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ABSTRACT OF THE DISSERTATION

Essays on Asset Pricing

by

Gabriel Ignacio Cuevas Rodriguez

Doctor of Philosophy in Management

University of California, Los Angeles, 2023

Professor Bernard Herskovic, Co-Chair

Professor Stavros Panageas, Co-Chair

In Chapter 1, I analyze firms’ misallocation through the output distortions channel,

using a production-based asset pricing model as a framework. In the model, α

measures the firm’s ability to choose technologies to adapt to exogenous shocks. I

find in the cross-section of the test portfolios the estimated curvature parameter α

is more than two times the original value obtained in Belo (2010). This implies

misallocations reduce the firm’s ability to respond to the different states of nature.

I calibrate and solve the model in the special case of a single representative firm. I

find that the impact of misallocation on firm value, production, capital, investment,

and investment return is larger when firms’ ability to adapt to exogenous shocks is

reduced. This indicates that firms may be less agile to adapt across states of nature

and provides more evidence of the detrimental effect of misallocations.

In Chapter 2 (with Denis Mokanov and Danyu Zhang), we document several facts

ii



about equity analysts’ earnings expectations: (1) consensus earnings expectations

underreact to news unconditionally, (2) the degree of underreaction declines during

high-volatility periods, and (3) the degree of underreaction declines over our sample.

To account for these findings, we develop a simple model featuring time-varying inat-

tention. We show that our model is able to account for the unconditional profitability

of momentum, momentum crashes, and the diminishing profitability of momentum

over our sample. We propose a trading strategy that mixes short-run and long-run

momentum signals and show that the mixed momentum strategy outperforms the

conventional momentum strategies. Finally, we use a machine learning algorithm to

estimate the predictable component of earnings surprises and construct a portfolio

that is long (short) on stocks with excessively pessimistic (optimistic) earnings ex-

pectations. The resultant trading strategy generates an annualized Sharpe ratio of

about 1.16 and its returns are not explained by popular factor models.
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CHAPTER 1

The Effect of Misallocation on Asset Prices

1.1 Introduction

The study of asset pricing invariably involves analyzing the properties of the stochas-

tic discount factor (SDF) as dictated by Pt = Et[Mt+1Xt+1], where Xt+1 consists

of the future payoffs for a given asset or portfolio and Mt+1 is a vector Arrow-

Debreu prices for all states of nature. As discussed at length in Cochrane (1996)

and Cochrane (1991), the investment returns of firms correspond to the returns on

financial assets. Firms make investment decisions to maximize profits. The firm’s

beneficial owners realize these returns and price the cashflows in expectation accord-

ing to the market’s SDF.1

Departing from the traditional consumption-based asset pricing literature, Cochrane

(1991) proposes a partial equilibrium model that omits consumer preferences but

still specifies the SDF from the producers’ first-order conditions. As pointed out by

Cochrane, the empirical advantage of the production-based models, contrary to the

consumption-based literature, lies in the relatively large movements of output or in-

1. The analysis of the SDF in the context of production forms the basis of production-based asset
pricing. See Chapter 7 of Campbell (2017) for an excellent survey of the existing production-based
asset pricing literature.
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vestment compared to consumption. For instance, the equity premium puzzle results

in large part because of consumption smoothness that confounds the reconciliation

of the theory with data.

As discussed by Cochrane, when markets are complete, the return on investment

must be equal to any portfolio return that mimics the investment return in all states

of nature. More importantly, this SDF has to be unique. However, firms are distant

from being unique, and idiosyncracies in the form of misallocations can explain a

large amount of differences in output. For instance, Restuccia and Rogerson (2008)

find that misallocation can cause quantitatively large output and productivity losses,

on the order of 30 to 50%. Hsieh and Klenow (2009) find that differences in total

factor productivity (TFP) for China and India compared to the U.S., can account

for more than two times the TFP. This paper explores if misallocations are priced in

the cross-section.

Can distortions in firms’ profits influence not only firm investment decisions and

production allocations across states of nature, but also asset prices in the cross-

section? The model presented in Belo (2010) provides a parsimonious vehicle to

consider such effects. Belo directly specifies the marginal rate of transformation

(MRT) implied by the firm’s production possibility frontier.2 He shows that the

MRT forms a valid SDF that prices stock returns in the cross-section. Because his

specification involves choosing investments across states of nature, as opposed to

working at the product or the project level, this model forms an ideal vehicle for

subsequent analysis studying the impact of distortions.

2. Marginal rates of transformation are equivalent from the production perspective to the
marginal rates of substitutions inferred from consumers’ first-order conditions.
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While the Belo (2010) model provides a framework, the original model contains

no misallocation, and the application of state-contingent distortions in a production

framework is novel to the best of my knowledge. Belo (2010) harnesses the production

model to empirically estimate asset pricing parameters. I take a similar approach

and estimate the parameters of the model using standard Fama French portfolios.

In Belo’s model, α measures the firm’s ability to choose technologies to adapt to

exogenous shocks. I find a cross-sectional average α of 3.79, indicating the firm’s

adaptability to switch across states is lower compared to Belo’s original model (α =

1.02). Another measure commonly used in the literature is the mean absolute pricing

errors (MAPE). I find the model with misallocation consistently reduces the pricing

errors, with a cross-section average reduction of 7 bps. Finally, I calibrate the model

and present the results of a simulation exercise, where I actively solve the model

in the special case of a single representative firm. The model’s solution generates

insights into the effect of misallocation on relative production allocations, investment,

and value. The results indicate that misallocation has a detrimental impact on firms.

Firms have a lower ability to adapt to exogenous shocks and as a consequence, their

value is also reduced.

1.1.1 Related literature

This paper extends the literature on production-based asset pricing. The goal of

this approach is to understand how misallocation can impact the firm’s decisions

and consequently asset prices. This paper relates to the literature that focuses on

the production side of the economy as a mirror to consumption-based models in the

asset pricing literature. The first efforts were made by Cochrane (1988), focusing

3



on a smooth production possibility frontier across states of nature. Similarly to the

consumption-based approach, in which consumers save to increase their consumption

in states of nature where the marginal rate of substitution is high, a firm can take

actions to shift their output from one state to another. Cochrane (1988) has recently

received more attention in a direct extension by Belo (2010) and Cochrane (2021).

The work most closely related to mine is Belo (2010). Belo builds on Cochrane

(1993) and proposes a production-based asset pricing model, based on the ability

of the producers to shift output across states. His approach departs from the usual

aggregate production function and requires that firms have a smooth choice over the

state-contingent pattern of their output. A smooth production possibility frontier

makes it possible to obtain the MRT, which must be equal to the SDF in each state.

The model has an unobservable parameter, the natural productivity. Belo solves this

identification problem by assuming it follows a factor structure. I base my model

on Belo’s study, but I differ by considering that firms have capital misallocation

represented as output distortions. Cochrane (2021) presents several variations of the

production-based asset-pricing model, but the goal of that paper is to establish a

research agenda more than to propose answers to the production-based literature.

The use of a smooth production possibility frontier has also proven to be flexible

enough to relate asset prices and the firm’s research and development (R&D). Guo,

Zhang, and Zhang (2022) explore the possibility that the technology component can

be explained using R&D. In particular, they develop a technique to identify natural

productivity shocks through technological advancements.

This paper is also related to the literature on misallocation. Restuccia and Roger-

son (2008) explore a stationary equilibrium, while assuming a heterogeneous set of

firms, with constant TFP and misallocations in the form of tax rates. They find

4



that misallocation can cause quantitatively large output and productivity losses, on

the order of 30 to 50%. Distortions may or may not be correlated with firm size,

generally finding larger effects if correlated with size. I depart from Restuccia and

Rogerson (2008), as I assume that distortions are not constant. Hsieh and Klenow

(2009) also find that distortions affect TFP. Their empirical analysis is at a country

level, but their findings imply that large differences in TFP can be explained by

inefficient uses of technologies (licensing regulations, size-dependent policies, state-

owned enterprises). I apply a similar methodology to estimate distortions, but since

my model abstracts from labor, I only consider capital distortions. Finally, Bloom

et al. (2018) study uncertainty in the business cycle. They find that uncertainty is

countercyclical, and one of the channels is misallocation. Following their findings, I

consider state-dependent distortions.

1.2 A two-period production-based model

In this section, I consider a simple model to make the dynamics of output, the SDF,

and misallocation transparent. There are two periods and a representative firm that

has the possibility to invest at time 0.

1.2.1 Productivity

In an uncertain environment, the output is

Y (s1) = ε (s1)F (K0) (1.1)

5



where ε (s1) is random productivity in state of nature s1 at time 1, and F (K0) is

the production function on capital. The firm invests K0 at time 0 before the shock ε

is realized. Under standard aggregate firm’s representation, the firm has the ability

to adjust its output over time, but not transform it across states of nature.3 As a

result, there is a kink in the production possibilities frontier, and the MRT across

states is not well defined. Figure 1.1 (left) displays a simple representation of the

production possibility frontier for a two-state s = h, l economy. We can observe that

the MRT is not well defined and two possible MRT M1 and M2 are displayed at the

same production level.

Figure 1.1
Production Possibility Example

Y (l)

Y (h)
M2

M1

Y (l)

Y (h)

M1

Production possibility set for a two-state economy: (i) left: standard; (ii) right: smooth production
possibility set.

Following Cochrane (1993) and Cochrane (2021) and Belo (2010), my goal is

to use a production technology that in addition to the usual ability to transform

3. The resulting production possibilities frontier is Leontief. Cochrane (1993) and Cochrane
(2021), and Belo (2010) discuss this in detail.

6



goods over time, allows firms to adapt across states of nature. This representation

is determined by a standard technology as in Eq. (1.1), but the firm has the ability

to choose a state-contingent productivity level ε (s1), subject to a constraint set of

the form of a CES aggregator:4

(
E
[(
ε (s1)
θ (s1)

)α]) 1
α

≤ 1, (1.2)

where α > 1 is a curvature parameter, and θ are a set of weights. The restriction on α

warrants the concavity of the production possibility frontier.5 θ is a state-contingent

technological parameter, that can be thought of as underlying random productivity.

θ allows the firm to obtain higher productivity in some states, by accepting lower

productivity in other states. Figure 1.1 (right) displays a simple representation of a

smooth production possibility frontier. In this case, the MRT M1 is well-defined and

unique.

It is convenient to understand that θ is not directly observable. Assuming that

there is a finite number of states s1 = 1, 2 . . . S, Eq. (1.2) becomes6

 S∑
s1=1

ρ (s1)
(
ε (s1)
θ (s1)

)α 1
α

≤ 1. (1.3)

where ρ (s1) represents the probability of each state s1 = 1, . . . , S. The parameters

4. Belo (2007)’s appendix A.II describes in detail the steps to arrive to Eq. (1.2) from the firm’s
output.

5. When α approaches 1, it is easier for the firm to transform output across states of nature.
α → ∞ recovers the Leontief representation of the production possibility frontier.

6. The finite state example is for simplicity but not required as discussed by Cochrane (2021)

7



θ and ρ are not separately identified, so a change in one can be compensated by

the other. It is important to notice that from the firm’s perspective, it is easier to

produce in states of nature where θ is high, and more difficult when θ is low. The

hypothesis that firms have smooth opportunity sets, and thus have some control over

nature, is discussed in detail in Cochrane (2021), and Belo (2010).

1.2.2 Firm’s distortions

Following Belo (2010), I abstract from labor and adjustment costs to keep the model

simple. This assumption allows me to introduce a unique distortion that changes

the marginal product of capital in this economy. Since capital is the only factor of

production, there is no need to add additional distortions that may affect the other

factors of production. Similar to Hsieh and Klenow (2009), I denote distortions on

capital as an output distortion τ .7 For instance, as discussed by Hsieh and Klenow

(2009), τ would be high for firms that face government restrictions, and low for firms

that benefit from subsidies. The firm’s profits are given by

Π (s1) = Y (s1) (1 − τ (s1)) . (1.4)

Therefore, at time 0, the firm’s planning problem is

max
K0,ε(s1)

E [M (s1) Π (s1)] −K0 s.t.
(
E
[(
ε (s1)
θ (s1)

)α]) 1
α

≤ 1. (1.5)

7. Hsieh and Klenow (2009)’s model has two factors of production: capital and labor. Thus,
they introduce two distortions: one for capital and labor together by the same proportion, as an
output distortion; the second distortion is the capital relative to labor. This representation allows
them to identify separately the impact on each factor of production.

8



where M is the SDF.

1.2.3 Producer’s first-order conditions

Introducing a Lagrange multiplier µ on the productivity-choice constraint of (1.5),

the first-order conditions are

∂

∂K0
: 1 = E [M (s1) ε (s1)F ′ (K0) (1 − τ (s1))] (1.6)

∂

∂ε (s1)
: M (s1)F (K0) (1 − τ (s1)) = µ

ε (s1)α−1

θ (s1)α
(1.7)

where I use that firms always maximize production, so the constraint in Eq. (1.5)

is binding. The firm should invest until the physical investment return is correctly

priced. Thus, an alternative representation of Eq. (1.6) is8

1 =E
[
MRI

]
(1.8)

with RI = εF ′ (K0) (1 − τ), denoting the investment return. Eq. (1.8) implies the

familiar result from Cochrane (1991): the law of one price implies production returns

consistent with the returns of the firm’s equity holders. While the model itself

taken literally is untestable due to misspecification and measurement error, Cochrane

and others develop interesting and novel techniques to test the theory in principle.

Such testing is tangential to the subsequent analysis, which examines the partial

equilibrium implications of production misallocations.

