
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A Solution For the Location Problem in Arbitrary Computer Networks Using Generic
Dominating Sets

Permalink
https://escholarship.org/uc/item/2gw8c5ww

Authors
Garcia-Luna-Aceves, J.J.
Spohn, M.A.

Publication Date
2005-03-13

DOI
doi:10.1145/1066677.1066844

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2gw8c5ww
https://escholarship.org
http://www.cdlib.org/

A Solution For the Location Problem in Arbitrary Computer
Networks Using Generic Dominating Sets �

Marco Aurélio Spohn
Computer Science Department

University of California at Santa Cruz
Santa Cruz, CA 95064

maspohn@cse.ucsc.edu

J.J. Garcia-Luna-Aceves
Computer Engineering Department

University of California at Santa Cruz
Santa Cruz, CA 95064

jj@cse.ucsc.edu

ABSTRACT
Many problems exist related to the location problems of resources
in a computer network to accommodate client demands subject to
constraints imposed on the clients and the servers. For example,
one classical location problem consists of computing the dominat-
ing sets (DS) of a network. A DS is a set of nodes in the network
(called dominating nodes) such that the remaining nodes in the net-
work are adjacent to at least one dominating node. The problem of
finding a DS of minimum cardinality is known to be NP-complete.
A variety of conditions may be imposed on the dominating set

�
in a graph �������
	���
 . Among them, we have multiple domina-
tion and distance domination. Multiple domination requires that
each vertex in ��� � be dominated by at least � vertices in

�
for

a fixed positive integer � . Distance domination requires that each
vertex in ��� �

be within distance � of at least one vertex in
�

for a fixed positive integer � . We refer to the problem of computing
DS when these two conditions are taken into account as the Generic
Dominating Sets (GDS) problem. Prior work on solving the GDS
problem focuses on interval graphs (IG), which can represent only
a few network topologies. We present the first solutions to the GDS
problem for arbitrary graphs. Simulation results regarding several
configurations are presented.

Keywords
Computer networks, location, domination in graphs.

1. INTRODUCTION
Location problems on computer networks deal with the location

of services (or facilities) to accommodate client demands [5] sub-
ject to some constraints. For example, given a computer network,
servers could be deployed such that every client has a server within
a given distance (in terms of hops). One classical location problem
is the domination problem. The domination problem seeks to de-
termine a minimum number of nodes

�
such that every other node

�
This work was supported in part by CNPq (Brazil), and the Baskin

Chair of Computer Engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

in the network is adjacent to a node in
�

. The problem of finding
a DS of minimum cardinality is known to be NP-complete [4].

Domination in graphs has many applications in computer net-
works. Many broadcasting and topology control techniques that
make use of dominating sets (DS) have been reported in the liter-
ature [1, 3]. In some scenarios (e.g., in wireless ad-hoc networks)
the algorithm must compute the DS having only partial knowledge
of the network topology (e.g., only the two-hop neighborhood).
In wired networks, because the topology does not change, or it
changes not very often, we make the assumption that the whole
network topology is known.

From graph theory, we know that a variety of conditions may be
imposed on the dominating set

�
in a graph �������
	���
 . Among

them, we have multiple domination, and distance domination [6].
Multiple domination requires that each vertex in ��� � be dom-
inated by at least � vertices in

�
for a fixed positive integer � .

Distance domination requires that each vertex in ��� � be within
distance � of at least one vertex in

�
for a fixed positive integer

� . We refer to the problem of computing a DS when these two
conditions are taken into account as the Generic Dominating Sets
(GDS) problem. The problem of computing a GDS of minimum
cardinality for arbitrary graphs is also NP-complete.

Joshi et al. [8] have provided solutions for solving the GDS prob-
lem for interval graphs (IG). A graph � is said to be an interval
graph if there is a one-to-one correspondence between a finite set
of closed intervals of the real line and the vertex set � , and two
vertices � and � are connected if and only if their corresponding
intervals have a nonempty intersection. Even though the solutions
presented by Joshi et.al. [8] are optimal, IGs are limited to very
simple network topologies.

We adopt the nomenclature presented in [8] to classify GDS
problems. The ����	���
 dominating problem is defined as the prob-
lem of selecting a minimum cardinality vertex set D of a graph
�������
	���
 such that every vertex � not in D is at a distance � or
less from at least � vertices in D. If we impose the condition that
there exist a vertex in D at a distance of at most r for each vertex
in D, then the set D is a �! "�!#%$&����	!�'
 dominating set, and if there
exist a vertex in D adjacent to each vertex in D, then the set D is a
�)(*$,+�#.-/$0(1���2	��'
 dominating set.

