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SUMMARY

Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect 

against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning 

(RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to 

ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses 
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oxygen and regulates the HIF transcription factor, could suffice to mediate local and remote 

ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found 

that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial 

ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model 

was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which 

drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient 

to mediate cardiac ischemic protection in this setting.

Graphical Abstract

INTRODUCTION

Brief periods of sublethal ischemia can protect tissues from a subsequent, more severe, 

ischemia-reperfusion (I/R) insult. This phenomenon of ‘ischemic preconditioning’ was first 

observed in experimental models of myocardial infarction (MI) (Murry et al., 1986) and 

later in coronary heart disease patients (Kloner et al., 1995). Patients who have angina 

(ischemic cardiac chest pain) within 48 hours before a MI have better outcomes than patients 

who do not experience preceding angina. Subsequent studies with animals showed that 

ischemia in one coronary artery territory could protect myocardium perfused by another 

coronary artery (Przyklenk et al., 1993), and that coronary effluent from an ischemic heart 

can protect a naive acceptor heart ex vivo (Dickson et al., 1999). Remarkably, ischemia to a 

non-cardiac organ also protects the heart at a distance (Gho et al., 1996). Some, but not all, 

human clinical trials showed that inducing arm ischemia improved outcomes after coronary 

artery interventions associated with iatrogenic cardiac ischemia (Davies et al., 2013) 

(Hausenloy et al., 2015; Meybohm et al., 2015; Thielmann et al., 2013). Many RIPC 

mechanisms have been proposed, including both humoral and neural mechanisms 

(Przyklenk, 2013).

The HIF transcription factor, which consists of a labile α subunit and a stable β subunit, 

accumulates during hypoxia and activates genes whose products promote cellular survival 
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under ischemic conditions. The HIFα subunit is regulated through prolyl hydroxylation by 

α-ketoglutarate (αKG) dependent-dioxygenases known as EGLNs (also called PHDs). Of 

the 3 EGLN paralogs, EGLN1 is the primary regulator of HIFα (Kaelin and Ratcliffe, 2008). 

Hydroxylated HIFα is bound by the von Hippel Lindau (VHL) tumor suppressor protein, 

which marks HIFα for degradation. EGLNs require O2, and HIFα hydroxylation is thus 

impaired when O2 is limited, allowing HIFα accumulation. In sum, EGLNs act as ‘O2 

sensors’ in metazoans and coordinate cellular responses that promote adaptation to hypoxia 

and ischemia (Kaelin and Ratcliffe, 2008).

Cardiac-specific Egln1 inactivation during late embryogenesis protects adult mice from MI 

after permanent coronary artery occlusion (Hölscher et al., 2011). Similarly, mice 

homozygous for a hypomorphic Egln1 allele have less myocardial damage after I/R than 

Egln1 +/+ mice (Hyvärinen et al., 2010). Conversely, both local and remote preconditioning 

are attenuated in Hif1α +/− mice (Cai et al., 2007; 2013). Collectively, these results support 

that HIF protects the heart during acute MI. However, chronic manipulation of HIF causes 

adaptations, such as increased angiogenesis and decreased mitochondria, that might be 

irrelevant to therapies aimed at acutely modulating the HIF response in patients with acute 

myocardial ischemia and impending MI (Huang et al., 2008). Moreover, a recent report 

challenged the conclusion that HIF1α is required for RIPC (Kalakech et al., 2013).

Others have acutely inactivated Egln at the time of experimental MI. The pharmacological 

prolyl hydroxylase inhibitors, FG0041, GSK360, and 2-(1-chloro-4-hydroxyisoquinoline-3-

carboxamido) acetate (ICA) have been shown to be cardioprotective in rodents (Bao et al., 

2010; Nwogu et al., 2001; Vogler et al., 2015). However, these drugs might inhibit other α-

ketoglutarate (αKG)-dependent dioxygenases in addition to the Eglns. Indeed FG0041 was 

initially tested in this setting because it inhibits the collagen prolyl hydroxylases and only 

later shown to inhibit the Eglns (Nwogu et al., 2001). Several groups reported ischemic 

cardioprotection in mice after intraperitoneal (i.p.) (Natarajan et al., 2006) or intraventricular 

(Eckle et al., 2008) injection of naked Egln1 siRNAs or intramyocardial injection of a 

plasmid encoding an Egln1 shRNA (Huang et al., 2008). Although these interventions 

reportedly induced HIF, the bioavailability of siRNAs and plasmids delivered in this way is 

suspect. Moreover, it was later revealed that the Egln1 siRNA used in one of these studies 

targeted a collagen prolyl hydroxylase rather than Egln1, raising questions about specificity 

(Natarajan et al., 2006). Finally, a recent study reported that intramuscular injection of an 

adenovirus encoding HIF1α acutely protected the heart at a distance (Cai et al., 2013).

RESULTS

Chronic Egln1 Inactivation in Cardiomyocytes Protects Against I/R Injury

We used genetic and pharmacological tools to probe the role of Egln1 and HIF in local and 

remote ischemic preconditioning. Adult mice in which Egln1 has been deleted in the heart at 

~E12.5 experience less myocardial damage after permanent occlusion of the left anterior 

descending (LAD) coronary artery than do control mice, implying that Egln1 plays a 

cardiac-intrinsic role in cardioprotection (Hölscher et al., 2011). To ask whether this is also 

true in an ischemia-reperfusion (I/R) model, which more closely mimics myocardial injury 

during clinical MI, we crossed mice with a conditional (floxed or “F”) Egln1 allele with a 
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mouse strain expressing Cre recombinase under the control of the cardiac-specific alpha 

myosin heavy chain (MHC) promoter (Agah et al., 1997). We confirmed inactivation of 

Egln1 in the heart, but not skeletal muscle, liver and kidney, in Egln1F/F;MHC-Cre mice 

(Figure S1A). As expected, heart-specific Egln1 inactivation induced HIF target genes 

(Figure S1B). Moreover, cardiac-specific Egln1 inactivation was cardioprotective in mice 

subjected to cardiac I/R injury (Figure S1C) and in isolated hearts in a Langendorff model of 

global myocardial ischemia, as reflected by a faster recovery (lowering) of end-diastolic 

pressures compared to control mice (Figure S1D). Therefore chronic Egln1 inactivation 

confers cardiac-intrinsic protection against both permanent and transient cardiac ischemia.

