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INTRODUCTION

During their annual occupation of the southeastern
Bering Sea, short-tailed shearwaters Puffinus tenui-
rostris constitute the greatest biomass of seabirds in
this ecosystem. Up to 16 million birds have been re-
corded from April to October (Schneider & Shuntov
1993) with flocks reaching 10s to 100s of thousands of
birds (Guzman 1981, Hunt et al. 1981, Gould et al. 1982).
As consumers and producers of carbon and nitrogen,

these great numbers of shearwaters can have a sig-
nificant contribution to nutrient flow in this ecosystem
during summer (Schneider & Hunt 1982, Schneider et
al. 1986). Thus, as an apex predator, the short-tailed
shearwater is a good indicator species for observing
trophic transfer of nutrients through the food web
from lower to higher trophic levels and for detecting
anomalous changes in ecosystem function.

As part of the Inner Front Study, during 1997 to 1999
we had the opportunity to examine the foraging eco-
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ABSTRACT: The short-tailed shearwater Puffinus tenuirostris is an apex predator in the southeastern
Bering Sea ecosystem. During 1997 to 1999, a period of great variability in the Bering Sea, we used a
multi-pronged approach to study transfer of carbon and nitrogen to short-tailed shearwaters through
analysis of stomach contents of birds collected while foraging, and stable isotope and fatty acid com-
position of tissues from shearwaters and their prey. Two conclusions result from these 3 analyses of
feeding history. First, short-tailed shearwaters demonstrated localized differences in diet with respect
to sampling location and season, indicating that shearwaters feed in discrete locations long enough
(several weeks) to reflect regional differences in prey availability. Second, elevated δ15N levels (~1 to
2‰) in the liver of shearwaters in the fall of 1997 and 1998 were likely a response to nutritional stress
and overturn of nutrients in the tissues of birds or elevated isotope levels in tissues of prey, rather
than an increase in the trophic level of the diet. Over the 3 yr period, shearwater diets switched from
adult euphausiids Thysanoessa raschii and T. inermis (usually females with spermatophores) taken in
spring to an increase in the amount of fish (Pacific sandlance Ammodytes hexapterus), juvenile Gadi-
dae fishes and larval walleye pollock Theragra chalcograma particularly in fall (1997 excepted). For
each location and year, there was a consistent trend in isotopic values, with an increase of 3 to 5‰ for
δ15N and 1 to 3‰ for δ13C between shearwaters and their primary prey. The resolution of our sam-
pling techniques indicates little movement of shearwater flocks among sample locations for periods
of up to several weeks.
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logy of short-tailed shearwaters (Napp & Hunt 2001,
Hunt et al. 1999, 2002a,b, Napp et al. 2002, Stabeno &
Hunt 2002, Jahncke et al. 2005). This comprehensive
project incorporated 6 research cruises (2 seasons yr–1)
covering more than 500 km2 of the southeastern Bering
Sea and spanning both the warmest water period
recorded (during an El Niño Southern Oscillation
Event in 1997/1998), and an unusually cold period
(during a La Niña Southern Oscillation event, in 1999).
This project provided an opportunity to look at both
spatial and temporal trends in nutrient flow to short-
tailed shearwaters.

In this paper, a multi-pronged approach was
employed to study the diet of short-tailed shear-
waters. We quantified stomach contents of birds col-
lected while foraging and analyzed the levels of
enrichment of stable isotopes of carbon and nitrogen
in the tissues of shearwaters and their prey. Addition-
ally, a cursory sampling of fatty acids from the tissues
of shearwaters and their prey was made. Our ob-
jective was to use these methods to detect temporal
changes in diet using analyses with different time sig-
natures. Diet analysis through examination of stom-
ach contents would be indicative of most immediate
diet, including the current meal taken while foraging.
Stable isotope and fatty acid values, with turnover
times on the order of days and weeks, would be
indicative of diet incorporated over a longer time
period. A second objective was to document spatial
and temporal patterns in shearwater diets. We were
particularly interested in determining whether diet
changed significantly among years, seasons, or by
sampling location. If shearwaters had discrete nutrient
signatures at a particular location and season, then
timing and location of sampling could be important
factors in understanding transfer of nutrients to apex
predators in this system.