8. For simplicity, I omit the state-contingent-dependency s1 for the state-contingent variables.
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Now, solving for the SDF in the productivity choice first-order condition,

M = εα−1

(1 − τ)F ′ (K0) θα
= 1
RI

(
ε

θ

)α
(1.9)

Eq. (1.9) says that firms will have high discount factors when productivity is high

and when output distortions are larger. Representing Eq. (1.9) in terms of ε

ε = M
1

α−1 (1 − τ)
1

α−1 F ′ (K0)
1

α−1 θ
α

α−1 , (1.10)

implies that firms’ productivity level is determined by technological constraints and

capital distortions. Given that α > 1, the firm chooses a high productivity level when

m is high; in states when it is easier to produce, high θ states; and when distortions

are reduced, low τ states. This is in line with the findings of Restuccia and Rogerson

(2008), where the larger the idiosyncratic distortions, the lower the relative output.9

The upshot is an empirically tractable production factor and SDF. The SDF in

this case represents the MRT, and should effectively price the returns from future

production.

In the next section, I present a multi-period generalization of this model.

1.3 A multi-period production-based model

This section presents a production-based asset pricing model in partial equilibrium.

Consider the model presented in Belo (2010) with one significant change: firms

9. Hsieh and Klenow (2009) obtain similar findings with distortions associated with the two
productivity factors.
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face state-dependent output distortions. The firm’s smooth production possibility

frontier allows for well-defined MRT. Firms’ first-order conditions equate the SDF

to the MRT in each state of nature. Finally, following Belo (2010), I propose a

methodology to identify the SDF in the data, I validate the SDF in the cross-section

using standard Fama French test portfolios.

1.3.1 Firms

Competitive firms take prices as given and produce a single final good using capital.

Output, Yjt+1, of firm j is produced by a standard technology with capital, Kjt+1,

as the only factor input:

Yjt+1 =εjt+1F
j (Kjt+1) , (1.11)

where F j (·) is an increasing and concave function of the inputs Kjt+1.

In addition, following Cochrane (1993) and Cochrane (2021) and Belo (2010),

each firm picks a state-dependent production level εjt+1 for all states of nature. The

producer chooses their production level subject to the efficacy of their production

process in each state. Using a CES aggregator, the constraint takes the form:

(
Et
[(
εjt+1

θjt+1

)α]) 1
α

≤1 (1.12)

where θjt+1 is the technology vector for firm j across all states. Note that θjt+1 and

εjt+1 are random, contingent on the state realization. The parameter α determines

the flexibility of technology. When α → ∞, firms cannot transform output, recover-

ing the standard case of a Leontief across the states of nature. In addition, α > 1 is
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a necessary restriction that guarantees a concave frontier across states of nature.

At time t, firm j makes an investment, Ijt, to the capital stock, Kjt+1, next

period. The capital accumulation equation is given by:

Kjt+1 =Ijt + (1 − δ)Kjt (1.13)

where δ is the depreciation rate of the producer’s capital stock.

At time t, the firm pays out dividends given by

Djt =PjtYjt (1 − τjt) − Ijt, (1.14)

where Pjt is the price of the firm’s goods at time t, and τjt represent the state-

contingent output distortions. The assumption that output distortions are state-

contingent is based on Bloom et al. (2018) findings that uncertainty rises during

recessions. Bloom et al. (2018) propose a general equilibrium model, where the

volatility of the uncertainty in output follows a two-state Markov chain.10 They find

that the volatility of the two processes increases during recessions. In their model,

one of the channels for the idiosyncratic process is misallocation, which rises during

recessions. Additionally, as discussed in Section 1.2, each firm has a unique output

distortion given by τjt. The output distortion is in line with Hsieh and Klenow

(2009) model, but since I abstract from a labor productivity factor, I assume that

the distortion to capital affects directly output.11

10. Bloom et al. (2018) define uncertainty as two processes: one is a macroeconomic process, and
the second is an idiosyncratic process.

11. Belo (2010) shows that labor does not have implications in the MRT.
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1.3.2 The producer’s maximization problem

The firms take the SDF, Mt+1, measured in units of a numeraire good, and the

relative price of its output Pjt = pjt/pit, as given.12 Markets are complete and thus

the SDF is unique.13 The firm therefore solves

V (Xjt) = max
Ijt,εjt+1

{Djt + Et [Mt+1V (Xjt+1)]} (1.15)

where Xjt ≡ (Kjt, εjt, Pjt,Zjt) and Zjt contains all forecasting variables.

The firm is subject to the following constraints:

Djt =PjtYjt (1 − τjt) − Ijt (1.16)

Kjt+1 =Ijt + (1 − δ)Kjt (1.17)

1 ≥
(
Et
[(
εjt+1

θjt+1

)α]) 1
α

(1.18)

Yjt+1 =εjt+1F
j (Kjt+1) (1.19)

1.3.3 First-order conditions

The first-order condition for the productivity level εjt+1 in each state of nature is

given by (all the algebra is provided in the appendix)

εjt+1

εjt
=η

1
1−α

jt

(
Mt+1Pjt+1

Pjt

) 1
α−1

(
θjt+1

θjt

) α
α−1

(1 − τjt+1)
1

α−1 , (1.20)

12. Without loss of generality I specify that technology 1 is the numeraire, i.e. P1t = 1

13. See Cochrane (2009) chapter 4, Duffie (2010) chapter 1, or Campbell (2017) chapter 4 for
further references on the uniqueness of the SDF.
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where

ηjt =
Et
[
Mt+1

(
Pjt+1
Pjt

)
(1 − τjt+1)

]
Et
[(

εjt+1
εjt

)α−1 ( θjt+1
θjt

)−α
] . (1.21)

Eq. (1.20) states that the firm’s optimal choice of productivity level in each state

of nature is determined by prices, technological constraints, and distortions to output.

The firm chooses a higher output in states of nature where it is more valuable. Since

α > 1, such states include high Mt+1 and Pjt+1, low τjt+1, and high θjt+1. Since ηjt
is predetermined at time t, it does not affect excess returns.

Now, solving for the SDF from the producer’s maximization choice yields

Mt+1 =ηjt
(
Pjt+1

Pjt

)−1 (
εjt+1

εjt

)α−1 (
θjt+1

θjt

)−α 1
(1 − τjt+1)

(1.22)

Note that a constant distortion level would not have a first-order impact on

the pricing kernel, although it might have dynamic implications. State-contingent

distortions should directly impact the relative prices of contingent claims. Eq. (1.22)

states that producer j’s MRT should be equal to the SDF. This is the central equation

in Belo (2010), it states that every asset can be valued without considering any

information on consumer preferences. Eq. (1.22) can be expressed in terms of output

to simplify the empirical implementation

Mt+1 =ηjt
1

(1 − τjt+1)

(
Pjt+1

Pjt

)−1 (
Yjt+1

Yjt

)α−1

θ−α
jt+1, (1.23)
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where

ηjt =
Et
[
Mt+1

(
Pjt+1
Pjt

)
(1 − τjt+1)

]
Et
[(

Yjt+1
Yjt

)α−1
θ−α
jt+1

] (1.24)

is again a variable pre-determined at time t.

1.3.4 Identification

In order to use the SDF in Eq. (1.23), I need to measure the unobserved underlying

productivity level θjt. Therefore, following Belo (2010), I assume that the underlying

productivity level in each technology j = 1, . . . , N has the following factor structure

α log (θjt) = λjθt, (1.25)

where θt is the common (across technologies) productivity factor and λj is the loading

of the underlying productivity level of technology j on the common productivity

factor. Without loss of generality, I normalize the loadings for technology 1 to

λ1 = 1. The loadings for technology j, λj, capture the differences in sensitivity for

each technology with respect to the business cycle.

In order to identify the SDF in Eq. (1.23), following the literature in misalloca-

tion, I approximate the output distortion in each technology j = 1, . . . , N , with the

following relationship

(1 − τjt+1) = ΦjtTFPjt+1. (1.26)

where TFPjt+1 is the total factor productivity (TFP) for technology j at time t. This
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assumption is motivated by the documented relationship between productivity and

misallocation. As discussed in section 5.2.1 of Bloom et al. (2018), one of the channels

of output dispersion is misallocation. In their model, an increase in misallocation

acts as a negative first-moment shock to productivity. Misallocation increases in the

economy in response to a TFP shock. This is captured by the inverse relationship

that I propose between τjt+1 and TFP.

As Restuccia and Rogerson (2008) documented, misallocation can have direct

implications on the level of TFP, in the range of 30 to 50 percent. This effect is

present in their model when policies create heterogeneity in prices. Finally, Hsieh

and Klenow (2009), provide quantitative evidence on the potential impact of resource

misallocation on TFP.

Assume Φjt represents policies made for specific firms that distort next period

TFP. The misallocation could load differently through time, as described by Bloom

et al. (2018) findings that uncertainty is countercyclical. Restuccia and Rogerson

(2008) propose that firms face constant output distortions on the steady state. Here,

I generalize this assumption. This represents policies made for specific technologies

which smooth or intensify the ripples of the business cycle.

Equations (1.25) and (1.26) impose a restriction between the producers’ first-

order conditions, which can be used to infer the underlying productivity level factor

and the MRT from the observed output, price, and TFP data in the different tech-

nologies. This result is stated in Proposition 1.

Proposition 1.

Consider any two technologies, equations (1.25) and (1.26) imply that the common
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productivity factor θ and the equilibrium MRT M can be identified from output,

price, and TFP data in two technologies. The common productivity factor and the

equilibrium MRT are given by

θt+1 =ζ1t − ζ2t

1 − λ
− bp∆p2t+1 − by (∆y1t+1 − ∆y2t+1) − bτ

(
tfp1t+1 − tfp2t+1

)
(1.27)

Mt+1 =κt exp
(
bp∆p2t+1 + by (λ∆y1t+1 − ∆y2t+1) + bτ

(
λtfp1t+1 − tfp2t+1

))
(1.28)

where ζjt = log
(
ηjt
)

− log (Φjt), κt = exp
(
(1 − λ)−1 (ζ2t − λζ1t)

)
, λ = λ2, lower case

letters represent logs, and ∆ is the difference operator. The factor risk prices bp, by,

and bτ are given by


bp

by

bτ

 = 1
1 − λ


−1

− (α− 1)

1

 (1.29)

Proof.

Taking logs on the SDF in Eq. (1.23) for two arbitrary producers j = 1, 2 (in which

j = 1 is the numeraire good), and evaluating the log MRT for two different tech-

nologies gives the result for θt+1 and Mt+1.

1.3.5 Asset Pricing Implications

The MRT in Eq. (1.28) is a valid SDF. For a vector of excess returns Re
t+1, a valid

SDF satisfies:

Et
[
Mt+1R

e
t+1

]
= 0. (1.30)
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Up to a constant at time t, any valid discount factor satisfies Eq. (1.30). Thus, as a

simplification, normalize κt to 1, then the SDF becomes,

Mt+1 =
(
P2t+1

P2t

)bp (
Y1t+1

Y1t

)λby (
Y2t+1

Y2t

)−by

(TFP1t+1)λb
τ

(TFP2t+1)−bτ

(1.31)

where P2t are the relative prices of technology 2 with respect to the numeraire. I

estimate and test the model using different portfolios of assets. In order to esti-

mate the expected excess return using the SDF from Eq. (1.31), I use the following

relationship between excess returns and risk premium

Et
[
Re
t+1

]
= −

Covt
(
Mt+1, R

e
t+1

)
Et [Mt+1]

. (1.32)

1.4 Quantitative Analysis

This section presents the quantitative assessment of the model.

1.4.1 Data

I use macroeconomic data for two technologies to numerically estimate the SDF from

Eq. (1.31). This specification requires price, output, and total factor productivity

data for two production technologies. Following Gomes, Kogan, and Yogo (2009)

and Belo (2010), I choose the durables and nondurable goods sectors as technologies

1 and 2, respectively. According to Eq. (1.31), the equilibrium MRT is

Mt+1 =
(
PNDt+1

PNDt

)bp (
YDt+1

YDt

)λby (
YNDt+1

YNDt

)−by

(TFPDt+1)λb
τ

(TFPNDt+1)−bτ

,

(1.33)
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where j = D represents durables, j = ND represents nondurables, and the factor

risk prices bp, by, and bτ are given in Eq. (1.29).

The selection of durables and nondurables hinges on the time-series differences

that we observe in the data, which represents a convenient modeling choice. Table

1.1 shows the loads of durables and nondurables on the underlying production level

differ during expansions and recessions.14 Therefore, durable and nondurable tech-

nologies have different business cycle sensitivities. This suggests that durables and

nondurables load differently on the common productivity factor (i.e., λ 6= 1).

Table 1.1
Summary statistics.

Full sample NBER expansions NBER recessions
Mean S.D. AC(1) Mean S.D. Mean S.D.

tfpD 2.75 2.23 0.12 2.79 2.14 2.61 2.66
tfpND 0.73 1.86 0.10 0.62 1.67 1.23 2.54
∆yD 4.89 6.35 -0.15 5.70 4.89 1.40 10.08
∆yND 2.73 2.20 -0.14 2.77 2.15 2.58 2.49
∆pD 1.45 2.80 0.76 1.24 2.51 2.39 3.78
∆pND 2.38 2.76 0.48 2.37 2.78 2.44 2.77
m 0.00 1.50 -0.13 -0.30 0.74 1.27 2.83
θ 0.00 1.06 -0.11 0.14 0.88 -0.62 1.52

This table shows the mean, standard deviation S.D, and autocorrelation AC(1) for the log total
factor productivity tfpj , output growth ∆yj , and price growth ∆pj , where j = D are durable goods,
and j = ND are nondurable goods. It also presents the demeaned log SDF m and the demeaned
productivity level θ. All values are expressed in percentage points. The data are annual and the
sample covers 1948-2021.

The macro-data for output and prices comes from the National Income Product

Accounts (NIPA) available through the Bureau of Economic Analysis (BEA) website.