Acute Systemic Egln1 Inactivation Protects the Heart Against I/R Injury

We next tested an Egln inhibitor, FG-4497 (Fibrogen; (Laitala et al., 2012; Robinson et al., 

2008)), in the same cardiac I/R injury models. We first confirmed that FG-4497 induced 

HIF1α in HL-1 cardiomyocytes (Figure 1A) and inhibited Egln in vivo as determined by 

imaging mice that ubiquitously express a HIF1α-luciferase fusion reporter (Safran et al., 

2006). (Figure 1B). Notably, FG-4497 stabilized HIF1α and induced HIF target genes in the 

heart (Figure 1C and 1D). Pretreatment with FG-4497 decreased cardiac injury after I/R in 

the Langendorff model (Figure 1E) and decreased MI size in mice subjected to LAD 

occlusion/release in vivo by ~30% (Figure 1F). Importantly from a clinical perspective, 

FG-4497 treatment at the time of reperfusion also substantially reduced infarct sizes (Figure 

1G).

Next we used Egln1F/F;CreER mice that ubiquituously express a tamoxifen (TAM)-

activatable CreER fusion protein (Minamishima et al., 2008). Giving such mice TAM for 

three days significantly decreased Egln1 mRNA levels in the heart, kidney and skeletal 

muscle compared to TAM-treated Egln1+/+;CreER mice (Figure 2A), and induced HIF1α 

protein (Figure 1C) and HIF-responsive mRNAs in the heart (Figure 2B). Acute, systemic, 

inactivation of Egln1 decreased myocardial injury in the Langendorff I/R model (Figure 2C) 

and decreased MI size in mice subjected to cardiac I/R in vivo compared to TAM-treated 

Egln1+/+;CreER control mice (Figure 2D). Consistent with Egln1 being the relevant target of 

FG-4497, the effects of the combined Egln1 gene deletion and pharmacologic Egln 

inhibition were subadditive (Figure 2E). Therefore acute systemic Egln1 inactivation 

protects against cardiac I/R injury.

Skeletal Muscle Egln1 Deletion Confers Remote Cardiac Ischemic Protection

Protection against cardiac I/R injury after systemic Egln1 loss could reflect a cell-

autonomous effect in cardiomyocytes, a non-cell autonomous “remote” effect on the heart, 

or both. To explore non-cell autonomous effects, we made mice in which Egln1 could be 

conditionally inactivated specifically in skeletal muscle. Egln1F/F and Egln1+/+ mice were 

crossed with mice expressing a TAM-dependent CreER transgene driven by a skeletal 

muscle-specific promoter (human alpha actin; HSA-Cre-ERT2) (Schuler et al., 2005). 

Egln1F/F;HSA-Cre-ERT2 and Egln1+/+;HSA-Cre-ERT2 mice were given TAM or vehicle for 

five days and sacrificed 5 days later. Egln1 was recombined in multiple skeletal muscle 

groups of TAM-treated Egln1F/F;HSA-Cre-ERT2 mice, but not in other tissues tested, such 

as the heart and liver (Figure S2A). Egln1 deletion decreased skeletal muscle Egln1 mRNA 
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and protein levels (Figure 3A and 3B). Importantly, hearts from TAM-treated 

Egln1F/F;HSA-Cre-ERT2 mice did not exhibit decreased Egln1 mRNA (Figure 3A), 

decreased Egln1 protein (Figure S2B), increased HIF1α protein (Figure S2C), or increased 

HIF-responsive mRNAs (Figure S2D and S2E).

We next asked whether Egln1 deletion in the skeletal muscle can protect the heart at a 

distance. TAM-treated Egln1F/F;HSA-Cre-ERT2 and Egln1+/+;HSA-Cre-ERT2 mice were 

subjected to in vivo cardiac I/R injury. Deletion of Egln1 in the skeletal muscle reduced MI 

size after cardiac I/R injury by ~40% (Figure 3C). HIF induces nitric oxide synthase in 

certain cell types (Coulet et al., 2003), which might protect the heart by increasing nitric 

oxide production and decreasing afterload. We did not, however, detect differences in blood 

pressures between TAM-treated Egln1F/F;HSA-Cre-ERT2 and Egln1+/+;HSA-Cre-ERT2 

mice (Figure S2F), nor alterations of blood nitrite levels (Figure S2G) (Coulet et al., 2003). 

These data show that Egln1 inactivation in skeletal muscles confers remote ischemic 

cardioprotection.

Remote Ischemic Protection by Skeletal Muscle Egln1 Gene Deletion is Mediated by a 
Humoral Factor

It is debated whether an intact peripheral nervous system, a soluble humoral factor, or both 

are required for RIPC (Przyklenk, 2013). To ask whether a humoral factor mediates RIPC in 

mice with skeletal muscle-specific Egln1 deletion, we performed a parabiosis experiment. 

Parabiosis pairings were made between wild-type (WT) mice (“recipient” partner) and either 

Egln1F/F;HSA-Cre-ERT2 or Egln1+/+;HSA-Cre-ERT2 mice (“donor” partner). The donor 

mice were given TAM for 5 days, and 5 days later the recipient mice were subjected to 

cardiac I/R injury. Evan’s blue dye injected 2 days later confirmed shared circulation in both 

types of pairings (Figure 3E). Genotyping confirmed Egln1 deletion specifically in the 

skeletal muscle of TAM-treated Egln1F/F;HSA-Cre-ERT2 donor mice (Figure 3D). Recipient 

parabiosis partners of Egln1F/F;HSA-Cre-ERT2 mice had ~30% smaller MIs than did 

recipient partners of Egln1+/+;HSA-Cre-ERT2 mice (Figure 3F). These data argue that a 

humoral factor mediates RIPC after Egln1 deletion in skeletal muscle.