This study occurred during an exceedingly warm
year (1997) followed by another warm water year in
1998, and an anomalously cold year in 1999 (Stabeno &
Hunt 2002). In 1997, warm water (surface tempera-
tures reached 14°C) preceded a pervasive and persis-
tent coccolithophore bloom, and up to 11% of the total
short-tailed shearwater population observed died
(live and dead birds counted), presumably of starva-
tion (Baduini et al. 2001a), and diets shifted to smaller,
lower-calorie prey (Hunt et al. 2002b). In 1998, the
entire water column was warm (6 to 12°C) and shear-
waters had low body lipid content (<1 to 9% of
wet body mass), yet no major die-off was observed
(Baduini et al. 2001b). In 1999, surface waters were
cooler (8 to 10°C) than the long-term average, and
shearwater body lipid content was significantly greater
than in fall 1997 or 1998 (mean = 10% of wet body
mass). A preliminary examination of stomach contents

of shearwaters collected during the study is presented
in Hunt et al. (2002b).

Documentation of stomach contents is a traditional
method for assessing the diets of seabirds. Stomach
contents provide a record of the current or last meal
eaten by a predator prior to sampling. Unless sampled
regularly over an extended period, stomach contents
reflect short-term diet and can be biased by the more
rapid digestion of soft-bodied prey (i.e. crustaceans;
Gaston & Nettleship 1981) and by the retention of
hard body parts (squid beaks and otoliths; Wilson
et al. 1985). However, when sampled frequently and
in abundance, they provide useful information on
changes in diet over time and space. In our study, we
collected an extensive set of stomach contents sam-
pled in 2 seasons, over 3 yr, and totaling 264 indi-
viduals with prey contents. This dataset provided a
useful basis for the study of trophic transfer and
changes to short-tailed shearwaters.

More recently, in the 1990s, stable isotope analysis
has come into use as a tool for studying trophic rela-
tionships between predators and their prey, particu-
larly with seabirds (Hobson 1990, 1991, 1993, Hobson
& Montevecchi 1991, Rau et al. 1992). This approach is
based on the premise that stable isotopes of carbon
(13C/12C) and particularly nitrogen (15N/14N) show a
step-wise enrichment with trophic level in marine
ecosystems. The average difference in 13C/12C (here-
after defined δ13C) and 15N/14N (δ15N) between a con-
sumer and its prey in marine food webs is ±1‰ and
±3.2‰, respectively (Michener & Schell 1994). Thus an
increase of 1‰ in δ13C and 3.2‰ in δ15N in the tissues
of a predator over time may be indicative of a change
in diet by 1 trophic level. It has also been shown exper-
imentally that δ15N but not δ13C values can be elevated
by 1 to 2‰ in avian tissues when individuals have
been fasting or are nutritionally stressed (Hobson et al.
1993, Cherel et al. 2005a). We used this relationship to
assess the presence of nutritional stress in shearwaters
during the warm water periods when other studies
had shown that body lipids were low and birds were
emaciated (Baduini et al. 2001b).

Fatty acid signatures have also been used in the
examination of diet and feeding ecology of apex
predators (Iverson 1993, Iverson et al. 1995, 1997,
Raclot et al. 1998, Dahl et al. 2003, Connan et al. 2005).
Fatty acids are components of lipid tissue that com-
prise triglycerides and wax esters. Similar to stable
isotope analysis, this method is based upon the prin-
ciple that the pattern of fatty acid composition in the
predator’s prey will be reflected in the tissues of the
predator, although the composition of fatty acid
make-up can change as predators digest, absorb, and
reassemble components of prey tissue (Iverson et al.
2004). Fatty acid signatures are thought to permit a
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more fine-scale examination of diet than stable iso-
topes because fatty acid composition is significantly
different not only among trophic levels, but among
species and life-stages of a species (Iverson et al. 2002).
Thus, lipid tissue can be sampled as a means of deter-
mining the species composition of prey that has been
assimilated by a predator over a period of days to
weeks.

