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Abstract

Researchers studying the evolution of viral pathogens and other organisms increasingly encounter 

and use large and complex data sets from multiple different sources. Statistical research in 

Bayesian phylogenetics has risen to this challenge. Researchers use phylogenetics not only to 

reconstruct the evolutionary history of a group of organisms, but also to understand the processes 

that guide its evolution and spread through space and time. To this end, it is now the norm 

to integrate numerous sources of data. For example, epidemiologists studying the spread of a 

virus through a region incorporate data including genetic sequences (e.g. DNA), time, location 

(both continuous and discrete) and environmental covariates (e.g. social connectivity between 

regions) into a coherent statistical model. Evolutionary biologists routinely do the same with 

genetic sequences, location, time, fossil and modern phenotypes, and ecological covariates. These 

complex, hierarchical models readily accommodate both discrete and continuous data and have 

enormous combined discrete/continuous parameter spaces including, at a minimum, phylogenetic 

tree topologies and branch lengths. The increased size and complexity of these statistical models 

have spurred advances in computational methods to make them tractable. We discuss both the 

modeling and computational advances below, as well as unsolved problems and areas of active 

research.
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1. Introduction

All living things on the planet share a common evolutionary history. Phylogenetic trees 

capture the evolutionary relationships between groups of organisms (Baldauf 2003). At the 

extremes, these phylogenies can describe the evolution of all life on earth spanning ~ 4 

billion years or that of a viral lineage over weeks. Statistical phylogenetics gives researchers 

the tools to study these evolutionary processes and can be used to answer both fundamental 

biological questions, such as “which species of ape is most closely related to humans and 

when did our evolutionary histories diverge?” (Bradley 2008) and more practical ones such 

as “how effective are various interventions at controlling the spread of a viral epidemic?” 

(Dellicour et al. 2018). Researchers typically rely on molecular sequences (e.g. DNA, RNA, 

amino acids) to infer the phylogeny itself and commonly incorporate additional sources of 

data to answer specific questions. For example, toward the end of this review in Section 4 

we examine a case study where researchers investigate the early spread of SARS-CoV-2, 

the virus that causes COVID-19, across the world (Lemey et al. 2020). This analysis 

incorporates viral genetic sequences, sample collection dates and locations, individual-level 

travel history, global air traffic patterns, local SARS-CoV-2 case counts and within-host 

infection dynamics into a coherent statistical model that allows researchers to reconstruct the 

early pathways along which SARS-CoV-2 spread early in the pandemic.

From a statistical perspective, phylogenetics offers a rich array of complex hierarchical 

models for both inferring the phylogeny itself as well as parameters associated with the 

underlying evolutionary processes of interest (Nascimento et al. 2017). The complexity of 

these models, however, can result in theoretical and computational challenges to inference 

that limit their scalability. These challenges have led to the development of statistical 

methods with broad utility beyond the field of phylogenetics itself. In this review, we 

first introduce the fundamental statistical approaches to phylogenetics in Section 1.1 and 

the advantages of the Bayesian approach in Section 1.2 below. We then discuss modern 

methods for inferring phylogenetic trees in Section 2 and data integration in Section 3. As 

mentioned previously, we examine in Section 4 a case study that relies on many of the 

methods discussed in earlier sections.

1.1. Molecular evolution on a phylogenetic tree

Let the phylogenetic tree ℱ be a bifurcating directed acyclic graph with N degree-one 

terminal/tip nodes ν1, …, νN, N − 2 degree-three internal nodes νN + 1, …, ν2N − 2 and one degree-

two root node ν2N − 1. With the exception of the root node, there is an edge connecting each 

node νi to its parent νpa i  with length ti. See Figure 1 for a simple example. Depending on 

the statistical model, these edge lengths are typically proportional to either the amount 

of time or expected number of genetic changes separating nodes νi and νpa i . While 

some parameterizations permit multifurcations/polytomies (i.e. nodes with more than two 

children), we focus on the bifurcating case without loss of generality as multifurcations 

can be represented via bifurcations with edge lengths equal to zero. Note that some 

parameterizations assume unrooted trees where the degree-two root node is omitted. In 

the unrooted case, the phylogeny is no longer directed and there are no fixed parent/child 

relationships between nodes.
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Likelihood-based phylogenetic inference typically relies on molecular sequences S to inform 

the phylogenetic tree. The tree ℱ parameter space is divided into a discrete topology space 

(i.e. the bifurcating tree structure without the edge lengths) and a continuous edge length 

space. The edge lengths inhabit a (non-negative) continuous 2N − 2 −dimensional space, 

t1, …, t2N − 2 ∈ ℝ ≥ 0
2N − 2 = x1, …, x2N − 2 :xi ≥ 0 . The space of tree topologies is unordered, 

discrete, and grows combinatorially in the number of tips, with (2N − 3)!! = ∏i = 1
N − 1 2i − 1

possible tree topologies for N tips.

There are many ways to specify the likelihood p S ∣ ℱ  that are beyond the scope of 

this review (see Felsenstein (2004), Sullivan & Joyce (2005), Lemey et al. (2009b) for 

overviews). However, it is useful to sketch a common form of these likelihoods. Let us 

assume that we have DNA characters, comprising the nucleotides A, C, G and T (the 

building blocks of DNA). We make the standard assumption that the molecular sequences 

S are aligned into an N × M matrix, where M is the number of nucleotides in a sequence 

alignment. Each column, called a site, in this alignment represents a homology assumption, 

in that all characters in a column share a single common ancestor somewhere back in time. 

We also commonly assume that each site evolves independently and identically (with the 

other sites) along the tree according to a four-state continuous-time Markov process with 

the instantaneous rate matrix Q. Let si
m be the nucleotide at site m for node νi. The transition 

probability of observing si
m given the parent nucleotide state spa i

m  and edge length ti is psimspa i
m , 

such that P = pℓm = exp tiQ  forms the transition probability matrix.

The clear challenge to computing likelihoods under this model is that we have not observed 

any sequence data associated with the internal nodes νN + 1, …, ν2N − 2 or the root node ν2N − 1 and 

so must marginalize over their values. Assuming independence between sites and a prior 

p s2N − 1
m  on the root, the likelihood can then be expressed as

p(S ∣ ℱ) = ∏
m = 1

M
∑

sN + 1
m ∈ A, C, G, T

… ∑
s2N − 1

m ∈ A, C, G, T
p s2N − 1

m ∏
i = 1

2N − 2
p si

m ∣ spa(i)
m , ti .

1.

Naive computation of the above equation requires summing over 4N − 1 unobserved states 

and is computationally intractable. Felsenstein’s pruning algorithm (Felsenstein 1973a, 

1981), however, uses a post-order traversal of the tree to compute this likelihood in 

O N  time, and all modern implementations of this likelihood calculation rely on that 

basic approach. The fundamental approach of this pruning algorithm is based on dynamic 

programming and has found repeated rediscovery in the message-passing algorithm (Pearl 

1982) and sum-product algorithm (Kschischang et al. 2001).

