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Glycyl Radical Enzyme-Associated Microcompartments: Redox-
Replete Bacterial Organelles

Bryan Ferlez,a Markus Sutter,a,c Cheryl A. Kerfelda,b,c

aMSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
bDepartment of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
cEnvironmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley,
California, USA

ABSTRACT An increasing number of microbes are being identified that organize
catabolic pathways within self-assembling proteinaceous structures known as bacte-
rial microcompartments (BMCs). Most BMCs are characterized by their singular sub-
strate specificity and commonly employ B12-dependent radical mechanisms. In con-
trast, a less-well-known BMC type utilizes the B12-independent radical chemistry of
glycyl radical enzymes (GREs). Unlike B12-dependent enzymes, GREs require an acti-
vating enzyme (AE) as well as an external source of electrons to generate an adeno-
syl radical and form their catalytic glycyl radical. Organisms encoding these glycyl
radical enzyme-associated microcompartments (GRMs) confront the challenge of co-
ordinating the activation and maintenance of their GREs with the assembly of a mul-
tienzyme core that is encapsulated in a protein shell. The GRMs appear to enlist
redox proteins to either generate reductants internally or facilitate the transfer of
electrons from the cytosol across the shell. Despite this relative complexity, GRMs
are one of the most widespread types of BMC, with distinct subtypes to catabolize
different substrates. Moreover, they are encoded by many prominent gut-associated
and pathogenic bacteria. In this review, we will focus on the diversity, function, and
physiological importance of GRMs, with particular attention given to their associated
and enigmatic redox proteins.

KEYWORDS activating enzymes, bacterial microcompartments, glycyl radical
enzyme-associated microcompartments, glycyl radical enzymes, iron-sulfur proteins,
electron transfer

A microbe’s survival in new and/or competitive environments can be strongly
influenced by its metabolic flexibility. To this end, bacteria frequently exchange

genes encoding segments or entire metabolic pathways (1–3). These horizontal gene
transfers (HGTs) can expand a host’s metabolic capacity to conditionally extract energy
from new, potentially chemically resilient, substrates and increase their fitness. A
particularly illustrative example of HGT-based expansion of metabolic flexibility is
demonstrated by the widespread distribution of bacterial microcompartments (BMCs).
BMCs function as bacterial organelles and are composed of multiple enzymes sur-
rounded by a selectively permeable proteinaceous shell. BMC loci encode not only the
structural components of the organelle, but also ancillary proteins, such as transmem-
brane transporters for associated metabolites, regulators, and even cytoskeletal ele-
ments, presumably used to position the organelle subcellularly. BMC loci are therefore
genetic modules that encode a metabolic module, the organelle, and the ancillary
proteins to integrate it into the host’s metabolism. This compact organization likely
facilitates the HGT, which is apparent by examining their distribution across bacterial
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phyla (4). Indeed a BMC locus was one of the first proposed examples of the emerging
concept of HGT (5).

Many catabolic BMCs, also known as metabolosomes (6), share a, paradigmatic,
biochemistry, including a signature enzyme that degrades a specific substrate, thereby
generating an aldehyde, and a series of aldehyde-processing enzymes (7) (Fig. 1A). This
enzymatic core is surrounded by a protein shell, made up of three types of proteins that
form cyclic oligomers (Fig. 1A): hexamers composed of BMC-H proteins (8), pseudo-
hexameric trimers composed of BMC-T proteins (9), and pentamers composed of BMC-P
proteins (10). Hexamers and trimers tile the facets of the shell (11) and have pores at
their central cyclic axes of symmetry that mediate the transport of substrates and
products into and out of the BMC. Pentamers cap the vertices of these polyhedral
bodies (10, 11). As the interface with the rest of cellular metabolism, the selective
permeability of the shell plays a critical role by limiting cross talk with other pathways,
sequestering potentially toxic aldehyde intermediates, and/or improving pathway flux
(12, 13).

One large group of catabolic BMCs encapsulate a signature enzyme that belongs to
the ancient (14) and metabolically diverse glycyl radical enzyme (GRE) family (14, 15).
These glycyl radical enzyme-associated microcompartments (GRMs) are further broken
down into subclasses, depending on which distinct substrate is catabolized: choline,

FIG 1 Overviews of GRM functional diversity and GRE activation. (A) Catabolic pathways for the three different substrates processed by distinct GREs
encapsulated in GRMs: choline (green), 1,2-propanediol (1,2-PD) (cyan), and L-fuculose-P (or L-rhamnulose-P) (magenta and cyan). (B) GRE activation requires
an activating enzyme (AE) and an external source of electrons. The active site glycine residue (white circle) located on the glycyl radical loop (closed
conformation in yellow and open conformation in dark purple) is converted to a glycyl radical (Gly· [red circle]) after hydrogen abstraction by the adenosyl
radical (Ado·). Iron-sulfur (FeS) clusters are represented by orange (Fe) and black (sulfur) spheres. (C) Hypothetical redox reactions and electron transfer pathways
involving PduS/PduT and/or GrpU. Abbreviations: ADH, alcohol dehydrogenase; AldDH, aldehyde dehydrogenase; PTAC, phosphotransacylase; AcK, acetate
kinase; LR, lactaldehyde reductase; FPA, fuculose-P aldolase; DHAP, dihydroxyacetone phosphate. See the text for details.