When the dominating set D is seen as a set of nodes provid-
ing some services to other nodes, then redundancy is achieved by
choosing � greater than one. The distance parameter � allows us to
increase local availability by reducing the distance to the servers.

Many practical networking problems can be solved by setting
these two parameters to values such that the requirements are sat-
isfied. More servers in the vicinity incurs smaller average delays.
If the servers should be backed up by other servers, then a reliable

Table 1: Notation���� The set of r-hop neighbors of node �� ��� � The r-hop neighborhood of node � ; i.e., � � 	�

� � �	�
The dominating set��� ����� ��� The

����� ��� value of node � is � minus the number of
nodes in

�
within distance � of ��

The set of nodes not dominated yet (initially
�����

)���
the set of nodes ��"!���#%$ dominated

dominating set is desirable. For example, we can specify the num-
ber of servers that should respond to any given client, and also the
maximum distance to the servers. Alternatively, we can also en-
force that every server must be within a maximum distance from
any other server, or that for every server at least one other server
should be in the same segment of the network.

The minimum cardinality of the dominating set
�

is denoted by& ���
 and is called the domination number. For multiple domi-
nation, this parameter is called the k-domination number and is de-
noted by & 	 ���
 . For distance domination, it is called the distance-r
domination number and is denoted by &(' � ���
 .

Henning et al have presented some bounds on the distance-r
domination number [7]. They show that, for an integer �*),+ ,
if graph � is a connected graph of order -.) �0/1+ , then &2' � ���
435�76 � . An algorithm that computes a distance-r dominating set within
the established bounds is also presented.

The rest of the paper is organized as follows. Section 2 presents
solutions for the GDS problem for arbitrary networks. Because
the GDS problem in arbitrary graphs is NP-complete, the proposed
algorithms seek only approximations to the optimal solution. Sec-
tion 3 presents simulation results comparing our algorithm to the
algorithm presented in [7] for computing �%+'	��'
 -dominating sets,
and also simulation results for our algorithm under a variety of con-
figurations. Section 4 concludes this work.

2. GENERIC DOMINATING SETS

2.1 (k,r)-dominating set
A node is said to be ����	���
 � dominated (or simply dominated)

if there are at least � neighbors within distance � in
�

(refer to
Table 1 for notation). The

� 98 +:- value of a node + (referenced as
+�; � <8 +:-) is defined as � minus the number of nodes in

�
within

distance � of + .
Consider an arbitrary graph � � ���
	���
 . Initially all nodes in

the graph are in the set = (i.e., = � �), and the
� <8 +:- value

of each node is set to � , i.e., > �@? �BA �C; � 98 +:- � � (see
Algorithm 1). This means that all nodes are in need of at least �
dominating nodes within distance � . Whenever a node gets covered
(i.e.,

� <8 +:- value is zero), the node is moved to the set = � . That
is the same as to say that nodes in the set = � are ����	��'
 � dominated.
At the beginning of the main iteration of Algorithm 1, a new can-
didate D is chosen among the nodes in the set = , and the selection
criteria is that D must be the node with the largest

� 98 +E- value
among the nodes remaining in the set = . Because more dominating
nodes are selected, they impact a larger number of nodes. At the
very first iteration, D is any node from = , and

�
is empty. For every

new candidate, a set of nodes is selected as potential dominating
nodes for D . This set is called F , and it has cardinality D9; � 98 +:-
(i.e., G FHG2�ID<; � <8 +:-). The nodes selected for F must be within
distance � from D , and farther away from D . By choosing the nodes
farther away from D , they can potentially dominate a larger set of

B D E

G

H
I

K
L

M
N

*
2

C

A B

C

D E

G

H
I

K
L

M
N

1

1

A B

C

D

F

G

H
I

K
L

N

0
1

B

C

D E

G

H

K
L

M
N0

I

(B)

(C) (D)

*

Node not satisfiableNS
Dominating
Node in set P

E

1

0

0

0

0

0

1
0

*

* 1

22

2

2

2

2

*
2

2

2 2
2

2

2

1

0

0

0

0

0

0 1
1

1

0 0

0

0

0

0

0

0

1 1

*

NS

1

(F)(E)

