law of total variance

σ2
η = E(V ar(Y |X1, ..., Xk, Xk+1)|X1, ..., Xk) + V ar(E(Y |X1, ..., Xk, Xk+1)|X1, ..., Xk) = σ2

ε +

α2
k+1 V ar(Xk+1|X1, ..., Xk). Define S2

1.23...k· as the residual sum of squares auxiliary regression

with X1 as the dependent variable and (X2, ..., Xk, Xk+1) as the independent variables. Then

V ar(β̂) = (σ2
ε + α2

k+1V ar(Xk+1|X1, ..., Xk))(X
′X)−1
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and

V ar(β̂1) = (σ2
ε + α2

k+1V ar(Xk+1|X1, ..., Xk))/S
2
1.23...k·.

Thus V ar(β̂1) ≤ V ar(α̂1) is true when α2
k+1V ar(Xk+1|X1, ..., Xk) ≤ σ2

ε r
2
1,k+1.23...k/(1 −

r2
1,k+1.23...k), where r2

1,k+1.23...k is the partial correlation betweenX1 andXk+1 keeping (X2, ..., Xk)

constant. Using these results we the effect on standard errors when variables are omitted.

Theorem A.1. In the classical linear regression model, omission of a variable specified

by the truth decreases the variance of the least squares estimator for the coefficient of the

first covariate provided sufficiently large σ2
ε and r2

1,k+1.23...k and sufficiently small α2
k+1 and

V ar(Xk+1|X1, ..., Xk).

Mimicking the derivation in Rao (1971) we get

MSE(β̂1) = α2
k+1 · b2

k+1,1.23...k + (σ2
ε + α2

k+1V ar(Xk+1|X1, ..., Xk))/S
2
1.23...k,

α2
k+1 ≤

σ2
ε

S2
k+1,123...k +

1−r2
1,k+1.23...k

r2
1,k+1.23...k

V ar(Xk+1|X1, ..., Xk)

and

|αk+1| ≤ (V ar(α̂k+1)−1 +
1− r2

1,k+1.23...k

σ2
ε r

2
1,k+1.23...k

V ar(Xk+1|X1, ..., Xk))
−1/2.

Using these results we find the effect on MSEs when variables are omitted.

Theorem A.2. In the classical linear regression model, discarding an independent vari-
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able decreases the mean square error of the least squares estimator for the coefficient of the

first covariate provided sufficiently large σ2
ε , V ar(α̂k+1) and r2

1,k+1.23...k and sufficiently small

|αk+1| and V ar(Xk+1|X1, ..., Xk).
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Appendix B

Chapter 2

B.1 Lemmas and proofs

The proof of Lemma 2.1 is below.

Proof. The strategy of this proof is to first separate the log and focus on one half of it

(the denominator). Then evaluate the first N − 1 summations at their first term and fully

evaluate the last summation. With this last one fully evaluated, I show that a recursive

pattern appears that can be used to find the desired result.

For ease of readability I replace Pnj with pnj and replace P 0
nj with qnj. It is clear the

summations can be reordered and the KL divergence can be written as

KL(G||F ) =
∑

yN∈YN

· · ·
∑
y1∈Y1

log

[
N∏
n=1

J∏
j=1

q
ynj
nj

]
N∏
n=1

J∏
j=1

q
ynj
nj − log

[
N∏
n=1

J∏
j=1

p
ynj
nj

]
N∏
n=1

J∏
j=1

q
ynj
nj .
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I will focus on

CN ≡ −
∑

yN∈YN

· · ·
∑
y1∈Y1

log

[
N∏
n=1

J∏
j=1

p
ynj
nj

]
N∏
n=1

J∏
j=1

q
ynj
nj .

The result for the other half with follows by analogy. Define C?
N =

∑N
n=1

∑J
j=1 log(pnj)qnj. I

wish to show −CN = C?
N . Without loss of generality, I focus on the first term of each of the

sums YN , YN−1,..., Y2. This is equivalent to focusing on yi = [1, 0, ..., 0] for i ∈ {N,N−1, ..., 2}

and putting all other terms in the sums into a variable called C(1). Then focusing on

evaluating the summation over Y1, −CN becomes

−CN = log(pN1p(N−1)1...p21p11)qN1q(N−1)1...q21q11

+ log(pN1p(N−1)1...p21p12)qN1q(N−1)1...q21q12

+ ...

+ log(pN1p(N−1)1...p21p12)qN1q(N−1)1...q21q1J + C(1)

where C(1) is the rest of the terms in the summations for YN , YN−1, ..., Y1. To be explicit

C(1) =
∑

yN∈Y ′N

· · ·
∑
y2∈Y ′2

∑
y1∈Y ′1

log

[
N∏
n=1

J∏
j=1

p
ynj
nj

]
N∏
n=1

J∏
j=1

q
ynj
nj where

Y ′N × ... × Y ′2 × Y ′1 = YN × ... × Y2 × Y1/{[1, 0, ..., 0] × ... × [1, 0, ..., 0] × Y1}. −CN can be

re-written as

−CN = log(pN1p(N−1)1...p21)qN1q(N−1)1...q21(q11 + q12 + ...+ q1J)

+ qN1q(N−1)1...q21(q11log(p11) + q12log(p12) + ...+ q1J log(p1J)) + C(1)

= log(pN1p(N−1)1...p21)qN1q(N−1)1...q21 + qN1q(N−1)1...q21C
?
1 + C(1)

The recursive pattern now exists. I can make this more clear by evaluating the next sum-

mation for Y2. With the summation for Y1 evaluated, the summation over Y2 focusing on
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yi = [1, 0, ..., 0] for i ∈ {N,N − 1, ..., 3} becomes

−CN = log(pN1p(N−1)1...p21)qN1p(N−1)1...p31(q21 + q22 + ...+ q2J)

+ qN1q(N−1)1...q31(C?
1 + q21log(p21) + q22log(p22) + ...+ q2J log(p2J)) + C(2)

= log(pN1p(N−1)1...p31)qN1p(N−1)1...p31 + qN1q(N−1)1...q31C
?
2 + C(2)

Where C(2) =
∑

yN∈Y ′N

· · ·
∑
y2∈Y ′2

∑
y1∈Y ′1

log

[
N∏
n=1

J∏
j=1

p
ynj
nj

]
N∏
n=1

J∏
j=1

q
ynj
nj where

Y ′N × ...×Y ′2×Y ′1 = YN × ...×Y2×Y1/{[1, 0, ..., 0]× ...×Y2×Y1}. Notice that C(N) = 0 since

it is a summation over nothing. By iterating on this for Y1, Y2, ..., Y(N−1) the last summation

is

−CN = log(pN1)qN1(q(N−1)1 + q(N−1)2 + ...+ q(N−1)J)

+ qN1(C?
N−2 + q(N−1)1log(p(N−1)1) + q(N−1)2log(p(N−1)2) + ...+ q(N−1)J log(p(N−1)J))

+ C(N−1)

= log(pN1)qN1 + qN1C
?
N−1 + C(N−1)

= log(pN1)qN1 + qN1C
?
N−1 + log(pN2)qN2 + qN2C

?
N−1 + ...+ log(pNJ)qNJ + qNJC

?
N−1

= log(pN1)q11 + log(pN2)qN2 + ...+ log(pNJ)qNJ + C?
N−1(qN1 + qN2 + ...+ qNJ)

= log(pN1)qN1 + log(pN2)qN2 + ...+ log(pNJ)qNJ + C?
N−1

= C?
N

By symmetry a similar result holds for the numerator of the log and the desired result

follows.

The proof of Theorem 2.1 is below.

Proof. Note that KL(G||F ) is differentiable with respect to the β vector. Since the choice
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probability Pnj(β) is log-concave (see Mcfadden (1974)), a scaler multiplied to a concave

function is concave and a sum of concave functions is concave, then the β vector that min-

imizes the KL divergence is a unique minimum. Thus β? is the solution to W (β)|β=β? ≡
d
dβ
KL(G||F )

∣∣∣
β=β?

= 0, call this W (β). Thus the unique minimizer is the solution to the

following equations

W (β) =
d

dβ
KL(G||F )

=
N∑
n=1

J∑
j=1

Pnj(β)P 0
nj


∑J

i=1(Xni −Xnj)
(1)e(Xni−Xnj)β

...∑J
i=1(Xni −Xnj)

(p)e(Xni−Xnj)β



=
N∑
n=1

J∑
j=1

P 0
nj


[∑J

i=1X
(1)
ni Pni(β)

]
−X(1)

nj

...[∑J
i=1X

(p)
ni Pni(β)

]
−X(p)

nj



=
N∑
n=1

J∑
j=1

(Pnj(β)− P 0
nj)


X

(1)
nj

...

X
(p)
nj

 =


0

...

0


where p ≡ length(β) and X

(k)
ni and (Xni − Xnj)

(k) is the kth vector of the matrix Xni and

(Xni −Xnj) respectively. 1

Using Assumption 2.3, I show the mixed logit can approximate any random utility model.

Lemma B.1. Suppose Assumption 2.3 holds, then the resulting choice probability can be

approximated to any degree of accuracy by Pnj ≈
∫

eXnjβ+Znjbn∑J
i=1 e

Xniβ+Znibn
dFb for some Znj and

bn ∼ Fb.