Minireview ®

January/February 2019 Volume 10 Issue 1 e02327-18 mbio.asm.org 2

https://mbio.asm.org


which is converted to acetaldehyde by elimination of trimethylamine (TMA) by a
choline-TMA lyase GRE (16) (Fig. 1A, green); 1,2-propanediol (1,2-PD), which is dehy-
drated to propionaldehyde by a 1,2-PD dehydratase GRE (Fig. 1A, blue) (17); or
L-fuculose-phosphate and L-rhamnulose-phosphate, which are metabolized to propi-
onaldehyde and dihydroxyacetone phosphate (DHAP) by the concerted functions of an
encapsulated fuculose-phosphate aldolase (FPA), lactaldehyde reductase (LR), and
1,2-PD dehydratase GRE (Fig. 1A, magenta and blue) (18, 19). These substrates are
common breakdown products of glycans or lipids in the intestinal mucosa, and our
growing appreciation of their significance in a healthy human gut microbiome under-
scores the impact GRM-mediated catabolism has on human health (3, 20). However,
despite their contribution to the fitness of these gut microbes as well as the hosts’
health, the GRMs are relatively poorly understood.

GREs are typically homodimeric and lack any bound cofactors (21). Instead they use
a stable glycyl radical (Gly·), along with a transient cysteine-based thiyl radical, located
on the backbone of their glycyl radical domain, to catalyze their difficult chemical
transformations (reviewed in reference 15). The Gly· is produced posttranslationally by
a GRE-specific activase, known as the activating enzyme (AE), which belongs to the
radical S-adenosylmethionine (AdoMet) superfamily (22). AdoMet binds to a unique
iron atom of the active site [4Fe4S]2� cluster of the AE, which is reduced to the
[4Fe4S]1� state by an electron donor (e.g., flavodoxin). If the GRE substrate is also
bound to the AE-AdoMet complex and its glycyl radical domain is in an open confor-
mation, placing the active site glycine residue in close proximity to the AE iron-sulfur
(FeS) cluster (23, 24), the bound AdoMet is next converted to the reactive adenosyl
radical (Ado·) by direct electron transfer from the reduced [4Fe4S]1� cluster. At this
point, Ado· can abstract a hydrogen atom from the active-site glycine residue of the
GRE (Fig. 1B) (21). The resulting Gly· is extremely sensitive to O2, which can inactivate
the GRE by cleavage of its polypeptide (25). In the absence of O2, however, the Gly· is
remarkably stable, possibly due to further conformational changes of the glycyl radical
loop following activation that shield the radical (23) (Fig. 1B); in the case of pyruvate-
formate lyase (PFL) (a GRE which is not found in BMCs), the Gly· half-life is �24 h under
anoxic conditions (26). Finally, because the Gly· is regenerated at the end of each
catalytic cycle, each activated GRE can process multiple turnovers (15). Current mech-
anistic details of microcompartment-associated GREs have largely been studied outside
the context of their native metabolic modules, and reconciliation with the temporal and
spatial constraints of compartmentalization is an important challenge at the intersec-
tion of BMC and GRE biology.

Indeed, GRMs represent one of the largest, understudied, types of BMC. They catalyze
a uniquely diverse array of reactions using glycyl radical chemistry; this versatility is likely to
increase with the identification of new GREs. As our understanding of these complicated
microbial metabolic modules advances, so too will our appreciation for their native, as well
as potentially engineered, impact on the environment and human health. To this end, a few
recent studies (3, 16, 18–20, 27) have raised awareness of the importance of GREs and the
difficult chemical transformations they execute. However, the requirement for an AE as well
as an electron donor to reduce its active site FeS cluster, prompts questions about how
compartmentalization impacts the activation and function of GREs. In addition, our under-
standing of the putative redox proteins and electron transfer pathways associated with the
GRMs remain relatively unexplored and represent an important target for investigation
(Fig. 1C). Here we review the distribution, function, and internal organization of the GRM as
a metabolic module as well as discuss its mechanistic requirements and the possible role
of accessory FeS proteins in electron transfer reactions. Finally, we briefly discuss potential
engineering applications that will benefit from a thorough understanding of GRM metab-
olism, particularly the associated electron transfer reactions.