Let sm be the nucleotides at site m associated with all tip nodes. The pruning algorithm 

relies on recursively computing the probability mass function p s i
m si

m, ℱ i , where ℱ i

is the sub-tree with root node νi, and s i
m  is the sub-vector of sm restricted to the tips in 
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ℱ i . At the root node ν2N − 1, ℱ i = ℱ and s 2N − 1
m = sm, and the pruning algorithm computes 

p sm s2N − 1
m , ℱ = p s 2N − 1

m s2N − 1
m , ℱ 2N − 1  via the following recursive relationship:

p s i
m si

m, ℱ i = p s j
m si

m, ℱ i p s k
m si

m, ℱ i

= ∑
sj

m ∈ A, C, G, T
p s j

m sj
m, ℱ j p sj

m si
m, tj

× ∑
sk

m ∈ A, C, G, T
p s k

m sk
m, ℱ k p sk

m si
m, tk ,

2.

where nodes νj and νk are the children of node νi. When the recursion reaches tip 

nodes i = 1, …, N, p s i
m si

m, ℱ i = 1 s i
m = sim , and the actual computations of computing the 

likelihood are performed via a post-order traversal of the tree (i.e. tips to root). The 

algorithm marginalizing over the root sequences

p sm ℱ = ∑
s2N − 1

m ∈ A, C, G, T
p sm s2N − 1

m , ℱ p s2N − 1
m

3.

and calculating p(S ℱ) = ∏m = 1
M p sm ℱ  is shown in Figure 2 on a simple example.

1.2. Why Bayesian?

In Bayesian phylogenetic inference, a common goal is to compute the posterior distribution 

of the phylogenetic tree given our sequence data,

p ℱ ∣ S ∝ p S ∣ ℱ p ℱ .

4.

The tree prior p ℱ  typically falls into one of two biologically-motivated families. 

Coalescent models (Kingman 1982, Strimmer & Pybus 2001, Minin et al. 2008, Müller et 

al. 2017, Faulkner et al. 2020) are based on population genetic abstractions of sampling 

a (relatively) small number of sequences from a large population. Birth-death models 

(Thompson et al. 1975, Nee et al. 1994, Stadler 2010, Höhna et al. 2019, Barido-Sottani 

et al. 2020, MacPherson et al. 2022) provide a forward-in-time model for the origination 

and termination of entire lineages. Bayesian approaches offer several advantages which we 

discuss below.

1.2.1. Quantifying uncertainty.—Bayesian phylogenetics grew largely from the need 

to quantify and accommodate uncertainty in the phylogenetic tree (Sinsheimer et al. 1996, 

Rannala & Yang 1996). Measuring uncertainty in the phylogenetic tree is a fundamentally 

challenging problem as the primary parameter of interest is often the tree topology: a 

high-dimensional, unordered, tip-labeled discrete parameter. Typical uncertainty estimates 

focus on estimating the statistical support for a specific monophyletic clade (i.e. a group of 

taxa comprising all the descendants of a given ancestor). Prior to the advent of Bayesian 
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phylogenetic inference, phylogenetic uncertainty had been addressed with non-parametric 

bootstrapping (Felsenstein 1985a) with much confusion as to interpretation of the bootstrap 

p-value (see Hillis & Bull 1993, Felsenstein & Kishino 1993, Efron et al. 1996, Berry & 

Gascuel 1996). Bayesian posterior probabilities provided both an intuitive and statistically 

coherent method of addressing this uncertainty (Alfaro et al. 2003).

1.2.2. Time-resolved trees.—Early phylogenetic models focused on the case where 

branch lengths are measured in genetic distances and thus unconstrained by time. However, 

Bayesian approaches can naturally accommodate the time-constrained case in a hierarchical 

model. As the bulk of the review assumes such models, we briefly consider the structure 

of a time-calibrated phylogenetic model. First, a tree arises from the tree prior p ℱ . The 

branch lengths t1, …, t2N − 2 of ℱ are in calendar time. For each branch is a branch rate θi, 

such that the probability of changes along the branch is given by exp tiθiQ . The prior on all 

branch rates p θ1, …, θ2N − 2  is known as the (molecular) clock model (Zuckerkandl & Pauling 

1962). Clock models typically either assume all branch rates are independent and identically 

distributed (Drummond et al. 2006) or that rates themselves evolve along the tree according 

to a correlated process (Thorne et al. 1998, Drummond & Suchard 2010).

1.2.3. Tree as nuisance parameter.—Phylogenetic methods offer opportunities to do 

more than just reconstruct the evolutionary history of a group of organisms. The branching 

patterns in trees themselves can be informative about patterns and processes governing 

biodiversity, such as mass extinctions (Stadler 2011, May et al. 2016), or the rate of spread 

of infectious diseases (Stadler et al. 2012, 2013). When combined with other information, 

such as the locality of samples or evolutionary traits, phylogenetic models provide a 

powerful framework for studying the spatiotemporal spread of both species and diseases, 

as well as the evolution of important traits (see Section 3). In many such cases, the tree 

itself is a nuisance parameter. Bayesian inference via Markov chain Monte Carlo (MCMC) 

provides a natural approach to numerically marginalize over the phylogenetic tree and 

study processes that condition on the tree independent of any single fixed tree’s influence 

(Huelsenbeck et al. 2000, 2001, Suchard et al. 2001).

2. Modern phylogenetics: big trees and complex models

Early practitioners of Bayesian phylogenetics naturally used MCMC to sample from 

the posterior distribution of phylogenetic trees. Since it is relatively straightforward to 

marginalize over continuous nuisance parameters (e.g. the molecular substitution rate matrix 

Q), attention quickly turned to improving the efficiency with which the Markov chain 

explores tree space (Yang & Rannala 1997, Larget & Simon 1999, Mau et al. 1999, Li 

et al. 2000, Huelsenbeck & Ronquist 2001). This in turn gave rise to the observation that 

navigating tree space is hard (Lakner et al. 2008, Höhna & Drummond 2012, Whidden & 

Matsen IV 2015, Harrington et al. 2021).

We explore several solutions to this problem below. In Section 2.1, we discuss approaches 

to improving the efficiency of MCMC-based methods. We then discuss in Section 2.2 

alternatives to MCMC inspired by phylogenetic problems. As these approaches permit 
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researchers to more efficiently explore the space of phylogenetic trees, we revisit in Section 

2.3 the problem of assessing uncertainty in the phylogeny estimates.

2.1. MCMC-based approaches

MCMC is the workhorse of Bayesian phylogenetic inference. The efficiency of MCMC 

depends on two factors: the auto-correlation between parameter proposals and the speed 

at which proposals are made and evaluated. Researchers have relied on and contributed to 

numerous innovative computational and statistical methods in search of MCMC approaches 

that efficiently explore the high-dimensional tree space.