1Notice that since the summation does not necessarily converge, the minimizer does not might not have
any stable asymptotic behavior. However, I conjecture that under some mild conditions it can be shown to
converge.
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Proof. This proof utilizes the result from McFadden and Train (2000) with the explanation

from Train (2009). Since the utility from Assumption 2.3 is Unj = Xnjβ + εnj with choice

probability Pnj then Pnj = lim
c→0

∫
e

1
c (Xnjβ+εnj)∑J

i=1 e
1
c (Xniβ+εnj)

dFε (McFadden and Train, 2000). Then for

some arbitrarily small c, Pnj ≈
∫

e
1
c (Xnjβ+εnj)∑J

i=1 e
1
c (Xniβ+εnj)

dFε. But for any known c, the estimation

results in the same estimates, thus it is equivalent to perform estimation as if c = 1. I then

write εnj = Znjbn and Fε = Fb to conform to commonly accepted notation.

The previous lemma was written in the notation of Assumption 2.2. However it holds equally

for Assumption 2.3 where Pnj, β, Znj, bn and Fb are replaced with P 0
nj, β

0, Z0
nj, b

0
n and F 0

b .

The next lemma provides a simple solution to the derivative of the integral in Lemma 2.1.

Lemma B.2. Let Pnj|bn = eXnjβ+Znjbn

J∑
i=1

eXniβ+Znibn

and bn ∼ Fb the CDF of a finite dimensional

random vector, then d
dXnr

Pnj = d
dXnr

∫
Pnj|bn dFb =

∫
d

dXnr
Pnj|bn dFb for any r ∈ {1, 2, ..., J}

Proof. Notice that dominated convergence holds since 0 ≤ Pnj|bn ≤ 1 and
∫

1Fb = 1 <

∞.

Lemma B.2 has additional useful implications for numerical optimization. Passing the deriva-

tive inside the integral improves computational time and accuracy. In fact the second deriva-

tive can be passed inside as well.2 This result has never been proven before. The proof of

2

Theorem B.1. Let Pnj |bn = 1
J∑
i=1

e(Xni−Xnj)β+(Zni−Znj)bn
and bn ∼ Fb the CDF of a finite dimensional random

vector. Suppose J <∞. Then d
dβT

∫
d
dβPnj |bn dFb =

∫
d2

dβdβT
Pnj |bn dFb

Proof. Note d
dβk

Pnj |bn = − 1

(
J∑
l=1

e(Xnl−Xnj)β+(Znl−Znj)bn )2

∑J
i=1(Xni − Xnj)

(k)e(Xni−Xnj)β+(Zni−Znj)bn =

−Pnj |bn
∑J
i=1

(Xni−Xnj)(k)e(Xni−Xnj)β+(Zni−Znj)bn

J∑
l=1

e(Xnl−Xnj)β+(Znl−Znj)bn
= −Pnj |bn

∑J
i=1(Xni − Xnj)

(k)Pni|bn = −
∑J
i=1(Xni −

Xnj)
(k)Pni|bnPnj |bn. Then

∫
d
dβPnj |bn dFb =

∫
−
∑J
i=1(Xni − Xnj)

(k)Pni|bnPnj |bn dFb = −
∑J
i=1(Xni −

Xnj)
(k)
∫
Pni|bnPnj |bn dFb. Since 0 ≤ Pni|bnPnj |bn ≤ 1 and

∫
1 dFb = 1 < ∞, then dominated convergence

holds. Thus the second derivative can be passed through the integral as well.
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Theorem 2.2 is below.

Proof. This proof is identical to that of Theorem 2.1. Using Lemmas 2.1 and B.1 the assumed

choice probability is replaced with the mixed logit approximation.

Lemma B.3. Suppose that Pnj = eXnjβ∑J
i=1 e

Xniβ
then

dPnj
dXnj

= Pnj(1−Pnj)β and
dPnj
dXni

= −PnjPniβ.

Proof. See Train (2009) page 58.

Lemma B.4. Suppose that P 0
nj =

∫
eXnjβ

0+Znjbn∑J
i=1 e

Xniβ
0+Znibn

dFb then
dP 0
nj

dXnj
= P 0

nj(1 − P 0
nj)β

0 and

dP 0
nj

dXni
= −P 0

njP
0
niβ

0.

Proof. The result follows from Lemmas B.1 and B.3.

The proof of Theorem 2.3 is below.

Proof. I prove it for the case sign(β?1) = sign(β0
1), the other cases follow by analogy. Without

loss of generality, suppose X
(1)
11 ≥ X

(1)
1j ∀j > 1 (this can always be performed by reordering

the alternatives). Evaluating W (β) at the KL minimizer implies that
∑N

n=1

∑J
j=1 PnjX

(1)
nj =∑N

n=1

∑J
j=1 P

0
njX

(1)
nj . Then d

dX
(1)
11

∑N
n=1

∑J
j=1 PnjX

(1)
nj

=
J∑
j=1

d

dX
(1)
11

P1jX
(1)
1j (I now drop the individual subscript)

= P1(1− P1)X
(1)
1 β?1 + P1 − P1P2X

(1)
2 β?1 − . . .− P1PJX

(1)
J β?1 by lemma B.3

= P1 + β?1P1((1− P1)X
(1)
1 − P2X

(1)
2 − . . .− PJX

(1)
J )

= P1 + β?1P1((1− (1− P2 − . . .− PJ))X
(1)
1 − P2X

(1)
2 − . . .− PJX

(1)
J )

= P1 + β?1P1(P2(X
(1)
1 −X

(1)
2 ) + . . .+ PJ(X

(1)
1 −X

(1)
J ))

≡ P1 + β?1Q
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Likewise d

dX
(1)
11

∑N
n=1

∑J
j=1 P

0
njX

(1)
nj = P 0

1 + β0
1P

0
1 (P 0

2 (X
(1)
1 −X

(1)
2 ) + . . .+ P 0

J (X
(1)
1 −X

(1)
J )) ≡

P 0
1 + β0

1Q
0 by Lemmas 2.1, B.1 and B.3. Note that Q > 0 and Q0 > 0 by Assumption 2.4.

Note that in all random utilty models, rescaling the covariates does not change the choice

probability. Thus I can write W (β) evaluated at the KL minimizer as
∑N

n=1

∑J
j=1 PnjcX

(1)
nj =∑N

n=1

∑J
j=1 P

0
njcX

(1)
nj , which must hold for all c. Which implies d

dX
(1)
11

∑N
n=1

∑J
j=1 PnjX

(1)
nj =

d

dcX
(1)
11

∑N
n=1

∑J
j=1 PnjcX

(1)
nj = P1 + β?1cQ. Likewise d

dcX
(1)
11

∑N
n=1

∑J
j=1 P

0
njX

(1)
nj = P 0

1 + β0
1cQ

0.

And thus P1 + β?1cQ = P 0
1 + β0

1cQ
0 ⇐⇒ 0 = P 0

1 − P1 + β0
1cQ

0 − β?1cQ.

For the sake of contradiction assume sign(β?) 6= sign(β0), then sign(β0
1cQ

0) 6= sign(β?1cQ)

must hold for all c 6= 0, β0
1 6= 0 and β?1 6= 0. Suppose β? ≥ 0 and β0 ≤ 0 where one equality

is strict. Also suppose c > 0. Then β0
1cQ

0−β?1cQ < 0 and P 0
1 −P1 > 0. Then for a given β?1

and β0
1 there exists a c† such that β0

1c
†Q0−β?1c†Q < −2. Note that −1 ≤ P 0

1 −P1 ≤ 1. Then

0 = P 0
1 − P1 + β0

1c
†Q0 − β?1c†Q < −2 + 1 = −1, a contradiction. Thus sign(β?1) = sign(β0

1).

By analogy this is true for all elements in β? and β0, thus sign(β?) = sign(β0).

The proof of Corollary 2.1 is below.

Proof. From the proof of Theorem 2.3, since β0
k = 0 then 0 = P 0

1 − P1 − β?1cQ. so β?kcQ =

P 0
1 − P1. Since −1 < P 0

1 − P1 < 1 then −1 < β?kcQ < 1. Without loss of generality assume

c > 0 then − 1
cQ
< β?k <

1
cQ

which must hold for any choice of c. Since Q > 0, it follows that

β?k = 0 by squeeze theorem.

The proof of Corollary 2.2 is below

Proof. The result follows immediately from Theorem 2.3 and Corollary 2.2. The type one

error rate being conservative follows from White (1983).
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B.2 Type one error rate

Corollary 2.2 states type one error rates for null coefficients will be at least asymptotically

conservative. Tables B.1 and B.2 illustrate this result. The coefficients for the observable

utility in the DGP were (β0
1 , β

0
2) = (0, 1). Then a mixed logit DGP (Table B.1) and a

heteroskedastic logit DGP (Table B.2) were simulated but a conditional logit was estimated.

The alpha level was set to α = 0.20. The top row in Table B.1 shows the different variances in

the random effect. The top row in Table B.2 shows the different levels of heteroskedasticity.

The ‘J’ and ‘N’ columns represent the number of presented alternatives and individuals

respectively. The values in the table are the simulated type one error rates for β1.

