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THE MATHEMATICAL ROLE OF SELF-CONSISTENCY

IN PARALLEL COMPUTATION

Paul Smolensky

Institwe for Cognitive Science C-015
University of California, San Diego
LaJolla, CA 92093

Analysis of Emergent Properties of Neoral Systems

One approach to the mind/body problem is to view the description of mind as a higher level
description of brain; to view psychological principles as emergent properties of neural systems.
Certainly before such a view can be scientifically tested, a better understanding of both brain and mind
must be established. However enough is already known about each to make feasibility studies possible.

What methodology is capable of analyzing the emergent properties of large complex systems of
interacting elements? One discipline where this job needs to be done is statistical physics, where large-
scale properties of matter are derived mathematically from the principles believed to govern the
interactions of molecular and sub-molecular constituents.

Is it possible to apply similar kinds of mathematical analysis to deduce emergent properties of
ncural systems? Although the principles governing neuronal interaction are by no means as well
understood as those governing particles, models that abstract some of the characteristics of neural
networks have been studied for some time. Hopfield (1982) has shown that with certain modifications,
standard ncural models can be analyzed with mathematics much like that of statistical physics, and
emergent properties can be analyzed.

One of the central concepts in statistical physics is temperature. The utility of this concept in
performing difficult computations has been shown by Kirkpatrick et. al. (1983). However the most
important concept in statistical physics, as in all branches of physics, is that of erergy. The meaning of
"energy” in the computational context is not obvious; rather than a computational interpretation,
Hopfield offered a general formula for the "energy” of a neural net while Kirkpatrick et. al. hand
crafted "energy” formulae for their particular computations.

The application of statistical physics concepts to computation is now a rather active field of study
(Hinton and Scjnowski, 1983; Hofstadter, 1983; Geman and Geman, 1983). To provide a solid
foundation for this analysis, what is required in my opinion is an interpretation of "energy” that
establishes a deep connection between the formalism of siatistical physics and the central problems of
cognition,

The help of David Rumelhart, Francis Crick, and other members of the UCSD Parallel Distributed Processing
research group is gratefully acknowledged.
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In this paper [ will present the interpretation of “energy” that lics at the heart of a general
computational approach I have been developing independently of the work of those interested in
peural ncts or in particular difficult computations. In this interpretation, "energy” is a measwre of the
self consistency of a compwational state. In place of the term "energy”, which emphasizes the physical
analogy, or the more technical term “Hamiltonian”, which serves only to recall history and account for
the physicist’s notation H, I choose to foreground the measurement of self-consistency by using the
term harmony function, denoted H. The gencral framework, harmony theory, is described in Smolensky
(1984); an analysis of learning using this theory is begun in Smolensky (1983), and an application of the
theory to modelling qualitative analysis of a simple electric circuit (with a discussion of the model’s
emergent properties) is described in Riley and Smolensky (1984). In this paper I will focus on the
computational meaning of harmony, passing quickly over other aspects of the theory. The treatment
will be very informal; for more formal presentations the reader is referred to the previously cited
papers.

The Role of Harmony in Computation

Before considering how the harmony function is defined, we start with a discussion of how the
harmony function is used during computation. The basic idea can be framed at a very general level.
During computation, search for an answer is guided by a measure of "goodness” of possible answers:
the harmony function H is that measure. The search is stochastic; the computation is a Monte Carlo
random walk through the solution space under the guidance of H. The random walk is designed so
that eventually, the probability at any moment of visiting a point p in the solution space is given by
the canonical distribution:

pmb(p) = Nentﬁ)ﬁ

N is the constant needed to normalize the probabilities so that they sum to one. T is a global
parameter that determines the spread in the probability distribution.

The canonical distribution is the only continuous relationship between H and probability that
correctly treats the independence of components of a computation. The canonical distribution also
happens to be the distribution on which most of statistical physics is based. (This is no coincidence,
as the notion of independent subsystem in physics maps onto that of independent subcomputations.)
There is an isomorphism that maps the harmony function into minus the Hamiltonian (energy)
function, and T into temperaturc. This suggests calling T the compwational temperature of the system.