GRM DIVERSITY AND ABUNDANCE OF ACCESSORY FeS PROTEINS

GRM loci are distinguished from other BMC loci by the presence of genes encoding
a GRE (pfam01228 and pfam02901) and a cognate AE (pfam04055). At the time this
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review was written, 536 GRM loci could be identified in the UniProt database (www
.uniprot.org) and, based on their gene content (4), could be classified as belonging
to one of six different subtypes: GRM1, GRM2, GRM3, GRM4, GRM5, or GUF (GRM of
unknown function) (Fig. 2A). In addition, two instances of subtle differentiation based
on the locus arrangement and gene sequences were observed within GRM1 and GRM3
subtypes, which we have named GRM1b and GRM3b. Finally, more than half of all GRM
loci (348/536 [�65%]) contain at least one accessory FeS protein—PduS/PduT and/or
GrpU (see Potential Electron Transfer Mechanisms Inside and Across the Shell), hinting
at their importance in GRM metabolism (Fig. 2A).

Consistent with previous bioinformatic analyses (3, 4, 19), a phylogenetic tree
constructed from the amino acid sequences of GRM GREs shows that they cluster
according to both their GRM subtype as well as biochemical function based on
experimentally characterized representatives (Fig. 2B). GRM1 and GRM2 subtypes en-
code a choline-TMA lyase, GRM3, GRM4, a 1,2-PD dehydratase, and GRM5, a 1,2-PD
dehydratase, along with an upstream fuculose-phosphate-aldolase (FPA [pfam00596])
and a lactaldehyde reductase (LR [pfam00107 and pfam08240]) for L-fuculose-P (or
L-rhamnulose-P) degradation. Predicting the function of a newly identified GRE is
difficult given that GREs possess a common structural architecture (28) and activation
mechanism, despite catalyzing diverse chemical reactions (15, 29). For these reasons,
the GUF loci, recently identified by Zarzycki et al. (19), await experimental character-
ization before they can be functionally classified.

GRE SIGNATURE ENZYMES AND POTENTIAL ACCESSORY FeS PROTEINS
Choline-trimethylamine lyase. Microbial degradation of choline into TMA and

acetaldehyde is an anaerobic metabolic activity that can be a source of both energy
(ATP) and carbon (TMA and acetate). TMA also serves as an important substrate for
neighboring archaeal methanogens in marine and ruminant gastrointestinal environ-

FIG 2 GRM locus variability, distribution of accessory FeS proteins, and GRE phylogeny. (A) Diagrams of loci for representative organisms encoding each GRM
subtype. The accessory FeS proteins PduS, PduT, and GrpU are marked with black asterisks. (B) Phylogenetic tree of GRM GRE amino acid sequences showing
they cluster predominantly by both subtype (GRM1, orange; GRM1b, light blue; GRM2, dark green; GRM3, purple; GRM3b, dark blue; GRM4, yellow; GRM5, light
green; GUF, red; unassigned, black) and function (GRM1, -1b, and -2 genes encode choline-trimethylamine lyases; GRM3, -3b, -4, and -5 genes encode 1,2-PD
dehydratases). Examples of GRM1 and GRM5 GREs that do not cluster with other sequences from their respective subtypes are marked by a black dot and square
bracket.
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ments (30, 31). Moreover, because choline is an essential nutrient for humans and other
vertebrates (32), its use by bacteria in the human gut has been linked to both human
health and disease (33). The conversion of choline into TMA and acetaldehyde requires
the energetically demanding cleavage of its C–N bond (15). Enzymes catalyzing similar
elimination reactions involving C–N (ethanolamine ammonia lyase) or C–O (glycerol
dehydratase) bonds typically require low-potential reactive radical species such as the
Ado· derived from adenosylcobalamin in B12-dependent enzymes (34). In contrast, the
first GRE responsible for catalyzing the cleavage of the C–N bond of choline using a Gly·

was identified in 2012 (16). This GRE was recognized to be part of a larger conserved
choline utilization (cut) gene cluster that also contains genes for BMC shell proteins as
well as core aldehyde-processing enzymes common to catabolic BMCs (i.e., AldDH,
ADH, and PTAC) (3, 4, 16, 19) (Fig. 1A). cut gene clusters were further subdivided into
two groups, type I and type II (3), based on their gene content and the form of the
signature GRE encoded by the cutC gene. This classification correlates with the nomen-
clature of GRM1 and GRM2 subtypes, respectively (4, 19).

Accessory FeS proteins are abundant in GRM1 loci: �85% encode a copy of the FeS
BMC-H protein GrpU, and �25% encode the FeS proteins PduT and PduS (Fig. 2A). In
contrast, all GRM1b loci encode homologs of PduT and PduS (Fig. 2A), but only one (out
of 14 total) encodes a GrpU protein. A unifying feature of all GRM1 and GRM1b loci is
the short N-terminal extension found on their GREs that is predicted to function as an
encapsulation peptide (EP) to promote attachment to the luminal face of the BMC shell
and/or facilitate the assembly of the microcompartment core (see Clues to Internal
Organization of GRM GREs and AEs below) (19). In contrast to GRM1 and GRM1b, all
GRM2 loci lack genes encoding PduS, PduT, or GrpU proteins. In addition, GRM2 GREs
also lack a short putative N-terminal EP and instead have a much larger (�350-amino-
acid) N-terminal extension that resembles the N-terminal region of the GRM1 GREs (19).
This extension is likely not functional as it lacks the glycyl radical loop containing the
catalytic glycine and cysteine residues; however, it may play a role in encapsulation or
organization (see Clues to Internal Organization of GRM GREs and AEs).