Egln1 Inactivation Alters Circulating Tryptophan Metabolites

To look for circulating cardioprotective factors that were upregulated after skeletal muscle 

deletion of Egln1, we profiled serum cytokines in TAM-treated Egln1F/F;HSA-Cre-ERT2 

and Egln1+/+;HSA-Cre-ERT2 mice. None of the 144 cytokines profiled were upregulated 

>10% after Egln1 loss in skeletal muscle (Figure S3A). In particular, we did not detect 

changes in the levels of IL-10 and EPO, which have previously been implicated in RIPC 

(Cai et al., 2013; 2003) (Figure S3B). In addition, pretreatment with a JAK1/2 inhibitor 

(Ruxolitinib), which blocks signaling by many cytokine receptors, did not abrogate RIPC in 

our model (Figure S3C). We concluded that the humoral mediator of RIPC in our model was 

not one of the cytokines examined or a cytokine that signals through JAK1/2.

Next, we analyzed gene expression profiles in skeletal muscles from TAM-treated 

Egln1F/F;HSA-Cre-ERT2 and Egln1+/+;HSA-Cre-ERT2 mice, and compared differentially 

regulated genes to a published list of genes predicted to encode secreted proteins (Wu et al., 
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2010). 41 genes were differentially expressed in the skeletal muscles from TAM-treated 

Egln1F/F;HSA-Cre-ERT2 (q<0.1), 7 of which encode proteins predicted to be secreted 

(Natarajan et al., 2006; Wu et al., 2010). Real-time PCR confirmed up-regulation of 2 of 

these 7 mRNAs, PLAC9 and LYPD1 (Figure S3D). Relatively little is known of the biologic 

function of PLAC9 and neither gene, to our knowledge, is known to encode circulating 

polypeptides.

We next looked for a potential small molecule mediator(s) of cardioprotection. Blood was 

collected from TAM-treated Egln1F/F;HSA-Cre-ERT2 and Egln1+/+;HSA-Cre-ERT2 mice, 

and serum and plasma metabolites were profiled by LC-MS. Among the metabolites with 

statistically significant differences were various tryptophan (TRP)-related metabolites 

(Figure 4A). To narrow the list of possible mediators of remote cardiac I/R protection, we 

did an orthogonal experiment by profiling selected serum metabolites in WT mice given 

FG-4497 or vehicle (Figure 4B). We hypothesized that the cardioprotective mediator(s) 

would be induced by both genetic and pharmacological Egln1 inhibition, that systemic 

Egln1 inhibition might alter levels of the metabolite(s) of interest to an even greater extent 

than skeletal muscle deletion of Egln1, and that the cardioprotective metabolite(s) would be 

induced rapidly by FG-4497 since FG-4497 protected hearts even when administered after 
ischemic injury (Figure 1G). Strikingly, we observed significant changes in circulating TRP 

metabolites 10 minutes after FG-4497 treatment (Figure 4B).

The Tryptophan Metabolite Kynurenic Acid Mediates Remote Ischemic Protection after 
Egln1 Inactivation

We focused on the TRP metabolite kynurenic acid (KYNA) as a possible cardioprotective 

agent because KYNA is tissue protective in models of cerebral and renal injury (Germano et 

al., 1987; Pundir et al., 2013; Zwilling et al., 2011). KYNA production from TRP is 

regulated by a rate-limiting pyrolase TRP dioxygenase (TDO) in the liver or indoleamine 2,3 

dioxygenase (IDO) in peripheral tissues, as well as by αKG-dependent transamination 

performed by kynurenine transaminases (KAT; Figure 4C) (Agudelo et al., 2014). We 

confirmed that the mass spectrometry ion counts we obtained for serum KYNA and αKG in 

mice were in the linear ranges for their respective assays and consistent with serum 

concentrations of ~5 μM and ~50 μM, respectively in untreated WT mice (Figure S3E–F).

To ask whether KYNA was needed for cardiac I/R protection after skeletal muscle Egln1 
deletion, TAM-treated Egln1F/F;HSA-Cre-ERT2 and Egln1+/+;HSA-Cre-ERT2 controls were 

given 1-methyl tryptophan (1MT), a reversible inhibitor of both TDO and IDO, before 

cardiac I/R injury. 1-MT partially abrogated the protection caused by skeletal muscle 

deletion of Egln1, but did not affect MI sizes in control animals (Figure 4D). Conversely, 

pretreatment of WT mice with KYNA (Andiné et al., 1988) or the KYNA mimetic L689,560 

decreased MI size compared to vehicle-treated mice (Figure 4E and 4F). Cardioprotection 

by KYNA appeared to be heart-autonomous, as addition of KYNA to the perfusate of 

isolated hearts improved ischemia tolerance in Langendorff assays (Figure 4G). These data 

argue that KYNA is necessary and sufficient for remote cardiac ischemic protection 

following Egln1 inhibition.
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Egln1 Inhibition Generates KYNA via Altered Systemic αKG Metabolism

KYNA was not induced by inactivating Egln1 in various cell culture models (Figure S4A) 

and mRNAs linked to TRP metabolism were not induced in skeletal muscle after 

inactivating Egln1 (Figure S4B), suggesting that the increased KYNA observed after Egln1 

inactivation in skeletal muscle in vivo was indirect and non-cell autonomous. In order to 

determine the organ(s) producing KYNA in our model, mice were infused with U-13C-TRP 

and then given FG-4497 (Figure S4C). Newly formed U-13C-KYNA was detected in the 

serum, liver, kidneys, and lung, but not in skeletal muscle (Figure 5A). We concluded that 

KYNA is made by a tissue other than muscle after Egln1 inactivation in skeletal muscle.

Hepatic KYNA production was intriguing because the TRP metabolites n-

methylnicotinamide (NMN) and niacinamide (NAM), which can be made only by the liver 

and the kidney, were among the serum metabolites downregulated by skeletal muscle Egln1 
loss (Figure 4A). Moreover, our U-13C-TRP studies confirmed conversion of TRP to NMN 

and NAM in the liver and not the kidney (data not shown). Up-regulation of circulating 

KYNA combined with down-regulation of NMN and NAM suggested altered hepatic TRP 

metabolism after Egln inhibition (Figure 4C).