2.1.1. Faster likelihood calculations.—In the absence of known conjugate priors, 

efficient likelihood calculations are critical for efficient MCMC. As common models of 

sequence evolution assume conditional independence between different sites in the genome, 

parallelization is a natural approach toward fast computation. The BEAGLE (Suchard & 

Rambaut 2009, Ayres et al. 2012, 2019) and PLL (Izquierdo-Carrasco et al. 2013, Flouri 

et al. 2015) libraries leverage the computational power of multi-core processors, including 

graphics processing units (GPUs) in the former case, to massively parallelize likelihood 

calculations and accelerate computation. These libraries also cache calculations on sub-trees 

such that unnecessary calculations are not repeated when, for example, a branch length on 

one part of the tree is updated that does not influence the partial likelihood of other parts of 

the tree.

2.1.2. Sampling from high-dimensional posterior distributions.—The 

dimensionality of many continuous parameters (e.g. the branch lengths) scales with the 

size of the phylogenetic tree. Phylogenetic analyses commonly partition genetic sequences 

into different genes (or some other genetic unit) that evolve independently conditional on 

a tree. Modern Bayesian phylogenetic analyses include trees with thousands of tips (e.g. 

Lemey et al. 2021) and, as such, require inference of the joint posterior of thousands of 

highly-correlated parameters.

Baele et al. (2017a) develop an adaptive Metropolis (AM) algorithm (Haario et al. 2001) 

that leverages the parallel computing to take advantage of the conditional independence 

of the genetic partitions. The AM algorithm is a modification of MCMC where proposal 

distributions are informed by the empirical posterior distribution up to that point in the 

chain. While AM is non-Markovian, it remains ergodic under weak assumptions (Roberts & 

Rosenthal 2009). Baele et al. (2017a) update the chain via partition-specific multivariate 

Gaussian proposals with covariance influenced by the empirical posterior covariance 

of relevant parameters. The conditionally independent parameter blocks allow parallel 

likelihood computations, and the multivariate Gaussian proposals informed by the posterior 

have higher acceptance probability than naive multivariate proposals.

Hamiltonian Monte Carlo (HMC) is now a standard tool across Bayesian statistics for 

sampling from high-dimensional posterior distributions. At its core, HMC also uses 

information about the posterior to generate high-dimensional parameter proposals with high 

acceptance probability. As the aforementioned information originates from the gradient of 

the log-posterior with respect to the parameters of interest, efficient gradient calculations 
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are essential for efficient HMC. Ji et al. (2020) develop an O N  algorithm for computing 

the gradient of the log-posterior with respect to all branch lengths simultaneously. These 

gradient calculations are also parallelizable using existing libraries (see Section 2.1.1) and 

result in an order of magnitude increase in computational efficiency.

2.1.3. Navigating tree space.—The discrete tree topology with 2N − 3 !! possible 

states is often the most difficult model parameter to efficiently sample. As many other 

parameters, including the branch lengths and latent data associated with internal nodes, 

are only identifiable in the context of a particular tree, MCMC proposals that make large 

changes to the tree topology frequently have very low acceptance probability.

HMC is a standard tool for sampling from high-dimensional, highly correlated, continuous 

parameter spaces, but the discrete, combinatorial nature of the tree topology does not permit 

traditional HMC approaches. Dinh et al. (2017) develop probabilistic path HMC (PPHMC) 

to sample from spaces that form an orthant complex. Essentially, they sample the branch 

lengths via HMC in a way that branch lengths may approach 0. When HMC causes a branch 

length to cross 0, PPHMC randomly selects from one of the three equivalent topologies 

resulting from the zero branch length. To reduce error from the leapfrog approximation 

crossing non-differentiable orthant boundaries, they introduce a smoothing function at 

these boundaries, which dramatically increases the accuracy of the approximation of 

the Hamiltonian trajectory and Metropolis-Hastings acceptance probability. Similar work 

outside of the phylogenetic context includes that of Pakman & Paninski (2013), Mohasel 

Afshar & Domke (2015) and Nishimura et al. (2020).

More recently, Meyer (2021) has developed a series of AM procedures for efficiently 

navigating the space of unrooted tree topologies. Like other AM algorithms, these 

approaches rely on statistics of the posterior sample up to a point in a chain to inform future 

parameter proposals. In the context of tree topologies, the relevant statistics rely on the fact 

that each branch splits the taxa into two groups. The Meyer (2021) approach relies on the 

posterior frequency of these splits for each possible group of taxa, with topology proposals 

more likely to disrupt low-frequency splits than high-frequency splits. Similarly, Zhang et al. 

(2020) use parsimony (i.e. the minimum number of genetic changes necessary to account for 

the observed genetic diversity) to inform tree proposals, with highly parsimonious (i.e. few 

changes) proposals more likely than less parsimonious ones.

2.2. Beyond MCMC

2.2.1. Sequential Monte Carlo.—Teh et al. (2007) propose sequential Monte Carlo 

(SMC) for inferring tree-structured models. Due to the hierarchical structure of the model, 

the intermediate distributions are defined over forests (i.e. groups of sub-trees) over the 

observed sequences, and hence the dimension of the target distributions increases over 

each iteration. Based on this idea, Bouchard-Côté et al. (2012) propose an efficient 

framework, based on partially ordered set structures, which imposes restrictions on 

proposal distributions so that the final iteration results in valid phylogenetic trees. Since 

this phylogenetic SMC is restricted to jointly estimate tree topology and branch length 

distributions, Wang et al. (2015) propose particle MCMC which combines a combinatorial 
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SMC within an MCMC in order to jointly approximate other continuous parameters such as 

the parameters of the substitution rate matrix Q. Borrowing ideas from annealed importance 

sampling, Wang et al. (2020) put forward an annealed SMC algorithm to approximate the 

full phylogenetic model and, as other SMC-based methods, enable the computation of the 

marginal likelihood.

SMC has also been investigated in an online setting in which a posterior sample of trees is 

already available from a previous analysis (e.g. MCMC or SMC) and one wishes to directly 

update the posterior approximation with additional sequences. Dinh et al. (2017) show 

consistency of online SMCs in terms of weak convergence while Fourment et al. (2018) 

develop sophisticated proposals that better match the proposal density to the posterior.

2.2.2. Variational inference.—Until recently, variational inference (VI) has received 

limited attention in the field of phylogenetics, perhaps due to 1) the absence of conjugate 

prior distributions in the nearly all phylogenetic models and 2) the difficulty of analytically 

calculating the gradient of complex joint distributions. Dang & Kishino (2019) develop a 

computationally efficient VI-based method to approximate a model which allows different 

equilibrium frequencies across sequence sites. Since the likelihood of this model is in 

the exponential family, most of the expectations required for optimization are obtained 

in closed form. This method is restricted to unrooted trees and the authors used closed-

form coordinate ascent and stochastic VI algorithms for solving the optimization problem. 

Fourment et al. (2020) use VI to approximate the marginal likelihood of fixed unrooted 

topologies using stochastic gradient ascent with analytical derivatives. Using the Stan 

language (Carpenter et al. 2017) and its automatic differentiation library, Fourment & 

Darling (2019) propose a framework for approximating complex models, including time-

calibrated phylogenies with tree priors (e.g. coalescent models), molecular clock, and 

discrete phylogeography models.