14. A year is defined as a recession year if at least five months in that year are defined as being
in a recession by the NBER.
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Output in each industry is measured by the real gross domestic product (Table 1.2.3,

lines 7 and 10). Price data in each industry is measured by the GDP price deflator

(Table 1.2.4, lines 7, 10). TFP is the annual U.S. Solow residual for durables (TFP in

equipment and consumer durables) and nondurables (TFP in non-equipment business

output ("consumption")), downloaded from John Fernald’s website (Fernald 2014).

The data is annual and the sample covers 1948-2021.

As we can observe from Table 1.1, output growth is cyclical regardless of the

technology, but TFP and price growth display different behavior for durables and

nondurables goods. Even though output growth is cyclical for the two technologies,

the sensitivity of each industry to the business cycle differs. The difference in output

growth for durables between expansions and recessions is 4.30% whereas for non-

durables is only 0.19%. Additionally, price growth for nondurables is acyclical with

a difference of only 0.07%, and durables are countercyclical with 1.15% lower during

expansions. Contrary to output growth and price growth, the TFPs display larger

differences for nondurables across expansions and recessions. Finally, as expected,

the MRT is countercyclical, and the technology level is cyclical.

1.4.2 Estimation

I use the generalized method of moments (GMM), to estimate the parameters α

and λ. I follow the methodology developed by Hansen and Singleton (1982). The

following moment restriction is used for estimation and testing:

E
[
Mt+1R

e
it+1zt

]
=0 (1.34)
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where Re
it+1 is the excess return for test portfolio i = 1, . . . , Ntp and zt corresponds

with the instruments used for the GMM estimation.15 The instruments condition

the information until time t. First, in Section 1.4.3, I use the 6 portfolios sorted on

size and book-to-market as main test assets. In Section 1.4.4, I present additional

test portfolios and obtain similar results. The value-weighted excess return for the

test asset comes from Kenneth French’s webpage. The instruments are a constant

and the dividend-price ratio.16 The data for the dividend-price ratio come from

Robert Shiller’s webpage. Additionally, the asset return at time t is matched with

the macro-variable at time t+ 1 (Campbell 2003).

The number of moment conditions is Ntp × Ni where Ni = 2 is the number of

instruments. The number of parameters to estimate is Np = 2 (α and λ). Therefore,

this setup is over-identified with Ntp ×Ni −Np overidentifying restrictions. I use the

J -test to see if the overidentified restrictions are statistically different from zero. I

report the two GMM stages, in the first stage, the weighting matrix is the identity

matrix whereas, for the second stage, I use the efficient weighting matrix correspond-

ing to the inverse of the Newey-West estimate of the sample pricing errors’ covariance

matrix. Following Belo (2010), I use two-period lags for the Newey-West estimate

of the sample pricing errors’ covariance matrix to account for the possibility of time

aggregation in output and price data.17 In addition to testing if the sample pricing

errors’ are identically zero using the J -test, I measure the cross-sectional R-squared

(R2) and the mean absolute pricing error (MAPE). The R2 is obtained from an OLS

15. See Cochrane (2009) Chapters 10 and 11 for further details of the GMM methodology.

16. I normalize to 1 the dividend-price ratio mean, as suggested in Cochrane (2009).

17. Hall (1988) discusses issues with the time aggregation of consumption data. In the context of
this study, similar issues may arise with the output, price, and TFP data.

21



regression of the realized average excess return of each portfolio on the average ex-

pected excess return of each portfolio. I estimate the average excess return of each

portfolio using Eq. (1.32). To estimate the MAPE, first I compute the absolute pric-

ing error of each portfolio Pricing Errori = |E [Re
i ]

observed − E [Re
i ]

predicted |, and then

averaging them MAPE =
(∑Ntp

i=1 Pricing Errori
)
/Ntp.

1.4.3 Results

Table 1.2 summarizes the main findings of this study. The first and second columns

show the results for the GMM’s first and second stages, respectively. For com-

parisons, I also perform the same analysis without the inclusion of misallocation

(standard Belo model), these results are in columns 3 and 4 for the GMM first and

second stages respectively. When considering misallocation, the firm’s flexibility to

adapt across states is severely reduced, measured by the curvature parameter α. The

point estimate of the curvature parameter α of 3.80 is more than twice compared to

1.66 without misallocation. The two point estimates differ considerably with Belo

(2010) findings. He finds a curvature parameter α close to 1, which means that firms

are adaptable to every state. We can attribute an increase from Belo’s α of 1.02,

to the α of 1.66 I estimate, to the differences in the sample periods.18 Therefore, if

I consider a baseline α estimate of 1.66 with no misallocation, the increase of this

value to 3.80 is caused by firm’s distortions. Misallocation not only reduces the

firm’s output as observed by the firm’s maximization problem, but also affects the

ability the firm has to adapt across states of nature. A larger α implies that firm’s

18. Belo (2010) uses annual data and his sample period covers 1930-2007. I also estimate Belo’s
model using his time period, and find almost identical results to the parameters α and λ found in
Section 3.5 of Belo (2010).
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chosen productivity level ε has to closely follow θ to satisfy the productivity-choice

constraint in Eq. (1.12). This suggests the difference between the two α provides

an indirect measure of the extent to which firms are effectively transforming output

across states.

Table 1.2
GMM estimation of the production-based model.

With Misallocation No Misallocation
1st 2nd 1st 2nd

α 4.79 3.80 2.27 1.66
s.e. 16.57 5.96 3.85 0.31
λ 0.82 0.85 0.93 0.96
s.e. 0.67 0.27 0.20 0.02
R2 81.06 85.50
MAPE 1.08 1.33
J -test 15.30 15.81 14.54 15.08
p-Value (J ) 12.17 10.51 14.99 12.93
M.C. 12.00 12.00 12.00 12.00

This table shows the results for the GMM first-stage and second-stage. The moment conditions
are E

[
Mt+1R

e
it+1zt

]
= 0 where Mt+1 is the SDF, zt are the instrumental variables, and Re

it+1
are the excess returns of the six size and book-to-market portfolios. Columns 1 and 2 present
the results for the SDF in Eq. (1.31), and columns 3 and 4 use the same specification but with
no misallocation. The estimation for the two stages is presented for α, λ, and the J -test for the
overidentifying restrictions. R2 corresponds to the regression of the mean observed excess return on
the predicted expected excess return. MAPE is the mean absolute value of the difference between
the mean observed excess return and the mean expected excess return. M.C. corresponds to the
number of moment conditions. R2, MAPE, and p-Value (J) are in percentage points. The data is
annual and the sample covers 1948-2021.

The parameter λ measures the sensitivity of the underlying productivity level in

the nondurable goods sector to the common productivity factor. I find a λ of 0.96

when no distortions are present. This result is almost identical to Belo’s finding of λ

of 0.97. This indicates the nondurables sector is slightly less sensitive to variations
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in the common productivity factor θ than durables. When distortions are taken into

account, I find a larger difference, with a point estimate for λ of 0.85. The presence

of misallocation reduces the sensitivity of the underlying productivity level in the

nondurables to the common factor. A smaller λ can also help to explain why the

nondurable goods sector is less cyclical than the output growth in the durable goods

sector: nondurables are less sensitive to the common productivity factor θ which is

closely related to the business cycle. The parameter λ is also present in the factor

risk prices in Eq. (1.29). A smaller λ effectively reduces the magnitude of the prices

of risk for durables associated with output growth λby and misallocation λbτ , which

are cyclical. This cause a tapered effect on the SDF for durables in the business

cycle with respect to the model without misallocation.

The J -test of overidentifying restrictions fails to reject the model in both stages,

with a p-value of 12.2% and 10.5% for the first and second stages respectively. The

model captures well the cross-sectional variation with R2 of 81.1%, but this value is

lower when compared to the original model without misallocation that obtains an

R2 of 85.5%.

The original Belo model also measures the pricing errors in the cross-section. He

finds a mean absolute pricing error MAPE of 1.15, which indicates his model does

a good job predicting the cross-section of the 6 size and book-to-market portfolios.

Table 1.2 shows a MAPE of 1.33 for the model with no misallocation, showing

the cross-sectional prediction is reduced in this new sample. In the model with

misallocation, MAPE is reduced by 25 basis points (bps) when compared to the model

without misallocation. This suggests for the 6 size and book-to-market portfolios

misallocation is slightly priced in the cross-section.
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Figure 1.2
Pricing Errors

0 5 10 15

Predicted mean excess return

0

5

10

15
A

ct
ua

l m
ea

n 
ex

ce
ss

 r
et

ur
n

With Misallocation

11

12

13

2122

23

0 5 10 15

Predicted mean excess return

0

5

10

15

A
ct

ua
l m

ea
n 

ex
ce

ss
 r

et
ur

n

No Misallocation

11

12

13

2122

23

This figure shows the plot of the predicted versus realized excess returns per annum implied by the
estimation of the production-based model on the 6 Portfolios Formed on Size and Book-to-Market
(2x3). The first digit refers to the size sort (1 and 2 for small and big, respectively), and the second
digit refers to book to market sort (1, 2, and 3 indicating the growth, neutral, and value portfolios,
respectively). (i) top: considering misallocation; and (ii) bottom: without misallocation (Belo’s
model). The data is annual and the sample covers 1948-2021.

Figure 1.2 presents a visual explanation of the fit of the production-based model

on the 6 size and book-to-market portfolios. This figure plots the predicted versus
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realized excess returns implied by the second-stage GMM estimates of the model.

The top panel presents the model I study, which explains 81.1% of the variation in

average returns in the cross-section, with a mean absolute pricing error of 1.08% per

annum. The straight line is the 45-degree line, and it is where the portfolios should

lie. In the figure, the first digit represents the size (1 small and 2 big) and the second

is the book-to-market (1 growth, 2 neutral, and 3 value). All the portfolios seem

to lie on the 45-degree line, with some small pricing errors, especially for small-size

portfolios. The bottom panel presents the analysis without misallocation. Similarly,

the model without misallocation seems to capture well big-size portfolios but presents

small pricing errors for small-size portfolios.

As pointed out by Campbell (2017), the initial time period in Belo’s model has

a one-factor structure, where CAPM works well. However, the sample I use in this

study from 1948 to 2021 doesn’t hinge on that period, and both models seem to

predict observed mean excess return.

1.4.4 Results: Additional Test Assets

In this section, I test additional portfolios of assets. The main goal is to provide a

more general view of the results from the previous section. The test portfolios are

sorted on: size (ME), book-to-market (BM), operating profitability (OP), investment

(IN), momentum (MO), short-term reversal (SR), and long-term reversal (LR). I also

include industry portfolios. I use for univariate sort 10 portfolios; for bivariate sort

6 (2x3) and 25 (5x5) portfolios; and for three-way sort 32 (2x4x4) portfolios. For

the industry portfolios, I use 5, 10, 12, 17, 30, 38, 48, and 49 portfolios. Finally, I

create a 50-asset portfolio formed on the univariate sorting of 10 portfolios for size,
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book-to-market, operating profitability, investment, and momentum.

Table 1.3 prsents the GMM estimation results for α and λ, R2, and MAPE for

33 additional test portfolios. I use the same instruments as in the previous section,

a constant and dividend-price ratio. I perform the analysis using the SDF from Eq.

(1.33) (columns 2-5), and as a reference, the estimates using the standard Belo (2010)

model (columns 6-9). In column 1, we can observe that α is consistent across the

assets with a cross-sectional mean of 3.79 and a standard deviation of 0.57. These

values contrast with the lower estimates when misallocation is not considered, with

a cross-sectional mean of 1.99 with a standard deviation of 0.52. For all the assets

tested, the addition of misallocation increases the parameter α. This suggests that

misallocation effectively reduces the firm’s ability to choose technologies to adapt to

exogenous shocks. The loading on nondurables measured by λ is also reduced when

misallocation is considered in the model. The cross-sectional average loading λ is

0.84 (s.d. of 0.02) with misallocation, and 0.94 (s.d. of 0.03) for the standard Belo

model. This indicates that misallocation reduces the nondurable sensitivity to the

underlying technology factor. R2 and MAPE present a larger dispersion with values

that range from 2.8% to 81.2% for R2 and 1.0% to 13.9% for MAPE for the model

with misallocation, and 0.1% to 85.5% for R2 and 1.0% to 13.5% for MAPE for the

model without misallocation. The larger pricing errors are for the portfolios formed

on momentum and for the industry portfolios, especially for more than 30 industries.

However, the model with misallocation consistently reduces the pricing errors, with

a cross-section average reduction of 7 bps.