In physics, the Hamiltonian determines what states are most probable: the states with lowest
cnergy are most probable at all temperatures, and states of high energy have negligible probability
except at high temperatures. In harmony theory, the harmony function determines what states are
most probable: the states with highest harmony are most probable at all computational temperatures,
and states of low harmony have negligible probability except at high temperatures. T can be thought
of as setting the scale for what constitutes significant differences in harmony values. In fact, the ratio
of probabilities of two states is e®”/T | where AH is the difference in harmony between the states. If
this diffcrence is small compared to T, the ratio of probabilities will be close to one; if AH is large
compared to T, the state with higher harmony will be many times more probable.

The goal of the computation is to find the state of highest harmony. This means, in particular,
that the state of next highest harmony should be much less likely. This requires that 7 be small
compared to the harmony difference between the two highest levels of harmony.
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We could simply set T to be such a low value and be done with it. However, this is not a
practical scarch procedure. The Monte Carlo procedure will, if let run long enough, visit points with
the probabilities given by the canonical distribution. However, the time required to reach this
"thermal equilibrium” grows extremely rapidly as T is lowered. A more practical way of zeroing in on
the state of highest harmony is to start with a high temperature and gradually lower it. Early in the
scarch, only large harmony differences are significant, and the system quickly makes a crude cut at the
problem, avoiding states of extremely low harmony. As the system cools down, smaller harmony
differences become significant, and more and more states are avoided as the secarch focusses on states
with harmonies close to the maximal value. If the cooling is done gently, the state of maximal
harmony should be found in much less time than by giving T a constant low value.

The Relation of Harmony to the Environment

We have discussed a stochastic search technique that will find states of high harmony. But how
do we design the function H so that the states with high H values give the correct solutions to
problems? Now we must discuss the sense in which H measures self-consistency.

The "correct™ answer to problems are often those that satisfy a set of rules. In the circuit analysis
problem considered by Riley and Smolensky, for example, the rules are the physical laws of simple
circuits. Any system that can correctly solve problems such as this must in some sense have a
representation of the rules. In harmony theory, the rules are encoded in the harmony function. The
question is, how are these rules encoded, and how can a system dcvelop an appropriate harmony
function through experience?

Of course most cognitive tasks are not as strictly governed by rules as is formal problem solving.
Yet all cognition hinges on the exploitation of regularities in the environmemns, even if those regularities
are less formal than Ohm’s Law. Cognition enablcs organisms to do the completion task: take some
limited information about the current state of their environment and make reasonable guesses about
what else is likely to occur in the environment. That is, given some of the features that specify the
environmental state, the organism can make rcasonable guesses about missing features.

In harmony theory, the "rules” applied during the completion task are simply statements thas
certain features can co-occur in the environment. In the circuit application, for example, in place of a
symbolic version of Ohm’s Law, V = [R, there are many "rules” that each record a single combination
of qualitative changes in V,/, and R that are consistent with the law. These "rules” can in fact be
thought of as memory traces that might be left behind by individual experiences in the environment in
which the regularities hold.

Here is the general idea of how to set up a harmony function for performing the completion task
in a given cnvironment. Imagine the system experiencing many cncounters with the environment; cach
leaves many traces that each record some of the features that co-occurred. When partial information
about the current state of the environment is given in a completion problem, the harmony of a
possible completion of that information is the overall consistency between that completion and the set of
all traces. To spell this out, we consider first how the traces are determined and then how the "overall
consistency” is computed.

The traces can be produced automatically by simulating exposure to an environment, or they can
be produced manually by the modeller. The latter technique was used in the circuit problem: each
trace was chosen to be an allowed combination of qualitative changes in the circuit quantities
appcaring in a single circuit law. The automatic gencration of traces is yet to be explored; the idea is
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that traces would be produced in a random fashion (guided by the degree to which potential traces
would enhance system harmony); the statistical properties of the resulting set of traces would then
govern the emergent behavior of the system.