The methods described so far only approximate continuous parameters of a fixed topology 

and therefore evade the combinatorial problem of the discrete topology space. The first 

approach developed to tackle this problem was introduced by Zhang & Matsen IV (2018a) 

using a general Bayesian network formulation for tree probability estimation. Given a set of 

topologies, this structure provides an accurate and rich distribution over the topology space. 

Subsequently, the same authors (Zhang & Matsen IV 2018b) build on the Bayesian network 

idea and propose jointly approximating the tree structure and the branch length distributions. 

This method also necessitates a set of topologies to define the structure of the Bayesian 

network, however dynamic construction of the network is an active area of research. Moretti 

et al. (2021) propose a hybrid method using VI and combinatorial SMC to approximate 

posteriors defined on the space of phylogenetic trees. The main advantage of this method 

is that it does not require precomputing a set of topologies. With the exception of the 

Stan-based method which allows approximating a posterior using a multivariate normal 

distribution, every method described so far uses meanfield approximation thereby ignoring 

correlation between parameters. Since parameters in phylogenetic models tend to be highly 

correlated, Zhang (2020) proposes to use normalizing flows to improve the expressiveness of 

the approximate distribution.
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Recently, Ki & Terhorst (2022) synthesized this VI-based work with phylodynamic methods 

to fit a complex epidemiological model with thousands of sequences. The authors showed 

that their method was order of magnitude faster than an MCMC-based approaches and was 

able recover acceptable parameter estimates.

2.3. Uncertainty in tree space revisited

As discussed in Section 1.2.1, Bayesian phylogenetic methods conveniently quantify 

uncertainty in the tree. Many evolutionary questions can be phrased as “is there a subtree in 

the phylogeny which contains all of (some set of) sequences and no other sequences?” With 

MCMC samples in hand, we can easily obtain this probability by counting MCMC samples 

with the subtree. The fact that this estimate can carry substantial Monte Carlo error is often 

ignored. For continuous random variables, Monte Carlo error is typically addressed using 

the effective sample size (ESS, i.e. the number of independent samples which would yield 

the same standard error of the mean). Trees, however, are more complex objects.

Gaya et al. (2011) introduce one approach that focuses on taxa splits (i.e. bi-partitions of 

the tips by cutting the tree at a given edge). The tree is reduced to a series of indicator 

variables denoting whether a given split is present or absent in each tree. Uncertainty in 

the probability of specific splits can then be expressed via the ESS of these indicators. 

Fabreti & Höhna (2021) observe, however, that this approach has difficulty with splits whose 

probabilities approach 0 or 1. They also note that the Gaya et al. (2011) ESS incorrectly 

assumes that splits are independent. Regardless, Fabreti & Höhna (2021) find evidence via 

simulation that the Gaya et al. (2011) approach may remain robust.

Lanfear et al. (2016) propose an ESS for the phylogeny itself. They suggest two approaches 

based on distances between trees. One such approach is the pseudo-ESS, where for each 

posterior tree sample the distance is computed to all other tree samples. The overall tree 

ESS is taken to be the median of the ESSs of these distance metrics. Lanfear et al. (2016), 

however, do not establish any link between this pseudo-ESS and Monte Carlo error.

Magee et al. (2021) develop several additional approaches for computing the ESS of a 

phylogeny. One such approach employs Fréchet generalizations of covariance such that the 

generalized auto-correlation ρt between trees can be computed and the following standard 

identity can be applied: ESS = n/ ∑t = − ∞
∞ ρt . Additionally, Magee et al. (2021) propose a 

simulation-based approach to test whether a putative tree ESS is useful for quantifying 

Monte Carlo error in the tree. They find that most tested tree ESS measures can capture 

Monte Carlo error in the probabilities of splits, as well as other important summaries of the 

posterior distribution. The tree ESS approaches additionally do not appear to suffer from the 

difficulties Fabreti & Höhna (2021) identified with low and high probability splits.

3. Data Integration

In many cases the phylogenetic tree is actually a nuisance parameter and not of scientific 

interest itself (see Section 1.2.3). Rather, there is some other process (e.g. rate of viral 

transmission between two locations, strength of natural selection) that is separate from 

yet dependent on the evolutionary history that researchers would like to explore. In these 
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cases, researchers frequently seek to integrate varying sources of data into a single, coherent 

statistical model of evolution. These additional sources of data frequently include time (see 

Section 1.2.2) and geographic location (Lemey et al. 2009a, 2010).

Before discussing specific statistical models for integrating varying types of data, we 

first introduce a general framework in which to orient these models in Section 3.1. We 

then examine models and inference methods associated with integrating both discrete and 

continuous data into phylogenetic models in Sections 3.2 and 3.3, respectively. While we 

briefly discuss applications in the sections below, Baele et al. (2017b) offer a more thorough 

overview of the different kinds of data integrated into these phylogenetic models.

3.1. A unified modeling framework

There are myriad statistical models for integrating additional data into these phylogenetic 

models. While each model is naturally tailored to a specific application, most share a 

common, general framework (see Section 3.4.3 for a notable exception). Let xi = xi1, …, xiK
t

be a vector of latent traits associated with node νi for i = 1, …, 2N − 1. Similarly, let 

yi = yi1, …, yiP  be the data associated with tip nodes ν1, …, νN. For tips i = 1, …, N, we posit a 

possibly stochastic link function yi = f xi .

These models describe a data generative process where the distribution of each xi conditional 

on the trait values of its parent xpa i  are distributed with density or mass function 

p xi xpa i = g xi; xpa i , θi, Θ , where θi represents branch-specific parameters, and Θ represent 

universal model parameters. Typically, θi includes at the very minimum the branch length 

ti. By placing a prior on the root p x2N − 1 θ2N − 1 , we can define a likelihood over the data 

Y = y1, …, yN
t:

p Y f, g, ℱ, θ1, …, θ2N − 1, Θ .

5.

See Figure 3 for a model schematic.

While this framework seems (and indeed is) incredibly generalizable, all models resulting 

from it share a critical property: once lineages diverge they evolve independently. To 

formalize this notion, assume two nodes νi and νj that share a common parent νpa i = νpa j = νk. 

Let Y i  and Y j  be the data associated with all tip nodes descended from node νi and 

νj, respectively. By construction, Y i xk and Y j xk are independent. This conditional 

independence is a defining feature of these phylogenetic models that statisticians routinely 

exploit to increase computational efficiency of statistical inference.

Readers may note that the model of molecular sequence evolution described in Section 1.1 

fits neatly within this more general framework. Specifically, the data Y are comprised of 

discrete nucleotides (e.g. yij ∈ A, C, G, T ), the link function f xi = xi, and the probability 

mass function g xi; xpa i , ti, Q = ∏m = 1
M exp tiQ xpa i mxim.
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As noted above, Bayesian methods (specifically MCMC) offer a to-date unmatched ability 

to study evolutionary processes without conditioning on an particular evolutionary history. 