A B

C

D E

G

K

0

M
N

0
0 0

0

0

0
0

0

0

0

0

I
0

1
NS

B

C

D E

G

K
L

0
0 0

0

L

0
0

0

0

0

0

0

I
0

1

2

’

I’ I’

I’ I’

I

(A)

A

Domin value

F

A

F

F

0

F

H

N
M

AH

M

F

Figure 1: Computing a �EJ.	LK'
 � Dominating Set using the KR
Algorithm:

� <8 +:- value is shown by each node; set of ����	���
 -
dominated nodes (i.e., set = �) is shown as a circled area.

nodes. If such nodes are not available (i.e., there is not even enough
nodes in the one-hop neighborhood), then node D is said to be un-
satisfiable, and it is placed in the set

�
. To check coverage, a tree

rooted at node D is built, and only nodes still in set = and in D ’s r-hop
neighborhood are taken into account. Nodes no longer in the set =
are not considered because their status is already ����	���
 -covered,
hence they do not participate in the selection of dominating nodes
for the remaining nodes not covered yet. In this case, node D is said
to be satisfiable, because there are at least D9; � 98 +:- nodes in the
tree (excluding node D).

If D is satisfiable, the algorithm proceeds with the following com-
putation. Start processing the neighbors of node D in their order of
distance until either D is dominated, or a node in F is reached. In
this process, for each node - encountered, if - is satisfiable then
select the next node (if there are no node left at the same dis-
tance, choose the first one from the next level), else place node - in
the dominating set

�
and update the

� <8 +:- value for each node
within distance � from node - . During this process of adding unsat-
isfiable nodes, if node D is satisfied, then choose the next candidate
(again, a node with the largest

� 98 +E- value among the nodes in
the set =), and repeat the main iteration. If D is not satisfied and
a node in F is reached, then choose D<; � 98 +E- nodes from the setF such that they are farther away (number of hops) from node D .
The procedure ends when the set = is empty (i.e., all nodes in � are
����	���
 � dominated).

Figure 1 depicts an example of applying Algorithm 1 to com-
pute a �EJ.	LK'
 � dominating set of the network, having node M as the
starting node. The tree built using procedure r-Tree is indicated by
the arrows starting at node M (Figure 1(A)). Node M selects nodesN

and O for its set F (note that both are three-hops away fromM). All nodes in M ’s three-hop neighborhood are satisfiable. Be-
cause nodes are processed according to their distance, eventually
a node in set F is reached. When this happens, MP; � <8 +:- (i.e.,

J) nodes are selected from set F . In this case, both
N

and O are
selected (Figure 1(B)). Figure 1(C) shows the network after this
selection. All nodes within three-hops from node

N
and O have

their
� 98 +:- value updated accordingly. The next candidate with

largest
� 98 +:- value among the nodes not covered yet is node � .

The nodes in the set = � fragment the network in several disjoint
components, and node � is by itself in its fragment. Hence, node
� does not have any potential dominating nodes, and because it is
not satisfiable it is chosen for the set of dominating nodes. After
the selection of node � , all the remaining candidates have the same� <8 +:- value (i.e., +) (Figure 1(D)). Lets suppose that node � is
selected as the next candidate. Node � is selected for � ’s F set,
because node � is the node farther away from � in the connected
component in which � takes part. Eventually node � is reached
because the node at the lower level (i.e., nodes =) is satisfiable. Af-
ter node � is selected as a dominating node (Figure 1(E)), only
node � is left out, and it is clearly not satisfiable, because it still
needs one dominating node and all the remaining nodes are already
����	��'
 -dominated (i.e., they are in set = �). After node � is selected
for the dominating set, all nodes in the network are covered (i.e.,� <8 +:-����). That is, every node in the network that is not a
dominating node have at least J dominating nodes within distanceK .

DEFINITION 2.1. A node D is a candidate if it is among the
nodes in the set = with the largest

� <8 +:- value.

Let � � be the set of nodes within distance � from node + but still
in the set = (i.e., � � ��� ��� �	� =). Let
 � be the tree rooted at node
+ , such that � (+
���%� ��
 �
 3 � , and formed only by nodes in � � .

REMARK 2.1. For candidate node D , all nodes in = � � ��� �
have a

� <8 +:- value smaller than or equal to D<; � 98 +E- .