σ2 = 0.52 σ2 = 12 σ2 = 22

J N H R H R H R
2 100 0.18 0.18 0.18 0.15 0.15 0.10
2 500 0.19 0.20 0.18 0.19 0.15 0.16
2 1000 0.18 0.18 0.15 0.16 0.10 0.10
3 100 0.20 0.20 0.22 0.22 0.24 0.24
3 500 0.18 0.18 0.18 0.18 0.13 0.13
3 1000 0.19 0.19 0.19 0.20 0.16 0.16
5 100 0.18 0.20 0.19 0.21 0.20 0.22
5 500 0.19 0.19 0.18 0.19 0.14 0.14
5 1000 0.19 0.20 0.19 0.20 0.17 0.19
H: Hessian standard error

R: Huber-White robust standard error

Table B.1: Type one error rate for α = 0.20 (mixed logit DGP)
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γ1 = 0.5 γ1 = 1 γ1 = 1.5
J N H R H R H R
2 100 0.18 0.21 0.18 0.20 0.18 0.20
2 500 0.19 0.18 0.20 0.19 0.19 0.18
2 1000 0.20 0.19 0.20 0.20 0.21 0.21
3 100 0.18 0.19 0.19 0.21 0.20 0.23
3 500 0.18 0.18 0.19 0.18 0.22 0.21
3 1000 0.18 0.18 0.18 0.18 0.19 0.19
5 100 0.22 0.24 0.18 0.19 0.19 0.21
5 500 0.21 0.20 0.21 0.21 0.20 0.20
5 1000 0.20 0.20 0.20 0.19 0.20 0.20
H: Hessian standard error

R: Huber-White robust standard error

Table B.2: Type one error rate for α = 0.20 (heteroskedastic logit DGP)

B.3 Kullback-Leibler minimizer estimand

When the model is misspecified the QML estimator is estimating the parameter minimizing

the KL divergence from the assumed model to the true model. Tables B.3 and B.4 show

the KL minimizer from the simulation failing to specificy a random effect (Table B.3) and

heteroskedastic effect (Table B.4). The top row in Table B.3 shows the different variances in

the random effect. The top row in Table B.4 shows the different levels of heteroskedasticity.

The ‘J’ and ‘N’ columns represent the number of presented alternatives and individuals

respectively. The β column identifies the parameter of interest. The coefficients for the

observable utility in the DGP were (β0
1 , β

0
2) = (−2, 1). The ‘β?’ column shows the analytic

KL minimizer found by using numerical optimization. The ‘SE’ column shows the estimated

standard error of the QML estimates around the KL minimizer over the simulation. This

standard error is calculated by taking the square root of the sample variance of the estimated

beta coefficients around the analytic KL minimizer,
√
S−1

∑S
s=1(β̂is − β?i )2 for i ∈ {1, 2}

where S is the number of simulations. The ‘KL’ column shows the KL divergence evaluated

at the KL minimizing parameter.
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σ2 = 0.52 σ2 = 12 σ2 = 22

J N β β? SE KL β? SE KL β? SE KL
2 100 −2 -1.80 0.46 2.2 -1.48 0.35 7.8 -0.93 0.20 21.4
2 500 −2 -1.91 0.21 8.9 -1.67 0.17 31.7 -1.20 0.10 88.6
2 1000 −2 -1.88 0.14 16.4 -1.63 0.11 59.2 -1.17 0.07 171.7
3 100 −2 -1.93 0.40 2.6 -1.75 0.36 9.2 -1.30 0.25 25.5
3 500 −2 -1.97 0.17 10.3 -1.84 0.16 36.1 -1.50 0.12 100.9
3 1000 −2 -1.92 0.11 19.0 -1.77 0.11 68.0 -1.40 0.08 197.2
5 100 −2 -1.98 0.36 2.3 -1.90 0.37 8.1 -1.58 0.29 24.4
5 500 −2 -2.00 0.16 9.3 -1.96 0.15 34.0 -1.73 0.14 104.0
5 1000 −2 -1.97 0.11 16.7 -1.90 0.11 62.6 -1.65 0.09 197.7
2 100 1 0.82 0.50 2.2 0.64 0.41 7.8 0.44 0.31 21.4
2 500 1 0.89 0.22 8.9 0.76 0.19 31.7 0.54 0.14 88.6
2 1000 1 0.95 0.17 16.4 0.85 0.14 59.2 0.67 0.11 171.7
3 100 1 0.92 0.43 2.6 0.85 0.36 9.2 0.74 0.30 25.5
3 500 1 0.93 0.19 10.3 0.84 0.17 36.1 0.68 0.14 100.9
3 1000 1 0.97 0.13 19.0 0.92 0.12 68.0 0.80 0.11 197.2
5 100 1 1.01 0.38 2.3 1.02 0.38 8.1 0.99 0.34 24.4
5 500 1 0.98 0.16 9.3 0.93 0.16 34.0 0.81 0.14 104.0
5 1000 1 0.99 0.11 16.7 0.95 0.11 62.6 0.86 0.10 197.7
β?: KL minimizer, SE: Standard error of β̂ around β?

KL: minimized KL distance of assumed model from DGP

Table B.3: KL minimizer (mixed logit DGP)
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γ1 = 0.5 γ1 = 1 γ1 = 1.5
J N β β? SE KL β? SE KL β? SE KL
2 100 −2 -1.67 0.49 4.2 -1.24 0.40 10.5 -1.03 0.33 14.9
2 500 −2 -1.60 0.20 21.7 -1.07 0.14 58.1 -0.80 0.11 84.9
2 1000 −2 -1.64 0.14 41.4 -1.13 0.11 112.9 -0.86 0.09 168.1
3 100 −2 -1.76 0.41 6.4 -1.35 0.35 16.7 -1.10 0.31 24.3
3 500 −2 -1.66 0.17 31.1 -1.15 0.14 84.9 -0.87 0.11 127.5
3 1000 −2 -1.70 0.12 61.6 -1.21 0.10 169.7 -0.92 0.08 254.8
5 100 −2 -1.81 0.35 7.0 -1.47 0.34 19.7 -1.23 0.31 31.2
5 500 −2 -1.73 0.16 39.2 -1.27 0.14 113.7 -0.98 0.13 177.9
5 1000 −2 -1.73 0.11 80.3 -1.27 0.10 230.2 -0.97 0.09 353.9
2 100 1 0.71 0.55 4.2 0.51 0.48 10.5 0.41 0.44 14.9
2 500 1 0.96 0.21 21.7 0.84 0.18 58.1 0.75 0.16 84.9
2 1000 1 0.90 0.15 41.4 0.74 0.13 112.9 0.63 0.12 168.1
3 100 1 0.94 0.38 6.4 0.76 0.35 16.7 0.65 0.30 24.3
3 500 1 1.01 0.18 31.1 0.93 0.16 84.9 0.87 0.15 127.5
3 1000 1 1.01 0.13 61.6 0.91 0.12 169.7 0.83 0.10 254.8
5 100 1 0.89 0.34 7.0 0.74 0.31 19.7 0.64 0.28 31.2
5 500 1 0.99 0.16 39.2 0.92 0.15 113.7 0.87 0.14 177.9
5 1000 1 1.02 0.11 80.3 0.97 0.11 230.2 0.92 0.10 353.9
β?: KL minimizer, SE: Standard error of β̂ around β?

KL: minimized KL distance of assumed model from DGP

Table B.4: KL minimizer (heteroskedastic logit DGP)
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B.4 Coverage probabilities

Coverage probabilities of the QML estimators for the data generating parameters, β0, are

presented in Tables B.5, B.6, and B.7. Coverage probabilities of the QML estimators for the

KL minimizer parameters, β?, are presented in Tables B.8 and B.9. The column J represents

the number of alternatives and N represents the number of individuals. The coefficients

for the observable utility in the data generating process were (β0
1 , β

0
2) = (−2, 1). Three

types of standard errors are used: Hessian (denoted by H), Huber-White robust (denoted

by R), and simulation (denoted by S). The simulation standard error is calculated by taking

the square root of the variance of the estimated β coefficients around the data generating

coefficient,
√
S−1

∑S
s=1(β̂is − β0

i )
2 for i ∈ {1, 2} where S is the number of simulations. The

simulation based standard errors help show if normality of the estimator is being achieved.

The confidence intervals calculated have level 80%, thus a better performing estimator will

have a coverage probability closer to 0.80.

Table B.5 shows the coverage probabilities of the correctly specified conditional logit. Table

B.6 and B.8 shows the coverage probabilities of the misspecified conditional logit failing to

account for individual level heteroskedasticity. Coverage probabilities for the misspecified

conditional logit (denoted M) and the correctly specified heteroskedastic logit (denoted C)

are given. In the correctly specified heteroskedastic logit the heteroskedastic parameter θn is

estimated (but omitted from the table). Table B.7 and B.9 shows the coverage probabilities

for the misspecified conditional logit failing to account for a random alternative specific

effect. Coverage probabilities for the misspecified conditional logit (denoted M) and the

correctly specified mixed logit (denoted C) are given.
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J I β H R S
2 100 β1 0.80 0.79 0.86
2 500 β1 0.80 0.79 0.81
2 1000 β1 0.82 0.82 0.81
3 100 β1 0.80 0.79 0.84
3 500 β1 0.77 0.77 0.80
3 1000 β1 0.79 0.78 0.80
5 100 β1 0.83 0.81 0.82
5 500 β1 0.78 0.78 0.81
5 1000 β1 0.79 0.79 0.80
2 100 β2 0.82 0.80 0.82
2 500 β2 0.82 0.82 0.82
2 1000 β2 0.80 0.81 0.82
3 100 β2 0.80 0.79 0.82
3 500 β2 0.79 0.80 0.80
3 1000 β2 0.80 0.80 0.80
5 100 β2 0.80 0.80 0.82
5 500 β2 0.82 0.81 0.80
5 1000 β2 0.80 0.80 0.80
H: Hessian standard error