This follows simply from the fact that researchers can easily sample from the marginal 

density of a parameter of interest from a realized MCMC simulation. Let Φ represent all 

parameters associated with nucleotide evolution (e.g. the substitution rate matrix Q) and 

let Ψ = θ1, …, θ2N − 1, Θ  be the parameters associated with some separate trait-evolutionary 

process. One can then sample from the posterior

p ℱ, Φ, Ψ S, Y ∝ p S ℱ, Φ p Y ℱ, Ψ p ℱ p Φ p Ψ

6.

via a Metropolis-within-Gibbs approach (Gelfand 2000) where one iteratively samples from 

p Φ ℱ, S , p Ψ ℱ, Y , and p ℱ S, Y, Φ, Ψ . This compartmentalization of the inference 

procedure means that methods for sampling from the nucleotide substitution parameters Φ
are not influenced by the trait-evolutionary model and vice versa. The sections below focus 

on the conditional posterior p Ψ ℱ, Y .

3.2. Discrete character integration

Many processes of interest can be modeled as the evolution of discrete traits on the tree 

(Ronquist 2004). Perhaps the most common discrete outcome of interest is location in 

phylogeographic models (Sanmartín et al. 2008, Comas et al. 2013, Lemey et al. 2020). 

However, other discrete characters of interest include pathogen host species (Ward et al. 

2014, Dearlove et al. 2016, Latinne et al. 2020) and ecological habitat (Bryja et al. 2014, 

Terra-Araujo et al. 2015, Sánchez-Baracaldo et al. 2017). See Baele et al. (2017b), Table 1 

for a more thorough list of discrete-trait analyses.

The most common model of discrete-character evolution is essentially the same as the 

continuous-time Markov model of nucleotide evolution introduced in Section 1.1. The states 

can be arbitrarily defined to be whatever discrete character is evolving along the tree.

3.2.1. Developments in Markov jump processes.—Problems of both genetic 

sequence and discrete trait evolution have motivated much work on Bayesian networks, 

hidden Markov models, endpoint-conditioned Markov jump processes and Markov reward 

processes to infer the number of times specific trait changes occur or the length of 

time a trait is realized along an evolution history. Siepel et al. (2006), for example, 

analytically derive the probability mass function of the total number of Markov jumps in 

an endpoint-conditioned continuous-time Markov chain along a graph with arbitrary rate 

matrix. Similarly, Minin & Suchard (2008a,b) analytically calculate the moments of the 

number of jumps between each pair of states. Sometimes, expectations are insufficient and 

simulation is required to answer the question of interest. Hobolth & Stone (2009) provide 

several approaches for simulating endpoint-conditioned continuous-time Markov chains. 

Minin & Suchard (2008a) and Hobolth & Jensen (2011) develop computationally efficient, 

simulation-free methods for calculating the moments of Markov reward processes (e.g. the 

average amount of time spent in a particular state of a continuous-time Markov chain).
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Phylogenetics has also motivated the development of statistical theory related to Lie Markov 

models (Sumner et al. 2012, Fernández-Sánchez et al. 2015). These models comprise 

inhomogeneous continuous-time Markov processes whose endpoint can be expressed as 

the result of a time-homogeneous process (essentially the time-resolved average of the 

inhomogeneous process). These processes permit the instantaneous rate matrix to vary over 

time (and along different branches in a phylogeny) and are useful for identifying the root 

position of a phylogeny without specifying a molecular clock (Hannaford et al. 2020).

3.2.2. Evolutionary covariates and the curse of dimensionality.—Phylogenetic 

models are certainly not immune from the curse of dimensionality. This phenomenon is 

particularly acute in phylogeographic models where the number of discrete locations can 

be quite large. Assuming a continuous-time Markov process along the phylogeny with L
discrete states and infinitesimal rate matrix Q = qℓm , the number of free parameters in Q
scales O L2 . While there is no theoretical prohibition on inferring more parameters than 

there are observations, it becomes increasingly difficult to extract meaningful information in 

these settings.

This challenge is also an opportunity, as one can reduce the size of the parameter space 

by assuming the O L2  transition rates are functions of some low-dimensional process 

parameterized by scientifically relevant covariates. Lemey et al. (2014) and Zhao et al. 

(2016) develop a generalized linear model (GLM) that assumes the log-transition rates are 

a linear function of relevant covariates (e.g. pairwise air traffic between two locations, local 

temperature) with the number of parameters scaling linearly with the number of covariates. 

To further penalize over-parameterization within the GLM, Lemey et al. (2014) also assume 

a priori that some unspecified number of covariates have no influence on the transition 

rates as follows. Let Z = zℓm, i  be the covariate observations associated with all ordered 

pairs ℓ , m ∈ 1, …, L 2, ℓ ≠ m and covariates i = 1, …, R. Let β = β1, …, βR
t be a vector 

of regression coefficients and δ = δ1, …, δR
t be a vector of indicator variables such that 

logqℓm = ∑i = 1
R δiβizℓm, i. Inference of the indicators i can be achieved via Bayesian stochastic 

search variable selection (Kuo & Mallick 1998, Chipman et al. 2001). To sample efficiently 

from a posterior with high correlation between regression coefficients β, Lemey et al. 

(2014) rely on a Markov chain transition kernel that draws the proposal β* N β, αZtZ , 

where α is a tunable scaling factor. This kernel accounts for the prior expectation that 

coefficients associated with correlated covariates will also be correlated. Zhao et al. (2016), 

as an alternative, develop an HMC sampler for the regression coefficients. These GLM 

approaches are applicable beyond phylogenetics and facilitate inference of the rate matrix of 

any discrete-state continuous-time Markov process.

3.2.3. Piece-wise deterministic, non-reversible Markov processes.—Bouchard-

Côté et al. (2018) introduce the bouncy particle sampler (BPS) as a non-reversible, rejection-

free alternative to reversible Metropolis-Hastings and HMC samplers. While they evaluate 

the BPS as a way to efficiently sample from the phylogenetic rate matrix Q, it has broad 

utility beyond statistical phylogenetics. Inspired by the physics literature (Peters & de With 
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2012), the BPS relies on piece-wise linear trajectories of a particle (the parameters) through 

a potential field (the negative log-posterior). Bouchard-Côté et al. (2018) generalize this 

sampler and develop methods to exactly simulate the parameter trajectories. The BPS relies 

on finding the parameter value along a line that maximizes the posterior density. Bouchard-

Côté et al. (2018) use gradient calculations from the HMC sampler of Zhao et al. (2016) 

to identify these maxima and sample efficiently from a high-dimensional evolutionary 

rate matrix. See Section 3.3.2 for additional applications of piece-wise deterministic, non-

reversible Markov processes.

3.3. Gaussian processes on a tree

While discrete-trait models discussed above are typically based on the same model of 

molecular sequences introduced in Section 1.1, continuous data integration requires new 

statistical models. Due to their computational tractability, Gaussian processes form the 

backbone of most continuous trait analyses. The simplest such model is one where 

correlated traits evolve according to a P-dimensional multivariate Brownian diffusion 

(MBD) process (Edwards & Cavalli-Sforza 1964, Felsenstein 1985b). Using the notation 

of Section 3.1, we have

xi xpa i N xpa i , tiΣ and yi = f xi = xi .

7.