Tracking deuterated TMA (d9-TMA) production using high-performance liquid chro-
matography coupled to mass spectrometry (LC-MS) provides an unambiguous marker
for choline-TMA lyase activity when d9-choline is provided as a substrate. Using this
approach, heterologous expression of both CutC and CutD (the AE) from Desulfovibrio
alaskensis G20 was necessary and sufficient to confer the ability to produce deuterated
TMA (d9-TMA) from (trimethyl-d9)-choline in Escherichia coli (16). Moreover, this method
confirmed choline-TMA lyase activity in a number of human gut isolates containing
either GRM1 or GRM2 loci (3), consistent with their bioinformatically predicted function
(3, 4, 19). These studies provided the first biochemical evidence linking choline degra-
dation to bacteria containing GRM2 loci and have been further validated by knockout
and complementation studies of the specific GRM2 GREs from Proteus mirabilis
DSM4479 (35) and E. coli 536 (36).

1,2-Propanediol dehydratase. 1,2-PD is a common by-product of fucose and
rhamnose degradation (37, 38) and can be an abundant source of energy and carbon
for microbes in environmental niches such as the human gastrointestinal tract (39).
1,2-PD is the signature substrate of the well-studied propanediol utilization (PDU) BMC
(40) and is dehydrated to propionaldehyde by the B12-derived Ado· of the 1,2-PD
dehydratase signature enzyme (34, 41). In contrast, GRM subtypes 3 (17), 4 (4, 19), and
5 (18, 27) catalyze a B12-independent dehydration of 1,2-PD using the protein-based
glycyl/thiyl radicals of a GRE (34). To date, this is the only known example of functional
redundancy among different types of catabolic BMCs.

As in the GRM1 loci, accessory FeS proteins are also abundant in GRMs containing
1,2-PD GREs. Approximately two-thirds (47/65) of GRM3 loci encode a PduT or PduS
homolog, whereas only a few (3/65) encode a GrpU homolog (Fig. 2A). This distribution
is reversed in GRM3b loci: less than one-third (14/65) encode a PduT or PduS homolog,
but almost all (53/55) encode GrpU. The GRM4 locus lacks PduT, PduS, and GrpU
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(Fig. 2A), but it does encode a homolog of PduK, a poorly characterized BMC-H protein
that contains a tetracysteine motif located on a C-terminal extension that may ligate an
FeS cluster (42). As PduK homologs are rare in GRM loci (4/536), they will not be
discussed further. All GRM5 loci encode PduT and PduS homologs (57/57), but none
encode a GrpU homolog. Finally, all 1,2-PD dehydratase GREs from GRM3, GRM4, and
GRM5 loci lack the N-terminal EP or extension observed in GRM1 or GRM2. Instead, they
possess a unique �60-amino-acid insertion that is predicted to function as an EP (see
Clues to Internal Organization of GRM GREs and AEs) (17, 19).

Currently, reports of functional studies of GRM3, GRM4, and GRM5 GREs are sparse;
however, in vitro biochemical assays have confirmed the conversion of 1,2-PD to
propionaldehyde by GREs from the GRM3 locus in Rhodopseudomonas palustris BisB18
(17) and the GRM5 locus in Roseburia inulinivorans (27). In addition to their GRE, GRM5
loci also encode two putative biochemically upstream enzymes to convert L-fuculose-P
or L-rhamnulose-P into 1,2-PD: an FPA would convert L-fuculose-P (or L-rhamnulose-P)
into lactaldehyde and DHAP, and an LR would reduce lactaldehyde to 1,2-PD at the
expense of NADH (Fig. 1A) (18, 19). Consistent with this model, cultures of Clostridium
phytofermentans grown in the presence of fucose or rhamnose produced both poly-
hedral BMC-like structures as well as fermentation products consistent with their
predicted function (e.g., propanol and propionate) (18). The encapsulation of both
fucose/rhamnose and 1,2-PD metabolic activities into a single BMC can be thought of
as a partially condensed version of the larger subcellular metabolic activity found in
Salmonella enterica: S. enterica first converts L-fuculose-P and L-rhamnulose-P to 1,2-PD
and DHAP using the nonencapsulated fucose utilization pathway and then secretes
1,2-PD, which is ultimately taken back up and fermented by the B12-dependent PDU
BMC (37, 39).

CLUES TO INTERNAL ORGANIZATION OF GRM GREs AND AEs

Encapsulation peptides, short sequence extensions that are predicted to fold into
alpha helices, but lack a conserved primary structure, are a distinguishing feature of a
number of enzymes found in BMCs (43). They are typically fused to the N or C terminus
(44) via a poorly conserved linker region of variable length (43). Encapsulation of
proteins containing EPs, such as the signature enzymes of the PDU (45) and ethanol-
amine utilization (EUT) (46) BMCs, is thought to occur in part through interactions
between the hydrophobic face of their EPs and the inside surface of the shell (47, 48).
Moreover, EPs may also play a role in the biogenesis of the metabolosome core by
facilitating the aggregation of encapsulated enzymes; removal of EPs often improves
solubility of recombinant enzymes (49–54), whereas their addition can promote aggre-
gation (55).