The main takeaway of table 1.3 is the consistency of the curvature parameter

α and the loading on nondurables λ in the cross-section for the two models. This

suggests that misallocation has a detrimental effect on the firm’s ability to switch
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Table 1.3
Additional Test Portfolio Estimation

With Misallocation No Misallocation
Portfolio M.C. α λ R2 MAPE α λ R2 MAPE
6 Portfolios Formed on ME and BM 12 3.80 0.85∗∗∗ 81.06 1.08 1.66∗∗∗ 0.96∗∗∗ 85.50 1.33
6 Portfolios Formed on ME and OP 12 3.71 0.83∗∗ 12.75 3.24 1.37∗∗∗ 0.97∗∗∗ 0.43 3.34
6 Portfolios Formed on ME and IN 12 4.29 0.86∗∗∗ 35.85 1.87 2.20∗∗ 0.94∗∗∗ 0.06 2.23
6 Portfolios Formed on ME and MO 12 3.53 0.83∗∗ 9.86 4.56 1.49∗∗∗ 0.96∗∗∗ 19.45 4.55
6 Portfolios Formed on ME and SR 12 3.34 0.84∗∗ 58.53 3.56 2.18∗ 0.91∗∗∗ 35.54 3.48
6 Portfolios Formed on ME and LR 12 3.81 0.85∗∗∗ 78.16 1.78 1.90∗∗ 0.94∗∗∗ 72.05 1.91
10 Portfolios Formed on ME 20 4.26 0.80∗∗∗ 81.19 2.72 2.63∗ 0.89∗∗∗ 80.28 2.32
10 Portfolios Formed on BM 20 3.54 0.85∗∗∗ 55.84 2.38 1.67∗∗∗ 0.95∗∗∗ 55.84 2.41
10 Portfolios Formed on OP 20 3.73 0.85∗∗∗ 16.14 1.63 1.46∗∗∗ 0.97∗∗∗ 11.36 1.37
10 Portfolios Formed on IN 20 3.74 0.86∗∗∗ 10.37 1.46 1.90∗∗∗ 0.95∗∗∗ 29.67 1.71
10 Portfolios Formed on MO 20 3.31 0.85∗∗∗ 50.02 4.13 1.64∗∗∗ 0.95∗∗∗ 57.32 4.00
10 Portfolios Formed on SR 20 3.73 0.86∗∗∗ 50.05 1.19 2.52∗∗ 0.91∗∗∗ 44.02 1.27
10 Portfolios Formed on LR 20 3.44 0.86∗∗∗ 75.72 1.70 2.02∗∗∗ 0.94∗∗∗ 75.70 1.69
25 Portfolios Formed on ME and BM 50 4.19∗ 0.85∗∗∗ 47.06 1.45 1.97∗∗∗ 0.95∗∗∗ 50.61 1.45
25 Portfolios Formed on ME and OP 50 4.21∗∗∗ 0.86∗∗∗ 2.81 1.95 2.07∗∗∗ 0.95∗∗∗ 5.39 1.90
25 Portfolios Formed on ME and IN 50 4.64∗∗∗ 0.85∗∗∗ 16.52 1.63 2.66∗∗∗ 0.92∗∗∗ 4.30 1.94
25 Portfolios Formed on ME and MO 50 3.53∗ 0.85∗∗∗ 7.96 4.37 1.91∗∗∗ 0.94∗∗∗ 9.82 4.24
25 Portfolios Formed on ME and SR 50 4.08∗ 0.85∗∗∗ 36.04 2.29 2.55∗∗∗ 0.91∗∗∗ 23.46 2.53
25 Portfolios Formed on ME and LR 50 4.09∗∗ 0.86∗∗∗ 57.19 0.97 2.18∗∗∗ 0.94∗∗∗ 54.37 0.97
25 Portfolios Formed on BM and OP 50 4.25∗∗ 0.85∗∗∗ 30.36 1.82 2.08∗∗∗ 0.94∗∗∗ 28.63 1.85
25 Portfolios Formed on BM and IN 50 4.17∗∗ 0.86∗∗∗ 24.82 1.39 2.23∗∗∗ 0.94∗∗∗ 17.46 1.63
25 Portfolios Formed on OP and IN 50 4.02∗∗ 0.86∗∗∗ 5.48 2.00 2.13∗∗∗ 0.94∗∗∗ 8.97 2.10
32 Portfolios Formed on ME, BM, and OP 64 4.87∗∗∗ 0.83∗∗∗ 18.44 2.86 3.07∗∗∗ 0.90∗∗∗ 14.21 2.75
32 Portfolios Formed on ME, BM, and IN 64 4.81∗∗∗ 0.84∗∗∗ 21.99 2.11 3.36∗∗∗ 0.89∗∗∗ 17.15 2.21
32 Portfolios Formed on ME, OP, and IN 64 4.55∗∗∗ 0.84∗∗∗ 5.01 2.53 2.59∗∗∗ 0.92∗∗∗ 2.15 2.63
5 Industry Portfolios 10 2.90 0.87∗∗∗ 47.08 3.48 1.18∗∗∗ 0.97∗∗∗ 39.59 5.55
10 Industry Portfolios 20 3.70 0.83∗∗∗ 21.40 3.25 1.23∗∗∗ 0.98∗∗∗ 65.55 3.16
12 Industry Portfolios 24 3.71 0.84∗∗∗ 14.67 3.00 1.23∗∗∗ 0.98∗∗∗ 64.43 1.58
17 Industry Portfolios 34 3.38∗ 0.86∗∗∗ 13.97 2.37 1.50∗∗∗ 0.97∗∗∗ 33.99 1.82
30 Industry Portfolios 60 3.58∗∗∗ 0.86∗∗∗ 4.50 2.48 1.58∗∗∗ 0.96∗∗∗ 14.03 2.13
38 Industry Portfolios 76 2.41∗∗∗ 0.74∗∗∗ 27.35 13.89 1.38∗∗∗ 0.94∗∗∗ 2.29 13.53
48 Industry Portfolios 96 2.82 0.81 13.81 7.64 1.92 0.85 7.54 8.89
49 Industry Portfolios 98 2.69∗∗∗ 0.83∗∗∗ 15.47 7.73 2.04∗∗∗ 0.87∗∗∗ 6.92 8.30
50 Portfolios Formed on ME + BM + OP + IN + MO 100 4.08∗∗∗ 0.85∗∗∗ 3.44 1.91 2.03∗∗∗ 0.94∗∗∗ 4.51 2.01

The portfolios are as follows: ME represents size, BM is book-to-market, OP is operating profitabil-
ity, IN is investment, MO is momentum, SR is short-term reversal, and LR is long-term reversal.
This table shows the results for the GMM estimation of α and λ. R2 corresponds to the regression
of the mean observed excess return on the predicted expected excess return. MAPE is the mean
absolute value of the difference between the mean observed excess return and the mean expected
excess return. M.C. corresponds to the number of moment conditions. Significance is represented
by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. R2 and MAPE values are in percentage. The data is annual and
the sample covers 1948-2021, with the exception of the portfolios formed on OP or IN where the
sample covers 1964-2021.

output across states.
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1.5 Simulation Analysis

1.5.1 Explicit Representation of a Single Firm

I solve the model for a single representative firm with Cobb-Douglas production in

a competitive economy. The firm faces two states of nature, a high state s = h and

a low state s = l. Past states are correlated with future states. This is relevant for

the underlying productivity distribution from where the firm draws ε which depends

on the previous and current period. This can be represented as follows

1 =
(
Et
[(
ε (st+1)
θ (st+1)

)α]) 1
α

=
(
pst+1=h|st

(
ε (st+1 = h|st)
θ (st+1 = h)

)α
+ pst+1=l|st

(
ε (st+1 = l|st)
θ (st+1 = l)

)α) 1
α

, (1.35)

where st+1 = h|st (st+1 = l|st) is the transition from the current state st to the next

state st+1 = h (st+1 = l). Note that given the feasibility constraint in Eq. (1.35),

specifying the high state and the transition probabilities, fully specifies the low state

ε (st+1 = l|st) =
[

1
pst+1=l|st

−
pst+1=h|st

pst+1=l|st

(
ε (st+1 = h|st)
θ (st+1 = h)

)α] 1
α

θ (st+1 = l) (1.36)

The optimal productivity level ε in the low state follows directly from other

known or chosen quantities.

For further tractability, the firm produces a numeraire good with a price nor-

malized to 1. Writing the dynamic problem in Bellman form allows for the applica-

tion of a traditional discrete state-space solution using the techniques described in

Ljungqvist and Sargent (2012):
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V (K, ε (s̄) , s̄) = max
ε(s̄), Kt+1

{D (s̄) + E [M (s̄′)V (K ′, ε (s̄′) , s̄′)]} (1.37)

where

D (s̄) =Y (s̄) (1 − τ (s)) − (K ′ − (1 − δ)K) (1.38)

Y (s̄) =ε (s̄)Kγ (1.39)

ε (s̄) ≡


ε (h|s−1) s = h[

1
pl|s−1

− ph|s−1
pl|s−1

(
ε(h|s−1)
θ(h)

)α] 1
α

θ (l) s = l

(1.40)

where to simplify the notation, I define the state tuple s̄ = (s−1, s), where s−1

represents the previous state, and s the current state. For example, if the previous

state was s−1 = l and the current state is s = h, the sate tuple s̄ = (l, h). As

standard in the macroeconomic literature, prime variables denote the next period

value.

Solving the model requires an explicit representation of the pricing kernel. The

previous definition for a single firm and numeraire prices is:

M (s̄′) = η̄

(
1

1 − τ (s′)

)(
Y (s̄′)
Y (s̄)

)α−1 (
θ (s′)
θ (s)

)−α

(1.41)

where

η̄ =
E

 1
(1 − τ (s′))

(
Y (s̄′)
Y (s̄)

)α−1 (
θ (s′)
θ (s)

)−α (
γ
Y (s̄′)
K ′ (1 − τ (s′)) + (1 − δ)

)−1

(1.42)
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Finally, this result must be de-trended in order to generate a finite and tractable

solution:

M̃ (s̄′) =β ×M (s̄′) × E [M ]−1 (1.43)

= β ×M (s̄′) (1.44)

where I normalized the risk-free rate to 1.19 Note that this sacrifices the model’s

absolute interpretation. However, the purpose of the derivation is to determine the

relative impact of state-contingent prices on relative output choices. These interpre-

tations remain valid.

The transition matrix is calculated given NBER data for the average duration of

recessions (10.3 months) and booms (68.8 months). Inverting this gives the following

approximate transition matrix, where the pi,j element corresponds to the probability

of transitioning from state i to state j

P =

0.84 0.16

0.71 0.29

 . (1.45)

Hence the dynamic programming problem is fully specified.

19. Cochrane (2021) recommends such assumptions for numerical tractability.
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1.5.2 Numerical Approach

I calibrate the model at an annual frequency and report calibrated parameters in

Table 1.4. The subjective discount factor β and the rate of capital depreciation are

obtained from Bloom et al. (2018). I calibrate the productivity distribution ε in

high states of nature following Bloom et al. (2018).20 The productivity distribu-

tion depends on the previous state, thus there are two possible values for ε in the

high state. I normalize ε to 1 for the case of s̄ = (h, h). I calibrate the produc-

tivity distribution ε for s̄ = (l, h) to match their second-moment macroproductivity

shocks. Their specification fits in this model given the similarities in the dynamics

of uncertainty, which increases during recessions. The α parameter and productivity

factor θ were estimated in the previous section for the 6 portfolios formed on size

and book-to-market.

My main results use 1000x1000 levels for the continuous variable and 4 levels for

the discrete variable. The code used is available upon request.

1.5.3 Scenario Analysis

Consider four different misallocation scenarios. To avoid ambiguities, I label distor-

tions as tax when τ is positive and call them subsidy when τ is negative.21 The

baseline case considers no distortions. In the second scenario, firms face a 40% tax,

labeled as “tax40”, in the high state and no distortion in the low state. In the third

20. The productivity distribution ε in low states is determined by the high state distribution as
shown in Eq. (1.40)

21. The confusion may arise given that when the distortion parameter τ is positive (negative) it
has a negative (positive) impact on the firm.
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Table 1.4
Calibrated and Estimated Parameter Values

Parameter Value Description
α 3.80 Curvature, transformation ability across states (estimated)
β 0.95 Time preference parameter (Bloom et al. 2018)
γ 0.30 Returns to scale to capital (following the literature)
δ 0.10 Depreciation (Bloom et al. 2018)
θ (h) 1.15 Productivity, high state (estimated)
θ (l) 0.54 Productivity, low state (estimated)
ε (h, h) 1.00 Productivity, from high to high state (reference)
ε (l, h) 0.98 Productivity, from low to high state (relative) (Bloom et al. 2018)
τ - Output distortion, scenario dependent

This table reports the parameter values of the model which are calibrated at an annual frequency.

scenario, the firm receives a subsidy of 40% of production when operating in the low

state. Call this specification the “subsidy40” scenario. In the final scenario, firms

receive a 20% tax in the high state and a subsidy of 20% in the low state. While not

revenue neutral, this scenario is at least revenue hedged as compared with the sub-

sidy40 or tax40 scenarios. Label this the “tax20subsidy20” scenario. The notation

and scenarios are summarized in table 1.5.

Table 1.5
Misallocation Scenario Values

Scenario Name τ(h) τ(l)
baseline 0% 0%
tax40 40% 0%
subsidy40 0% −40%
tax20subsidy20 20% −20%

Clearly, the subsidized firm will have a valuation higher than the negatively
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distorted firm, yet the overall relative production allocations are not obvious ex-

ante. Figure 1.3 shows the predicted effect on value. Such a result is obvious ex-ante

but serves to validate the model ex-post. The figure also shows that the value of the

firm remains relatively stable over time and is not overly sensitive to the state of the

world.

Figure 1.4 displays the effect of the misallocation scenarios on the production

allocation. The representative firm keeps a constant level of production during high

states and immediately switches to a lower level when the state is low, presenting

a cyclical behavior. The model predictions are in line with the simulated results:

output is cyclical and is larger when distortions are lower. The average level of

output during high states is higher (lower) in the baseline scenario compared to

the average level of output during high states when taxes (subsidies) are present.

Therefore, misallocations have a direct impact on output, increasing or reducing the

production level when firms face subsidies or taxes respectively. Figure 1.5 shows

capital that follows a similar pattern to output (cyclical) across all the scenarios.

Figure 1.6 and figure 1.7 display the effect of the misallocation scenarios on the

firm’s investment and dividend. As expected, in the baseline scenario, cyclical be-

havior is present for investment and dividends. At the through of the business cycle,

the firm increases its investment to the point at which capital reaches the steady high

state. During the increase in investment, the expected investment return peaks, thus

the firm reduces its dividends. This can be observed in Figure 1.8, which displays the

expected investment return. When the firm reaches the steady state, the expected

investment return reaches its lowest point and the firm in response increases its div-

idend. An interesting behavior occurs in the “tax40” scenario. Distortions lead to

a more tapered reduction in investment and production in low states compared to
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Figure 1.3
Firm’s Value
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This graph shows the value of the firm across four different misallocation scenarios. In this analysis,
all negative distortions are contingent on the realization of a high state, while all positive distortions
rely on a low state realization. The actual state realization is represented by the dotted line.
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Figure 1.4
Output
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This graph shows the firm’s output across four different misallocation scenarios. In this analysis, all
negative distortions are contingent on the realization of a high state, while all positive distortions
rely on a low state realization. The actual state realization is represented by the dotted line.
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Figure 1.5
Capital
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This graph shows the firm’s capital levels across four different misallocation scenarios. In this
analysis, all negative distortions are contingent on the realization of a high state, while all positive
distortions rely on a low state realization. The actual state realization is represented by the dotted
line.