Marginalizing the latent traits (except the root traits x2N − 1) results in the likelihood

vec Y ℱ, x2N − 1, Σ N vec 1Nx2N − 1
t , Σ ⊗ Ψ ,

8.

where ⊗ is the Kronecker product and Ψ is a deterministic function of the phylogenetic tree 

ℱ capturing the phylogenetically-induced covariance between taxa.

Likelihood-based inference frequently requires repeated evaluation of the likelihood 

function p Y ℱ, x2N − 1, Σ , which naively scales O N3P3 . Exploiting the Kronecker product 

to invert the variance reduces this complexity to O N3 + P3 . As both N and P  can be 

large, even this greatly simplified calculation can be intractable. Freckleton (2012) (based 

on Felsenstein (1973b)), Pybus et al. (2012) and Ho & Ané (2014) develop strategies 

for computing this likelihood in O NP2 + P3  using approaches conceptually similar to 

Felsentein’s pruning algorithm for computing the sequence-based likelihood (Felsenstein 

1973a). The Ho & Ané (2014) approach uses the tree structure to efficiently compute

Y − 1Nx2N − 1
t tΨ−1 Y − 1Nx2N − 1

t

9.
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in O NP2  for any matrix Ψ that satisfies what they dub the 3-point structure. Specifically, 

any matrix Ψ has a 3-point structure if for all i, j, k the two smallest covariances of 

ψij, ψik, ψjk are equal to each other. Ho & Ané (2014) generalize this to allow negative 

covariances in Ψ under certain conditions. More recently, Bastide et al. (2020) develop an 

HMC-based approach that can calculate gradients for nearly all relevant parameters in these 

hierarchical Gaussian models in linear time.

3.3.1. Gaussian processes and Matrix-Normal likelihoods with missing data.
—Unfortunately, the previous methods for computing the likelihood fail with partially 

missing data. Cybis et al. (2015) address missing data within a tip in these hierarchical 

Gaussian process models via data augmentation. Let yi
mis and yi

obs be the missing and observed 

data, respectively, associated with tip node νi. Cybis et al. (2015) develop a procedure that 

can sample from yi
mis Yobs, ℱ, Σ for i = 1, …, N. Each sample requires O NP2  computations 

for O N2P2  complexity to sample from all N tips.

Bastide et al. (2018), Mitov et al. (2020) and Hassler et al. (2020) develop an alternative 

approach that analytically integrates out missing observations rather than relying on data 

augmentation. This approach assumes that

yi ∣ xi N xi, Ri
t ∞I 0

0 0 Ri

10.

where Ri is a permutation matrix that arranges the ∞ values to correspond to the indices of 

yi
mis and the 0 values to correspond to the indices of yi

obs. This specification of missingness 

gives rise to a series of non-standard operations involving square matrices with 0 or ∞
diagonal elements. For example, the special inverse of some arbitrary matrix

Ri
t

∞I 0 0
0 V 0
0 0 0

Ri

−
= Ri

t

0 0 0

0 V−1 0
0 0 ∞I

Ri .

11.

Propagating missing information up the tree via singular precision matrices allows marginal 

likelihood calculations of the observed data only in O NP3 .

This algorithm applies to a much broader range of statistical models than MBD on a tree 

and helps solve the longstanding statistical challenge of efficiently calculating multivariate 

normal likelihoods with missing data. Specifically, it applies to any multivariate normal 

likelihood with a 3-point structured covariance matrix discussed above (Ho & Ané 2014). 

This structure is common in hierarchical Gaussian models. While Allen & Tibshirani (2010) 

and Glanz & Carvalho (2018) use the expectation-maximization algorithm to perform 

maximum likelihood imputation, the Bastide et al. (2018)/Mitov et al. (2020)/Hassler et 

al. (2020) approach permits inference relying on only the observed-data likelihood. For 
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situations where imputation is desired, this approach allows one to sample from the full 

conditional distribution of all missing observations simultaneously in O NP3  time as well.

3.3.2. Multivariate probit models and sampling from high-dimensional 
truncated Gaussian distributions.—Bayesian phylogenetics has also served as 

the motivation for many novel methods in multivariate probit models. Cybis et al. 

(2015) develop a phylogenetically informed multivariate probit model with correlations 

between both traits and taxa. Under this model, the data are a mix of continuous and 

discrete traits. Underlying all traits is an MBD process on the tree. Here, the mapping 

f xi = f1 xi1 , …, fP xiP
t between the continuous latent traits xi and mixed continuous/

discrete observed data yi is not the simple identity function. For a binary trait j, we have 

yij = fj xij = 1 xij > 0  (see Cybis et al. (2015) for mappings to ordinal or categorical traits). For 

continuous traits k, the link function remains fk xij = xij.

Let xi
obs be the components of xi associated with the continuous phenotypes and let xi

lat be the 

latent components informing the discrete traits. Efficient inference under this model requires 

data augmentation of xi
lat for i = 1, …, N. As mentioned in Section 3.3.1, this procedure 

relies on sampling from xi
lat yi, X\i, ℱ, Σ for i = 1, …, N, where X\i = xj; j ≠ i . This full 

conditional posterior is a (potentially high-dimensional) truncated Gaussian distribution 

due to the constraints in the stochastic link function. While Cybis et al. (2015) rely on a 

multiple-try rejection sampler, this sampler can be prohibitively slow for high-dimensional 

truncated Gaussian distributions. Zhang et al. (2021), however, employ a novel approach, 

the BPS (Bouchard-Côté et al. 2018, see Section 3.2.3), to more efficiently sample from 

this challenging distribution. As noted previously, the BPS requires calculating the gradient 

of the log-posterior density with respect to the latent parameters xi
lat for i = 1, …, N, which 

Zhang et al. (2021) achieve in linear time with a post-order tree traversal similar to that 

employed by Pybus et al. (2012). This Zhang et al. (2021) sampler essentially bounces 

off the truncations of the full conditional posterior. As the truncations are defined on a 

univariate basis, evaluating when these boundary events occur is trivial, and Zhang et al. 

(2021) observe increases in computational efficiency over rejection sampling approaching 

two orders of magnitude.

Seeking improvement on the BPS, Zhang et al. (2022) develop a zigzag Hamiltonian 

Monte Carlo sampler (Nishimura et al. 2020, zigzag-HMC) to further address the challenge 

of sampling from a high-dimensional truncated Gaussian distribution in the phylogenetic 

context. Zigzag-HMC differs from traditional HMC as it posits a Laplace momentum which 

imparts the unusual property that the Hamiltonian trajectory may only have slopes in ± 1 d

where d is the dimensionality of the parameter space (i.e. the element-wise slopes may be 1 

or −1 only). As the velocity restricted to ± 1 d only depends on the sign of the momentum, 

the particle moves with a constant velocity until one momentum component changes its sign, 

at which point the particle updates its velocity and moves along a new linear trajectory. See 

Figure 4 for a simple example. For Gaussian distributions, one can analytically simulate 

the zigzag Hamiltonian dynamics by calculating when these sign changes occur, eliminating 

the need for an accept/reject step. Zigzag-HMC handles truncations in the same way as the 
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BPS and it also takes advantage of the linear time log-posterior gradient evaluations. Besides 

being more efficient than BPS on a truncated Gaussian, zigzag-HMC also enables a joint 

update of latent parameters and the across-trait correlation, further improving the sampling 

efficiency. Importantly, this Zhang et al. (2022) method is able to learn the conditional 

dependence between any two traits in large problems where BPS fails.