Interestingly, not all core enzymes contain EPs. For example, protein-protein inter-
actions have been observed for both the EP-containing AldDH and EP-lacking ADH (56)
as well as the B12-recycling enzymes PduO (adenosyltransferase) and PduS (corrin
reductase) of PDU BMCs that likely lead to encapsulation via “piggy-backing” (57). In the
latter case, although no EPs have been identified for either PduO or PduS, PduS
interacts directly with the shell protein PduT via its N terminus (see Potential Electron
Transfer Mechanisms Inside and Across the Shell) (58). These data suggest that the
PduO/PduS complex is encapsulated via an EP-independent manner through protein-
protein interactions with the shell. Together these results support a model of BMC
biogenesis and organization that involves a combination of protein-protein interactions
between different encapsulated enzymes as well as between enzymes and the shell
using both EP-dependent and -independent mechanisms. This model is reminiscent of
the experimentally validated core-first assembly of the anabolic �-carboxysome BMC
(59).

A picture of the internal organization of GRM BMCs can be pieced together based
on bioinformatic and experimental observations. The GRE signature enzymes of GRM1
(19), GRM3, GRM4, and GRM5 are all predicted to contain EPs (17, 19, 60). A notable
exception is the GRM2 GREs, which appear to lack a canonical EP. However, the large
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�350-amino-acid N-terminal extension, which shares sequence similarity with the N
terminus of the choline-TMA lyase enzymes from GRM1 loci, may function as either a
nontraditional EP by interacting directly with the luminal surface of the shell and/or as
an assembly factor by tethering multiple GREs together (19). The idea that the
N-terminal extension might serve a role in GRM assembly by coalescing GREs is
interesting given that many GREs, including the recently crystallized GRM1 choline-TMA
lyase (49, 50), form homodimers via interactions involving N-terminal residues. The
noncatalytic N-terminal extension of the GRM2 GRE therefore potentially adds an
additional dimerization interface capable of interacting with either another N-terminal
extension and/or a catalytically active domain of a second GRE. Expansion of such
interactions beyond a pair of GREs could lead to either a serial linkage or aggregation
of enzymes that could be important for packaging within the GRM. Unfortunately,
crystallization of the GRM2 GRE from Klebsiella pneumoniae was only successful follow-
ing protease treatment that removed this large N-terminal extension (61), so the
structure of this extension remains elusive. Furthermore, a number of crystal structures
of dimeric GREs also suggest the possible formation of tetrameric assemblies (dimers of
dimers) that, although not always present in solution (50), could be relevant when
concentrated within the GRM lumen (49). This raises interesting questions: How are
GREs packaged within a GRM? In GRM2 compartments, does dimerization occur
between the N-terminal extension and the main catalytic domain of the GRE? How do
compartmentalization and oligomerization affect activation, stability, and/or turnover
of GREs? Perhaps related to these questions is the longstanding, and as yet unex-
plained, observation that dimeric GREs only contain one Gly· per GRE homodimer as
opposed to two, suggesting only a single monomer is active (15). How this potential
half-site reactivity may relate to organization within the GRM lumen, particularly in
GRM2 BMCs, is an open question. No biophysical characterization of GRM GREs within
the context of a microcompartment has been reported, and evidence of higher-order
or alternate oligomeric states as well as their influence on activity remains to be
determined.

Compartmentalization of GREs is further complicated by the strict requirement of an
FeS cluster-containing AE for the posttranslational activation of the catalytic Gly·. Unlike
the self-sufficient B12-dependent formation of the Ado· by homolytic cleavage of
adenosylcobalamin in the PDU and EUT compartments, GRE-AEs require a stoichiomet-
ric source of electrons from an external donor in order to generate Ado·. This necessity
for reducing equivalents, as well as the lack of any identifiable EPs on any GRM AE, also
raises questions about the spatial organization and temporal activation of GRM GREs:
Does GRE activation take place prior to or after complete assembly of the GRM? If
activation occurs before assembly, how is encapsulation of unactivated GREs mini-
mized? If activation occurs after assembly, how are AEs encapsulated and what are the
source and sequence for the reduction of their active site FeS clusters?