Both stable isotope and fatty acid analyses can pro-
vide information about changes in diet over time and
space, but the diet can be best interpreted through a
comparison of these methods with signatures in prey.
We also believe that knowledge about diet from stom-
ach contents is essential for confirming changes in diet
in combination with these 2 other indirect methods.
Together, these 3 methods provide a more complete
view of trophic transfer of nutrients than any 1 method
alone. For this reason, we used our extensive sample
base of stomach contents analyses and stable isotope
data, coupled with a less extensive sampling of fatty
acids, to understand spatial and temporal changes in
prey use by short-tailed shearwaters in the south-
eastern Bering Sea ecosystem.

MATERIALS AND METHODS 

Sampling program. The project incorporated 6 re-
search cruises to the southeastern Bering Sea between
May 1997 and August 1999. Two research cruises were

conducted each year. The first, in late May and June
(spring) coincided with the arrival of short-tailed
shearwaters, and occurred during or shortly after the
spring phytoplankton bloom. The second, from the end
of July to September (late summer or fall), occurred as
the shearwaters completed molt and began to put on
fat prior to their migration to breeding grounds in
southeastern Australia. Cruise dates were 27 May to
28 June, 1997; 27 August to 12 September, 1997; 23
May to 24 June, 1998; 15 August to 7 September 1998;
17 May to 19 June 1999; and 19 July to 22 August 1999.
Sampling on these cruises was concentrated in 4 grids
that also received extensive oceanographic sampling
(Fig. 1; Jahncke et al. 2005). Slime Bank and Port
Moller grids were along the north side of the Alaska
Peninsula, the Cape Newenham grid covered a large
area from the shore off Cape Newenham to the 70 m
isobath, and the Nunivak Island grid covered a long
narrow area from close inshore off Nunivak Island
southwest about 150 km. Thus, this project provided
an opportunity to look at both spatial and temporal pat-
terns in nutrient flow to short-tailed shearwaters.

Stomach content analyses. Short-tailed shearwaters
were collected under permit. Although there were
some individuals from which more than 1 type of sam-
ple was taken, in some cases samples for analysis of
stomach contents, stable isotopes, fatty acids, and total
body lipids were obtained from different individuals
collected at a given place and time (Table 1). All indi-
viduals collected were examined for stomach contents
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Fig. 1. Study site and sampling locations for short-tailed shearwaters in the southeastern Bering Sea, 1997 to 1999. Squares indi-
cate stations within the Nunivak Island, Cape Newenham, Round Island, Bristol Bay, Port Heiden, Port Moller, Nelson Lagoon,
Amak Island, Slime Bank and Akutan Pass grids. The inner shelf domain is inside of the 50 m isobath, the middle domain 

between the 50 and 100 m isobaths
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and these samples represent the most complete sam-
pling of individuals. Samples collected from birds at
a given location and season were considered non-
independent and were averaged. 

Diet composition was determined by collecting
short-tailed shearwaters while foraging or sitting on
the water within each sampling grid (Fig. 1). Approxi-
mately 3 to 10 birds per flock were sampled in each
grid, usually when feeding, to be certain that the birds
had obtained their prey near where they were col-
lected. Upon collection, proventriculus and gizzard
contents were removed, weighed, and preserved sepa-
rately in 80% ethanol. Only proventriculus content
information is reported here. Wet weight of alcohol-
preserved proventriculus contents, displacement vol-
ume, and direct counts of each individual stomach
were used to determine the diet of birds. Euphausiids
were identified to species, sex (although not used in
Index of Relative Importance, IRI calculation), and life
stage (adult vs. juvenile). Crab larvae, usually mega-
lopa and some zoea stages, were combined for counts.
We did not calculate IRI values for amphipods and
mysids, which were observed in less than 10% of all
samples. Other invertebrate zooplankton and fish
consumed were identified to the lowest possible taxon.

Based upon number, volume, and
frequency of occurrence of prey items,
the IRI was calculated for each study
location within each season following
Gould et al. (2000) and Pinkas et al.
(1971): 

IRI = %F (%N +%V)

where F = frequency of occurrence,
N = number of items within a sample,
and V = volume of items counted.
Percent frequency of occurrence was
calculated by taking the number of in-
dividual stomachs containing a partic-
ular prey item divided by the total
number of stomachs sampled contain-
ing prey in the sampled location
(×100). Percent number was calculated
by taking the total number of indi-
viduals sampled for a specific taxon di-
vided by the total number of all prey
items counted in all stomachs of birds
sampled at a particular location (× 100;
i.e. Slime Bank, spring 1997). Percent
volume is the total volume of an indi-
vidual prey item (ml) summed over all
specimens in a given sampling divided
by the total summed volumes of all
prey (× 100). To determine percent vol-
ume in cases where prey items of dif-

ferent taxa (i.e. different species of euphausiids) were
identified but grouped in one total volume, the numeri-
cal percent of each prey species in a proventriculus was
determined and multiplied by total volume (to calculate
% volume). Percent IRI of a particular prey item is the
IRI of a single taxon divided by the IRI of the total diet
(sum of all IRIs) for a particular location and season. 

