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PLASTOME ANNOUNCEMENT

Complete plastome of Coelastrum microporum N€ageli (Scenedesmaceae, 
Sphaeropleales)

Chanhee Leea, Joshua T. Cooperb, Francesca Moronia, Ana M. Salima, Chaehee Leec, Trisha Spanbauerd and 
Edward C. Theriote

aPlant Biology Graduate Program, University of Texas at Austin, Austin, Texas, USA; bDepartment of Biological Sciences, Northern Kentucky 
University, Highland Heights, Kentucky, USA; cDepartment of Plant Sciences, University of California Davis, Davis, California, USA; 
dDepartment of Environmental Sciences and Lake Erie Center, University of Toledo, Toledo, Ohio, USA; eDepartment of Integrative Biology, 
University of Texas at Austin, Austin, Texas, USA 

ABSTRACT 
The genus Coelastrum N€ageli (Sphaeropleales; Scenedesmaceae) is a diverse genus of green algae with 
potential biotechnical applications. A sound understanding of its phylogeny will be a useful tool for 
predicting the distribution of traits that may enhance its utility, and may lead to a better understand
ing of its evolution and ecology. Here we present the plastome of Coelastrum microporum. Our exem
plar was isolated from Gull Lake, Michigan and the complete plastome as assembled was 169,961 bp in 
length. The plastome contained 104 genes of which 68 were protein-coding genes (CDSs), 27 tRNA 
genes and three rRNA genes. The GC content of the plastome was 31.2%. The maximum likelihood 
phylogeny suggested that C. microporum was the sister group to a clade of single exemplars of three 
other genera in the Scenedesmaceae (Tetradesmus, Pectinodesmus and Coelastrella).

ARTICLE HISTORY 
Received 13 December 2022 
Accepted 23 August 2023 

KEYWORDS 
Coelastrum; plastome; 
Sphaeropleales; phylogeny

Introduction

Coelastrum microporum N€ageli, 1855 is a broadly distributed 
freshwater green alga with three-dimensional, spherical coeno
bia. This genus has recently been investigated for biotechno
logical applications such as bioremediation of wastewater, 
production of carotenoids, fatty acids, and biodiesel (Bhuyar 
et al. 2021; Liu et al. 2020; Maltsev et al. 2021). Understanding 
the plastome is known to be important to understanding syn
thesis and regulation of unsaturated fatty acids (He et al. 
2020). Phylogenetic reconstructions have been attempted 
using marker genes such as ITS, and 18s rDNA regions 
(Goecke et al. 2020; Hegewald et al. 2010), with Coelastrum 
N€ageli itself recovered as monophyletic or not. The plastome 
of C. microporum has not been published previously. To help 
better understand evolutionary relationships of Coelastrum, we 
fully sequenced the plastome of C. microporum and compared 
it to available plastomes of other Sphaeropleales.

Materials and methods

Coelastrum microporum was collected from Gull Lake in south
west Michigan (42.403061 N; 85.414341 W) in July 2019. The 
isolated strain was cultured in WC artificial freshwater medium 
(Guillard 1975) at 14 �C (a temperature similar to lakes when 
samples were collected, which should be conducive for the 

maximum growth and survival rate of most species (Thomas 
et al. 2016)). The strain used is available from the UTEX 
Culture Collection of Algae (https://utex.org, Dr. David 
Nobles, Curator and Director: dnobles@austin.utexas.edu) as 

Coelastrum microporum UTEX LB 3178. Light microscopy using 
morphological criteria were used for initial species identifica
tion, with the isolate (Figure 1) corresponding to morpho
logical descriptions of C. microporum (Kom�arek and Fott 1983). 

Figure 1. Light Micrograph of Coelastrum microporum, taken by the authors, 
from the strain deposited as UTEX 3178.
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DNA was extracted using a DNeasyVR Plant Mini Kit (Qiagen, 
Hilden, Germany) following the kit’s protocol. Monoclonal cul
tures were sampled in late exponential phase after visual 
inspection in the light microscope of the culture for fungal 
hyphae and bacterial abundance. Approximately 30 million 
150 bp paired-end reads were sequenced using Illumina HiSeq 
4000 platform (Illumina, San Diego, CA) at the Genome 
Sequencing and Analysis Facility (GSAF) at the University of 
Texas at Austin. The raw reads were trimmed using BBDuk 
from the BBTools software package (https://jgi.doe.gov/data- 
and-tools/bbtools/), and assembled with NOVOPlasty v. 4.2.1 

(Dierckxsens et al. 2017). The assembled contig was imported 
into Geneious 2020.2.4 (Biomatters Ltd., http://www.geneious. 
com (Kearse et al. 2012)), and compared to vouchered sequen
ces from the NCBI database using BLAST (Altschul et al. 1990) 
to check for any possible contaminants. The contig was anno
tated with available complete plastomes of closely related spe
cies in Geneious. The plastome was mapped using Bowtie2 v.2 
(Langmead and Salzberg 2012) with trimmed reads to deter
mine sequence coverage and potential mis-assemblies. 
Verification of protein-coding genes was manually performed 
in Geneious, and tRNA genes were verified using tRNAscan-SE 