By definition 2.1, node D is a candidate because it is among the
nodes with the largest

� 98 +:- value in set = . Hence, all nodes in
� � have a

� <8 +:- smaller than or equal to D<; � 98 +E- .
Let F � be a set of nodes with cardinality D9; � 98 +:- formed by the

deepest nodes in
 � . Let O ��� ��� F � . In other words, F ��� � �
such that G F � G � D<; � <8 +:- and for all +1?@F � , for all � ? O ,
� ("+���� �/� +
H)�� (+���� � ���1
 . The existence of set F � with respect to
the candidate D implies that D is satisfiable.

Let � � � � ��� � such that for all � ?�� � , �0; � <8 +:- � + ; that is,
� � ���"� ?�� �L� � G'�0; � 98 +E- � + � .

If D is satisfiable, nodes from set � � are selected to dominate D
while D9; � <8 +:-"!#� . A node 8 is selected to dominate D if 8 is
unsatisfiable (i.e., G
%$ G'& 8 ; � 98 +E-), or 8 belongs to set F � .

LEMMA 2.1. ��8)(� � is a ���2	��'
 -dominating set for � � (
= � (*�+$,� .

A node with
� <8 +:- value one (i.e., the node needs just one

more dominating node) and that is in set � $, becomes ���2	!��
 -covered
by node 8 . Consequently, all nodes in set �%$ become ���2	��'
 -
covered by node 8 , and are inserted in set = � .

LEMMA 2.2. If F � does not exist then � � (D-� is a ���2	!��
 -
dominating set for � � (= � (*� � �

If node D is not satisfiable, then node D is added to the set
�

, and
consequently to the set of nodes already covered (i.e., � � (P= � �).

THEOREM 2.1. Algorithm 1 correctly computes a ����	��'
 -dominating
set for any connected graph �������
	.�
 .

PROOF. As Algorithm 1 follows Lemmas 2.1 and 2.2 it is clear
that it correctly computes a ����	���
 -dominating set for a given graph
� � ��� 	.�
 . The selection process continues until no nodes are
left in set = . Nodes are inserted in set = � only when they have at
least � dominating nodes within � hops, or when they are selected
as dominating nodes. Candidate D is either satisfiable, or it is cho-
sen as a dominating node. At the end, all nodes in � are in the set
= � , and every node is either dominated or a dominating node.

Algorithm 1: KR

Data : /1032�4	57698 , : , ;
Result : < , the 2=:>5?;@8 -dominating set
begin

foreach A+BC4 doAED <GFIH�AKJ,0L: ;M �ONQPSR
;

M NQP 4 ; < NQPTR
;

while
M�U0 R

do
/* return next node from set

M
with largest <GFVH�A=J */W 01X,Y[Z]\^2 M 8 ;

/* create a hash table (hash = distance), and each list sorted by Domin
in decreasing order */_a` 01X�Y.b _ac-dVe]`fc-g?h Y@2=;I8 ;

r-Tree 2K/i5?;I5 W 5 _a` 5 M 8 ;
if j _a` j k W D <GFVH�A=J then< NQP <mlon W.p ; W D <GFIHaA=J,0�q ;

foreach riB,sGt[u v do
if rID <GFIH�AKJxwTq thenPTP r@D <GFVH�A=J ;

else
/* W D <GFIH�AKJ more distant nodes from node W */y NQPTz c d \
XC2 _Q` 5 W D <GFVH�A=J'8 ;
while W D <GFIH�AKJxwTq do

/* next from HT with lowest index (i.e., closer nodes first),
and largest <GFIHaA=J U0{q */

J,01X,Y[Z \^2 _Q` 8 ;
if JxB y

then
/* get the W D <GFIHaA=J most distant nodes from HT

(i.e., set
y v) */| NQPSz c-d \
XC2 _a` 5 W D <GFIH�AKJ�8 ;

foreach Z�B |
do< NQP <}lonVZ p ; Z'D <GFIH�AKJ�0{q ;

foreach r~B�sGt[u � do
if rID <GFIH�AKJ�w�q thenPSP r@D <GFIHaA=J ;

Break;

else
/* check if node J is satisfiable */
isKCovered 2=/i5?;I5?J	57��5 M 8 ;
if ��kTJ�D <GFVH�A=J then< NQP <}lonVJ p ; J	D <QFVH�A=J,0{q ;

foreach r~B�s t[u � do
if rID <GFIH�AKJ�w�q thenPSP r@D <GFIHaA=J ;