Stable isotope analyses. We collected 1489 samples
for stable isotope analysis from short-tailed shearwa-
ters (N = 241; Table 1) and their potential prey (N =
1248; Table 2). Invertebrate and prey samples were
collected from net hauls using the MOCNESS (Multi-
ple Opening-Closing Net Sampling System). Stable
isotopes of shearwaters were sampled by drying ap-
proximately 5 to 10 g of liver in an oven at 60°C for
24 hr. Dried tissue samples were pulverized into pow-
der and prepared for analysis in a mass spectrometer.
All zooplankton samples were acidified to remove
carbonates. Two subsamples per tissue were analyzed
for isotopic ratios. 

Isotope samples were analyzed in the lab of Dr.
Donald Schell (University of Alaska). δ15N and δ13C
values were measured using Elemental Analysis-
Isotope Ratio Mass Spectrometry (EA-IRMS), Delta+
XL system. This method utilizes a Costech Elemental
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Season Location Stomach Stable Fatty Gender (%N)
contents isotopes acids Female Male Unknown

Spring Slime Bank 23 8 23 68.2 18.2 13.6
1997 Port Moller 7 0 3 57.14 42.86 0

Cape Newenham 12 10 3 66.7 33.3 0

Fall Slime Bank 32 22 22 28 69 0
1997 Nunivak Island 14 20 22 35.3 58.8 3.1

Spring Slime Bank 7 10 0 50 50 0
1998 Port Moller 18 19 0 36.8 57.9 5.3

Dillingham Bay 19 20 0 50 45 5
Cape Newenham 7 7 0 43 57 0

Fall Slime Bank 10 10 3 0 90 10
1998 Cape Newenham 26 26 8 38.5 61.5 0

Nunivak Island 4 5 0 100 0 0

Spring Slime Bank 19 20 8 45 45 10
1999 Port Moller 18 10 4 53.3 13.3 33

Port Heiden 6 4 0 50 33.3 17
Nelson Lagoon 9 10 3 29.4 23.5 47
Round Island 5 6 0 42.9 28.6 43.3
Cape Newenham 5 5 3 40 20 40

Summer Slime Bank 8 9 0 62.5 37.5 0
1999 Port Moller 7 8 0 71.4 28.5 0

Cape Newenham 8 12 0 50 33.3 17
Nunivak Island 13 14 0 46.2 30.8 23

Table 1. Puffinus tenuirostris. Number of short-tailed shearwaters sampled for
stomach contents, stable isotopes, and fatty acid analyses during the 1997 to 1999
Bering Sea Inner Front Study. Although there is some overlap of individuals
sampled for all 3 analyses, birds sampled for one technique (stomach contents) are
not necessarily the same individuals sampled for another technique (fatty acids)
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Analyzer (ESC 4010), and a Finnigan MAT Conflo III
interface with a Delta+XL Mass Spectrometer. Sam-
ples run prior to 1999 (1997 and 1998 samples) were
run on a Europa 20-20 Continuous Flow Mass Spec-
trometer interfaced with a Roboprep Elemental Ana-
lyzer. Dried, homogenous samples were placed in tin
capsules and placed in the EA autosampler. Samples
were dropped into the EA where they were com-
busted. The N2 and CO2 combustion gases were sepa-
rated chromatographically and then transferred to the
IRMS, where the isotopes were measured. δ15Nair and
δ13CPDB values are reported in reference to interna-
tional isotope standards.