At this point, structural (23) and biochemical information on GRE-AE complexes is
limited primarily to studies involving the AE of the well-characterized PFL-GRE (which
has not been identified in BMCs) due to challenges in stability, oxygen sensitivity, and
FeS cluster homogeneity of heterologous preparations (15, 21). However, from these
studies we predict that binding of an AE to its cognate GRM GRE likely involves an
analogous conformational change in the glycine radical loop region that places the
active site glycine residue in close proximity with the AE active site FeS cluster and
source of Ado·. In addition, binding of AdoMet to the AE is likely an independent event
(62), but its reduction to the Ado· requires an AE-GRE complex (63). In E. coli, the
electron donor to PFL-AE is flavodoxin (Fld) (64, 65), and its binding site is distinct from
the PFL/PFL-AE interface (23, 66). In combination with the experimentally measured (Kd)
dissociation constant values for Fld:PFL-AE, PFL:PFL-AE, and AdoMet:PFL-AE, these data
suggest that in vivo, 90% of PFL is in complex with PFL-AE bound to AdoMet; of these
PFL/PFL-AE complexes, only �11% also possess a bound Fld (62). Therefore, it is
feasible that in GRMs, AEs are encapsulated by “piggy-backing” along with their
EP-possessing GREs. This is supported by recent in vitro pulldown experiments that

Minireview ®

January/February 2019 Volume 10 Issue 1 e02327-18 mbio.asm.org 7

https://mbio.asm.org


confirmed an interaction between the recombinant GRE and AE from a GRM3 locus (17).
Likewise, extrapolation from the PFL/PFL-AE studies suggests that a substoichiometric
number of Fld proteins might also become encapsulated during biogenesis of GRM
BMCs. Even a small number of Flds, once confined to the GRM lumen, would likely be
able to activate a larger number of GRE-AE complexes as long as (i) the binding sites
on other AEs were accessible and (ii) either internal (within the GRM lumen) or external
(from the cytosol and across the shell) electron transfer pathways existed to support
their reduction.

One important difference between the AEs for PFL and the majority of GRM GREs (as
well as many other non-GRM AEs) is the insertion of a small �70-amino-acid ferredoxin-
like domain (pfam00037) in the latter (only GRM5 AEs lack this insertion). This domain
is rich in cysteine residues and may be responsible for ligating one or more auxiliary FeS
clusters (reviewed in reference 67). Direct evidence for the presence of additional
clusters in GRM AEs comes from the iron content of purified, chemically reconstituted,
recombinant AEs from both a GRM1 (�8.4 mol of iron per protein) (50) and a GRM3
locus (13.1 mol of iron per protein) (17). Currently, data on these auxiliary FeS clusters
are limited, and their numbers, identities, and functions have yet to be unequivocally
established.

POTENTIAL ELECTRON TRANSFER MECHANISMS INSIDE AND ACROSS THE
SHELL

If GRE activation takes place after complete assembly of the GRM shell, reduction of
the active site FeS cluster of an encapsulated AE would be required. Although no direct
evidence for electron transfer reactions involving encapsulated AEs exists, almost
two-thirds of all GRM loci found in UniProt currently encode at least one accessory
protein predicted to bind an FeS cluster. One example is the soluble flavoenzyme PduS,
which in the case of the homologous protein from PDU BMCs, binds one molecule of
FMN, two FeS clusters, can oxidize NADH (58), and interacts with the FeS BMC-T protein
PduT (42, 68). Another accessory FeS protein predicted to be a constituent of the GRM
shell is the BMC-H protein GrpU (69), which, like PduT, binds an FeS cluster in its central
pore. The function of the recently identified PduS, PduT, and GrpU homologs in GRM
BMCs remains an open question, but their prevalence in GRM loci and, in the case of
PduS/PduT, homology to PDU proteins suggest they may play an important role in
redox and/or electron transfer reactions (Fig. 1C).

PduS. PduS is an �49-kDa protein composed of four pfam domains (http://pfam
.xfam.org): the 51-kDa domain of complex 1 from the respiratory electron transfer chain
(pfam01512), a soluble-ligand binding �-grasp domain (SLBB [pfam10531]), a [4Fe4S]
dicluster domain (Fer4_17 [pfam13534]), and the N-terminal sandwich barrel hybrid
motif (SBHM) from a peripheral subunit of the Rhodobacter nitrogen fixation (Rnf)
energy-transducing membrane complex (RnfC_N [pfam13375]) (57, 70). Within the PDU
BMC, PduS is believed to localize to the luminal face of the shell as part of a complex
with the FeS shell protein PduT (58) and the adenosyltransferase PduO (57). These
proteins participate in the regeneration of the adenosylcobalamin cofactor used by the
B12-dependent signature enzyme 1,2-PD dehydratase (58). The precise role of PduT in
this complex is unknown, but it may serve as a conduit for the export of excess
electrons from the PDU lumen (see below) (42, 68). Consistent with its predicted
domain assignments, characterization of heterologous preparations of the PduS ho-
molog from the PDU locus in Citrobacter freundii using LC-MS identified a noncovalently
bound flavin mononucleotide (FMN) cofactor. In addition, optical and electron para-
magnetic resonance spectroscopies indicate the presence of two FeS clusters (arbi-
trarily identified here as FeS1 and FeS2) as well as the NADH-dependent reduction of
both FMN and one of these FeS clusters (58). Although the identity of the reduced
cluster could not be determined, observation of a paramagnetic singly reduced fla-
vosemiquinone species following incubation with NADH suggests FMN, like other
redox active flavins (71), can initially accept two electrons from NADH and subsequently
pass one on to an acceptor—in this case, an FeS cluster (58). PduS can also mediate the
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reduction of cob(III)alamin to cob(II)alamin independent of PduO, suggesting that it can
coordinate cobalamin, perhaps through its SLBB domain (pfam10531) (70), and/or
catalyze its reduction. Alternatively, because free flavins can mediate the reduction of
unbound cob(III)alamin (72), as well as PduO-bound cob(II)alamin (73), the reduced
FMN cofactor may dissociate from PduS before reducing cobalamin. In either case, the
role of the FeS1 and FeS2 clusters bound by the [4Fe4S] dicluster domain (pfam13534)
is unclear, although their presence has been observed to raise the midpoint potential
of the FMN cofactor from –262 � 5 mV (versus standard hydrogen electrode [SHE])
when measured in the absence of the FeS clusters to –150 � 5 mV (versus SHE) when
measured in their presence (58).