Figure 2. Gene map of Coelastrum microporum plastome. Inverted repeats (IRA and IRB) and two single-copy regions are indicated on the inner circle with G/C con
tent (dark grey) and A/T content (light grey). colored gene boxes are indicated by functional group as shown in the key.
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v.2.0 (Chan and Lowe 2019). We extracted 58 CDS sequences 
shared by C. microporum and 22 publicly accessible plastomes 
from other Sphaeropleales, aligning them using MAFFT v.7.450 
(Katoh and Standley 2013) presented in Table S1. ModelFinder 
(Kalyaanamoorthy et al. 2017) was used to find the best fitting 
model for maximum likelihood analysis. A maximum likelihood 
phylogeny was constructed using IQTree2 v. 1.6.12 (Minh et al. 
2020) with 1000 bootstrap replicates.

Results

The complete plastome of Coelastrum microporum (GenBank 
accession number: NC_068582) was 169,961 bp in length. We 
annotated 104 genes which included 68 protein-coding 
genes (CDSs), 27 tRNA genes and three rRNA genes. The 
average coverage was 645.5 (ranging from 359 to 1337) 
mapped from 745,406 trimmed raw reads (Figure S1). The cir
cularized plastome had a typical quadripartite construction 
(Figure 2), with a large single copy region (length 85,914 bp; 
GC content 30.2%), and a small single copy region (length 
66,611 bp; GC content 29.2%), interrupted by the two 
inverted repeats, A and B (IRA and IRB, length of each 
8,718 bp; GC content 43.7%). The overall plastome GC content 
was 31.2%. The best model for maximum likelihood analysis 
was GTRþ FþR5. Our maximum likelihood tree (Figure 3) 
recovered C. microporum as sister to a clade containing 
Pectinodesmus pectinatus (Meyen) Hegewald et al. 2010, 

Tetradesmus obliquus (Turpin) M.J. Wynne, 2016, and Coelastrella 
saipanensis N. Hanagata, 2001.

Discussion and conclusions

Goecke et al. (2020), using ITS and 18s rDNA sequences, but 
much denser taxon sampling than our study, recovered simi
lar relationships among Sphaeropleales genera, as did 
Hegewald et al. (2010), using only ITS2 sequences. We 
hesitate to argue for any one of these hypotheses of relation
ships without further analysis, because different taxon 
sampling strategies can change inferred phylogenetic rela
tionships even when the same gene(s) and same optimality 
criterion are applied (Theriot et al. 2009). This description of 
the complete plastome of C. microporum provides additional 
support for its inclusion in the Sphaeropleales and valuable 
information for further research on phylogenetic relationships 
in this order, which in turn can help guide research on prac
tical applications of these algae. We intend to expand our 
studies to better understand the evolution and classification 
of the genus Coelastrum.
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Figure 3. Maximum likelihood phylogeny of Coelastrum microporum, 22 species in Sphaeropleales and Chlamydomonas reinhardtii (outgroup) based on 58 CDSs 
shared by C. microporum and 23 publicly accessible plastomes in Sphaeropleales and chlamydomonadales. Numbers above branches are bootstrap values from 
1000 bootstrap replicates in which asterisks represent bootstrap values of 100. The following sequences were used: Tetradesmus obliquus NC_008101 (de Cambiaire 
et al. 2006), Pectinodesmus pectinatus NC_036668 (unpublished), Coelastrella saipanensis NC_042181 (unpublished), neochloris aquatica NC_029670 (Fu�c�ıkov�a et al. 
2016), chlorotetraedron incus NC_029673 (Fu�c�ıkov�a et al. 2016), Pediastrum duplex NC_034654 (McManus et al. 2017), Pediastrum angulosum NC_037919 (McManus 
et al. 2018), Pseudopediastrum boryanum NC_037920 (McManus et al. 2018), Pseudopediastrum integrum NC_037921 (McManus et al. 2018), lacunastrum gracillimum 
NC_037918 (McManus et al. 2018), stauridium tetras NC_037923 (McManus et al. 2018), kirchneriella aperta NC_029676 (Fu�c�ıkov�a et al. 2016), Bracteacoccus gigan
teus NC_028586 (Lemieux et al. 2015), Bracteacoccus minor NC_029674 (Fu�c�ıkov�a et al. 2016), Bracteacoccus aerius NC_029675 (Fu�c�ıkov�a et al. 2016), pseudomuriella 
schumacherensis NC_029669 (Fu�c�ıkov�a et al. 2016), chromochloris zofingiensis NC_029672 (Fu�c�ıkov�a et al. 2016), Mychonastes homosphaera NC_029671 (Fu�c�ıkov�a 
et al. 2016), Mychonastes jurisii NC_028579 (Lemieux et al. 2015), neocystis brevis NC_025535 (Lemieux et al. 2014), parallela transversalis NC_042241 (unpublished), 
ankyra judayi NC_029735 (Fu�c�ıkov�a et al. 2016), Chlamydomonas reinhardtii NC_005353 (Maul et al. 2002).
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