M �+NQP M � l�n W.p ;
M NQP Mf� n W.p ;

/* remove from set I all neighbors in the r-hop neighborhood that are
already kr-dominated */

foreach r~B,s~t[u v do
if rID <QFVH�A=Jo0�0�q AND riB M

thenM �+NQP M � l,n[r p ;
M NQP M�� n[r p ;

end

THEOREM 2.2. For any graph � ���
	��
 , Algorithm 1 computes
a �%+)	���
 -dominating set with cardinality within bounds established
in [7].

PROOF. The solution presented in [7] (referenced here as OneR)
selects dominating nodes during the traversal of the spanning tree

 of graph � . Let

��� 5���� be the DS computed using algorithm
OneR, and

��� � be the DS computed using algorithm 1. In OneR,
for every node +�?}
 selected for set

�
, a subset

� � 5����� � � ��� �
with cardinality G � � 5����� G2��� is removed from
 (except for the
last dominating node, when G � � 5����� G 3 J"�). In algorithm 1, for
every node � selected as a dominating node (and � ?
 because

 is a spanning tree of �), a subset

� � �	 � � �L� 	 with cardi-
nality G � � �	 G 3 G � �L� 	 G is dominated. That is the same as to say
that for every node + selected as dominating node, while the KR
algorithm removes G � ��� � G) � nodes from graph � (and + ?"
),
algorithm
�- (-� removes always � nodes from
 . Hence, we have
that G � � � G 3 G ��� 5���� G . And because algorithm OneR computes
a dominating set within bounds established in [7], so does algo-
rithm 1 when computing �%+'	��'
 -dominating sets.

2.1.1 Running time
Lets consider an arbitrary graph �������
	���
 of order - � G �PG ,

represented using adjacency-lists. Algorithm 2 implements the pro-
cedure r-Tree, which is called from Algorithm 1. r-Tree builds a
tree rooted at node - using breadth-first search (BDF) [2]. In [2]
it is shown that the total running time of BDF is
 ��� / ��
 . The
main difference between algorithm r-Tree and standard BDF is that
the former is restricted to the r-hop neighborhood, and the latter
runs over the whole graph (network). Algorithm 2 also includes
insertion in a hash table (we assume hashing with chaining). Be-
cause we assume the hash value to be the distance of a node, there
is no cost regarding computing the hash value. In our case the cost
of inserting a node in the hash table is constant (i.e.,
 �%+"
). Thus,
Algorithm 2 runs in linear time in the size of the adjacency-list rep-
resentation of � .

Procedure isKCovered (Algorithm 3) also mimics BFS, with the
only addition of searching the hash table ��
 (what can be accom-
plished in
 �%+"
 time). In the main algorithm (i.e., Algorithm 1),
the overhead for initialization is
 � -
 . The main while loop is
executed at most - times. The most costly operation internal to
the while loop is performed in the second while loop, in which the
procedure isKCovered is executed at most
 �LG � ��� � G
 times (whereG � ��� � G is the average size of the r-hop neighborhood). Assuming
��� -�
 , and G � ��� � G'& - , Algorithm 1 runs in
 � -�

 time.

2.2 Total (k,r)-dominating set
A total (k,r)-dominating set for a graph � � ���
	���
 is a set� � � such that every node � not in

�
is at a distance � or less

from at least � nodes in
�

, and every vertex � ? � is at a distance
� or less from at least one other node in

�
.

In the (k,r)-dominating set problem we do not find another mem-
ber within distance � to dominate a dominating node of

�
. But, to

compute the total (k,r)-dominating set, when adding a new mem-
ber - to the set

�
, if node - is not dominated by any other node

in
�

(i.e., - ; � 98 +:-�� �), then the
� <8 +:- value of node - is

set to + instead of � (as in the (k,r)-dominating problem). There-
fore, a dominating node is removed from the set = only after it is
dominated by at least one dominating node.

When computing the set � � , nodes that are already members of�
, but are not dominated yet (i.e.,

� <8 +:- � +) and still members
of set = , are not taken into account. Otherwise, eventually a node
could be chosen as a dominating node more than once; what is not
acceptable.