Stable isotope concentrations were expressed in
delta notation as parts per thousand according to the
following:

δ X = [(Rsample/Rstandard)–1] × 1000

where X is 15N or 13C and R is the corresponding ratio
15N/14N and 13C/12C. Rstandard for 15N and 13C are the
atmospheric N2 (AIR) and Pee Dee Belemnite (PDB)
standard, respectively. An analysis of total C/N ratios
in bird and zooplankton tissues demonstrated that
lipids did not comprise a significant portion of the sam-
ple (all but 4 C/N values were less than 4.0 and ranged
from 1.2 to 3.5; McConnaughey & McRoy 1979), and
thus did not influence the outcome of isotopic ratio
results. Thus, we did not lipid normalize our delta iso-
tope ratios.

Fatty acid signature analyses. Shearwaters and their
prey were also sampled for fatty acid composition
(short-tailed shearwaters N = 102, Table 1; and prey
N = 35; Table 2). Due to sampling constraints, some
locations and years were missing from our dataset and
we restrict our discussion to samples collected in 1997
(Table 1). Duplicate samples of sub-cutaneous fatty tis-
sue were collected from individual birds from below
the neck area and stored in liquid nitrogen at sea until
they were transferred to the laboratory and stored at
–20°C before analysis. Samples were analyzed for total
lipid composition, which includes both polar and neu-
tral lipids, in the laboratory of S. Iverson (Dalhousie
University) using the modified Folch method (Budge et
al. 2002, Iverson et al. 2004). Adipose tissue was col-
lected from birds in 1997 that had little energy
reserves, and thus the fatty acid composition of total
lipids probably was influenced by the presence of
structural lipids. Each sample was homogenized and
1.5 g tissue aliquots were extracted using 2:1 chloro-
form:methanol. Fatty acids were prepared and ana-
lyzed using a Perkin-Elmer Autosystem II capillary gas
chromatograph (GC) with a flame ionization detector
(ID) using a flexible fused silica column. Fatty acids are
reported using shorthand nomenclature as follows:
A:Bn-X, where A represents the number of carbon

atoms, B the number of double bonds, and X the posi-
tion of the double bond closest to the terminal methyl
group. Each fatty acid was reported as weight percent
of total fatty acids. 

Differences among locations and seasons within a
given year were analyzed using a multivariate Dis-
criminate Function Analysis (STATISTICA 6.0) using
the 17 fatty acids which had the largest overall vari-
ance and overall mean composition of ≥0.5% mass
total fatty acids. A second criteria used for choosing
which particular fatty acids to include in the analyses
of shearwater diet was to include any fatty acid that
had been shown to be informative as a dietary indica-
tor in other studies of marine predators and their feed-
ing habits (Iverson et al. 1997, 2002, 2004). Sixteen of
the 17 (94% similarity) fatty acids that we used in our
analyses were determined informative in a study of the
lipids of forage fish and invertebrates in Prince William
Sound, Alaska (Iverson et al. 2002; Table 2). The
exception was 22:5n-3, which, despite its large mean
percent composition in shearwater tissues and prey,
was not used in our analyses because it may be an
intermediate fatty acid between 20:5n-3 and 22:6n-3
(Ackman et al. 1988; following methods in Iverson et
al. 2002). Percentage values for fatty acids were trans-
formed into log ratios prior to discriminant analyses by
first renormalizing the values for the 17 fatty acids over
100%. Since the log of 0 cannot be taken, 0 values (n =
2) were changed to 0.005% prior to the calculation of
the log ratio (following Iverson et al. 2002). A value of
0.005% was selected because it is below what is con-
sidered to be the minimum detectable level of a fatty
acid (0.01%) but is not so small as to result in extreme
outliers following transformation (Iverson et al. 2002).

RESULTS

Spatial and temporal heterogeneity in diet

Stomach contents (IRI), stable isotope, and fatty acid
analyses revealed feeding localization and specializa-
tion among seasons and years (Figs. 2 to 5). The princi-
pal prey items taken by short-tailed shearwaters in the
southeastern Bering Sea during 1997 to 1999 were
adult euphausiids, Thysanoessa raschii and T. inermis,
juvenile Thysanoessa euphausiids, Pacific sandlance
Ammodytes hexapterus, juvenile Gadidae fishes and
age-0 pollock Theragra chalcograma (Fig. 2). Over the
3 yr period, we observed a switch in the diet from adult
euphausiids (usually T. raschii females with spermato-
phores) taken in spring (typically >95% euphausiid
IRI) to an increase in the amount of fish taken in fall
(1997 excepted; 70 to 100% fish IRI, Fig 2.). There was
also an increase in the amount of fish taken over the
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3 yr period from 1997 to 1999, from <1% IRI of fish in
the diet in 1997 to 100% IRI of fish at Cape Newenham
in spring 1999 and at Port Moller and Nunivak Island
in summer 1999 (Fig. 2). The use of crab zoea and
megalopa in fall 1997 and 1998, and Calanus marshal-
lae copepods in summer 1999, also occurred.