How might targeting Egln—via systemic FG-4497 administration or skeletal muscle 

deletion of Egln1—regulate hepatic TRP metabolism? We found no differences in mRNA 

levels for KYNA pathway enzymes in the liver (Figure S4D) of TAM-treated Egln1F/F;HSA-
Cre-ERT2 mice compared to control mice. Moreover, serum KYNA was increased 10 

minutes after systemic FG-4497 administration (Figure 4B). These two observations 

suggested that control of KYNA by Egln1 in this model did not involve transcriptional 

changes in the liver.

KYNA production is regulated by KATs (Agudelo et al., 2014) which, like Egln1, require 

αKG as a co-substrate. αKG accumulates under hypoxic conditions and after pVHL loss 

(with consequent HIF stabilization) (Metallo et al., 2012; Wise et al., 2011), suggesting that 

αKG might link Egln1 inactivation to KYNA production. Indeed, αKG levels were elevated 

in the serum (Figure 4A), skeletal muscle, and liver in TAM-treated Egln1F/F;HSA-Cre-
ERT2 mice compared to control mice (Figure 5B) and in the livers of mice given FG-4497 

compared to vehicle (Figure 5C). Systemic administration of αKG, like FG-4497, rapidly 

(10 minutes) increased circulating and hepatic KYNA levels (Figure 5D). Importantly, 

systemic αKG administration also protected hearts subjected to I/R injury in vivo (Figure 

5E) and ex vivo in the Langendorff model (Figure 5F). In notable contrast to KYNA, 

however, αKG did not provide I/R protection when added directly to the perfusate in the 

Langendorff model (Figure 5F), consistent with the idea that αKG protects in vivo by 

increasing hepatic KYNA production.

HIF-independent Regulation of αKG Metabolism by Egln1

In cell culture models, hypoxia and FG-4497 both increased αKG levels (Figure 6A–B). 

This was true whether αKG levels were normalized to cell number, or to the dioxygenase 

product succinate (αKG/Suc ratio) or to the transamination partner glutamate (αKG/Glu 

ratio). FG-4497 had minimal effect on αKG in cells Egln1−/− cells, supporting an on-target 
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drug effect (Figure S5A). The rapid induction of αKG (Figure 5C) and KYNA (Figure 4B) 

after Egln1 inactivation in vivo suggested that the accumulation of αKG in this setting does 

not require the canonical Egln1 target HIFα and transcriptional induction of HIF target 

genes. Consistent with this view, FG-4497 and hypoxia increased the αKG/Glu ratio in 

Hepa-1c1c7 cells that lack the requisite HIFα transcriptional partner ARNT (Figure 6C) and, 

accordingly, cannot activate a HIF-responsive luciferase reporter after Egln inhibition 

(Figure 6D) despite HIF1α stabilization (Figure 6E). Taken together, our data suggest that 

Egln inhibition in skeletal muscle—in a manner independent of HIF transcriptional activity

—increases circulating and hepatic αKG, which drives the production of the 

cardioprotective metabolite KYNA.

We hypothesized that Egln1 inhibition increases αKG levels as a direct or indirect 

consequence of altered decarboxylation of its co-substrate, αKG. Egln1 is highly active, 

with a maximum rate of αKG decarboxylation of 45 mol/mol Egln1/min (Hirsilä et al., 

2005). We estimate that 1 gram of skeletal muscle protein contains approximately 6.11 

picomoles of Egln1, which based on the above rate, could decarboxylate 275 picomoles 

αKG /minute (Figure S5B–F). As a point of reference, this flux is ~0.5% of the skeletal 

muscle glycolytic rate (Kummitha et al., 2014).

To assess this predicted high rate of flux further, we traced the conversion of esterified, 13C-

αKG to succinate over time in cells. 13C-αKG was rapidly converted to 13C-succinate in 

both WT (Figure 6F) and Cytochrome B mutant 143B cybrid cells (Figure S5G–H). This 

conversion was enhanced by ectopic expression of WT, but not catalytically-defective, 

EGLN1 (Ladroue et al., 2008), and was decreased by 10-minute pretreatment with FG-4497. 

These effects of manipulating EGLN1 were not due to indirect changes in O2 consumption 

because Cytochrome B mutant cells lack an intact electron chain and are respiration 

defective (Sullivan et al., 2015). These experiments yielded an estimated rate of αKG 

decarboxylation by EGLN1 of ~200 picomoles/min/g of tissue (Figure S5I). The actual rate 

might be higher in tissues with high metabolic rates such as the heart, muscle and liver. 

Collectively, these findings support a high rate of EGLN1-dependent conversion of αKG to 

succinate and implicate EGLN1 in the direct control of central carbon metabolism.

DISCUSSION

Cardiovascular diseases such as MI and stroke are the leading cause of death worldwide. 

Our findings confirm and extend earlier claims that chronic Egln1 inactivation, as well as 

chronic HIF stabilization, protects the heart against I/R injury (Cai et al., 2007; Hyvärinen et 

al., 2010) and permanent ligation injury (Bao et al., 2010; Nwogu et al., 2001). However, 

prolonged HIF activation can ultimately cause deleterious cardiac effects, culminating in 

dilated cardiomyopathy (Bekeredjian et al., 2010; Huang et al., 2004; Moslehi et al., 2010). 

Moreover, these preclinical models of chronic HIF activation do not necessarily address the 

utility of acutely inactivating Egln1 in the pre or peri-infarct setting. Using both a 

conditional Egln1 allele and a small molecule Egln1 inhibitor we found that acute Egln 

inactivation protects the heart against I/R injury. Importantly, the use of a pharmacological 

inhibitor, in contrast to the genetic model, allowed us to model drug treatment at the time of 

injury, where we again observed significant protection. Nonetheless, EglN1 inhibition might 
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ultimately be most effective when used prophylactically, such as in the setting of unstable 

angina or elective cardiac surgery, which are associated with a high risk of an ischemic 

insult.

The cardioprotective effects observed after acute, systemic, Egln1 inactivation are likely to 

involve both cardiomyocyte-intrinsic HIF-dependent effects as well as remote effects. Since 

Egln1 is ubiquitously expressed and would predictably be inhibited by tissue ischemia, such 

remote effects could potentially underlie RIPC. Indeed, we found that acute, genetic ablation 

of Egln1 in skeletal muscles protects the heart at a distance.