LEMMA 2.3. Let � be the set of nodes to be added to
�

in order
to dominate candidate node D as determined by Algorithm 1. For all

Algorithm 2: r-Tree

Data : /1032�4	57698 , ; , J ,
_a`

(hash table),
M

begin� 0�sGt[u ��� M
;

for riB � dor@D W F h FV;�0�� e AK\EY ; r@D � A d \+0�� ; r@D � c ;@Y.J \�0�� ;

J	D W F h FV;�01/�; c�� ; J�D � A d \�0{q ; J	D � c ; Y[J \�0�� ;
| 0mnIJ p ;

while
| U0 R

doe 0 _ Y c ��� | � ; !L01X#"$ � � ;
foreach r~B#! do

if rID W F h FI;�0�0�� e AK\EY thenrID W F h FI;�01/9; c%� ; rID � A d \�0�� A d \^D e'&)(;rID � c ; Y[J \�0 e
; Enqueue 2 | 5�rI8 ;

/* do not insert in
_a`

the starting node */
if
e U01J thenM J d Y[;I\ _�c-d.e>` c gEh Y@2 _a` 5 e 5 e D � A d \
8 ;

Dequeue 2 | 8 ; e D W F h FV;�0+* hKc W : ;

end

, ? � such that
, ; � <8 +:- �I+ , if G � G�! + , then > � , �.-� ,
 ?��

we have that
, +0//� � , 	 , �
 ! � .

(a) > , ?�� , if G
21 G%� � , then select a node - ?}� 1� to dominate,
. Hence, because - is a neighbor, both

,
and - has

� <8 +:-
set to � and are moved to set = .

Algorithm 3: isKCovered

Data : /1032�4	57698 , ; , J , � ,
M

begin� 0�sGt[u ��� M
;

for riB � dor@D W F h FV;�0�� e AK\EY ;

J	D W F h FV;�01/�; c�� ;
| 0LnVJ p ;

while
| U0 R

doe 0 _ Y c ��� | � ; !L01X#"$ � � ;
foreach r~B#! do

if rID W F h FI;�0�0�� e AK\EY23�X�<Tr~B M
thenrID W F h FI;�01/9; c%� ; � 01� &4(
;

if ��5SJ	D <GFIHaA=J then
return ;

Enqueue 2 | 5�rI8 ;
Dequeue 2 | 8 ; e D W F h FV;�0+* hKc W : ;

end

Lemma 2.3(a) implies that a node from set = , but not in set
�

,
may change status from dominated node to dominating node. IfD1? �

(i.e., if a candidate is from
�

, then D<; � 98 +E- � +), then
Lemma 2.3(a) also applies.

THEOREM 2.3. Algorithm 1 with the proposed modifications
correctly computes a total ����	��'
 -dominating set for any arbitrary
connected graph � ����� 	.�
 .

PROOF. The theorem follows from Lemma 2.3 and Theorem 2.1.

2.3 Reliable (k,r)-dominating set
A reliable (k,r)-dominating set for a graph ��� ���
	���
 is a set� � � such that every node � not in

�
is within distance � from

at least � nodes in
�

, and every node � in
�

is adjacent to at least
one node in

�
.

Whenever a node - is added to the dominating set and the node
is not adjacent to any other node in

�
, a node from � 5� is also

Table 2: Network Diameter and Average Node Degree�
of nodes Network Diameter Average Node Degree

100
(q D � (�� q D (�� � D �	� � q D q�

150
(�� D ���
� q D ((� D q	� � q D q��

200
(� D
�� � q D (� � D (� � q D q��

250
(
-D
�� � q D (�� � D � � � q D q��

300
(�-D � � � q D (�� � D � � q D q��

350
(�-D ���
� q D (�� � D �	� � q D q��

400
� q D � � � q D (�� � D � ��� q D q��

450
��� D ���
� q D (�� � D
 (�� q D q��

500
��� D q�� � q D (�� � D �
 � q D q��

0

20

40

60

80

100

120

140

160

100 150 200 250 300 350 400 450 500

N
um

be
r

of
 D

om
in

at
in

g
N

od
es

Number of nodes

(1,r)-Dominating Set

KR(1,2)-Domin

KR(1,3)-Domin

KR(1,4)-Domin

KR(1,5)-Domin

KR(1,6)-Domin

One2

One3

One4

One5

One6

Figure 2: Computing �%+'	��'
 � dominating set: OneR versus KR

selected for the set
�

. If there is a neighbor � of node - (i.e.,
� ?m� 5�) that cannot be satisfied then select node � . If all one-hop
neighbors can be satisfied, then select the one-hop neighbor with
the largest one-hop neighborhood set (excluding those neighbors
shared with node -).