37



the baseline scenario. When the state transition into a recession, the firm lowers

its capital stock reducing its investment. Similarly to the baseline scenario, in the

through of the business cycle the investment return peaks, but is much moderated

compared to the scenario without distortions. When the investment return peaks,

also the return on equity does. The absence of distortions during low-states results

in a lower capital level, making it more attractive to increase dividends instead of

investment. Misallocations lower the investment return making it more attractive to

increase dividends than investing in capital stock. The “subsidy40” scenario shows

that the firm accumulates more capital stock than in the baseline scenario during

expansions and recessions. The expected investment return is lower compared to

the baseline scenario. During the business cycle through, the firm has to reduce

its investment to the steady state during recessions. This results in selling its cap-

ital, and increasing dividends. Similar to the two previous misallocation scenarios,

in the “tax20subsidy20” scenario, misallocations generate a more tapered cyclical

investment, but countercyclical dividends, with a lower level of investment return

compared to the baseline scenario.

The results indicate that misallocation has a detrimental impact on firms, espe-

cially on investment. The expected investment return is much lower when firms face

misallocation, making them prioritize dividends instead of investment.

1.5.4 Comparative Statics of Contingent Distortions

This section serves to reinforce the previous scenario-based approach. The conclu-

sions largely follow from the previous section but cover a wider range of potential

state-contingent misallocations. Specifically, I graph the mean realizations or choices
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Figure 1.6
Investment
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This graph shows the firm’s investment levels across four different misallocation scenarios. In this
analysis, all negative distortions are contingent on the realization of a high state, while all positive
distortions rely on a low state realization. The actual state realization is represented by the dotted
line.
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Figure 1.7
Dividend
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This graph shows the firm’s dividend levels across four different misallocation scenarios. In this
analysis, all negative distortions are contingent on the realization of a high state, while all positive
distortions rely on a low state realization. The actual state realization is represented by the dotted
line.
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Figure 1.8
Expected Excess Investment Return
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This graph shows the firm’s expected excess investment return in percentage points across four
different misallocation scenarios. In this analysis, all negative distortions are contingent on the
realization of a high state, while all positive distortions rely on a low state realization. The actual
state realization is represented by the dotted line.

of firm value, production, capital, investment, dividends, and the expected invest-

ment return, versus the distortion level of a state of nature. Misallocations in the

other state are held at 0. Misallocations range from -0.8 (subsidies) to 0.8 (taxes).

Figure 1.9 shows the effect of varying misallocation in high-states (solid-blue)

and low-states (solid-red). Firm value, production, capital, investment, and divi-

dend monotonically decrease with the increase of τ (from subsidies to taxes). With

subsidies (negative τ region), firm’s steady state is higher for value, production, cap-

ital, and investment in the low state (recessions) compared to the scenario without

distortions (τ = 0). Since the firm is above its optimal level of investment and
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capital stock when there is no misallocation, the investment return is lower. The

firm, therefore, increases its value but at the cost of the subsidies instead of a more

efficient capital allocation. During high states (expansions), subsidies have a more

tapered effect on all the variables. There is a small increase in expected investment

return, but since the expected investment return during low states is comparatively

much lower (recall that the subsidies are held at zero in low states), the firm does not

substantially increase investment but instead increases dividends. The overall effect

of subsidies is an inefficient allocation of resources in both states, incentivizing divi-

dends during booms, and higher but less efficient production levels during recessions.

With taxes (positive τ region), firm’s steady state is lower for almost all variables

regardless of the state compared to the scenario without distortions (τ = 0). The

only exception is the investment return during recessions, which is almost five times

the value when τ = 0, as a result of the extremely low levels of production during

recessions. Figure 1.9 shows that distortions have a detrimental overall effect, with

larger inefficiencies during low-states (recessions).

Figure 1.9 also shows the effect of estimating the model using the curvature

parameter α of 3.80 estimated considering misallocation (solid lines), and α of 1.66

without misallocation (dotted lines). The previous analysis holds for α = 1.66, firm

value, production, capital, investment, and dividend monotonically decrease with the

increase of misallocation τ . However, firm value is less sensitive to misallocations

across states as we can observe dotted lines are closer to each other compared to the

case with misallocations, presumably because of the firm ability to adapt across states

thanks to its lower α. A similar effect can be observed on output, capital, investment,

and dividends, where an increase in the firm’s ability to choose technologies to adapt

to exogenous shocks results in a more efficient allocation of resources.
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Figure 1.9
Comparative Statistics Misallocation vs Standard Model
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This graph shows the relevant dependent variables versus misallocation τ . τ > 0 represents distor-
tions as taxes, and τ < 0 represents distortions as subsidies. High states are in blue and low-state
in red. The model is simulated using the curvature parameter of α = 3.80 (solid lines) and α = 1.66
(dotted lines). Each point corresponds to the mean realization of: (top-left) firm value; (top-right)
output; (middle-left) capital; (middle-right) investment; (bottom-left) dividend; (bottom-right) ex-
pected investment return.

1.6 Conclusion

I analyze firms’ misallocation through the output distortions channel, using the Belo

(2010) model as a framework. I calibrate the curvature parameter α and the produc-

tion factor loading λ using a two-stage GMM estimation. The model is overidentified

and the J -test is not rejected. I calibrate the model using standard Fama French test

portfolios and find in the cross-section the estimated curvature parameter is larger

compared to the original values obtained in Belo (2010). This implies misallocations
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reduce the firm’s ability to respond to the different states of nature. I calibrate and

solve the model in the special case of a single representative firm. In particular, the

model’s solution sheds light on the effect of misallocations on relative production

allocations, investment, and value. The impact of misallocation on the represen-

tative firm is larger when misallocations are present in the low-state (recessions)

compared to high-states (expansions). Finally, I simulate the model in two cases:

with the estimated curvature parameter considering misallocation (α = 3.80) and

using the standard Belo model (α = 1.66). I find that the impact of misallocation

on firm value, production, capital, investment, and investment return is larger when

for α = 3.80. This indicates that firms may be less agile to adapt across states of

nature and provides more evidence of the detrimental effect of misallocations.
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APPENDICES

1.A Proofs and Derivation

1.A.1 Producer’s Maximization Problem

The firm solves

V (Xjt) = max
Ijt,εjt+1

{Djt + Et [Mt+1V (Xjt+1)]} (1.46)

where Xjt ≡ (Kjt, εjt, Pjt,Zjt) and Zjt contains all forecasting variables. The firm is

subject to the following constraints:

Djt =PjtYjt (1 − τjt) − Ijt (1.47)

Kjt+1 =Ijt + (1 − δ)Kjt (1.48)

1 ≥Et
[(
εjt+1

θjt+1

)α] 1
α

(1.49)

Yjt+1 =εjt+1F
j (Kjt+1) (1.50)

First-order conditions:

1 =Et
[
Mt+1VKj

(Xjt+1)
]

(1.51)

Mt+1Vεj
(Xjt+1) =µjt

(
Et
[(
εjt+1

θjt+1

)α]) 1−α
α

εα−1
jt+1θ

−α
jt+1 (1.52)
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Firms always maximize production, so the constraint (1.49) is binding. This gives:

Mt+1Vεj
(Xjt+1) =µjtεα−1

jt+1θ
−α
jt+1 (1.53)

Taking envelope conditions:

VKj
(Xjt) =PjtεjtF j

Kj
(Kjt) (1 − τjt) + Et

[
Mt+1VKj

(Xjt+1)
]

(1 − δ) (1.54)

Vεjt
(Xjt) =PjtF j (Kjt) (1 − τjt) (1.55)

Replacing the FOC (1.51) into the envelope condition (1.54) at t+ 1

VKj
(Xjt+1) = Pjt+1εjt+1F

j
Kj

(Kjt+1) (1 − τjt+1) + (1 − δ) (1.56)

Defining the investment return as

RI
jt+1 = VKj

(Xjt+1) (1.57)

Replacing back into (1.51)

Et
[
Mt+1R

I
jt+1

]
= 1 (1.58)

Replacing (1.55) at time t+ 1 into (1.53)

Mt+1Pjt+1F
j (Kjt+1) (1 − τjt+1) =µjtεα−1

jt+1θ
−α
jt+1. (1.59)

To derive the firm’s choices under different state contingent misallocations, first,

plug the envelope condition from Eq. (1.55) into the simplified first order condition
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denoted as Eq. (1.53) to derive the Lagrange multiplier µjt

µjt = Et [Mt+1Pjt+1F
j (Kjt+1) (1 − τjt+1)]

Et
[
εα−1
jt+1θ

−α
jt+1

] (1.60)

Thus, the SDF from the firms’ optimal choice of productivity level is:

Mt+1 =ηjt
1

(1 − τjt+1)

(
Pjt+1

Pjt

)−1 (
εjt+1

εjt

)α−1 (
θjt+1

θjt

)−α

, (1.61)

where

ηjt =
Et
[
Mt+1

(
Pjt+1
Pjt

)
(1 − τjt+1)

]
Et
[(

εjt+1
εjt

)α−1 ( θjt+1
θjt

)−α
] . (1.62)

I can also obtain explicitly the value of ηjt replacing the SDF from Eq. (1.61) in Eq.

(1.58)

ηjt =
E

 1
(1 − τjt+1)

(
Pjt+1

Pjt

)−1 (
εjt+1

εjt

)α−1 (
θjt+1

θjt

)−α

RI
jt+1

−1

(1.63)
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CHAPTER 2

Earnings Expectations and Asset Prices

With Denis Mokanov (UCLA Anderson School) and Danyu Zhang (UCLA

Anderson School)

2.1 Introduction

Bouchaud et al. (2019) use the methodology developed by Coibion and Gorod-

nichenko (2015) to examine the rationality of financial analysts’ earnings forecasts

and find that analysts’ forecasts underreact to news unconditionally. An additional

finding in the literature, most notably in Coibion and Gorodnichenko (2015), is that

there is evidence for state dependence in the expectation formation process. In this

paper, we examine the degree to which the state dependence of information rigidity

extends to equity analysts’ earnings expectations. We use financial analysts’ earnings

per share (EPS) forecasts from the Thomson Reuters Institutional Brokers Estimate

System (I/B/E/S) and document the following stylized facts: (1) unconditionally,

expectations underreact to news, in line with the findings of Abarbanell and Bernard

(1992) and Bouchaud et al. (2019); (2) the stickiness of earnings expectations de-
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clines significantly during periods of high market volatility; and (3) the stickiness

of earnings expectations declines significantly over our sample period (01/1986 to

12/2021).1

We develop a simple model featuring rational inattention, as in Mankiw and Reis

(2002), to explain the state dependence in equity analysts’ expectation formation pro-

cess. A fraction of the market participants choose to optimally remain inattentive

to private and public signals. The presence of inattentive agents causes the average

(consensus) earnings expectations to underreact to news. In our framework, the time-

varying costs and benefits of being attentive drive the state-dependence of expecta-

tion stickiness. The benefits of acquiring information increase during high-volatility

periods, which translates into lower expectation stickiness during high-volatility pe-

riods. Our model is also able to account for expectation stickiness declining over our

sample, given recent technological innovations that have likely reduced the cost of

information acquisition.

Given the ability of our model to replicate the conditional behavior of equity

analysts’ earnings expectations, we focus on its asset pricing implications. The mo-

mentum anomaly (Jegadeesh and Titman 1993) provides a natural starting point

for our analysis. Momentum is one of the most robust empirical results in financial

economics. Consequently, it has garnered significant attention in the asset pricing

literature. Our framework fits into the class of models that relate the profitability of

momentum to the slow diffusion of fundamental information (Hong and Stein 1999):

the presence of inattentive agents causes prices not to incorporate all publicly avail-

able information immediately. Instead, stock prices underreact news, so that prices

1. Throughout this paper, we use the terms information rigidity and expectation stickiness in-
terchangeably as the two terms are equivalent within our theoretical framework.
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are, on average, too low following positive news and too high following negative news.

As a consequence, positive lagged returns predict high subsequent returns and neg-

ative lagged returns predict low subsequent returns, thus generating return patterns

consistent with the unconditional profitability of momentum.

More recently, Daniel and Moskowitz (2016) find that momentum experiences

negative returns (crashes) following high-volatility periods and Chordia, Subrah-

manyam, and Tong (2014) find that the profitability of momentum has diminished

significantly over the period between 1976 and 2011. First, we verify the robustness

of these results in our extended sample. Then, we show that our model is capable of

accounting for these results. According to our model, the profitability of momentum

is tied to the stickiness of market participants’ expectations. The increasing rela-

tive cost of being inattentive during high-volatility periods accounts for momentum

crashes and the declining cost of information acquisition accounts for the attenuating

profitability of momentum over our sample.

A prediction of our model is that the relative profitability of momentum strategies

with different lookback periods differs based on the level of market volatility. During

low-volatility periods, momentum strategies with longer lookback periods (e.g. the

Jegadeesh and Titman 1993 t− 12 to t− 2 strategy) tend to outperform momentum

strategies with shorter lookback periods (e.g. a t− 3 to t− 2 momentum strategy).

However, during high-volatility episodes, short-run momentum strategies may deliver

higher returns than long-run momentum strategies. Based on this idea, we propose a

trading strategy that mixes long-run and short-run momentum strategies (similar to

Goulding, Harvey, and Mazzoleni 2022), with greater weight placed on the short-run

strategy during high-volatility periods. The resultant mixed momentum strategy

lessens the impact of momentum crashes and earns a significant α with respect to
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the 12-2 momentum strategy.