We discovered that acute Egln1 inhibition leads to rapid, HIF-independent, systemic 

induction of αKG, which drives hepatic transamination of the TRP metabolite kynurenine 

(KYN) to produce KYNA, presumably by stimulating one of several known αKG-dependent 

KATs. Notably, perivenous hepatocytes are able to utilize circulating αKG to support 

transamination reactions (Stoll and Hüssinger, 1989). KYNA was previously shown to be 

tissue protective in models of cerebral and renal ischemia (Andiné et al., 1988; Germano et 

al., 1987; Pundir et al., 2013). We observed that KYNA is cardioprotective both in vivo and 

ex vivo, and is both necessary and sufficient for remote cardiac protection after skeletal 

muscle inactivation of Egln1. Although KYNA is critical in our model, additional humoral 

and neural factors might also contribute to RIPC.

Notably, KYNA is elevated in survivors of cardiac arrest—a condition of systemic ischemia

—in both animal models and in humans (Ristagno et al., 2013). Also, the KYNA precursor, 

KYN, is induced in hypoxic cells as part of a ‘catabolic signature’ of hypoxia (Frezza et al., 

2011). Additionally the downstream kynurenine pathway metabolite anthranilate is one of 

the few metabolites elevated for sustained periods after MI, suggesting changes in TRP 

metabolism during cardiac ischemia (Lewis et al., 2008). These observations underscore a 

potential role of TRP metabolism in the response to ischemia.

Our data suggest that acute inactivation of Egln1, which utilizes αKG as a co-substrate, 

causes the rapid accumulation of αKG. The rate of αKG decarboxylation by Egln1 is 

predicted to be high because of the rapid turnover of its hydroxylation targets, the HIFα 

proteins. Biochemical experiments also suggest that the EglNs decarboxylate αKG in an 

uncoupled reaction in the absence of a polypeptide substrate so long as adequate reducing 

equivalents are available (Hirsilä et al., 2005), although the relative importance of coupled 

and uncoupled αKG decarboxylation by the Eglns in vivo is unknown. Nonetheless, our 

experiments with 13C-αKG are consistent with a very high rate of αKG metabolism by 

Egln1. Although it is difficult to predict changes in metabolite pool sizes from changes in 

flux rates, the rapid induction of αKG after Egln1 inhibition is likely due, at least in part, to 

the abrupt decrease in αKG utilization by Egln1. Notably, acutely inhibiting an αKG flux of 

nanomoles per minute on a whole mouse basis could theoretically alter serum αKG 

concentrations in the physiological (μM) range. It is also possible that Egln1 has a non-

canonical substrate that acutely influences αKG pool sizes, or that changes in Egln1 

metabolic flux indirectly alter other processes that ultimately impact αKG pool sizes. 

Finally, decreased αKG uptake by tissues after Egln1 loss might contribute to redistribution 

of αKG in vivo.
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KYNA is an agonist for the aryl hydrocarbon receptor, where it can affect transcription, and 

a ligand for various receptors including NMDA receptors, neuronal cholinergic α7 nicotine 

receptors, and the orphan G-coupled receptor GPR35. Interestingly, GPR35 is a HIF target 

that is induced during cardiac remodeling (Ronkainen et al., 2014). Clearly additional 

studies are required to determine how KYNA protects the heart.

The mediator(s) of RIPC have been sought for more than 20 years, in hopes they could be 

used to treat cardiovascular diseases. Two recent large, randomized, studies, however, did 

not find a benefit of RIPC in patients undergoing cardiac surgery (Hausenloy et al., 2015; 

Meybohm et al., 2015). Our findings suggest that the efficacy of RIPC could be influenced 

by many variables including duration and magnitude of ischemia, skeletal muscle mass, 

hepatic function, and concurrent medications, including drugs metabolized in the liver, such 

as anesthetics. With respect to the latter, these two studies required and allowed, 

respectively, the use of propofol, which has been suggested to block RIPC (Kottenberg et al., 

2012; 2014). Direct administration of KYNA might be a more robust way to protect tissues 

such as the heart than past attempts to induce RIPC with controlled regional ischemia.

EXPERIMENTAL PROCEDURES

Materials

FG-4497 was obtained from FibroGen, Inc. (San Francisco, CA, USA), and dosed at 50 

mg/kg for mouse studies and 30 μM concentration for in vitro studies. 5 mg/ml 1-methyl-

DL-tryptophan (1-MT; Sigma-Aldrich, St. Louis, MO, USA) was added to the drinking 

water of mice.

Cell Culture

Immortalized mouse embryonic fibroblasts (MEFs) were made from Egln1+/+ and Egln1−/− 
littermates and maintained in pyruvate-free DMEM containing 10% fetal bovine serum 

(FBS), 1% penicillin/streptomycin (P/S). Hepa-1c1c7 mouse hepatoma cells (ATCC, 

Manassas, VA, USA) were grown in MEM (Corning Mediatech, Manassas, VA, USA) 

supplemented with 10% FBS and 1% P/S. 143B cybrid cells (Sullivan et al., 2015) were 

grown in DMEM supplemented with 10% FBS, 1% P/S, 1 mM sodium pyruvate, and 0.1 

mg/ml uridine.

Retroviruses

A Flag-tagged WT human EGLN1 cDNA (Lorenzo et al., 2014) was subcloned into a pLenti 

vector with a CMV promoter. The H374R mutation (c.1121A→G) was made by site-

directed mutagenesis. The 3XHRE luciferase reporter (Yan et al., 2007) was shuttled into a 

promoterless lentivirus. Lentiviruses were made by co-transfection (TransIT, Mirus Bio 

LLC, Madison, WI, USA) of 293TL cells with expression vectors along with the packaging 

constructs. Cells were infected by centrifugation in the presence of viral supernatants and 

polybrene.
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Mice

The Egln1F/F, αMHC-Cre, CreER, HSA-Cre-ERT2 and ODD-Luc mice were previously 

described (Minamishima et al., 2008; Moslehi et al., 2010; Safran et al., 2006; Schuler et al., 

2005). Egln1 was deleted by treating age- and sex-matched Egln1F/F mice harboring a TAM-

regulated Cre with TAM 1 mg/dose i.p.. For studies in HSA-Cre-ERT2 mice, TAM was 

given daily for 5 days and mice were studied 5 days later. For studies in CreER mice, three 

days of TAM were given and mice were analyzed on day 4 (Minamishima et al., 2008).