R: Huber-White robust standard error

S: Simulation standard error

Table B.5: Coverage probabilities of DGP parameters (conditional logit correctly specified)
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σ2 = 0.52 σ2 = 12 σ2 = 22

J I β HM RM HC RC SC HM RM HC RC SC HM RM HC RC SC
2 100 β1 0.76 0.74 0.98 0.98 0.99 0.48 0.46 0.96 0.96 0.99 0.00 0.00 0.90 0.90 0.98
2 500 β1 0.77 0.76 0.96 0.97 0.79 0.33 0.32 0.91 0.91 0.82 0.00 0.00 0.65 0.65 0.87
2 1000 β1 0.66 0.65 0.96 0.96 0.86 0.04 0.04 0.83 0.83 0.88 0.00 0.00 0.63 0.63 0.86
3 100 β1 0.80 0.79 0.61 0.61 0.89 0.62 0.63 0.62 0.62 0.90 0.14 0.16 0.62 0.62 0.90
3 500 β1 0.81 0.81 0.39 0.39 0.68 0.59 0.58 0.39 0.39 0.68 0.01 0.01 0.44 0.44 0.73
3 1000 β1 0.74 0.73 0.42 0.42 0.78 0.23 0.22 0.40 0.40 0.78 0.00 0.00 0.39 0.39 0.75
5 100 β1 0.80 0.80 0.55 0.55 0.68 0.77 0.77 0.60 0.60 0.73 0.44 0.47 0.66 0.67 0.79
5 500 β1 0.79 0.79 0.63 0.63 0.81 0.79 0.80 0.66 0.66 0.86 0.29 0.31 0.61 0.61 0.85
5 1000 β1 0.78 0.79 0.47 0.47 0.61 0.62 0.62 0.43 0.43 0.61 0.01 0.01 0.34 0.34 0.67
2 100 β2 0.81 0.79 0.96 0.96 0.98 0.75 0.72 0.96 0.96 0.99 0.51 0.44 0.92 0.93 0.98
2 500 β2 0.77 0.76 0.96 0.96 0.83 0.58 0.56 0.92 0.92 0.87 0.09 0.08 0.79 0.79 0.82
2 1000 β2 0.78 0.77 0.97 0.97 0.98 0.66 0.65 0.96 0.96 0.95 0.10 0.09 0.88 0.89 0.90
3 100 β2 0.80 0.79 0.73 0.74 0.88 0.81 0.79 0.75 0.76 0.90 0.74 0.73 0.75 0.76 0.86
3 500 β2 0.76 0.76 0.48 0.48 0.89 0.63 0.62 0.50 0.51 0.89 0.25 0.24 0.51 0.51 0.87
3 1000 β2 0.79 0.79 0.53 0.53 0.86 0.75 0.75 0.50 0.50 0.86 0.37 0.36 0.47 0.47 0.87
5 100 β2 0.80 0.81 0.71 0.71 0.83 0.80 0.80 0.73 0.74 0.84 0.84 0.84 0.73 0.74 0.83
5 500 β2 0.82 0.82 0.64 0.64 0.79 0.75 0.75 0.65 0.65 0.83 0.54 0.54 0.59 0.59 0.87
5 1000 β2 0.80 0.80 0.47 0.47 0.73 0.78 0.78 0.43 0.43 0.71 0.52 0.52 0.41 0.41 0.86
First Letter H: Hessian standard error, R: Huber-White robust standard error, S: Simulation standard error

Second Letter M: Misspecified model, C: Correct model

Table B.6: Coverage probabilities of DGP parameters (mixed logit DGP)
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γ1 = 0.5 γ1 = 1 γ1 = 1.5
J I β HM RM HC RC SC HM RM HC RC SC HM RM HC RC SC
2 100 β1 0.64 0.69 0.79 0.74 0.88 0.24 0.30 0.80 0.75 1.00 0.08 0.12 0.81 0.77 0.99
2 500 β1 0.22 0.28 0.78 0.78 0.82 0.00 0.00 0.80 0.79 0.81 0.00 0.00 0.81 0.80 0.82
2 1000 β1 0.09 0.12 0.80 0.79 0.81 0.00 0.00 0.80 0.79 0.80 0.00 0.00 0.78 0.78 0.81
3 100 β1 0.67 0.73 0.79 0.77 0.85 0.26 0.33 0.84 0.81 0.86 0.09 0.13 0.80 0.77 0.87
3 500 β1 0.22 0.28 0.81 0.80 0.80 0.00 0.00 0.82 0.81 0.82 0.00 0.00 0.78 0.78 0.81
3 1000 β1 0.10 0.14 0.80 0.80 0.81 0.00 0.00 0.81 0.81 0.81 0.00 0.00 0.78 0.78 0.80
5 100 β1 0.72 0.76 0.81 0.79 0.81 0.34 0.44 0.77 0.76 0.82 0.12 0.17 0.84 0.81 0.83
5 500 β1 0.31 0.39 0.81 0.80 0.81 0.00 0.00 0.80 0.79 0.80 0.00 0.00 0.82 0.80 0.82
5 1000 β1 0.12 0.17 0.79 0.79 0.81 0.00 0.00 0.79 0.79 0.80 0.00 0.00 0.79 0.79 0.79
2 100 β2 0.74 0.73 0.80 0.74 0.85 0.59 0.60 0.80 0.67 0.95 0.51 0.51 0.85 0.64 0.96
2 500 β2 0.82 0.82 0.80 0.80 0.80 0.68 0.68 0.82 0.79 0.82 0.47 0.46 0.83 0.79 0.82
2 1000 β2 0.73 0.73 0.79 0.78 0.80 0.28 0.28 0.81 0.80 0.80 0.06 0.06 0.80 0.76 0.81
3 100 β2 0.83 0.82 0.78 0.74 0.84 0.74 0.73 0.82 0.71 0.86 0.66 0.64 0.85 0.75 0.89
3 500 β2 0.83 0.82 0.79 0.78 0.81 0.80 0.78 0.80 0.77 0.82 0.70 0.70 0.81 0.78 0.80
3 1000 β2 0.81 0.81 0.79 0.79 0.80 0.71 0.70 0.79 0.77 0.81 0.46 0.45 0.80 0.78 0.78
5 100 β2 0.81 0.81 0.79 0.77 0.83 0.71 0.69 0.79 0.74 0.82 0.57 0.54 0.88 0.78 0.83
5 500 β2 0.82 0.82 0.81 0.81 0.80 0.76 0.76 0.80 0.78 0.81 0.66 0.66 0.82 0.77 0.81
5 1000 β2 0.82 0.83 0.81 0.80 0.79 0.80 0.80 0.77 0.76 0.79 0.70 0.71 0.80 0.77 0.81
First Letter H: Hessian standard error, R: Huber-White robust standard error, S: Simulation standard error

Second Letter M: Misspecified model, C: Correct model

Table B.7: Coverage probabilities of DGP parameters (heteroskedastic logit DGP)
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σ2 = 0.52 σ2 = 12 σ2 = 22

J N β H R S H R S H R S
2 100 β1 0.82 0.81 0.84 0.84 0.82 0.82 0.90 0.89 0.83
2 500 β1 0.81 0.80 0.83 0.84 0.83 0.81 0.91 0.88 0.80
2 1000 β1 0.82 0.80 0.82 0.85 0.83 0.81 0.92 0.89 0.83
3 100 β1 0.81 0.80 0.82 0.80 0.81 0.84 0.85 0.85 0.81
3 500 β1 0.82 0.82 0.80 0.81 0.82 0.81 0.86 0.85 0.79
3 1000 β1 0.82 0.81 0.79 0.80 0.80 0.81 0.86 0.85 0.80
5 100 β1 0.80 0.80 0.81 0.79 0.78 0.84 0.82 0.84 0.82
5 500 β1 0.79 0.79 0.79 0.82 0.82 0.80 0.82 0.83 0.82
5 1000 β1 0.80 0.80 0.80 0.81 0.81 0.82 0.83 0.83 0.81
2 100 β2 0.84 0.80 0.78 0.91 0.87 0.79 0.94 0.90 0.84
2 500 β2 0.82 0.82 0.80 0.87 0.86 0.79 0.93 0.92 0.78
2 1000 β2 0.81 0.80 0.81 0.86 0.85 0.79 0.91 0.90 0.81
3 100 β2 0.81 0.80 0.83 0.85 0.84 0.81 0.89 0.88 0.82
3 500 β2 0.80 0.80 0.81 0.81 0.81 0.79 0.88 0.87 0.78
3 1000 β2 0.80 0.79 0.79 0.82 0.82 0.78 0.87 0.86 0.81
5 100 β2 0.80 0.80 0.81 0.80 0.80 0.82 0.83 0.84 0.80
5 500 β2 0.82 0.82 0.81 0.81 0.81 0.80 0.85 0.85 0.80
5 1000 β2 0.80 0.80 0.77 0.81 0.81 0.78 0.86 0.86 0.80
H: Hessian standard error, R: Huber White robust standard error