Despite its prominent role in the B12-dependent chemistry of PDU BMCs, pduS
homologs are also a common component of GRM loci and are almost always encoded
adjacent to a pduT gene (Fig. 2A). These PduS homologs also possess a glycine-rich
motif and Rossman-like fold common to pfam1512 domains (70), suggesting they also
bind NADH and FMN cofactors. Moreover, a sequence alignment of the [4Fe4S]
dicluster domains (pfam13534) of PduS homologs from both GRM and PDU loci
indicates the presence of two highly conserved tetracysteine motifs consistent with the
ligation two FeS clusters. In light of the conservation of both the pduS/pduT gene
arrangement as well as the NADH, FMN, and FeS binding sites, the question becomes,
what is the function of a corrin reductase in the B12-independent metabolism of GRM
BMCs? One hypothesis is that PduS acts as an NADH:flavodoxin oxidoreductase that
extracts electrons from NADH for the reduction, via an encapsulated electron mediator
such as flavodoxin, of the AE to support GRE activation (Fig. 1C). However, this
hypothesis remains to be experimentally validated and will require (i) confirmation that
flavodoxin is encapsulated within the GRM lumen and (ii) demonstration that PduS is
capable of carrying out NADH-dependent flavodoxin reduction.

PduT. PduT is a BMC-T protein that oligomerizes into a pseudohexameric trimer
with a conserved cysteine residue oriented toward the central pore located at its 3-fold
axis of symmetry (42, 74). In PduT homologs from PDU loci, the conserved cysteine
residues from each of the three protomers of the trimer act as a ligand to one of three
iron atoms of a [4Fe4S] cluster (68); the position and ligand to the 4th unique iron
site are unknown, and it could be oriented either toward the lumen of the BMC or the
cytosol. PduT homologs found in GRM loci also contain this conserved cysteine residue
(C-P/S/A-G-K/R/S-Y/F) and therefore also likely coordinate an FeS cluster in their pore.
This conserved cysteine, the tandem gene arrangement with pduS, and the experimen-
tal evidence of in vitro interaction between PduT and PduS homologs suggest PduS and
PduT could form an electron transfer complex connecting the lumen of GRM BMCs with
the cytosol. In the absence of structural data and redox potentials for the FeS clusters
of PduS, it is not clear how, if at all, electrons are transferred between the redox
cofactors of PduS and PduT (Fig. 1C). However, the midpoint potential of the [4Fe4S]
cluster of PduT from a PDU BMC has been measured to be �99 mV (versus SHE) (68)
and is therefore suitably poised to serve as an electron acceptor for excess electrons
derived from the oxidization of NADH (midpoint redox potential [Em] at pH 7 of –320
mV versus SHE) (75). The wide distribution and potentially promiscuous redox behavior
of PduS/PduT complexes in PDU and GRM BMCs are intriguing and warrant further
structural, biochemical, and genetic analyses.

GrpU. Even less is known about the BMC-H shell protein GrpU. GrpU is distinguished
by the conserved G-X-C-P-Q-N/H residues (where X is a variable position) of its pore
motif and therefore presumably contains six cysteines at the central pore of its
hexamer. Although a recent crystallographic analysis of two GrpU homologs was
unable to resolve the structure of this pore, a broad absorption feature at �420 nm was
observed for both recombinant proteins initially following purification, suggestive of an
FeS cluster (69). Mutation of the conserved cysteine residue in the pore led to a loss of
the absorption feature at �420 nm. These results are consistent with the hypothesis
that GrpU, like PduT, binds an FeS cluster in its pore. An important difference between
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PduT and GrpU, however, is the additional three cysteine residues, or potential Fe
ligands, in the pore of the latter. How these structural differences influence the
geometry and/or chemical properties of the FeS cluster, however, remains to be
determined.