3.3.3. Highly structured, high dimensional data and latent factor models.—
Up to this point, we have primarily discussed the computational challenges associated 

with big-N problems. Big-P  data sets are increasingly common in phylogenetic problems, 

and the methods discussed previously scale at best quadratically in P . Bayesian latent 

factor models (Press & Shigemasu 1989, Lopes & West 2004) are a common approach 

to reduce both computational and model complexity. These models assume that the 

P-dimensional observed data yi arise from K < P  dimensional latent processes xi. 

Specifically, yi = f xi = Ltxi + ϵi, where L is a K × P  estimable matrix and ϵi N 0, diag σ . 

The standard (non-phylogenetic) model assumes the prior distribution xi
iidN(0, I), but this 

specification precludes the requisite correlation between the latent factors that the phylogeny 

induces. As such, Tolkoff et al. (2018) introduce phylogenetic factor analysis, where the xi

evolve along the phylogenetic tree via MBD. Standard procedures for sampling from the 

full conditional posterior of the loadings matrix L require conditioning on the latent traits 

X = x1, …, xN
t, and Tolkoff et al. (2018) rely on the procedure outlined in Cybis et al. (2015) 

to sample from xi yi, X\i, ℱ, σ for i = 1, …, N with overall complexity O N2PK2 . Hassler et 

al. (2021) apply the likelihood calculation and data augmentation algorithms of Hassler et al. 

(2020) to sample from X Y, ℱ, L, σ in O NPK3 . As K is by design small, the cubic scaling 

in K is preferable to the quadratic scaling in N.

Hassler et al. (2021) also develop a novel HMC approach to efficiently sample directly from 

L Y, ℱ, σ without conditioning on the latent factors X that applies to latent factor models 

generally. Hassler et al. (2021) show that one can calculate the gradient ∇L logp L Y, ℱ, σ
required for HMC as a function of the full conditional mean and variance of each xi, but 

not the values of xi explicitly. In the phylogenetic context, Hassler et al. (2021) use methods 

previously developed by Bastide et al. (2018) and Fisher et al. (2021) to calculate these 

gradients in O NPK3 . This approach is easily transferable to non-phylogenetic latent factor 

models.

3.3.4. Beyond MBD.—While the continuous trait models discussed above rely on 

MBD, we emphasize work on other models of continuous evolution. The closely related 

Ornstein–Uhlenbeck process (Uhlenbeck & Ornstein 1930) is a Gaussian process where 

traits tend to revert to some mean value (i.e. some evolutionary optimum). Recent work 

has focused on inferring the points along the phylogeny at which these optima change, 

known as adaptive shifts (Uyeda & Harmon 2014). Bastide et al. (2018) develop efficient 

likelihood calculations under a special case of this model. Other models include diffusion on 

a sphere (Bouckaert 2016) and within a latent space arising from a multidimensional scaling 

(Holbrook et al. 2021) when only pair-wise distances between traits are observed.
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3.4. Preferential sampling and bias

Phylogenetic analyses typically study biological populations evolving in the real world and 

are inherently observational. As such, data ascertainment is an important factor in any 

phylogenetic study, with preferential sampling possibly biasing results (Karcher et al. 2016). 

Phylogeographic models that capture spatiotemporal evolution are particularly susceptible to 

non-uniform sampling across both space and time (Guindon & De Maio 2021, Kalkauskas 

et al. 2021). In infectious disease phylogeography, data ascertainment typically requires 

sequencing the viral genome associated with an individual infection. Unsurprisingly, there 

are numerous disparities that lead to preferential sampling across both time and space. Both 

testing and sequencing can be expensive, and resource-rich regions tend to sequence a higher 

proportion of actual infections (Brito et al. 2021). In the extreme case there may be no 

sequences available from a location with high levels of known transmission. In addition 

to sub-sampling to create more representative data sets, researchers have developed several 

strategies to address bias induced by preferential sampling.

3.4.1. Directly modeling ascertainment.—The coalescent tree priors mentioned in 

Section 1.2 enable inference of (possibly time-varying) effective population size (EPS). 

Unsurprisingly, estimates of time-varying EPS are particularly sensitive to preferential 

sampling in time. While standard models (often inappropriately) assume that sequence 

ascertainment does not depend on EPS, Karcher et al. (2016) explicitly model ascertainment 

as an inhomogeneous Poisson process with intensity a function of EPS. They demonstrate 

via simulation that this approach reduces bias in EPS estimates when sequence 

ascertainment is proportional to EPS, a common scenario in epidemiological studies.

3.4.2. Sequence-free observations.—When the spatiotemporal distribution of an 

epidemic can be estimated a priori, one can partially correct for preferential sampling by 

introducing sequence-free samples into the phylogenetic trait reconstruction. Up to this point 

we have taken for granted that all tip nodes in the phylogeny correspond to an associated 

molecular sequence as the sequences are the primary source of information for inferring 

the phylogeny itself. As there are situations where one has access to information about 

the spatiotemporal distribution of an epidemic (e.g. regional case counts) but relatively few 

sequences from certain locations, Lemey et al. (2020) and Kalkauskas et al. (2021) propose 

introducing sequence-free nodes to the phylogenetic tree and demonstrate that this approach 

can reduce bias induced by extremely biased sampling. Of course, this approach requires 

prior knowledge of the true spatiotemporal distribution of the process of interest.

3.4.3. Structured coalescent.—An alternative model of discrete phylogeographic 

migration is the structured coalescent (Notohara 1990), which posits a backward-in-

time process where lineages converge and migrate between sub-populations. Where the 

previously-discussed discrete-trait model assumes the tree is a priori independent of the 

location data, the structured coalescent explicitly models dependence of the tree on the 

locations, which can reduce bias in both ancestral state reconstructions and rates of 

migration between locations. As the population demographics are explicit model parameters, 

they can in turn be informed by other sources of data, further avoiding some biases 

introduced by preferential sampling of individuals in some states (De Maio et al. 2015). 
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The primary challenge to inference under these structured coalescent models is that there 

is no analog to Felsenstein’s pruning algorithm (Felsenstein 1973a, 1981, see Section 1.1) 

that analytically integrates out the migration events. As such, inference under these models 

requires numerically marginalizing the migration history, typically via MCMC (Vaughan et 

al. 2014).

De Maio et al. (2015) develop an approximation to the standard structured coalescent 

model that does allow analytic integration of the migration histories, avoiding laborious 

numerical integration. Volz (2012) and Müller et al. (2017) also develop efficient 

numerical approximations of the structured coalescent likelihood. Existing implementations 

of structured coalescent models, however, still compare poorly computationally with the 

simpler discrete trait models and are intractable for large-scale problems. Improving 

computational efficiency in these models is an active area of research.