S: Simulation standard error

Table B.8: Coverage probabilities of KL minimizer (mixed logit DGP)
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γ1 = 0.5 γ1 = 1 γ1 = 1.5
J N β H R S H R S H R S
2 100 β1 0.77 0.80 0.84 0.75 0.82 0.87 0.79 0.88 0.86
2 500 β1 0.74 0.81 0.82 0.73 0.85 0.80 0.74 0.88 0.81
2 1000 β1 0.76 0.82 0.81 0.72 0.84 0.83 0.72 0.87 0.83
3 100 β1 0.77 0.81 0.83 0.75 0.85 0.83 0.74 0.84 0.84
3 500 β1 0.75 0.82 0.80 0.72 0.85 0.82 0.70 0.86 0.81
3 1000 β1 0.75 0.82 0.81 0.68 0.84 0.79 0.71 0.88 0.79
5 100 β1 0.78 0.82 0.82 0.72 0.82 0.82 0.73 0.85 0.83
5 500 β1 0.75 0.83 0.81 0.70 0.85 0.81 0.66 0.84 0.81
5 1000 β1 0.75 0.84 0.80 0.69 0.85 0.79 0.68 0.86 0.84
2 100 β2 0.82 0.82 0.82 0.79 0.82 0.78 0.85 0.84 0.82
2 500 β2 0.83 0.83 0.80 0.86 0.86 0.80 0.87 0.87 0.80
2 1000 β2 0.84 0.83 0.80 0.86 0.86 0.80 0.87 0.88 0.82
3 100 β2 0.83 0.82 0.80 0.85 0.83 0.80 0.90 0.89 0.81
3 500 β2 0.82 0.82 0.82 0.86 0.85 0.81 0.88 0.87 0.82
3 1000 β2 0.81 0.81 0.80 0.85 0.85 0.83 0.88 0.87 0.79
5 100 β2 0.83 0.82 0.81 0.85 0.84 0.81 0.87 0.86 0.81
5 500 β2 0.82 0.82 0.80 0.85 0.84 0.82 0.85 0.85 0.81
5 1000 β2 0.83 0.83 0.80 0.82 0.83 0.80 0.84 0.85 0.79
H: Hessian standard error, R: Huber White robust standard error

S: Simulation standard error

Table B.9: Coverage probabilities of KL minimizer (heteroskedastic logit DGP)
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B.5 MSE of choice probabilities

Square root of MSE of choice probabilities is presented in Tables B.10 and B.11. In Ta-

ble B.10 the data generating process is mixed logit; a conditional logit and a mixed logit

are estimated. In Table B.11 the data generating process is heteroskedastic logit; a condi-

tional logit and a heteroskedastic logit are estimated. The square root MSE is calculated

as S−1
∑S

s=1

√
N−1

∑N
n=1

∑J
j=1(P̂njs − P 0

njs)
2, where P̂njs is the estimated choice probability

and P 0
njs is the true choice probability for individual n with alternative j in simulation s.

The choice probabilities for the mixed logit are with the individual effects marginalized out.

The choice probabilities have been scaled by 10 for presentation purposes.

σ2 = 0.52 σ2 = 12 σ2 = 22

J N M C M C M C
2 100 0.46 1.08 0.46 1.01 0.56 1.00
2 500 0.22 0.62 0.22 0.61 0.23 0.55
2 1000 0.16 0.54 0.17 0.49 0.21 0.55
3 100 0.38 1.24 0.39 1.21 0.52 1.07
3 500 0.18 1.46 0.22 1.37 0.39 1.17
3 1000 0.13 1.54 0.19 1.51 0.38 1.24
5 100 0.25 0.59 0.29 0.56 0.45 0.53
5 500 0.12 0.36 0.18 0.33 0.38 0.48
5 1000 0.09 0.57 0.16 0.57 0.37 0.60
M: Misspecified conditional logit

C: Correctly specified mixed logit

Table B.10: Square root MSE of choice probabilities (mixed logit DGP)
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γ1 = 0.5 γ1 = 1 γ1 = 1.5
J N M C M C M C
2 100 1.09 1.55 1.73 1.81 2.12 2.18
2 500 0.99 1.28 1.73 1.65 2.20 2.12
2 1000 0.97 1.28 1.70 1.63 2.17 2.08
3 100 1.04 1.38 1.65 1.61 2.05 2.03
3 500 0.96 1.25 1.64 1.56 2.09 2.01
3 1000 0.94 1.25 1.62 1.54 2.07 1.98
5 100 0.74 1.07 1.26 1.24 1.65 1.64
5 500 0.76 1.02 1.35 1.27 1.76 1.71
5 1000 0.77 1.03 1.35 1.28 1.74 1.69
M: Misspecified conditional logit

C: Correctly specified heteroskedastic logit

Table B.11: Square root MSE of choice probabilities (heteroskedastic logit DGP)
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Appendix C

Chapter 3

C.1 Lemmas and proofs

In this section I prove the posterior is consistent for the parameters of interest. This proof

is for the location case. The regression case should come with easy modification by concate-

nating βτy with βτx and Y⊥ui with Xi. Since Y and X rely on the same sets of assumptions

and also expectations are taken over Y and X, there should not be any issue with these

results generalizing to the regression case.

Define the population parameters (ατ0, βτ0) to be the parameters that satisfy (3.11) and

(3.12). Note that the posterior can be written equivalently as

Πτ (U |(Y1,X1), (Y2,X2), ..., (Yn,Xn)) =

∫
U

∏n
i=1

fτ (Yi|Xi,ατ ,βτ ,στ )
fτ (Yi|Xi,ατ0,βτ0,στ0)

dΠτ (ατ , βτ )∫
Θ

∏n
i=1

fτ (Yi|Xiατ ,βτ ,στ )
fτ (Yi|Xi,ατ0,βτ0,στ0)

dΠτ (ατ , βτ )
(C.1)

For ease of readability I will omit τ from ατ , βτ and Πτ . Writing the posterior in this form
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is for mathematical convenience. It allows me to focus on the numerator,

In(U) =

∫
U

n∏
i=1

fτ (Yi|α, β, σ)

fτ (Yi|α0, β0, σ)
dΠ(α, β), (C.2)

and denominator, In(Θ), separately. The next lemma provides several inequalities that are

useful later and is presented without proof.

Lemma C.1. Let bi = (α−α0)+(β−β0)′Y⊥ui, Wi = (u′−β′0Γ′u)Yi−α0, W+
i = max(Wi, 0)

and W−
i = min(−Wi, 0). Then a) log

(
fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)
=

1

σ



−bi(1− τ) if (u′ − β′Γ′u)Yi − α ≤ 0 and (u′ − β′0Γ′u)Yi − α0 ≤ 0

−((u′ − β′0Γ′u
′)Yi − α0) + biτ if (u′ − β′Γ′u)Yi − α > 0 and (u′ − β′0Γ′u)Yi − α0 ≤ 0

(u′ − β′Γ′u)Yi − α + biτ if (u′ − β′Γ′u)Yi − α ≤ 0 and (u′ − β′0Γ′u)Yi − α0 > 0

biτ if (u′ − β′Γ′u)Yi − α > 0 and (u′ − β′0Γ′u)Yi − α0 > 0

b) log
(

fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)
≤ 1

σ
|bi| ≤ |α− α0|+ |(β − β0)′||Γ′u||Yi|

c) log
(

fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)
≤ 1

σ
|(u′ − β′0Γ′u)Yi − α0| ≤ 1

σ
(|(u′ − β′0Γ′u)||Yi|+ |α0|)

d) log
(

fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)
= 1

σ


−bi(1− τ) + min(W+

i , bi) if bi > 0

biτ + min(W−
i ,−bi) if bi ≤ 0

e) log
(

fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)
≥ − 1

σ
|bi| ≥ −|α− α0| − |(β − β0)′||Γ′u||Yi|

The next lemma provides more useful inequalities.

Lemma C.2. The following inequalities hold:

a) E
[
log
(

fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)]
≤ 0
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b) σE
[
log
(

fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)]
= E

[
−(Wi − bi)1(bi<Wi<0)

]
+ E

[
(Wi − bi)1(0<Wi<bi)

]
c) σE

[
log
(

fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)]
≤ E [−(Wi − bi)]Pr(bi < Wi < 0) + E [(Wi − bi)]Pr(0 < Wi <

bi)

d) σE
[
log
(

fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)]
≤ −E

[
− bi

2
1(bi<0)

]
Pr( bi

2
< Wi < 0) − E

[
bi
2

1(0<bi)

]
Pr(0 < Wi <

bi
2

)

e) if Assumption 3.4 holds then lim
n→∞

1
n

∑n
i=1 E[|Wi|] <∞.

Proof. Note that E[bi] = (α−α0)+(β−β0)′E[Y⊥ui] = (α−α0)+ 1
τ
(β−β0)′E[Y⊥ui1(u′−β′0Γ′u)Yi−α0≤0)]

from subgradient condition (3.12). Define Ai to be the event (u′−β′0Γ′u)Yi−α0 ≤ 0 and Aci

it’s complement. Define Bi to be the event (u′ − β′Γ′u)Yi − α ≤ 0 and Bc
i it’s complement.