In Vivo Bioluminescence Imaging

In vivo bioluminescence imaging was done as previously described (Safran et al., 2006). 

Mice were given FG-4497 (i.p.) at the stated doses 2 hours before D-luciferin (150 mg/kg, 

i.p.).

Ischemia-Reperfusion Injury

8–12 week old mice were anesthetized, intubated and ventilated. Left thoractotomy was 

performed, and the left anterior descending (LAD) artery was ligated with a 6.0 silk suture. 

Ischemia was confirmed by myocardial blanching and electrocardiographic (ECG) evidence 

of injury. Five minutes into ischemia, 50 μL of fluorescent microspheres (10 μM 

FluoSpheres, Molecular Probes, Eugene, OR, USA) was injected into the left ventricular 

cavity. The LAD ligature was released 30 minutes later and reperfusion confirmed visually 

by ECG. Overall survival was 70–80% at 24 hours. Mice were terminally anesthetized 24 

hours after ischemia with ketamine/xylazine followed by cervical dislocation, hearts were 

harvested, and the ventricles were sectioned from apex to base in 2 mm sections. Sections 

were incubated in 2% (wt/vol) triphenyltetrazolium (TTC, Sigma) in phosphate-buffered 

saline at 25°C for 30 minutes. Infarct size and area at risk (AAR) was quantified from light 

and fluorescent micrographs of myocardial sections using Adobe Photoshop. Percent MI 

was calculated as the infarcted area divided by the AAR. Assessment of I/R injury in the 

Langendorff Model was as described (Liao et al., 2012).

Parabiosis surgeries were done as per published protocols (Wright et al., 2001). Ten days 

after the parabiosis operation, a subset (n=2) of parabiosed mice were used to confirm the 

presence of cross-circulation of blood by Evan’s Blue dye injection. One mouse in each 

joined pair was injected with 100 μl of Evan’s Blue into the retro-orbital venous plexus. 

Peripheral blood was collected before and 2 hours after injection. Cardiac I/R injury was 

performed as described above. The “recipient” partner (mouse undergoing I/R) was 

anesthetized and intubated per protocol while “donor” partners was anesthetized using 

ketamine at 80 mg/kg IP for the duration of the surgery.

In Vivo Delivery of Stable Isotope Tracers

Conscious, unrestrained mice were infused with 0.19 mg/kg/minute U-13C-TRP (Cambridge 

Isotopes Laboratories, Inc., Tewksbury, MA, USA) in normal saline via a central venous 

catheter. At 30-minute intervals, 20 μl of blood was sampled from an arterial catheter and 10 

μl aliquot of plasma was snap-frozen in liquid N2. After 90 min, a 50 mg/kg bolus of 

FG-4497 was dosed over 4 minutes. Mice were sacrificed by sodium pentobarbital (120 mg/

kg), and tissues collected.
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Metabolite Extraction and Mass Spectrometry

For metabolic analyses organs were quickly dissected from euthanized mice. ~50 mg tissue 

sections were clamped between liquid nitrogen-cooled flat forceps, weighed, and ground. 

Metabolites were extracted in methanol:water:chloroform (6:3:4) by vortexing for 10 

minutes at 4°C followed by centrifugation at 10,000 x g for 10 minutes at 4°C. Aliquots of 

aqueous fractions, in proportion to tissue exact mass, were dried in a refrigerated centrivap. 

For cell culture experiments, sample extraction were done as described (Fendt et al., 2013).

For gas chromatography mass spectrometry (GCMS) analyses, dried metabolites were 

derivatized and analyzed as described (Fendt et al., 2013). Reported are the dominant ions 

for derivatives of alpha-ketoglutarate (αKG, m/z 346), Succinate (Suc, m/z 289), and 

Glutamate (Glu, m/z 432). 13C mass isotopes were quantified and corrected for natural mass 

isotope abundances. For liquid chromatography mass spectrometry (LC-MS) analysis of 

tissue metabolites, dried metabolites were resuspended in acetonitrile:methanol:formic acid 

(75:25:0.5 v:v:v) and samples were analyzed in positive and negative ion mode using via 

hydrophilic interaction liquid chromatography (HILIC) MS analyses (Avanesov et al., 2014; 

Townsend et al., 2013; Wang et al., 2011).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Inhibition of EglN1 locally or at a distance protects the heart against I/R injury

• Remote ischemic protection after EglN1 loss is mediated by a humoral factor

• Diversion of the EglN co-substrate αKG stimulates hepatic kynurenic acid 

production
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Figure 1. Acute Systemic Inhibition of Egln Protects Against Cardiac I/R Injury
(A) Representative immunoblots of HL-1 cardiomyocytes treated with FG-4497 for 6 hours.

(B) Bioluminescent images of representative mice expressing a HIF-luciferase fusion protein 

3 hours after being given intravenous (i.v.) FG-4497.

(C) HIF1α protein levels in the hearts of mice given 50 or 100 mg/kg FG-4497 i.v., as 

indicated by the triangle, or after systemic Egln1 genetic deletion. Egln1F/F; Cre-ER and 

Egln1+/+; Cre-ER mice were given TAM for 5 days before sacrifice.

(D) Real-time PCR assays of mRNAs in the heart 3 hours after i.p. administration of 50 

mg/kg FG-4497 (n=5) or vehicle (n=4). Data shown are mean fold changes ± SEM. 

*p<0.05, **p<0.01, Student’s t-test, FG-4497 versus vehicle (Veh.).

(E) LVEDP in Langendorff assays of global I/R injury. Mice were given 50 mg/kg FG-4497 

i.v. or Veh. 2 hours before cardiectomy. Data shown are mean pressures ± SEM, n = 8 in 

each group. *p<0.05, **p<0.01, Student’s t-test.