LEMMA 2.4. For every node - selected for
�

, if no other node
in � 5� is a dominating node, then one node from � 5� is selected to
dominate - .

THEOREM 2.4. Algorithm 1 with the proposed modifications
correctly computes a reliable (k,r)-dominating set for any arbitrary
connected graph � �����
	 ��
 .

PROOF. The theorem follows from Lemma 2.4 and Theorem 2.1.

3. SIMULATION RESULTS
For the simulations, we vary the network size (i.e., number of

nodes) and measure the total number of dominating nodes. For
each configuration (i.e., number of nodes) we obtain the value for
the metric for + �>� arbitrary networks (nodes are randomly placed
over the terrain, and connectivity is tested to ensure that the net-
work is connected). Results represent the average over the + �>�
different networks . The network size is varied from + �>� nodes to� �>� nodes. Table 2 presents the values for the network diameter,
and the average node degree for all network sizes. These results
show that as the network size increases so does the network diam-
eter. But it also shows that we try to keep the same average node
degree for all network sizes.

Figure 2 shows the results comparing the algorithm presented
in [7] (here referenced as OneR, with R being the distance parame-
ter) with the (k,r)-dominating set algorithm (referenced as KR). Be-
cause the OneR algorithm strictly follows the paths on the spanning

 0

 10

 20

 30

 40

 50

 60

 70

 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 D

om
in

at
in

g
N

od
es

Number of nodes

(k,r)-Dominating Set

KR(2,3)-Domin

KR(3,3)-Domin

KR(2,4)-Domin

KR(3,4)-Domin

KR(4,4)-Domin

KR(2,5)-Domin

KR(3,5)-Domin

KR(4,5)-Domin

KR(5,5)-Domin

Figure 3: Computing ����	���
 � dominating sets with KR

tree, it does not take advantage of the particularities of the topol-
ogy. For the configurations under consideration, the KR algorithm
always produces smaller dominating sets. We can also observe that
both algorithms have results within the bounds established in [7].

Figure 3 presents the results using the KR algorithm for several
configurations. We can see that as we relax the number of dom-
inating nodes and fix the distance parameter, the total number of
dominating nodes decrease. It is noteworthy the closeness among
the results for �1� �EJ.	7K'
 , �1� �:K%	���
 , and �1� ��� 	 �
 . It suggests that
if we increase both the distance and the required number of domi-
nating nodes per node, it does not impact much the total number of
dominating nodes.

4. CONCLUSIONS
The location problem in computer networks is similar to comput-

ing Generic Dominating Sets (GDS), also called ����	��'
 -dominating
sets, in graphs. Prior work solves the GDS problem for interval
graphs (IG), which are limited to very simple topologies. The GDS
problem for arbitrary graphs is NP-Complete. To date, there is just
one proposed algorithm for computing �%+)	���
 -dominating sets for
arbitrary graphs [7] (referenced in the text as OneR, with � as the
distance parameter). We presented the first known approach for
computing a GDS of an arbitrary topology. Simulation results com-
pare our solution to the algorithm OneR, and we also present results
for several other configurations.

5. REFERENCES
[1] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span. In

Mobile Computing and Networking, pages 85–96, 2001.
[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to

Algorithms. MIT Press, 1990.
[3] F. Dai and J. Wu. Distributed dominant pruning in ad hoc wireless ad

hoc networks, Feb 2002.
[4] M. R. Garey and D. S. Johnson. Computers and Intractability.

Freeman, San Francisco,, 1978.
[5] G. Y. Handler and P. B. Mirchandani. Location on Networks: Theory

and Algorithms. The MIT Press, 1979.
[6] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, editors.

Fundamentals of Domination in Graphs. Marcel Dekker, Inc., 1998.
[7] M. A. Henning, O. R. Oellermann, and H. C. Swart. The diversity of

domination. Discrete Mathematics, 161(1-3):161–173, December
1996.

[8] D. Joshi, S. Radhakrishnan, and C. Narayanan. A fast algorithm for
generalized network location problems. In ACM-SAC, pages 701–8,
1993.