σ log

(
fτ (Yi|α, β, σ)

fτ (Yi|α0, β0, σ)

)
= biτ − bi1(Ai,Bi) − ((u′ − β′0Γ′u)Yi − α0)1(Ai,Bci ) + ((u′ − β′Γ′u)Yi − α)1(Aci ,Bi)

= biτ − bi1(Ai) + (bi − ((u′ − β′0Γ′u)Yi − α0))1(Ai,Bci ) + ((u′ − β′Γ′u)Yi − α)1(Aci ,Bi)

= biτ − bi1(Ai) − ((u′i − β′Γ′u)Yi − α)1(Ai,Bci ) + ((u′ − β′Γ′u)Yi − α)1(Aci ,Bi)

Since E[(α− α0)1(Ai)] = τ(α− α0) then E[biτ − bi1(Ai)] = 0. Then

σE

[
log

(
fτ (Yi|α, β, σ)

fτ (Yi|α0, β0, σ)

)]
= E[−((u′−β′Γ′u)Yi−α)1(Ai,Bci )]+E[(u′−β′Γ′u)Yi−α)1(Aci ,Bi)

]

The constraint in the first term and second terms imply −((u′ − β′Γ′u)Yi − α) < 0 and

(u′ − β′Γ′u)Yi − α ≤ 0 over their respective domains of integration. It follows

σE

[
log

(
fτ (Yi|α, β, σ)

fτ (Yi|α0, β0, σ)

)]
= E

[
−(Wi − bi)1(bi<Wi<0)

]
+ E

[
(Wi − bi)1(0<Wi<bi)

]
.
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Note that (Wi − bi)1(0<Wi<bi) ≤ (Wi − bi)1(0<Wi<
bi
2

)
< − bi

2
1

(0<Wi<
bi
2

)
. Likewise, −(Wi −

bi)1(bi<Wi<0) <
bi
2

1
(
bi
2
<Wi<0)

. Thus,

σE

[
log

(
fτ (Yi|α, β, σ)

fτ (Yi|α0, β0, σ)

)]
≤ E

[
bi
2

1
(
bi
2
<Wi<0)

]
+ E

[
−bi

2
1

(
bi
2
>Wi>0)

]
.

Hölders inequality with p = 1 and q =∞ implies σE
[
log
(

fτ (Yi|α,β,σ)
fτ (Yi|α0,β0,σ)

)]
≤ −E

[
− bi

2
1(bi<0)

]
Pr( bi

2
<

Wi < 0)− E
[
bi
2

1(0<bi)

]
Pr(0 < Wi <

bi
2

).

The next proposition shows that the KL minimizer is the parameter vector that satisfies the

subgradient conditions.

Proposition C.1. Suppose Assumptions 3.2 and 3.5 hold. Then

inf
(α,β)∈Θ

E

[
log

(
p0(Yi)

fτ (Yi|α, β, 1)

)]
≥ E

[
log

(
p0(Yi)

fτ (Yi|α0, β0, 1)

)]

with equality if (α, β) = (α0, β0) where (α0, β0) are defined in (3.11) and (3.12).

Proof. This follows from the previous lemma and the fact that

E

[
log

(
p0(Yi)

fτ (Yi|α, β, 1)

)]
= E

[
log

(
p0(Yi)

fτ (Yi|α0, β0, 1)

)]
+ E

[
log

(
fτ (Yi|α0, β0, 1)

fτ (Yi|α, β, 1)

)]

Now I create an upper bound to approximate E[In(B)d].

Lemma C.3. Suppose Assumptions 3.3a or 3.3b hold and 3.4 holds. Let B ⊂ Θ ⊂ <k. For

δ > 0 and d ∈ (0, 1), let {Aj : 1 ≤ j ≤ J(δ)} be hypercubes of volume
(

δ 1
k

1+cΓcy

)k
required to

cover B. Then for (α(j), β(j)) ∈ Aj, the following inequality holds

E

(∫
B

n∏
i=1

fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)
dΠ(α, β)

)d
 ≤ J(δ)∑

j=1

E
( n∏

i=1

fτ (Yi|αj, βj, 1)

fτ (Yi|α0, β0, 1)

)d
 endδΠ(Aj)

d


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Proof. For all (α, β) ∈ Aj, |α − α(j)| ≤ δ 1
k

1+cΓcy
and |β − β(j)| ≤ δ 1

k

1+cΓcy
1k−1 compenentwise.

Then |α− α(j)|+ |β − β(j)|′1k−1cΓcy ≤ δ. Using lemma C.1b

log

(
fτ (Yi|α, β, 1)

fτ (Yi|α(j), β(j), 1)

)
≤ |α− α(j)|+ |β − β(j)|′|Γ′u||Yi|

≤ |α− α(j)|+ |β − β(j)|′1k−1cΓcy

≤ δ

1 + cΓcy

< δ

Then
∫
Aj

∏n
i=1

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

dΠ(α, β) =

n∏
i=1

fτ (Yi|α(j), β(j), 1)

fτ (Yi|α0, β0, 1)

∫
Aj

n∏
i=1

fτ (Yi|α, β, 1)

fτ (Yi|α(j), β(j), 1)
dΠ(α, β)

≤
n∏
i=1

fτ (Yi|α(j), β(j), 1)

fτ (Yi|α0, β0, 1)
enδΠ(Aj)

Then E

[(∫
B

∏n
i=1

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

dΠ(α, β)
)d]
≤

E


J(δ)∑

j=1

(
n∏
i=1

fτ (Yi|α(j), β(j), 1)

fτ (Yi|α0, β0, 1)
dΠ(α, β)

)
enδΠ(Aj)

d


≤
J(δ)∑
j=1

E

( n∏
i=1

fτ (Yi|α(j), β(j), 1)

fτ (Yi|α0, β0, 1)
dΠ(α, β)

)d

endδ(Π(Aj))
d


the last inequality holds because (

∑
i xi)

d ≤
∑

i x
d
i for d ∈ (0, 1) and xi > 0.

Let U c
n ⊂ Θ such that (α0, β0) 6∈ U c

n. The next lemma creates an upper bound for the

expected value of the likelihood within U c
n. Break U c

n into a sequence of half spaces, {Vln}L(k)
l=1 ,
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such that
L(k)⋃
l=1

Vln = U c
n, where

V1n = {(α, β) : α− α0 ≥ ∆n, β1 − β01 ≥ 0, ..., βk − β0k ≥ 0}

V2n = {(α, β) : α− α0 ≥ 0, β1 − β01 ≥ ∆n, ..., βk − β0k ≥ 0}
...

VL(k)n = {(α, β) : α− α0 < 0, β1 − β01 < 0, ..., βk − β0k ≤ −∆n}

for some ∆n > 0. This sequence makes it explicit that at least one component of the vector

(α, β) is further than it’s corresponding component of (α0, β0) by at least an absolute distance

∆n. How the sequence is indexed exactly is not important. I will focus on V1n, the arguments

for the other sets are similar. Define Bin = −E
[
log
(

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

)]
.

Lemma C.4. Let G ∈ Θ be compact. Suppose Assumption 3.4 holds and (α, β) ∈ G ∩ V1n.

Then there exists a d ∈ (0, 1) such that

E

[
n∏
i=1

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)d]
≤ e−d

∑n
i=1Bin

Proof. Define hd(α, β) =
1−E

[(
fτ (Yi|α,β,1)

fτ (Yi|α0,β0,1)

)d]
d

− E
[
log
(

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

)]
. From the proof of

Lemma 6.3 in Kleijn and van der Vaart (2006), lim
d→0

hd(α, β) = 0 and hd(α, β) is a decreasing

function of d for all (α, β). Note that hd(α, β) is continuous in (α, β). Then by Dini’s

theorem hd(α, β) converges to hd(0,0k−1) uniformly in (α, β) as d converges to zero. Define

δ = inf
(α,β)∈G

log
(

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

)
then there exists a d0 such that 0−hd0(α, β) ≤ δ

2
. From lemma
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C.2a E
[
log
(

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

)]
< 0. Then

E

[(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)d0
]
≤ 1 + d0E

[
log

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)]
+ d0

δ

2

≤ 1 +
d0

2
E

[
log

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)]
≤ e

d0
2
E
[
log
(

fτYi|α,β,1)

fτ (Yi|α0,β0,1)

)]

The last inequality holds because 1 + t ≤ et for any t ∈ <.

I would like the thank Karthik Sriram for help with the previous proof. The next lemma

is used to show the numerator of the posterior, In(U c
n), converges to zero for sets U c

n not

containing (α0, β0).

Lemma C.5. Suppose Assumptions 3.3a, 3.4 and 3.6 hold. Then there exists a uj > 0 such

that for any compact Gj ⊂ Θ,

∫
Gcj∩Vjn

e
∑n
i=1 log

(
fτ (Yi|α,β,1)

fτ (Yi|α0,β0,1)

)
dΠ(α, β) ≤ e−nuj

for sufficiently large n.

Proof. Let

C0 =
4 lim
n→∞

1
m

∑m
i=1E[|Wi|]

(1− τ)cp
,

ε = min(εZ) and A = kBε = 2C0, where cp and εz are from Assumption 3.6. This limit

exists by Lemma C.2e. Define

G1 = {(α, β) : (α− α0, β1 − β01, ..., βk − β0k) ∈ [0, A]× [0, B]× ...× [0, B]}.
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If (α, β) ∈ Gc
1 ∩ W1 then (α − α0) > A or (β − β0)j > B for some j. If Y⊥ui > ε then

bi = (α− α0) + (β − β0)′Y⊥ui > 2C0. Split the likelihood as

n∑
i=1

log

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)
=

n∑
i=1

log

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)
1(Y⊥uij>εZj ,∀j) +

n∑
i=1

log

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)
(1− 1(Y⊥uij>εZj ,∀j)).

Since min(W+
i , bi) ≤ W+

i ≤ |Wi| and using lemma C.1 d,

n∑
i=1

log

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)
1(Y⊥uij > εZj,∀j) =

n∑
i=1

(−bi(1− τ) +min(W+
i , bi))1(Y⊥uij>εZj ,∀j)

≤
n∑
i=1

(−2C0(1− τ) + |Wi|)1(Y⊥uij>εZj ,∀j).