(F) MI size after cardiac I/R injury in mice given 50 mg/kg FG-4497 i.p. or Veh. two hours 

before in vivo cardiac I/R injury. Data are normalized to the Area-at-Risk (AAR). Data 

shown are means ± SEM, n = 8 FG-4497 and n = 7 vehicle. *p<0.05, Student’s t-test. 

Representative photographs of TTC-stained hearts are shown.
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(G) MI size relative to AAR in mice given 50 mg/kg FG-4497 i.p. or Veh. at the time of 

LAD reperfusion. Data shown are means ± SEM, n = 6 FG-4497 and n = 5 vehicle. *p<0.05, 

Student’s t-test. Representative photographs of TTC-stained hearts are shown.
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Figure 2. Acute Systemic Deletion of Egln1 Protects Against Cardiac I/R Injury
(A) Real-time PCR assays of Egln1 mRNA in tissues from Egln1F/F; CreER and Egln1+/+; 

CreER mice. Mice were given TAM for 3 days and sacrificed 3 days later. Data shown are 

mean fold changes ± SEM, n = 4 in each group. *p<0.05, **p<0.01, ***p<0.01, Student’s t-
test, difference in mRNA levels between Egln1F/F; CreER and Egln1+/+; CreER mice.

(B) Real-time PCR assays of select HIF-responsive mRNAs in the hearts from TAM-treated 

Egln1F/F; CreER and Egln1+/+; CreER mice. Data shown are mean fold changes ± SEM, n = 

4 in each group. *p<0.05, **p<0.01, ***p<0.01, Student’s t-test, difference in mRNA levels 

between Egln1F/F; CreER and Egln1+/+; CreER mice.

(C) LVEDP in Langendorff assays of global I/R injury. Mice were given TAM as in (A) 

before cardiectomy. Data shown are mean pressures ± SEM, n = 6 in each group. **p<0.01, 

***p<0.01, Student’s t-test.
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(D) MI size relative to AAR after in vivo cardiac I/R injury in TAM-treated Egln1F/F; CreER 

and Egln1+/+; CreER mice. Data shown are means ± SEM, n = 10 mice per group. **p<0.01, 

Student’s t-test.

(E) MI size after cardiac I/R injury in TAM-treated Egln1F/F; CreER and Egln1+/+; CreER 

mice, pre-treated with 50 mg/kg FG-4497 i.v. or Veh. two hours before cardiac I/R injury. 

Data shown are means ± SEM, n = 8 FG-4497 and n = 7 vehicle groups. ***p<0.001, 

Student’s t-test, differences MI sizes compared to Veh.-treated Egln1+/+; CreER mice.

See Figure S1.
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Figure 3. Skeletal Muscle Egln1 Deletion Confers Remote Cardioprotection via a Circulating 
Factor
(A) Real-time PCR assays of Egln1 mRNA levels in indicated tissues from TAM-treated 

Egln1F/F; HSA-Cre-ERT2 and Egln1+/+; HSA-Cre-ERT2 mice. Abbreviations: soleus (Sol.), 

plantaris (Plant.), tibialis anterior (T.A.), gastrocnemius (Gastroc.), quadriceps (Quad.). Data 

shown are mean fold changes ± SEM. *p<0.05, Student’s t-test, differences in mRNA levels 

in Egln1F/F; HSA-Cre-ERT2 mice compared to Egln1+/+; HSA-Cre-ERT2 mice.

(B) Immunoblots of extracts from Sol. muscle of TAM-treated Egln1F/F; HSA-Cre-ERT2 

and Egln1+/+; HSA-Cre-ERT2 mice. Egln1 WT (+) and knockout (Δ) MEFs were included 

for comparison.

(C) MI size after cardiac I/R injury in TAM-treated Egln1F/F; HSA-Cre-ERT2 and Egln1+/+; 

HSA-Cre-ERT2 mice. Data shown are means ± SEM, n = 6 mice per group. *p<0.05, 

Student’s t-test. Representative photographs of TTC-stained hearts are shown.
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(D) PCR genotyping of the heart and quadriceps (Quad) of ‘donor’ and ‘recipient’ parabiosis 

mice. Donor mice were TAM-treated Egln1F/F; HSA-Cre-ERT2 and Egln1+/+; HSA-Cre-

ERT2 mice, as indicated. Egln1 primer set 1 amplifies WT and floxed (FL) alleles, and 

primer set 2 amplifies the deleted allele (Δ).

(E) Representative serum samples from parabiosis ‘donor’ and ‘recipient’ mice before and 2 

hours after i.v. injection of Evan’s blue (EB) dye.

(F) MI size after cardiac I/R injury in WT mice that were surgically conjoined to either a 

TAM-treated Egln1F/F; HSA-Cre-ERT2 mouse or a TAM-treated Egln1+/+; HSA-Cre-ERT2 

mouse. WT ‘recipient’ mice were subjected to cardiac I/R and MI size quantified 24 hours 

later. Data shown are means ± SEM, n = 6 Egln1F/F; HSA-Cre-ERT2 and n = 8 Egln1+/+; 

HSA-Cre-ERT2 mice. *p<0.05, Student’s t-test, difference in MI size in WT mice conjoined 

to Egln1F/F; HSA-Cre-ERT2 mice vs. WT mice conjoined to Egln1+/+; HSA-Cre-ERT2 mice. 

Representative photographs of TTC-stained hearts are shown.

See also Figure S2.
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Figure 4. The TRP Metabolite Kynurenic Acid is Necessary and Sufficient for Remote Cardiac 
I/R Protection
(A) Volcano plot depicting fold change and statistical significance in ion counts for serum 

metabolites in TAM-treated Egln1F/F; HSA-Cre-ERT2 mice compared to Egln1+/+; HSA-

Cre-ERT2 mice. Abbreviations: KYNA – kynurenic acid; αKG – alpha-ketoglutarate; TRP – 

tryptophan; NAM – niacinamide; NMN – n-methyl-nicotinamide. Metabolites above the 

dotted line are those that differ with p<0.05 (Student’s t-test, n=6). TRP metabolites are 

shown in red.