A prediction our model shares with any model featuring deviations from full-

information rational expectations is that the wedge between the objective earnings

expectations and analysts’ forecasts predicts stock returns. In order to test this

model prediction, we use the Extreme Gradient Boosting machine learning algorithm

to construct a proxy for objective expectations (similar to Van Binsbergen, Han, and

Lopez-Lira 2022). Our approach serves as an extension of papers in the literature that

use linear regression frameworks to extract the predictable component of analysts’

forecast errors (e.g. So 2013 and Frankel and Lee 1998).

Armed with a measure of objective expectations, we sort stocks into portfolios

based on the value of the predictable component of forecast errors. We call the

long-short portfolio that is long on the stocks with the most pessimistic earnings

expectations and short on the stocks with the most optimistic earnings expectations

pessimistic-minus-optimistic (PMO). The PMO strategy generates an annualized

Sharpe ratio of 1.16 and its returns cannot be fully explained by standard multifac-

tor models.

Related literature

Our paper contributes to a number of different strands of the literature. In terms

of documenting state-dependent expectation stickiness, our paper is most closely

related to Coibion and Gorodnichenko (2015). In other related papers, Loungani,

Stekler, and Tamirisa (2013) show that professional forecasters increase the rate at

which they incorporate news into their forecasts as the economy enters a recession
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and Andrade and Le Bihan (2013) document that the Great Recession is associated

with increased attentiveness to unemployment, real GDP, and inflation news among

professional forecasters surveyed by the European Central Bank.

Our work is also related to the literature that documents systematic errors in

equity analysts’ earnings expectations and relates the systematic errors to the prof-

itability of various trading strategies. For instance, Bouchaud et al. (2019) show

that analysts’ short-run earnings expectations underreact to news and propose an

explanation for the profitability anomaly (Novy-Marx 2013) based on underreaction

to earnings surprises. On the other hand, Bordalo et al. (2022) show that analysts’

long-term earnings growth expectations overreact to news and develop a model in

which the profitability of the Fama and French (2015) factors is driven by the overre-

action of long-term expectations. Engelberg, McLean, and Pontiff (2018) use ex-post

forecast errors and show that analysts tend to have overly optimistic (pessimistic)

expectations for stocks in the short (long) leg of anomalies.

Our framework is based on the idea that costly information acquisition causes

earnings shocks to be incorporated into consensus expectations slowly. The slow

diffusion of information, in turn, causes momentum. It is well-established in the

asset pricing literature that limited investor attention is associated with slow dif-

fusion of information and underreaction to news. For instance, Ben-Rephael, Da,

and Israelsen (2017) provide a measure of abnormal institutional attention and show

that the post-earnings announcement drift is driven by announcements which do not

receive sufficient attention from institutional investors. In related work, Hirshleifer,

Lim, and Teoh (2009) show that underreaction to earnings announcements is stronger

on days with a greater number of earnings announcements and Dellavigna and Pol-

let (2009) show that underreaction is stronger for earnings announcements that take
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place on Friday. Hong, Lim, and Stein (2000) and Da, Gurun, and Warachka (2014)

propose two distinct proxies for the speed at which news is incorporated into consen-

sus expectations, residual analyst coverage and information discreteness, respectively.

Both papers find that stocks for which information is incorporated into expectations

more slowly are associated with higher momentum returns.

In terms of the use of non-linear methods to construct ex-ante forecast errors, our

paper is most closely related to Van Binsbergen, Han, and Lopez-Lira (2022), Silva

and Thesmar (2023), and Cao and You (2021). Van Binsbergen, Han, and Lopez-

Lira (2022) find that stocks with upward- (downward-) biased earnings forecasts tend

to earn lower (higher) returns going forward. Silva and Thesmar (2023) decompose

analysts’ forecast errors at different horizons into soft information, forecast bias, and

forecast noise. Cao and You (2021) document that earnings information uncovered

by machine learning algorithms (over extant models) is significantly associated with

future stock returns and earnings forecast errors.

2.2 Data

2.2.1 Analysts’ forecasts

We obtain consensus (median) earnings-per-share (EPS) forecasts from the I/B/E/S

Unadjusted Summary file. Following Bouchaud et al. (2019), we focus on the one-year

and two-year earnings forecasts.2 I/B/E/S updates earnings forecasts monthly. Our

tests of forecast error predictability are based on the forecasts immediately following

2. The forecasting horizon is identified using the I/B/E/S Forecast Period Indicator variable
FPI.
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the announcement of the previous fiscal year’s earnings.

We match earnings forecasts with earnings realizations from the I/B/E/S actual

file using ticker and fiscal end date.3 Before merging the two datasets, we adjust the

realized EPS values for stock splits using the CRSP cumulative adjustment factor

CFACSHR (Diether, Malloy, and Scherbina 2002):

AdjustedEPSf,t = CFACSHRf,t−1

CFACSHRf,t

× EPSf,t

The forecast error predictability tests are based on firms with fiscal year ends

between 01/1986 and 12/2021. Our final dataset contains 78,287 firm-year observa-

tions.

2.2.2 Stock and trading strategy returns

We obtain monthly return and stock price data from CRSP. We start with all firms in

the monthly CRSP database between 1986 and 2021 and apply the following filters:

we only keep the common stocks (share codes 10 and 11) of firms listed on the NYSE,

Amex, or Nasdaq (exchange code 1, 2, and 3). We also exclude firms whose stock

price is below $1. We then match the CRSP data with the analyst forecast data

described in the previous section.4

In this paper, we also utilize a number of off-the-shelf trading strategies and

factor returns, which serve as control variables or building blocks for the strategies

3. Fiscal end dates are denoted by PENDS in the actual file and by FPEDATS in the summary
file.

4. We merge I/B/E/S data with CRSP data using the link table provided by Wharton Research
Data Services.
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proposed in this paper. We make the decision to use data used in previous research

to ensure greater comparability with existing work. We obtain the returns of the

trading strategies from one of two sources: Kenneth French’s data library or the

Global Factor Data repository (Jensen, Kelly, and Pedersen 2022).

2.3 Forecast Error Predictability

We start our analysis by examining the ability of earnings forecast revisions to predict

earnings forecast errors. The resultant regression coefficient allows us to draw con-

clusions regarding the degree of information rigidity in equity analysts’ expectations

(Coibion and Gorodnichenko 2015).

To examine the ability of forecast revisions to predict forecast errors, we first

construct forecast revisions. Forecast revisions are defined as the difference between

the time t consensus forecast for firm f ’s fiscal year τ earnings (one-year forecast)

and the time t − 1 consensus forecast for firm f ’s fiscal year τ earnings (two-year

forecast). Throughout our analysis, we use τ to denote fiscal years and t to denote

calendar time.

Following Bouchaud et al. (2019), we normalize the revision by firm f ’s stock

price in year t− 1, Pf,t−1.5 Therefore,

FRf,t = Ft [ef,τ ] − Ft−1 [ef,τ ]
Pf,t−1

where e denotes earnings per share.

5. Pf,t−1 is the stock price at the end of the month used to determine Ft−1 [ef,τ ].
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Forecast errors are defined as the difference between the actual fiscal year τ

earnings and the year t earnings forecast, normalized by the time t− 1 stock price:

FEf,τ = ef,τ − Ft [ef,τ ]
Pf,t−1

We begin our analysis by estimating the following regression, following Bouchaud

et al. (2019):

FEf,τ = αCG + βCGFRf,t + εt,τ (2.1)

where we winsorize the forecast errors and forecast revisions at the 1% and 99%

levels.

If the analysts’ information set includes all information available at time t, we

would not be able to predict forecast errors using any time t information, including

forecast revisions, i.e. the regression coefficient, βCG, is equal to zero under the null

of rational expectations. If analysts’ expectations underreact to earnings shocks, we

would observe β̂CG > 0. The mechanism underlying this result is the following: let

us assume that agents receive a piece of positive news at time t. This implies that

FRf,t > 0. However, if agents underreact to the news, the forecast errors will also be

positive, on average, i.e. forecast revisions will be positively correlated with forecast

errors.

Conversely, overreaction to news implies β̂CG < 0. The mechanism underlying

this result is the same as the one outlined in the underreaction case. The difference

is that the forecast errors will be negative, on average, following positive news. That

is, forecast errors are negatively correlated with forecast revisions in the case of

overreaction.
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The results in the main body of this paper are based on a panel regression of all

firm-level observations.The results of the baseline regression are reported in the first

column of Table 2.1. We estimate the βCG coefficient to be positive (β̂CG = 0.167)

and highly statistically significant (t-statistic = 5.195). The positive regression co-

efficient indicates that equity analysts’ expectations underreact to earnings shocks.

This result is consistent with the findings in Bouchaud et al. (2019) who estimate

βCG to be 0.165.

Volatility and information rigidity

Coibion and Gorodnichenko (2015) show that the rigidity of SPF survey respon-

dents’ expectations declines during NBER recessions. They hypothesize that the

decline in information rigidity is driven by the high macroeconomic volatility pre-

vailing during recessions. In order to test the validity of this hypothesis in the context

of earnings expectations we examine the relation between information rigidity and

stock market volatility. In particular, we estimate the following regression:

FEf,τ = αCG + αCG∆ zt +
(
βCG + βCG∆ zt

)
FRf,t + εt,τ (2.2)

where zt is either time t stock market volatility (σ̂mkt) or an indicator, which takes

on the value of 1 if stock market volatility at time t is above a certain threshold (1HV).

In our analysis, zt is computed by taking the average of beginning-of-month and end-

of-month volatility for month t. Alternative methods of computing volatility produce

qualitatively similar results.

The results from the estimation of the regression in Equation (2.2) are reported
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in columns (2) through (7) of Table 2.1. In this table, we consider two measures

of volatility: realized volatility (RV) and implied volatility (IV). RV is the standard

deviation of the daily market returns over the 126 days prior to time t (Daniel and

Moskowitz 2016):

σ̂mkt,t =

√√√√√ 1∑
d=1/126

(
Rmkt,t+d −

∑1
d=1/126 Rmkt,t+d

126

)2

(2.3)

where Rmkt,t represents the day t return of value-weighted CRSP.

We use the VXO (implied volatility of S&P 100 index options) as a measure of

IV. The "high volatility" indicators (1HV) considered in the table take on the value

of 1 if volatility is above the 80th or 90th percentile of the volatility estimates within

our full sample.

The results in Table 2.1, show that information rigidity declines significantly

during high-volatility periods: we estimate βCG∆ coefficients to be negative and sta-

tistically significant. The two volatility measures considered in the table generate

similar results. We estimate β̂CG∆ to be −0.056 using implied volatility. The effect of

using realized volatility is slightly weaker compared to implied volatility.

Information rigidity over time

Coibion and Gorodnichenko (2015) document a low-frequency variation in the

stickiness of macroeconomic expectations. In particular, they find that the rigidity of

SPF respondents’ expectations increased significantly during the period characterized

by low macroeconomic volatility known as the Great Moderation.
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In this section, we examine if equity analysts’ earnings expectations display sim-

ilar low-frequency patterns. To do so, we estimate the regression in (2.1) using over-

lapping two-year windows.6 Figure 2.1 plots the dynamics of the βCGt coefficients

obtained using this methodology as well as the associated 95% confidence intervals

and a fitted trend line. Figure 2.1 indicates that the rigidity of earnings expecta-

tions declines significantly throughout the sample. In fact, we cannot reject rational

expectations during the post-2010 sample (β̂CG = 0.077, t-statistic = 1.616).

The lack of stickiness in analysts’ earnings expectations during the latter parts

of our sample is consistent with the findings of Martineau (2023) who shows that

the post-earnings announcement drift has disappeared in 2006 for large stocks and

in the 2010s for microcaps.

2.4 Model

In Section 2.3, we identify the following patterns in equity analysts’ consensus earn-

ings expectations:

1. Equity analysts’ earnings expectations underreact to shocks unconditionally.

2. The degree of underreaction to earnings shocks declines significantly during

high volatility periods.

3. The degree of underreaction to earnings shocks declines over our sample.

6. For instance, the β̂CG coefficient associated with 1986 is based on a sample that includes 1986
and 1987.
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In this section, we develop a simple model capable of accounting for the three

stylized facts presented above.

The economy we study is based on the one in Pouget, Sauvagnat, and Villeneuve

(2016). It consists of two assets: a riskless asset in perfectly elastic supply and a

risky asset in fixed supply, x. The gross return of the riskless asset is normalized to

1. There are T − 1 dates of trading, indexed by t ∈ {0, 1, ..., T − 1}. Consumption

takes place at date T during which the payoff of the risky asset is drawn from a

normal distribution with a mean of 0 and variance of σ2
V . There is no consumption

prior to the final period and there is no time discounting.

We set T = 3, which allows us to derive closed-form solutions for moments of

interest. The signal structure we consider follows Daniel, Hirshleifer, and Subrah-

manyam (1998). At time t = 1, overconfident agent i (in measure one) obtains a

private signal Si,1 with probability λ1 that is determined endogenously. Fraction

1 − λ1 of the market participants fail to obtain the private signal. The inattentive

agents use their prior beliefs to form expectations about the future, as in Mankiw

and Reis (2002). Following the standard approach in the literature, we assume that

Si,1 = V + εi,1. Where the noise term, εi,1, is independently distributed across

agents and normally distributed with a mean of 0 and a variance of σ2
S. Following

Daniel, Hirshleifer, and Subrahmanyam (1998), we model overconfidence as agents

overassessing the quality of their private signals, i.e. agents perceive the variance of

their private signal to be σ2
C < σ2

S.7

At time t = 2, a public signal S2 is realized. Agent i observes the signal and

7. Overconfidence has limited bearing on the ability of our model to replicate the patterns in
equity analysts’ earnings expectations. Overconfidence plays an important role in Section 2.5, in
which we study the asset pricing implication of our model.
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updates her expectations with probability λi,2, which depends on the agent’s infor-

mation set at the beginning of period 2. The public signal is equal to V + ε2 where

ε2 ∼ N(0, σ2
S). We assume that agents perceive the precision of the public signal

correctly.