Unlike pduS and pduT, grpU is almost exclusively found in GRM loci, and the adjacent
genes vary depending on the GRM locus type. This variability in gene arrangement
surrounding grpU may reflect a different local structural organization within the GRM
BMC. For example, GrpU may not act as a fixed subunit of a larger electron transfer
complex, as is predicted for the tandemly encoded PduS and PduT. Instead it may
provide an FeS cluster that is accessible for soluble electron mediators (e.g., flavodoxin)
to transiently dock and either donate or accept electrons from the outside or inside face
of the shell (Fig. 1C). The ability to interact with soluble electron transfer proteins as
well as the redox properties, occupancy, and stoichiometry of the GrpU FeS cluster will
be critical in determining the function of GrpU in GRM metabolism and to efforts to
build electron transfer interfaces between BMCs and the cytosol.

GRMs lacking the accessory FeS proteins PduS, PduT, and GrpU. Although
widespread, not all GRM loci contain accessory FeS proteins: approximately one-third of
the GRM loci currently detectable in Uniprot lack PduS, PduT, and GrpU and represent
primarily the GRM2 subtype. If accessory FeS proteins support AE activation, their
absence from both the core (PduS) and shell (PduT and GrpU) proteins of GRM2 BMCs
would suggest activation of their GREs precedes encapsulation in order to avoid the
wasteful assembly of a nonfunctional GRM. If GRE activation can take place prior to
encapsulation, why enlist accessory FeS proteins at all? Do these accessory FeS proteins
facilitate the reduction of encapsulated AEs, or do they have an alternate function? At
present, two observations stand out as potentially important for reconciling both the
wide distribution of accessory FeS proteins and their apparent expendability in GRM2
BMCs. First, unlike most other GRM subtypes, GRM2 loci are found exclusively in
facultative anaerobes. Therefore, the lack of accessory FeS proteins may be a functional
adaptation to episodic O2 exposure; the FeS clusters of PduS (58), PduT (74), and GrpU
(69) all appear to be sensitive to damage by O2. It is tempting to speculate that some
population of all GRM GREs are initially activated via cytosolic electron transfer path-
ways (e.g., Fld and Fld:NADH oxidoreductase) before encapsulation, and only in a case
such as the GRM2 are the rewards for maximizing this fraction of activated GREs
postassembly, by using accessory FeS cluster proteins, for example, offset by the
benefit of a more O2-tolerant microcompartment. Alternatively, there could be other
unidentified factors contributing to the activation of GREs before and/or after encap-
sulation. The second important distinction between GRM2 and the other GRM subtypes
is the unique N-terminal extension of its GRE. Given the extreme O2 sensitivity of
activated GREs, their propensity to dimerize (and sometimes tetramerize), and the
observation that GREs appear to harbor only one Gly· per homodimer, it is possible that
this unique N-terminal extension affects oxygen stability, activation, and/or organiza-
tion of the GRE in ways that improve the encapsulation of functional enzymes during
GRM biogenesis.

BIOENGINEERING POTENTIAL OF GRMs

As we learn more about the internal organization of GRM GREs and the function of
the accessory FeS proteins, we will gain important insight into the role of redox and
radical reactions in the context of the GRM-confined chemistry. This provides the
foundation for their ability to be redesigned as well as their potential for biotechno-
logical implementation. For example, by leveraging our growing understanding of the
encapsulation and activation of GREs in native systems, we can begin to design new
GRMs that support the challenging and biotechnologically relevant chemical transfor-
mations catalyzed by other diverse members of the GRE family, such as the recently
discovered toluene-producing GRE PhdB (29). By choosing to encapsulate new GRE-
associated pathways, we may realize increased stability and functional enzyme titers by
way of organizing enzymes within the lumen and shielding their catalytic radicals from
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otherwise irreversible inactivation by O2. In addition, compartmentalization may also
allow for control over pathway flux by encapsulating additional upstream enzymes in
a manner analogous to GRM5 BMCs that couple segments of both fucose/rhamnose
and 1,2-PD metabolisms.

In parallel, an understanding of electron transfer across GRM shells could enable the
repurposing or design of new electron transfer pathways to support non-GRE-based
catalysis. Regardless of whether or not the shell proteins PduT and GrpU serve a role in
electron transfer reactions within GRMs, the physical location and potential solvent
accessibility of their FeS clusters from both cytosolic and luminal sides make them
promising candidates for development of electron transfer relays into and out of a BMC.
Toward this end, a BMC-T protein was recently engineered to bind an [4Fe4S] cluster
in its pore by mutation of a pore-located serine residue to a cysteine. This engineered
FeS cluster could reversibly cycle between oxidized and reduced states and has a
midpoint potential of –370 mV (versus SHE), functionally distinguishing it from its
PduT-inspired template (Em � �99 mV) and demonstrating the energetic flexibility of
these FeS binding sites (76). Collectively, the properties of the GRMs suggest that
insights obtained from working out the details of both their core metabolism and shell
properties will enable design and assembly of synthetic BMCs that encapsulate, and
potentially enhance, challenging redox chemistries that may even require posttransla-
tional activation and/or protection from O2. Furthermore, control over the thermody-
namics, organization, and electrical connections of these redox modules could lead to
their “hard-wiring,” for example, within phototrophic metabolisms such that the ener-
getic cost of their catalysis is met by unused or redirected photosynthetic output.
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