(B) Volcano plot depicting fold change and statistical significance of serum metabolites in 

mice given FG-4497 compared to Veh-treated animals. Labeled are the TRP metabolites 
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KYNA, Anthranilate, and 5-hydroxyindoleacetic acid (HIAA). Metabolites above the dotted 

line are those that differ with p<0.05 (Student’s t-test, n=3). #HIAA was undetectable in 

serum of mice given FG-4497. TRP metabolites are shown in red.

(C) Diagram of TRP metabolism, including the rate-limiting pyrolase IDO, present in 

peripheral tissues, TDO, present in the liver, the IDO/TDO inhibitor 1-methyltryptophan (1-

MT), and the regulated kynurenine (KYN) aminotransferases (KAT). The direct product of 

KYN transamination by KATs, 4-(2-aminophenyl)-2,3-dioxobutanoate (not shown), is non-

enzymatically dehydrated to produce KYNA.

(D) MI size after cardiac I/R injury in TAM-treated Egln1F/F; HSA-Cre-ERT2 and Egln1+/+; 

HSA-Cre-ERT2 mice given the IDO/TDO inhibitor 1-methyltryptophan (1-MT) or vehicle 

(Veh.) for 3 days before I/R. Data shown are means ± SEM, n = 5 Egln1F/F; HSA-Cre-ERT2 

vehicle, n = 5 Egln1F/F; HSA-Cre-ERT2 1-MT, n = 3 Egln1+/+; HSA-Cre-ERT2 vehicle, n = 

4 Egln1+/+; HSA-Cre-ERT2 1-MT. * p<0.05, Student’s t-test, for designated comparisons.

(E) MI size after cardiac I/R injury in WT mice pretreated with 100 ng KYNA or Veh. i.p. 2-

hr before and 2 hr after in vivo cardiac I/R. Data shown are means ± SEM, n = 16 vehicle, 

n=14 KYNA. *p<0.05, Student’s t-test.

(F) MI size after cardiac I/R injury in WT mice given 40 mg/kg KYNA mimetic L689,560 

or Veh. i.p. immediately before I/R injury. Data shown are means ± SEM, n = 3 per group. 

*p<0.05, Student’s t-test.

(G) LVEDP in Langendorff assays after global I/R injury, with or without 100 nM KYNA 

present in the perfusate. Data shown are mean pressures ± SEM, n = 10 KYNA group and n 

= 9 control group. **p<0.01, Student’s t-test.

See also Figure S3.
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Figure 5. Altered Systemic αKG Metabolism in Egln1F/F HSA-Cre-ERT2 Mice Leads to 
Cardioprotection Through KYNA
(A) Fractional labeling of U-13C-KYNA in tissues. WT mice were infused with U-13C-TRP 

until serum isotopic equilibrium was reached and then given 50 mg/kg FG-4497 i.v. Tissues 

were harvest 30 minutes later. Shown are mean enrichment ± SEM, n = 2.

(B) αKG levels in liver and quadriceps (Quad) of TAM-treated Egln1F/F; HSA-Cre-ERT2 

and Egln1+/+; HSA-Cre-ERT2 mice. Shown are mean fold change ± SEM, n = 23, **p<0.01, 

*p<0.05, Student’s t-test, comparison between EglNf/f; HSA-Cre-ERT2 and Egln1+/+; HSA-

Cre-ERT2 mice.

(C) Hepatic αKG levels in WT mice given 50 mg/kg FG-4497 i.v. or Veh. Shown are mean 

fold change ± SEM, n = 5. **p<0.01 Student’s t-test.

(D) KYNA levels in serum and liver of mice given 1 mg/kg αKG or Veh. i.p. Shown are 

mean total ion counts (TIC) quantified by LC-MS, ± SEM, n = 3. *p<0.05, **p<0.01 

Student’s t-test.
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(E) MI size in WT mice treated as in (D) 2 hours before cardiac I/R injury. Data shown are 

means ± SEM, n = 4 vehicle, n=6 αKG. *p<0.05, Student’s t-test. Representative 

photographs of TTC-stained hearts are shown.

(F) LVEDP in Langendorff assays after global I/R injury with or without αKG present in the 

perfusate at the indicated concentrations. One group of mice was pretreated with 1 mg/kg 

αKG i.p. 45 minutes before sacrifice. Data shown are mean pressures ± SEM. *p<0.05, 

Student’s t-test, for differences at 30 minutes compared to control.

See also Figure S4.
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Figure 6. Egln Activity Regulates αKG Levels in a HIF-independent Manner
(A) αKG levels in WT MEFs given FG-4497 or cultured under 1% O2 conditions for 24 

hours. Data are normalized to internal standard and cell number, succinate TIC (Suc), or 

glutamate TIC (Glu). ***p<0.001, Student’s t-test, differences compared to untreated MEFs 

grown in 21% O2. Shown are mean ± SEM, n = 3.

(B) Immunoblots of WT MEFs treated as in (A).

(C) αKG / Glutamate ratios of Hepa-1c1c7 ARNT−/− cells stably expressing exogenous 

ARNT or GFP and treated with FG-4497 or 1% O2 for 24 hours. *p<0.05, **p<0.01, 

Student’s t-test, differences compared to untreated MEFs grown in 21% O2. Shown are 

mean ± SEM, n =8.

(D) Firefly luciferase activity in Hepa-1c1c7 expressing exogenous ARNT or GFP, as in (C), 

and harboring a HIF-responsive firefly luciferase reporter. Cells were treated with FG-4497 

or 1% O2 for 24 hours as indicated. Shown are mean ± SEM, n =8. *p<0.05, ***p<0.001, 

Student’s t-test, differences relative to untreated cells grown in 21% O2.

(E) Immunoblots of cells used in (C) and (D).
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(F) Total ion counts of 13C4-succinate (Suc) in WT 143B cells at indicated time points after 

addition of U-13C-dimethyl-αKG. Shown are mean ± SEM, n = 4. *p<0.05 and **p<0.01, 

Student’s t-test, comparisons designated.

See also Figure S5.
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