With respect to sampling location, prey use included
adult Thysanoessa raschii in most regions in spring
1997, 1998 and 1999. However, there were differences
among locations in the IRI of other prey species. In the
summer and fall samples, there was considerable vari-
ation in the IRIs of the different prey taxa at the loca-
tions sampled (Fig. 2). Similar to 1997, in fall 1998, prey
use at Slime Bank included adult and juvenile Thysa-
noessa, as well as crab zoea and megalopa and
some sandlance. In contrast, during fall 1998, juvenile
gadids and age-0 pollock were the most important
prey items at Cape Newenham. Adult Thysanoessa

euphausiids were taken by short-tailed shearwaters at
Nunivak Island in fall 1998. 

Short-tailed shearwaters (N = 241) and their prey
(N = 1248) displayed distinct isotopic values with re-
spect to year, season and sample location (Figs. 3 to 7).
A series of 1-way Kruskall-Wallis tests indicated sig-
nificant differences among locations within a season in
the δ13C and δ15N values in the liver tissue of shear-
waters (all p < 0.001; Fig. 7). Birds and prey sampled
in a particular location within a season and year did
not have overlapping values (or confidence intervals)
with others collected elsewhere (except in spring 1999),
indicating spatial and temporal heterogeneity. 

Overall, there was an increasing trend in isotope val-
ues among trophic levels in the southeastern Bering
Sea ecosystem from juvenile euphausiids to adult
euphausiids, juvenile Gadidae fishes, sandlance, pol-
lock, amphipods, and chaetognaths, with the highest
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Fig. 2. Puffinus tenuirostris. Percent Index of Relative Importance (IRI) values for prey items of short-tailed shearwaters sampled 
among all study grids in 1997 to 1999. Sample sizes of stomach contents at each location are listed in parentheses. T.: Thysanoessa
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values found in the liver tissue of short-tailed shear-
waters (Figs. 3 to 6). For each location and year, there
was a consistent trend with an increase in 3 to 5‰ for
δ15N and 1 to 3‰ for δ13C between shearwaters and
their primary prey (Figs. 3 to 6).

Our sampling of shearwater lipids and their prey in
1997 revealed seasonal and regional differences in
fatty acid signatures (Fig. 8). There was a significant
relationship between shearwaters and their prey for a
particular season. In 1997, the first and second discrim-
inant functions accounted for significant differences in
fatty acid composition of short-tailed shearwaters
among several locations sampled (Wilke’s λ <0.001,
F85, 304 = 8.52, p < 0.001; Fig. 8). All birds and prey sam-
pled at locations in spring and fall (1997) were signifi-
cantly different (all p < 0.05) except Slime Bank, Port
Moller, and Cape Newenham in spring 1997. In the

analysis of fatty acid patterns birds and prey are
clustered together in spring and fall 1997 (Fig. 8).

A total of 17 (of 71 observed) fatty acids fitted our
criteria for use in the analysis (Table 2) and they
accounted for 86 to 95% of the mass of total fatty acids
measured. The fatty acids, 16:0 and 18:4n-3, known to
be important isomers in euphausiids, were abundant
in the tissues of Thysanoessa sp. euphausiids and
short-tailed shearwaters feeding on them. Likewise,
the fatty acids 18:1n-9 (pollock), 22:6n-3 (sandlance tis-
sue; Iverson et al. 2002), and 20:5n-3 (young pollock;
Iverson et al. 1997) were abundant in the tissues of
sandlance and pollock prey that we sampled and
shearwaters that fed on them (Table 2).