4. Case Study

Phylogenetics has increasingly played a role in studying viral epidemic dynamics, 

sometimes in real time (Dellicour et al. 2021, Hodcroft et al. 2021). Researchers can 

integrate information about the spatiotemporal spread of a virus into phylogenetic models 

to identify an epidemic’s origin (Plantier et al. 2009, Liu et al. 2013, Worobey et al. 2016) 

and transmission dynamics (Ehichioya et al. 2011, Dudas et al. 2017, Du Plessis et al. 2021). 

In these phylodynamic analyses, the sampling time and location of a genetic sequence are 

critical data that allow researchers to reconstruct how a virus spreads through populations.

Here, we consider a case study arising out of the paper by Lemey et al. (2020) on early 

SARS-CoV-2 international transmission. In addition to viral genetic sequences, sample 

dates and sample locations, Lemey et al. (2020) incorporate information on individual 

travel history, global air traffic patterns, local outbreak intensity and within-host infection 

dynamics. The authors seek to identify the paths along which SARS-CoV-2 traveled 

as it escaped Hubei province, China, and spread globally. As discussed in Section 3.4, 

phylogeographic analyses are susceptible to ascertainment bias, which is often unavoidable 

as viral transmission does not respect administrative boundaries with consistent sequencing 

and reporting. To address this challenge, Lemey et al. (2020) integrate both individual-

level travel history and location-specific estimated case counts into their phylogeographic 

analysis.

Lemey et al. (2020) collect 282 early SARS-CoV-2 sequences from around the world. 

Roughly 20% of these sequences were associated with recorded international travel. As 

they consider 44 discrete locations, they parameterize the transition rate matrix via a GLM 

with pairwise air traffic connectivity and geographic distance as covariates (see Section 

3.2.2). To incorporate travel history, they introduce additional degree-2 internal nodes (i.e. 

nodes with a single parent and single child) into the phylogeny and assign the travel 

origins to those nodes. The dates of these nodes are fixed to the travel dates (when known) 

or inferred assuming a prior informed by the SARS-CoV-2 incubation time. The travel 

destinations remain assigned to tip nodes. Finally, Lemey et al. (2020) incorporate sequence-

free observations from under-sampled locations such as Italy and Iran.
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Ultimately, incorporating these various sources of information into the discrete trait 

phylogeographic model resulted in more plausible transmission patterns and a statistical 

model with greater out-of-sample predictive performance (see Figure 5). The Bayesian 

approach allows seamless incorporation of prior knowledge in 1) SARS-CoV-2 case 

counts informing the locations and dates of sequence-free tip nodes and 2) SARS-CoV-2 

within-host dynamics informing the prior on the time between the origin and destination 

nodes associated with specific travelers. These approaches also permitted accommodation 

of uncertainty in the phylogenetic tree itself, as the phylogenetic tree was inferred 

simultaneously with all transmission dynamics via MCMC simulation.

5. Discussion

Phylogenetics has motivated numerous theoretical, methodological, and computational 

advances in the statistics of Bayesian networks, continuous-time Markov processes and 

Gaussian processes. The challenges of dealing with complex, hierarchical statistical models 

with combined continuous/discrete parameter spaces continue to spur creative statistical 

innovations. Many of the topics discussed are active areas of research.

The Bayesian approach is particularly useful in phylogenetics as the phylogeny itself is 

frequently a nuisance parameter. Analyses that condition on a single phylogeny do not 

properly account for the often high degree of uncertainty in the phylogenetic estimates. 

Numerically marginalizing over the phylogeny via MCMC or other approaches discussed in 

Section 2 conveniently addresses this uncertainty. Similarly, the Bayesian approach offers 

a intuitive way to account for uncertainty in the phylogeny. Beyond properly measuring 

uncertainty, there are cases where we do indeed have prior information about relevant 

parameter values such as the root date (e.g. the temporal origin of a pandemic) or branch 

lengths (e.g. rapidly growing populations tend to have shorter branch lengths near the root).

Despite the many advances, there are persistent challenges in both inferring the tree itself 

and data integration. The SARS-CoV-2 pandemic greatly accelerated previous gains in 

epidemic genomic surveillance. Bayesian methods are typically limited to several thousand 

taxa and currently require down-sampling when analyzing some pandemic-scale data sets. 

Recent work has focused on computationally efficient implementations of simpler models 

(https://beast.community/thorney_beast) or approximate likelihoods (De Maio et al. 2022). 

Additionally, as discussed in Section 3.4, common phylogeographic models exhibit a trade-

off between computational efficiency and robustness to sampling bias.

Finally, while we focus here on the statistical implications related to data integration 

in Bayesian phylogenetics, we direct the reader to Baele et al. (2017b) for a thorough 

discussion of data integration from a more biological perspective with more specific 

examples.
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Figure 1: 
Simple phylogeny with N = 3 degree-one tip nodes ν1, …, ν3, N − 2 = 1 degree-three internal 

node ν4 and degree-two root node ν5. The edge connecting each node νi to its parent νpa i

has length ti. The phylogeny is a directed acyclic graph. It is directed in that there is a 

parent/child relationship between all nodes connected by an edge, and it is acyclic in that 

there are no cycles or loops in the graph. Each node has exactly one parent (except for the 

root which has none).
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Figure 2: 
Example of how Felsenstein’s pruning algorithm marginalizes over the ancestral sequences. 

Tip nodes in blue represent observed sequence data, while green internal nodes represent 

latent ancestral sequences. Pale nodes have been marginalized. We do not explicitly 

condition on the tree ℱ for notational simplicity.
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Figure 3: 
Schematic of a generalized phylogenetic model. The data y1, …, yN (red nodes) are assumed 

to have arisen from the latent traits x1, …, xN (blue nodes) at the respective tips via the 

possibly stochastic link function f . . The latent tip traits x1, …, xN and latent internal traits 

xN + 1, …, x2N − 2 arise from some evolutionary process on the phylogenetic tree where the traits 

of each child node xi are drawn from a distribution with density p xi xpa i = g xi; xpa i , θi, Θ .
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Figure 4: 
Sampling from a 2-dimensional truncated Gaussian distribution using both the BPS (left) 

and zigzag-HMC (right) samplers. Orange lines represent the truncations. Grey lines 

represent the particle trajectories, while grey dots represent samples from the posterior.
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Figure 5: 
A toy example of the influence of travel history on discrete trait analyses. Horizontal lines 

represent persistent lineages within a location, while vertical lines represent transitions 

between locations in the Markov chain. We inferred a tree with 9 sequences (3 each from 

Wuhan, Australia, and Europe) where some of the infected individuals sampled in Australia 

had traveled from Iran or Southeast (SE) Asia. The analysis incorporating travel history 

captures more information in that the virus is present in all locations and there is less 

variance in the dates of transition events. This figure was modeled on the tutorial presented 

in the BEAST documentation. Please note that this is a toy analysis and should not be 

interpreted as providing insight into the early spread of SARS-CoV-2.
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