From lemma C.1b and for large enough n then

n∑
i=1

log

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)
1(Y⊥uij>εZj ,∀j) ≤

n∑
i=1

|Wi|(1− 1(Y⊥uij>εZj ,∀j)).

Then for large enough n

n∑
i=1

log

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)
≤ −nC0(1− τ)Pr(Y⊥uij > εZj,∀j) + 2n lim

n→∞

1

m

m∑
i=1

E[|Wi|]

= −2n lim
n→∞

1

m

m∑
i=1

E[|Wi|]

= −1

2
nC0(1− τ)Pr(Y⊥uij > εZj, ∀j)

Thus the result holds when ui = 1
2
C0(1− τ)Pr(Y⊥uij > εZj,∀j).

The next lemma shows the marginal likelihood, In(Θ), goes to infinity at the same rate as

the numerator in the previous lemma.
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Lemma C.6. Suppose Assumptions 3.3a and 3.4 holds, then

∫
Θ

e
∑n
i=1 log

(
fτ (Yi|α,β,1)

fτ (Yi|α0,β0,1)

)
dΠ(α, β) ≥ e−nε.

Proof. From Lemma C.1e log
(

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

)
≥ −|bi| ≥ −|α− α0| − |β − β0|′|Γu||Yi|. Define

Dε =

{
(α, β) : |α− α0| <

1
k
ε

1 + cΓcy
, |β − β0| <

1
k
ε

1 + cΓcy
1k−1 componentwise

}
.

Then for (α, β) ∈ Vε

log

(
fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)

)
≥ −|α− α0| − |β − β0|′|Γu||Yi|

≥ −|α− α0| − |β − β0|′1k−1cΓcy

≥ − ε

1 + cΓcy

> −ε

Then
∑n

i=1 log
(

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

)
≥ −nε. If Π(·) is proper, then Π(Dε) ≤ 1.

The previous two lemmas imply the posterior is converging to zero in a restricted parameter

space.

Lemma C.7. Suppose Assumptions 3.4, and 3.6 hold. Then for each l ∈ {1, 2, ..., L(k)},

there exists a compact Gl such that

lim
n→∞

Π(Vln ∩Gc
l |Y1, ...,Yn) = 0.
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Proof. Let ε from Lemma C.6 equal ui
4

from Lemma C.5. Then

∫
Θ

e
∑n
i=1 log

(
fτ (Yi|α,β,1)

fτ (Yi|α0,β0,1)

)
dΠ(α, β) ≥

∫
Dε

e
∑n
i=1 log

(
fτ (Yi|α,β,1)

fτ (Yi|α0,β0,1)

)
dΠ(α, β)

≥ e−nεdΠ(Dε)

Then lim
n→∞

∫
Θ
e
∑n
i=1 log

(
fτ (Yi|α,β,1)

fτ (Yi|α0,β0,1)

)
dΠ(α, β)enuj/2 =∞ and

lim
n→∞

∫
Vjn∩Gcj

e
∑n
i=1 log

(
fτ (Yi|α,β,1)

fτ (Yi|α0,β0,1)

)
dΠ(α, β)enuj/2 = 0.

The next proposition bounds the expected value of the numerator, E[In(V1n ∩G)d], and the

denominator, In(Θ), of the posterior. Define Bin = −E
[
log
(

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

)]
.

Lemma C.8. Suppose Assumptions 3.3a and 3.4 hold. Define

Dδn =
{

(α, β) : |α− α0| <
1
k
δn

1+cΓcy
, |β − β0| <

1
k
δn

1+cΓcy
1k−1 componentwise

}
. Then for (α, β) ∈

Dδn

1. There exists a δn ∈ (0, 1) and fixed R > 0 such that

E

(∫
V1n∩G

n∏
i=1

fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)
dΠ(α, β)

)d
 ≤ ed

∑n
i=1BinendδnR2/δ2

n

2.

∫
Θ

n∏
i=1

fτ (Yi|α, β, 1)

fτ (Yi|α0, β0, 1)
dΠ(α, β) ≥ e−nδnΠ(Dδn)

Proof. From Lemma C.3 and C.4 E

[(∫
W1n∩G

∏n
i=1

fτ (Yi|α,β,1)
fτ (Yi|α0,β0,1)

dΠ(α, β)
)d]
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≤
J(δn)∑
j=1

E
( n∏

i=1

fu,τ (Yi|αj, βj, 1)

fτ (Yi|α0, β0, 1)

)d
 endδnΠ(Aj)

d


≤

J(δn)∑
j=1

[
e−d

∑n
i=1 BinendδnΠ(Aj)

d
]

≤ e−d
∑n
i=1 BinendδnJ(δn)

Since G is compact, R can be chosen large enough so that J(δn) ≤ R2/δ2
n. 2) is from Lemma

C.7.

The proof of Theorem 3.1 is below.

Proof. Suppose Π is proper. Lemma C.5 shows we can focus on the case W1n∩G. Set ∆n = ∆

and δn = δ. Then from Lemma C.8, there exists a d ∈ (0, 1) such that for sufficiently large

n

E
[
(Π(V1n ∩G|Y1, ...,Yn))d

]
≤ R2

δ2(Π(Vδ))d
e−d

∑n
i=1 Bine2ndδ

≤ R2

δ2(Π(Vδ))d
e
− 1

2
dn lim

m→∞
1
m

∑m
i=1Bime2ndδ

Chose δ = 1
8

lim
m→∞

1
m

∑m
i=1Bim and note that C ′ = R2

δ2(Π(Vδ))d
is a fixed constant. Then

E
[
(Π(V1n ∩G|Y1, ...,Yn))d

]
≤ C ′e−ndδ/4. Since lim

n→∞

∑∞
n=1C

′e−ndδ/4 <∞ then the Markov

inequality and Borel Cantelli imply posterior consistency a.s..

Now suppose the prior is improper but admits a proper posterior. Consider the posterior

from the first observation Π(·|Y1). Under Assumption 3.3b, Π(·|Y1) is proper. Assumption

3.5 ensures that fτ (Yi|α0, β0, 1) dominates p0. Thus the formal posterior exists on a set of

P measure 1. Further, Π(U |Y1) > 0 for some open U containing (α0, β0). Thus Π(·|Y1) can
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be used as a proper prior on the likelihood containing Y2, ...,Yn which produces a posterior

equivalent to the original Π(·|Y1, ...,Yn) and thus the same argument above using a proper

prior can be applied to the posterior Π(·|Y2, ...,Yn) using Π(·|Y1) as a proper prior.

I would like to thank Karthik Sriram and R.V. Ramamoorthi for help with the improper

prior case.

C.2 Non-zero centered prior: second approach

The second approach is to investigate the implicit prior in the untransformed response space

of Y2 against Y1, X and an intercept. Denote Γu = [u⊥1 , u
⊥
2 ]′. Note that Yui = βτyY⊥ui +

β′τxXi + ατ can be rewritten as

Y2i =
1

u2 − βτyu⊥2

(
(βτyu

⊥
1 − u1)Y1i + β′τxXi + ατ

)
= φτyY1i + φ′τxXi + φτ1

Since the equation is in slope-intercept form, the interpretation of φτ is fairly straight for-

ward. It can be verified that φτy = φτy(βτy) =
βτyu⊥1 −u1

u2−βτyu⊥2
= 1

u1(u⊥2 βτy−u2)
+ u2

u1
for βτy 6= u2

u⊥2

and u1 6= 0. Suppose prior θτ = [βτy, β
′
τx, ατ ]′ ∼ Fθτ (θτ ) with support Θτ . If Fβy is a

continuous distribution, the density of φτ is

fφτy = fβτy(φ−1
τy (βτy))

∣∣∣∣ d

dβτy

φ−1
τy (βτy)

∣∣∣∣ = fβτy

(
1

u⊥2

(
1

u1φτy − u2

+ u2

)) ∣∣∣∣ u1

u⊥2 (u1φτy − u2)2

∣∣∣∣
with support not containing

{
−u⊥1
u⊥2

}
, for u⊥2 6= 0.
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If βτy ∼ N(µ
τy
, σ2
τy), then the density of φτy is a shifted reciprocal Gaussian with density

fφτy(φ|a, b2) =
1√

2πb2
τ (φ− u2/u⊥2 )2

exp

(
− 1

2b2
τ

(
1

φ− u2/u⊥2
− a
)2
)
.

The parameters are a = µ
τ
u1u

⊥
2 − u1u2 and b = u1u

⊥
2 στ . The moments of φτy do not exist

(Robert, 1991). The density is bimodal with modes at

m1 =
−a+

√
a2 + 8b2

4b2 +
u2

u⊥2
and m2 =

−a−
√
a2 + 8b2

4b2 +
u2

u⊥2
.

Since moments do not exist, calibration can be tricky and has to rely on the modes and their

relative heights

fφτy(m1|a, b2)

fφτy(m2|a, b2)
=
a2 + a

√
a2 + 8b2 + 4b2

a2 − a
√
a2 + 8b2 + 4b2

exp

(
a
√
a2 + 8b2

b4

)

A few plots of the Reciprocal Gaussian are shown in figure C.1.

The distribution of φτx and φτ1 are ratio normals. I will discuss the implied prior on φτ1.