Diet, body condition and isotope changes

We observed greater δ15N values in the liver tissue of
short-tailed shearwaters sampled at Slime Bank dur-
ing fall 1997, when birds were emaciated and had
lower total body lipid values compared to spring 1997
(Fig. 9; t-test between spring and fall 1997, Slime Bank,
ttwo-tailed, 39 = 1.746, p = 0.089, mean difference = 0.9‰).
Short-tailed shearwaters had δ15N values that were
elevated by an average 1.3‰ in fall compared to
spring 1997 (Slime Bank), despite feeding on lower
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Fig. 3. Puffinus tenuirostris. Stable isotope values, δ15N and
δ13C for short-tailed shearwater (STSH) tissues (liver) and
their prey by year and season off Slime Bank (SB) in the
southeastern Bering Sea. Taxa labels are listed next to their
corresponding mean ± SE. Sample sizes are listed in Tables 1
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corresponding mean ± SE. Sample sizes are listed in Tables 1
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trophic levels in the fall. Similarly in 1998, δ15N values
increased by 1.5 to 2‰ from spring to fall at Slime
Bank and Cape Newenham (Fig. 9). Conversely, there
was no significant increase in δ13C values observed at
any location during this time. The greater δ15N values
observed in fall 1998 at Slime Bank occurred despite
evidence from stomach contents that the shearwaters
there were taking lower-trophic-level prey than in the
spring. The isotope data indicate that prey tissues
increased in δ15N but not δ13C during this time.

In 1999, we observed increased δ15N and δ13C values
in the tissues of short-tailed shearwaters along with
increased percent body lipid content and body condi-
tion compared to that observed for spring (Fig. 9). At
all locations in 1999, shearwaters were feeding mainly
on sandlance and adult euphausiids in spring and
other types of fish in fall. This increase from spring to
fall in 1999 was probably related to a shift in feeding at
higher trophic levels.

DISCUSSION

Two new observations resulted from the 3 analyses
of feeding history of short-tailed shearwaters in the
southeastern Bering Sea. First, we observed spatial
and temporal heterogeneity in the diet among years,
seasons, and sampling locations, indicating that shear-
waters feed in discrete locations long enough (several
weeks) to reflect regional differences in prey avail-
ability. Second, elevated δ15N levels (1 to 2‰) in the
liver of shearwaters in fall 1997 and 1998 were related
to nutritional stress and overturn of nutrients in the tis-
sues of birds, or were due to elevated levels of δ15N in
the prey items that birds were feeding upon. 

In fall 1998, we found the greatest disparity in types
of prey items taken with respect to sample locations,
with juvenile euphausiids and crab zoea taken at
Slime Bank, adult euphausiids taken at Nunivak Island,
and Gadid fishes (especially age-0 pollock) taken at
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Cape Newenham. These patterns are evident in both
the stomach samples and the isotopic data. This finding
is surprising because short-tailed shearwaters are
highly mobile and form continuous streams of high
numbers of individuals that fly great distances (up
to 600 to 1124 km d–1; Nicholls et al. 1998, Klomp &
Schultz 2000) while chick-rearing and foraging for
prey. Thus, we expected that there would be con-
siderable overlap and a lack of significant differences in
diet (particularly in stable isotope and fatty acid values)
among sampling locations that are on the order of 10s to
100s of km apart. This finding also leads us to believe
that this spatial and temporal separation occurs on
the order of weeks at a time, as evidenced by the
separation among locations of isotopic and fatty acid
results in tissues that have slower turnover times. Thus,
our findings suggest that short-tailed shearwater
flocks specialized on particular prey and fed in specific
locations for no less than 1 to 2 wk at a time.

We were unable to show whether nutritional stress of
shearwaters or elevated δ15 N levels in the tissues of
prey in fall 1997 and 1998, or elevated isotope levels in
the prey, were the cause of elevated δ15N isotope values
in birds sampled at Slime Bank and Nunivak Island. Al-
though the analysis of stomach contents suggested that
birds were foraging at a lower trophic level in fall (juve-
nile euphausiids and crab zoea) than in spring when
they took adult euphausiids, the stable isotope values in
the prey themselves were more elevated in fall com-
pared to spring 1997, possibly because they were feed-
ing on a greater proportion of regenerated production
as nitrate was largely depleted from the water column
during fall 1997 (Stockwell et al. 2001).