How is "the overall consistency between a completion and the sct of all traces” computed? The
idea herc is that for each trace, a decision nc.ds to be made whether the instance it recorded is
relevant to the current situation or not. Borrowing the usage of schema theory, a match between part
of a trace and a completed set of environmental features can cause the trace to become active. The
"overall consistency” — the harmony — of a completion is the sum over all active traces of a measure h
of the degree of match betwecn the trace and the completion. A simple definition of h is the number
of features in the completion that match the trace, minus the number that do not match. (A slightly
more complicated definition of A was used in the circuit analysis model.)

There are now two kinds of variables used in the computation: features of the environmental
state, and activation values for traces. The processing has two components: computing the harmony
values of possible completions, and making corresponding random decisions about which completions
to visit. Computation of the harmony value requires deciding which traces to activate, which requires
computing the quality of match A between traces and the completion. Just as the Monte Carlo search
is used to decide what completions to visit, it can be used to decide what traces to activate. So using
the traces to define the harmony of completions leads naturally to cxtending the search space to
include both environmental feature variables and trace activation values.

The Network Interpretation: A Computer Implementation

It is useful to represent the computation by a network like that shown in Figure 1, which shows
a portion of the network for the circuit model. The activation variables are represented by nodes in
the upper layer; each corresponds to a trace. The environmental feature variables are represented by
nodes in the lower layer. There are connections between a trace variable and all the environmental
features it incorporates. For simplicity all variables (nodes) are taken to have binary values: trace
activation nodes have values acrive and inactive; environmental feature nodes have values present and
absen.

The Monte Carlo search in this network representation proceeds as follows. Inmitially a high
temperature T is chosen, all the traces are set inactive, the environmental features are permanently
assigned their given values, and the remaining environmental feature variables are assigned random
initial values. Then processing begins. A node is selected at random (but not one of the given
features). Next the difference AH between the overall network harmonies that would result from the
two possible values for the node is computed. This computation, it tums out, can in principle be
performed in the node itself, for the only quantities needed are those to which the node is connected.
Finally, the node randomly selects a new value, using as the ratio of probabilities for the two values
eA#/T | The process of selecting a node and selecting a value for that node is iterated while the
temperature T is gradually lowered according to some schedule.

The repeated sclection of nodes and assignment of new values can be viewed (following Hopfield)
as the asychronous processing of processors located at the nodes and running in parallel. The rclation
between this parallel processing network and those considered by Hopficld and Hinton and Sejnowski
is that the harmony model has a special architecture: there are two classes of nodes, and connections
between but not within the two classes. The formula for harmony turns out to be minus that for
Hopfield’s network "energy”, taking into account the special architecture and the numerical assignments
active = 1, inactive = 0; preseny = 1, absent =—1.
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Comments on Neural Implementation

Since harmony theory is computationally- rather than neurally-inspired, the relation between the
harmony nctwork and ncural networks has not been developed. However the close resemblance of the
harmony network to Hopfield’s neural network might suggest that harmony nodes correspond to
necurons, so a brief comment is appropriate. While it does not seem unreasonable in principle to
identify environmental feature nodes with ncurons, it is nor reasonable to to identify trace nodes with
neurons. Indeed, I imagine that each trace is distributed over the synapses of the neurons
corresponding to the environmental features involved in that trace. "Activation” of the trace might
correspond to a feedback-mediated rapid enhancement of the strengths of these synapses, as in von der
Malsberg (1981). In this sense, even the activation of traces, 2 primitive operation in the theory as
presently formulated, may be an emergent property of synaptic dynamics.

Even without a precise specification of the relation between harmony networks and neurons,
harmony theory offers a mathematical framework within which to explore the emergence of mind from
brain-like processing. The isomorphism between computation and statistical physics which it
represents rests on the identification of self-consistency — harmony - as playing a central role
isomorphic to that played by energy in physics.
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Figure 1. A portion of the nctwork rcpresentation of the circuit analysis model (from Riley an
Smolensky). [The values wp, down, same for environmental features (circuit variable changes) are
actually represented by using two binary nodes for each variable.]
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