The distribution of φτx will follow by analogy. The implied intercept φτ1 = ατ

u2−βτyu⊥2
is a

ratio of normals distribution. The ratio of normals distributions can always be expressed as

a location scale shift of R = Z1+a
Z2+b

where Zi
iid∼ N(0, 1) for i ∈ {1, 2}. That is there exist

constants c and d such that φτ1 = cR + d (Marsaglia, 1965; Hinkley, 1969, 1970).1 The

1Let Wi ∼ N(θi, σ
2
i ) for i ∈ {1, 2} with corr(W1,W2) = ρ. Then W1

W2
= σ1

σ2

√
1− ρ2

(
θ1
σ1

+Z1

θ2
σ2

+Z2

+ ρ√
1−ρ2

)
where Zi ∼ N(0, 1) for i ∈ {1, 2} with corr(Z1, Z2) = 0. Thus a = θ1

σ1
, b = θ2

σ2
, c = σ1

σ2

√
1− ρ2 and

d = c ρ√
1−ρ2

where θ1 = aτ1, θ2 = u2 − aτyu⊥2 , σ1 = bτ1 and σ2 = bτyu
⊥
2 .
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Figure C.1: (left) Density of fφτy(φ|a, b2) for hyper parameters a = 0, b2 = 1 (solid black),
a = 0.5, b2 = 1 (dash red), a = 0, b2 = 2 (dotted blue). (right) A contour plot showing the
logged relative heights of the modes at m1 over m2 over the grid (a, b2) ∈ [−5, 5]× [10, 100].

density of φτ1 is

fφτ1(φ|a, b) =
e−

1
2

(a2+b2)

π(1 + φ2)

[
1 + ce

1
2
c2
∫ c

0

e−
1
2
t2dt

]
, where c =

b+ aφ√
1 + φ2

.

When a = b = 0, then the distribution reduces down to the standard cauchy distribution.

The distribution, like the reciprocal normal distribution, has no moments and can be bi-

modal. Unlike the reciprocal normal, there does not exist a closed form solution for the

exact location of the modes. Focusing on the positive quadrant of (a, b), if a ≤ 1 then the

distribution is unimodal and if a > 2.256058904 then the distribution is bimodal (discussion

of the other quadrants is relegated to the appendix). There is a curve that separates the two

regions as shown in the bottom right of figure C.2.2 If the distribution is bimodal, one mode

will be to the left of −b/a and the other to the right. The left mode tends to be much lower

than the right for positive (a, b). Unlike the reciprocal gaussian closed form solutions for

the modes do not exist. However, the distribution is approximately elliptical with ‘central

2The curve is approximately b = 18.621−63.411a2−54.668a3+17.716a4−2.2986a5
2.256058904−a for 1 ≤ 2.256....
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tendency’ µ = a
1.01b−0.2713

and ‘squared dispersion’ σ2 = a2+1

b2+0.108b−3.795
− µ2 when a < 2.256

and 4 < b (Marsaglia, 2006).
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Figure C.2: The top two plots and the bottom left plot show the density of the ratio normal
distribution with parameters (a, b). The top left plot shows the density for different values
of a with b fixed at zero. The parameters (a, b) = (1, 0) and (4, 0) result in the same density
as (a, b) = (−1, 0) and (−4, 0). The top right plot shows the density for different values of
b with a fixed at zero. The parameters (a, b) = (0, 1) and (0, 2) result in the same density
as (a, b) = (0,−1) and (0,−2). The bottom left plot shows the density for different values
of a and b. The parameters (a, b) = (1, 1), (−1, 1)and (2, 2) result in the same density as
(a, b) = (−1,−1), (1,−1)and (−2,−2). The bottom right graph shows the regions of the
positive quadrant of the parameter space where the density is either bimodal or unimodal.
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Appendix D

Chapter 4

D.1 Lemmas and proofs

This lemma provides distributions for CX , CY , and CX + CY .

Lemma D.1. Suppose Assumption 4.1 then CX + CY |X,p ∼ Poisson-Binomial(p) where

p = (p1, p2, ..., p9). This result still holds for Assumption 1.1b as well.

The proof of Theorem 4.1 is below.

Proof. From Lemma D.1, the distribution of CX + CY |X,p is not a function of X. Thus

Pr(CX +CY |X,p) = Pr(CX +CY |p) and independence is maintained after integrating out

p.

The proof of Lemma 4.1 is below.

Proof. Without loss of generality let justices 1, 2, ..., X be the justices affirming. If X = 0

then 1, 2, ..., 9 are voting to reverse. Since ci|pi ∼ Bernoulli(pi) then CX |X, p1, p2, ...pX =
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∑X
i=1 ci|X, p1, p2, ....pX . Then the probability of CX = k|X, p1, p2, ..., pX is

Pr(CX = k|X, p1, p2, ..., pX) =
∑
A∈Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj)

where Fk is the set of all subsets of size k from {1, 2, ..., X} (Wang, 1993). It follows that

Pr(CX = k|X) =
∫
Pr(CX = k|X, p1, p2, ..., pX)dFp1,p2,...,pX =

∫
. . .
∫
Pr(CX = k|X, p1, p2, ..., pX)dFp1dFp2 ...dFpX .

Notice for any given A ∈ Fk,
∏

i∈A pi and
∏

j∈Ac(1 − pj) have no common pl for any

l. It follows that Pr(CX = k|X) =
∑

A∈Fk

∏
i∈A µp

∏
j∈Ac(1 − µp) =

(
X
k

)
µkp(1 − µp)

X−k.

Thus CX |X ∼ Binomial(X,µp). Likewise, CY |X ∼ Binomial(9 − X,µp) and CX + CY ∼

Binomial(9, µp). Since CX |X ⊥ CY |X it follows that the probability mass function of

CX |X,CX+CY is
(XCx)(

9−X
CY

)
( 9
CX+CY

)
which means CX |X,CX+CY ∼ Hypergeometric(9, X, CX+CY ).

It follows that Pr(CX = 0|X,CX + CY = 1) = 1− X
9

.

The proof of Lemma 4.2 is below.

Proof. The conditional expectation is

E[X|X?] = X?Pr(X = X?|X?) + (X? + 1) (1− Pr(X = X?|X?))

= X? + 1− Pr(X = X?|X?)

Since conditioning on X? truncates X then Pr(X = X?|X?) = qX?
qX?+qX?+1

. The result

follows.

The proof of Theorem 4.2 is below.

Proof. X?+Y ? = 8 means there was a recusal. It follows from assumption 4.3 that CX+CY ≥

1. Since CX + CY ∈ {0, 1} then assumption 4.2 is true and CX + CY = 1. By assumption

4.2, X|(R = 1) = X|(CX + CY = 1). By Theorem 4.1, X|CX + CY = 1 ∼ X. Thus
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X|R = 1 ∼ X.

D.2 Supreme court process

The United States Supreme Court is the highest level of judicial authority in the United

States. It is composed of nine justices who rule on the cases presented before the court. An

odd number of justices was chosen to prevent tie votes. Justices are chosen by the President

and are confirmed by the Senate. Justices hold their seat at the court until death or they

decide to step down.

The Supreme Court holds original jurisdiction over disputes between states, ambassadors or

other high ranking ministers.1 This is a minority of the cases that the court hears (recently

about 1 or 2 a year). Most cases are appellate cases. These are cases from lower courts

where one of the parties involved are unsatisfied with the ruling or process and submit a

Writ of Certiorari to a higher court asking to review the case. Since the Supreme Court

is the highest court, there are no appeals from their rulings. The Supreme Court is not

required to review every case that submits a Writ of Certiorari. The court accepts less than

100 of the 7000 requests submitted to them annually. A case is accepted if at least 4 of the

9 justices vote to hear the case.2 If a case is not accepted, the ruling of the lower court is

accepted as the final ruling.3

The parties then gather in front of the court and present oral arguments. The oral arguments

1 Original jurisdiction means the first court to hear the matter. Since they are the highest authority, they
are the only court to hear matters of original jurisdiction.

2 7000 requests is too many for the judges to each individually read and vote on in an efficient manner.
So the Writs of Certiorari are divided among the law clerks (there are 3 or 4 clerks per justice) who write
a summary and provide a recommendation to whether the Supreme Court should hear the case. Then once
a week the justices get together and vote on cases based on the compiled summaries and recommendations.
Most justices pool together the certs to share the workload among the clerks. Some justices do not participate
in this pool.

3 If a case is accepted then the case is placed on the docket and the petitioner must write a brief describing
the issue that the court has agreed to review. Then the respondent submits a reply to the brief. Then both
parties submit replies to the submitted briefs.
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are mainly used so justices can ask the parties questions about the submitted briefs. At

the end of the week after oral arguments, the justices meet and discuss the case. After

discussions, a vote is held.4 Then the most senior justice in the majority assigns a justice

to write the opinion of the court. If a justice agrees with the decision of the court but not

the opinion they can write a concurring opinion. If a justice disagrees with the decision of

the court they can write a dissenting opinion. Then the decision of the court and opinions

are presented. The decision of the court is not finalized until the majority opinion is signed

and presented. There are some rare cases where a justice changes their vote after reading

dissenting opinions (e.g. Planned Parenthood v. Casey, 505 U.S. 833).5

4 This vote is sometimes called the conference vote
5 For a more detailed explanation of the entire process, see http://www.uscourts.gov/about-federal-

courts/educational-resources/about-educational-outreach/activity-resources/ supreme-1
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