The isotope values we recorded from the liver of
shearwaters and their prey in this study are compara-
ble to those found in the pectoralis muscle tissues of
short-tailed shearwaters incidentally captured in the
large-mesh driftnet (Gould et al. 2000) and gillnet
(Minami et al. 1995) fisheries in the North Pacific,
despite the difference in diet between this extensive
open ocean area and the southeastern Bering Sea.
Short-tailed shearwaters that were self-feeding during
long foraging trips (–23.8‰ δ13C, 8.7‰ δ15N) and for-
aging for chicks on short forays (–24.3‰ δ13C, 9.2‰
δ15N) in the waters off Tasmania contained lower δ13C
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and δ15N values in their blood plasma than those
recorded in this study (Cherel et al. 2005b). These con-
trasts could be related to and originate from different
isotopic values in the waters of the Antarctic ecosystem
compared to that of the eastern Bering Sea, in the prey
consumed, and/or differences in tissues sampled.

Our sampling effort of fatty acids from the lipid tis-
sue of short-tailed shearwaters and their prey was not
as comprehensive as the diet or isotope sampling and,
thus, the results of the fatty acid analysis are more dif-
ficult to interpret. However, an important result was
that, similar to the diet and isotope results, there sig-
nificant separation among seasons and locations with
respect to fatty acid composition of shearwaters and
their prey (Fig. 8). Six of the most common fatty acids
found in shearwater tissues and their prey in our study
(14:0, 16:0, 16:1n-7, 18:1n-9, 20:5n-3, 22:6n-3) also had

the greatest percent composition in the stomach oils of
short-tailed shearwaters feeding off Tasmania (100%
similarity; Connan et al. 2005). 

Short-tailed shearwaters employ a variety of foraging
methods that include surface seizing, pursuit plunging
with wings and feet, and deep diving from 20 to 70 m
(Skira 1979, Morgan 1982, Morgan & Ritz 1982, Schnei-
der 1994, Weimerskirch & Cherel 1998). In our study,
we observed short-tailed shearwaters using at least 2 of
these methods. When feeding on euphausiid prey,
shearwater flocks were large (sometimes greater than
1000 birds flock–1) and grouped into subunits whereby
they leapfrogged among large swarms of euphausiid
prey and made short (<1 min), shallow dives in pursuit
of their prey (C.L. Baduini pers. obs). On occasion, they
also seized euphausiids at the surface. This is in
contrast to occasions when short-tailed shearwaters
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were observed feeding on fish and flocks were smaller,
more dispersed, and had deeper, longer dives (>1 min).

The increase in use of prey other than Thysanoessa
raschii by short-tailed shearwaters throughout this
study may be the result of a decrease in the availabil-
ity, but not the abundance of T. raschii (Hunt et. al
2002a). The presence of a coccolithophore bloom may
have reduced the ability of short-tailed shearwaters to
find euphausiids from the air in fall 1997 (Baduini et al.
2001a). It is also possible that the summer abundance
of T. raschii declined from 1997 to 1999. However, this
does not appear to be the case. In the cold year of
1999, acoustically estimated biomass in spring was
8.89 g m–2, whereas in the warmer years of 1997 and
1998, their biomass was 1.69 g m–2 and 2.44 g m–2,
respectively (Coyle & Pinchuk 2002, Table 5). In sum-
mer 1999, the numbers of euphausiid eggs and larvae
were elevated compared to 1997 and 1998, and Coyle
and Pinchuk (2002) suggest that in cold years spawn-
ing may be delayed. Thus we would have expected
that shearwater diets in summer 1999 would have
consisted of a greater proportion of adult euphausiids
than in the other years. Lastly, it is possible that shear-
water foraging patterns and diet may have varied
throughout this study because alternative prey were
more abundant or available.

In this study we used 3 methods (1 direct and 2 indi-
rect) to observe spatial and temporal distribution in
the transfer of nutrients to short-tailed shearwaters in
the southeastern Bering Sea from 1997 to 1999. Each
method provided us with evidence that there were
significant differences both spatially and temporally
in the diet of shearwaters. These results suggest that
shearwater flocks form independent foraging units
that show surprising cohesion and fidelity to location at
a scale of 10s to 100s of km. If correct, we will need to
revise our perception that these birds mix extensively
on their foraging grounds and that flocks are con-
stantly coalescing and then breaking up into new asso-
ciations
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