Figure 2.2 provides a graphical illustration of our model. To relate our model to

the empirical results in Section 2.3, we interpret the private signals as a representation

of the information collected by equity analysts prior to an earnings release. The

public signal and the final asset payoff represent earnings announcements.

In order to focus on the expectation formation process presented in this paper,

we make several assumptions that follow Pouget, Sauvagnat, and Villeneuve (2016).

First, we assume that the market participants are risk-neutral and incur an exogenous

trading cost that is quadratic in their portfolio positions, i.e. the total cost for trader

i is ψ
2 q

2
i,t. We also assume that agents cannot costlessly extract signals from market

prices.8 Finally, we assume that market participants agree to disagree and trade at

the prevailing market price during periods 1 and 2.

2.4.1 Portfolio choice problem

Investors in our model derive utility from end-of-life consumption, C3. The end-of-life

consumption of agent i can be represented as ∑3
t=0 qi,t (V − pt).

Therefore, agent i’s portfolio choice problem can be written as:

8. The framework we have in mind involves inattentive agents submitting demand schedules to a
Walrasian auctioneer. These demand schedules are only revised during periods during which agents
acquire a new signal.
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max
qi,t

{ 3∑
t=1

Ui,t

}
≡ max

qi,t

{ 3∑
t=1

(
qi,tEit [V − pt] − ψ

2 q
2
i,t

)}
(2.4)

As shown by Pouget, Sauvagnat, and Villeneuve (2016), this maximization prob-

lem is equivalent to maximizing utility for each period separately.

2.4.2 Information acquisition problem

At the beginning of period 1, investor i chooses the probability λ1 with which she

acquires signal Si,1 and updates her expectations. At the beginning of period 2, agent

i chooses the probability with which she acquires the public signal S2.

The cost of information acquisition is specified by the function C(λi,t). We assume

that C(·) is a strictly increasing convex function of λi,t. In particular, we consider

the following functional form:

C(λi,t) = ϕ

κ+ 1λ
κ+1
i,t , with κ > 1 and ϕ > 0 (2.5)

In this specification, the ϕ parameter shifts the marginal cost of information acqui-

sition and κ influences the local curvature of the C(·) function.

Given the setup presented in this section, agents i’s choice of λ at the beginning

of period t solves the following problem:

max
λi,t

{
Eit−1 [Ui,t] − C(λi,t)

}
for t ∈ {1, 2} (2.6)

subject to the constraint that λi,t ∈ [0, 1].
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2.4.3 Equilibrium

In order to solve the model, we follow the approach in Kacperczyk, Van Nieuwer-

burgh, and Veldkamp (2016) that involves three steps.

Step 1: Solve for optimal portfolios, given information sets.

Agent i’s time t demand takes on the following form:

qi,0 = 0

qi,t = Eit [V ] − pt
ψ

for t = {1, 2}
(2.7)

Step 2: Clear the asset market.

The market-clearing condition for the risky asset is:

∫ 1

0
qi,tdi = x (2.8)

Plugging in the expression for agent i’s demand into the market clearing condition,

we obtain the following expression for the price of the risky asset:

pt =
∫ 1

0
Eit[V ]di− ψx = Ēt[V ] − ψx (2.9)

where we use the Ēt[·] notation to denote average (consensus) expectations.

The market participants are homogeneous at the beginning of period 1. Then

the period 1 price of the risky asset is:

p1 = λ1E1 [V ] + (1 − λ1)E0[V ] − ψx = λ1E1[V ] − ψx (2.10)
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where E1[V ] = σ2
V

σ2
V +σ2

C
S1 represents the expectation of the attentive agents.

At the beginning of period 2, attentive (A) and inattentive (I) agents have dif-

ferent information sets. Then the time 2 price of the risky asset is::

p2 = λ1λ2|AEC2 [V ]+(1−λ1)λ2|IEP2 [V ]+(1−λ2|A)λ1E1[V ]+(1−λ1)(1−λ2|I)E0[V ]−ψx

(2.11)

where λ2|A and λ2|I represent the optimal updating probabilities for agents who

are attentive and inattentive to the private signals, respectively. Here EC2 [V ] =
σ2

V σ
2
S

σ2
V σ

2
S+σ2

V σ
2
C+σ2

Cσ
2
S
S1 + σ2

V σ
2
C

σ2
V σ

2
S+σ2

V σ
2
C+σ2

Cσ
2
S
S2 and EP2 [V ] = σ2

V

σ2
V +σ2

S
S2.9

Step 3: Solve for information choices.

In Appendix 2.A.1, we show that agent i’s optimal λi,t for t ∈ {1, 2} is the solution

to the following equation:

λi,t
ψ

vari,t−1 (Et[V ]) − ϕλκi,t = 0 (2.12)

Based on the expression in (2.12), the optimal values of λ1, λ2|A, and λ2|I solve the

9. An assumption underlying this expression is that agents who are inattentive in period 1 do
not gain access to a private signal when the update their expectations in period 2.
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following equations:

λ1:
σ4
V (σ2

V + σ2
S)

ψ (σ2
V + σ2

C)2λ− ϕλκ = 0

λ2|I :
σ4
V

ψ (σ2
V + σ2

S)λ− ϕλκ = 0

λ2|A: σ4
V (σ4

S + σ4
C) (σ2

V + σ2
S)

ψ (σ2
V (σ2

C + σ2
S) + σ2

Cσ
2
S)2λ− ϕλκ = 0

(2.13)

2.4.4 Model implications for forecast error predictability

In the context of our model, the tests presented in Section 2.3 examine the reaction

of consensus expectations to the public signal, S2. Therefore, the model-implied

version of the forecast error predictability coefficients is:

βCG =
cov

(
V − Ē2 [V ] , Ē2 [V ] − Ē1 [V ]

)
var

(
Ē2 [V ] − Ē1 [V ]

) (2.14)

where Ē1 and Ē2 are the consensus expectations of V at time t = 1 and t = 2.

The theoretical expectations correspond Ft [ef,τ ] and Ft−1 [ef,τ ] from Section 2.3.

An analytical expression for the error predictability coefficient and its derivation

are outlined in Appendix 2.A.2. The actual expression for βCG is not particularly

intuitive. Therefore, in this section, we focus on a model with a single trading period.

In a one-period setting with a single public signal,

βCG = 1 − λ

λ
(2.15)

Consequently, the partial derivative of the forecast error predictability coefficient

with respect to fundamental volatility takes on the following form:
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∂βCG

∂σ2
V

= −
∂λ
∂σ2

V

λ2 < 0 (2.16)

The expression in Equation (2.16) shows that our model generates information

rigidity patterns consistent with those documented in the previous section: our model

predicts that high-volatility periods are associated with lower information rigidity.

The logic underlying this relation extends to the multi-period version of our model.

Volatility and information rigidity

In the context of the stylized model developed in this paper, we study the effects of

volatility on the information acquisition decision by examining the relation between

the probability of signal acquisition in periods 1 and 2 and fundamental variance σ2
V .

In order to provide analytical expressions for λ, we focus on the non-zero solutions

of the equations in (2.12) for the special case of κ = 2.10 The optimal probabilities

of information acquisition take on the following form:

λ1 = σ4
V (σ2

V + σ2
S)

ψϕ (σ2
V + σ2

C)2

λ2|I = σ4
V

ψϕ (σ2
V + σ2

S)

λ2|A = σ4
V (σ4

S + σ4
C) (σ2

V + σ2
S)

ψϕ (σ2
V (σ2

C + σ2
S) + σ2

Cσ
2
S)2

(2.17)

The comparative statics with respect to σ2
V are detailed in Appendix 2.A.3. All of

10. Through numerical solutions we find that the logic of this special case is generalizable to the
κ > 2 case.
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the derivatives with respect to σ2
V are positive, i.e. agents are willing to expend

more resources to acquire signals during high-volatility periods. Assuming that the

state of the technology determines the cost of acquiring information and is, therefore,

fixed in the short-run (i.e. it is unaffected by the state of the business cycle), our

model produces results that are consistent with the patterns of information rigidity

documented in Section 2.3.

Information rigidity over time

The assumption that the cost of information acquisition at time t is determined

by the state of the technology at time t also allows the model to account for the

decline in information rigidity between 1986 and 2021.

In the context of our framework, the ϕ parameter governs the cost of information

acquisition. We model technological innovations as lower value of ϕ. Lower values of

ϕ correspond to higher values of λ1, λ2|A, and λ2|I , as we indicated by the expressions

in (2.17).

2.5 Asset Pricing Implications

Our model generates patterns of information rigidity that are consistent with the

stylized facts documented in Section 2.3. In this section, we explore the asset pricing

implications of the model.
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2.5.1 Momentum

The model developed in the previous section provides us with three momentum

signals, which we term long-run momentum signal (p2−p0) and short-run momentum

signals (p1 − p0 and p2 − p1).

Following Luo, Subrahmanyam, and Titman (2020), we define the unconditional

short-run momentum parameter as:

MOMS = cov (p2 − p1, p1 − p0) + cov (V − p2, p2 − p1)
2 (2.18)

and the long-run momentum parameter as:

MOML = cov (V − p2, p2 − p0) (2.19)

We derive closed-form expressions for the momentum parameters in Appendix

2.A.4. In order to build intuition regarding the predictions of the model, we rely

on simulations involving representative price paths. The average price path based

on 10,000 simulated paths is shown in Figure 2.3. In this example, we focus on the

case of a positive innovation, V > 0. The case with a negative innovation is entirely

symmetric.

The figure is based on the following parameters: σ2
V,low = 0.35, σ2

V,high = 0.6,

σ2
S = 0.7, σ2

C = 0.3. The transaction cost parameter ψ is set to 1 and the total

supply of the risky asset, x, is set to 10−5. We set the probability of a low volatility

state is set to 0.90. The parameters associated with the cost function are ϕ = 0.7

and κ = 4. This combination of parameters is chosen to generate probabilities of

71



information acquisition roughly in line with those documented in Section 2.3.

As indicated in Figure 2.3, the model developed in Section 2.4 generates both

short-run and long-run momentum. In the context of our model, the consensus reac-

tion to news is determined by the interaction of two effects, which push expectations

in opposite directions: the rational inattention effect generates underreaction to both

private and public signals as information is incorporated into aggregate expectations

with a delay (Hong and Stein 1999). On the other hand, the overconfidence effect gen-

erates overreaction to private signals, as in Daniel, Hirshleifer, and Subrahmanyam

(1998). Given our parameter choices, the rational inattention effect dominates the

overconfidence effect unconditionally and we observe underreaction in both the short

run and the long run, i.e. both MOMS and MOML are positive. The result is consis-

tent with the fact that both slow (e.g. 12-2) and fast (e.g. 7-2) momentum strategies

are profitable unconditionally.

2.5.2 Momentum and volatility

Daniel and Moskowitz (2016) show that long-run (12-month) momentum tends to

have low returns following high volatility periods. In Table 2.2, we verify that these

results continue to hold in our extended sample. In particular, we estimate the follow-

ing regression to examine the effects of volatility on the profitability of momentum:

rWML,t = α + α∆zt−1 + εt (2.20)

where rWML,t is the return of the 12-2 momentum strategy, obtained from Kenneth

French’s data library and zt−1 is one of the volatility-related variables considered in
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Section 2.3 (realized/implied volatility or a high volatility dummy).

The results in Table 2.2 are consistent with the findings of Daniel and Moskowitz

(2016): momentum earns significant positive returns in the order of 10.6% per year

over our sample, unconditionally. The momentum strategy delivers significantly

lower returns following high-volatility periods. Following periods which are in the

top 20% in terms of volatility, momentum returns tend to be negative. This result

is also consistent with the findings of Barroso and Wang (2022) who show that the

momentum profits occur after periods of low volatility. In Appendix 2.B.1, we repeat

the tests presented in this table using the t− 12 to t− 1 momentum factor from the

Jensen-Kelly-Pedersen data repository. The results obtained using the Jensen-Kelly-

Pedersen momentum factor mirror those in Table 2.2.

To understand the implications of our model for the impact of volatility on the

profitability of momentum, we simulate our model separately for periods of high

and low volatility. The results are presented in Figure 2.4. The parameters used to

generate the figure are discussed in the previous subsection.

The mechanism that allows our model to generate diminishing momentum prof-

itability during high-volatility episodes goes through the information acquisition

channel. Higher values of σ2
V translate into higher probabilities of information acqui-

sition, as shown in the equations in (2.17). As information is incorporated into the

aggregate expectations faster, the opportunity for momentum profits diminishes.

If volatility is high enough, the overconfidence effect comes to dominate the ratio-

nal inattention effect and the consensus expectations overreact to the private signals.

The initial overreaction to the private signals is partially corrected during the subse-

quent trading period but p2 does not revert all the way to its rational level, i.e. the
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initial overreaction is further corrected during period 3.

Our model also provides a rationale for volatility management enhancing the

profitability of momentum (Barroso and Santa-Clara 2015; Moreira and Muir 2017):

the volatility-managed momentum strategy avoids the large losses of the baseline mo-

mentum strategy by limiting investors’ exposure to momentum during high-volatility

episodes and increasing investors’ exposure to momentum during low-volatility episodes

when momentum profits tend to be high.

2.5.2.1 Mixed momentum strategy

According to our model, the relative profitability of the long-run and short-run mo-

mentum strategies varies with fundamental volatility. During low-volatility periods,

the long-run momentum strategy dominates the short-run momentum strategy due

to the fact that the short-run momentum signal predicts profits with a low signal-

to-noise ratio. The long-run momentum signal has a higher signal-to-noise ratio as

the noise components of the t = 1 signal and the t = 2 signal cancel each other out

on average.

On the other hand, the short-run momentum signal at time t = 2 is positively

correlated with the price appreciation at time t = 3 (V − p2).11 This implies that

the conditional short-run momentum strategy outperforms the long-run momentum

strategy during high-volatility periods.

Based on the predictions of our model regarding the relative profitability of short-

run and long-run momentum strategies, we propose a mixed momentum strategy

11. See Proposition 1 in Daniel, Hirshleifer, and Subrahmanyam (1998).
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similar to the one in Goulding, Harvey, and Mazzoleni (2022). Our proposed strategy

involves mixing short-run and long-run momentum signals in a way that accounts

for the impact of market volatility on the relative profitability of the short-run and

long-run momentum strategies.

In particular, we propose the following strategy:

rMM,t = wt−1rLM,t + (1 − wt−1)rSM,t

wt = K

σmkt,t−1

(2.21)

Here, the weight of the long-run strategy, wt is inversely related to market volatil-

ity and K is constant. We use rLM,t to denote the return of the long-run momentum

strategy and rSM,t to denote the return of the short-run momentum strategy.

The wtrLM,t+1
(

K
σmkt,t−1

rLM,t

)
term represents a volatility-managed momentum

strategy, which has been shown to significantly enhance the profitability of conven-

tional 12-2 momentum. In order to limit our focus on the implications of mixing

short- and long-run momentum, we also consider a restricted version of the strategy

in (2.21):

rMMR,t = w
′

t−1rLM,t + (1 − w
′

t−1)rSM,t

w
′

t−1 = min
(

K
′

σmkt,t−1
, 0.999

) (2.22)

The restricted strategy rules out the possibility of levering up and investing heav-

ily in the long-run momentum strategy during low-volatility periods. It also forces

us to invest non-zero amounts in the short-run momentum strategy.
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Implementation

In order to examine the empirical performance of the mixed momentum strat-

egy, we start by downloading the long-run momentum signal (12-2) from Kenneth

French’s data library. Then we construct a short-run momentum signal following the

methodology described on Kenneth French’s website. We choose to use the returns

of the stocks in months t− 2 and t− 3 as our short-run momentum signal (3-2). At

the end of month t, we sort stocks into deciles based on the short-run momentum

signal using NYSE breakpoints. Using the month t−2 return as a momentum signal

produces similar results. In Appendix 2.B.2, we reimplement the mixed momentum

strategies using the t = 12 to t = 1 and t = 3 to t = 1 momentum factors from the

Jensen-Kelly-Pedersen data repository.

In order to ensure consistency with the rest of our paper, we use the realized

variance of daily market returns during the 126 days preceding the portfolio formation

date as a proxy for σmkt,t. Using the realized volatility of the market for month t− 1

produces similar results.

To implement our strategy, we start with the sample between 01/1950 and

12/2021. We choose 1950 as a start date to avoid the effects of the Great Depression

and World War II.

We use the period between 01/1950 and 12/1985 as our training sample and

evaluate the performance of the mixed momentum strategy over the period between

01/1986 and 12/2021. The test sample is chosen to match the sample used to test

the rationality of equity analysts’ earnings expectations. We use the training sample

to pin down the value of the K (K ′) parameter. We choose the value of K (K ′) that
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maximizes the Sharpe ratio of the unrestricted (restricted) mixed momentum strat-

egy during the training sample. In order to keep our analysis as simple as possible,

we use the same K (K ′) parameter during our entire test sample.

Performance

Figure 2.5 plots the cumulative nominal returns to the unrestricted and restricted

mixed momentum strategies compared to the 12-2 momentum strategy over our test

sample. We invest $1 in 1986 and plot the cumulative returns on a log scale for

each strategy. The unrestricted and restricted mixed momentum strategies generate

about $57 and $29, respectively at the end of our sample, compared with about $10

for the 12-2 momentum strategy.

The restricted momentum strategy follows the returns of the 12-2 strategy very

closely for the majority of our sample: the strategy puts more than 90% weight on

the long-run momentum signal about 64% of the time. The divergence between the

two strategies takes place during the 6% of our sample when the mixed momentum

strategy places less than 50% weight on the short-run momentum signal. These

high-volatility episodes coincide with the crashes of the 12-2 strategy and the mixed

momentum strategy placing less weight on the long-run momentum signal lessens the

impact of those crashes, i.e. the returns of the mixed momentum strategy behave in

a way that is consistent with the predictions of our model. The unrestricted strat-

egy achieves returns superior to the restricted strategy by taking on relatively more

risk when volatility is low, consistent with previous findings on volatility-managed

momentum.

77



Spanning Regressions

To examine the ability of existing trading strategies to account for the profitability

of mixed momentum, we estimate time series regressions of mixed momentum on

baseline 12-2 momentum, as well as the Fama and French (2015) and Hou, Xue, and

Zhang (2014) models, following Moreira and Muir (2017):

rMM,t = α +
N∑
j=1

βjFj + εt (2.23)

A positive α implies that investors who are already trading the explanatory strate-

gies could realize significant gains by also trading the strategy on the left-hand side

of the regression.

The intercepts of these spanning regressions for both the restricted and unre-

stricted versions of the mixed momentum strategy are reported in Table 2.4. The

intercepts are positive and statistically significant in all specifications considered in

the table. The two mixed momentum strategies have annualized α’s of about 5.4%

(3.7%) relative to the 12-2 momentum strategy. The results reported in columns

(2) and (3) show that the state-of-the-art factor models cannot fully account for the

returns of the mixed momentum strategy.

2.5.3 Attenuation of momentum

A prediction of the model is that high λ periods are associated with low momentum

returns. Additionally, we show that information rigidity displays a secular decline

during the period between 1986 and 2021. Therefore, a prediction of our model is
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that the profitability of momentum declines over our sample. In the context of our

model, the declining cost of information acquisition leads to declining information

rigidity and lower profitability of momentum. Figure 2.6 depicts the model-implied

relation between the marginal cost of information acquisition (ϕ) and the profitability

of momentum.

In order to test the prediction of the model regarding the declining profitability of

momentum, we estimate the following regression, based on Chordia, Subrahmanyam,

and Tong (2014):

Yt = aebt+u (2.24)

where Yt is one plus the return of the 12-2 momentum strategy and t is a time

index. We scale the time index to be between −1 and 1 so that the mean of the

time variable is zero, as in the original paper. We estimate the regression using

momentum return data for the period between 01/1986 and 12/2021 to match the

data used to generate Figure 2.1.

The estimate of the b coefficient is −0.014. It is significant at the 5% level (p-value

of one-tailed test 0.025).12 Since the return of the momentum strategy is positive,

a negative coefficient signifies a decline in the profitability of momentum over time,

thus providing evidence consistent with the prediction of our model.

12. Following Chordia, Subrahmanyam, and Tong (2014), we test the null hypothesis of no decline
in the profitability of momentum.
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2.5.4 Return Predictability

2.5.4.1 Return predictability in the model

According to the model, the period 2 expectation of the period 3 price appreciation

under the physical measure is:

EP2 [R3] = EP2 [V − p2] = λ̄2
(
EP2 [V ] − Ē2 [V ]

)
+ ψx (2.25)

where λ̄2 ≡
∫ 1

0 λi,2di is the average probability of acquiring the signal in period 2.

The risk premium component of returns, ψx is constant in our model. Therefore,

return predictability is driven by the gap between the objective payoff expectations

and the average payoff expectations of the market. The magnitude of the gap is

determined by the interplay of the two effects, which distort market participants’

expectations: rational inattention and overconfidence.

In the context of a multi-period economy, Equation (2.25) states that returns

are forecastable using the predictable component of earnings forecast errors. This

model prediction carries significant intuitive appeal. If a stock’s earnings expecta-

tions are overly optimistic, its actual earnings will, on average, fail to meet consensus

expectations, which will translate into low returns, i.e. stocks with overly optimistic

earnings expectations will deliver low returns. A similar logic applies to stocks with

overly pessimistic earnings expectations delivering high returns.
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2.5.4.2 Rational earnings expectations

In order to empirically test the model implications regarding return predictability,

we need to measure the earnings expectations under the objective measure P.

The traditional approach in the literature has been to use a linear regression

framework to estimate the predictable component of equity analysts’ forecast errors

(So 2013) or to use the cross-sectional median earnings forecasts as a proxy for objec-

tive expectations (La Porta 1996). However, recent work (e.g. Cao and You 2021 and

Van Binsbergen, Han, and Lopez-Lira 2022) documents that models that allow for

non-linear relations between realized earnings and earnings predictors significantly

improve our ability to forecast earnings.

In this paper, we follow Van Binsbergen, Han, and Lopez-Lira (2022) and utilize

a tree-based algorithm that can accommodate non-linearities and interactions among

the predictors. In particular, we opt for an Extreme Gradient Boosting (XGBoost) al-

gorithm (Chen and Guestrin 2016). XGBoost is chosen due to its speed and superior

performance in a large number of settings. Appendix 2.C contains a brief discussion

regarding the technical aspects related to XGBoost. In the main body of the paper,

we focus our discussion around issues related to the implementation of the algorithm.

Earnings expectations

Let the earnings of firm f during fiscal year τ + h be

ef,τ+h = EPt [ef,τ+h] + εf,t,τ+h (2.26)
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where EPt [ef,τ+h] = g(z) and z is the P ×F ×T -dimensional matrix of predictors.

We assume that g (·) is a flexible function of these predictors. We only impose the

restriction that g(·) does not depend on f or t, i.e. the function is the same for all

firms and over time.

Tree-based methods

Our goal in this section is to use XGBoost to approximate the function g(·).

XGBoost is based on decision trees in which the data is recursively split into non-

intersecting partitions. The algorithm approximates g(·) with the average value of the

outcome variable in each partition. At each step, the algorithm groups observations

that behave similarly by minimizing the mean squared error when the average value

of the dependent variable in each partition is used to form forecasts. Due to the

large number of potential splits, tree-based methods rely on "greedy" optimization,

which involves myopically minimizing forecast errors during each split.

The g(·) for a tree with K terminal nodes (leaves) can be formally written as:

EP [y] = g(z) =
K∑
κ=1

xκ1{z∈Cκ} (2.27)

where xκ is the sample average of the dependent variable in partition κ and is

given by:

xκ = 1
Nκ

∑
y:zp∈Cκ

y (2.28)
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and region Cκ is chosen by forming hyper-regions in the space of predictors:

Cκ =
{
zp ∈ ×p∈PZp : zκp < zp ≤ z̄κp

}
(2.29)

where × denotes Cartesian product, P is the number of predictors, and each

predictor zp can take values in set Zp.

The decision tree in Figure 2.7 illustrates the contents of Equations (2.27), (2.28),

and (2.29) using a simple example. The outcome variable in this example is EPS

and the predictors we consider are lagged EPS realizations, lagged prices, and lagged

returns. Given the structure in the figure, g(·) takes on the following form:

g(z; y) = (0.40)1{past EPS≤1} + (1.70)1{past EPS>1}1{past price≤20}+

+ (2.14)1{past EPS>1}1{past price>20}1{past return≤10%}+

+ (3.50)1{past EPS>1}1{past price>20}1{past return>10%}

(2.30)

Extreme Gradient Boosting

XGBoost is an algorithm that is based on recursively combining forecasts from

a large number of weak learners to form a strong learner. During the first step of

implementation, the algorithm fits a weak learner to the training sample. At each

subsequent step s, the algorithm fits a weak learner to the residuals of a model with

s− 1 trees. The residual forecast is then added to the total with a shrinkage weight

η ∈ (0, 1). The additional forecasts are shrunken to avoid overfitting the residuals.
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In order to implement the XGBoost algorithm, four hyper-parameters need to

chosen: γ, maximum depth, and subsample in addition to the already-described

shrinkage parameter η. Hyper-parameter are a characteristic of a model whose value

cannot be estimated from data. Therefore, we tune (choose the values of) the hyper-

parameters using a cross-validation procedure that we describe later in the paper.

The parameter values we use throughout our analysis are presented in Table 2.3.

The γ parameter determines the minimum loss reduction required to make a

further partition on a leaf node of the tree. This parameter controls the total number

of trees in the ensemble.

Maximum depth determines the maximum depth (complexity) of the tree. More

complex models are more likely to overfit the training sample.

Subsample determines the ratio of training instance. A value of 0.15 means that

XGBoost randomly collects 15% of the observations to use a training sample for each

decision tree.

Earnings forecasts

In our analysis, we focus on two-year earnings forecasts (FPI = 2). The long

forecasting horizon maximizes the scope for expectation errors and increases the

chances of uncovering interesting asset pricing dynamics. Van Binsbergen, Han, and

Lopez-Lira (2022) find that the bias of equity analysts’ expectations increases with

the forecasting horizon and Silva and Thesmar (2023) find that analysts’ forecasts

outperform statistical forecasts for forecasting horizons of less than one year. To

match the frequency of I/B/E/S analyst forecasts, we construct objective expecta-
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tions for each month.

We deviate from existing papers that forecast earnings by only using variables

that are available through CRSP (prices and returns) or I/B/E/S (earnings forecasts

and past EPS realizations). We choose this limited set of predictors to avoid basing

expectations on information not available to the equity analysts in real time. Vari-

ables extracted from financial statements, which have been shown to predict future

earnings, may be restated after initial publication and accounting restatements affect

stock prices (Hribar and Jenking 2004 and Palmrose, Richardson, and Scholz 2004).13

Therefore, using variables extracted from financial statements may contaminate the

out-of-sample tests presented in this paper.

An additional advantage of restricting our attention to a limited number of earn-

ings predictors is that by doing so we sidestep the missing data problem outlined

in Bryzgalova et al. (2022). Using the readily-available predictors allows to avoid

having to take a stand regarding the appropriate approach to filling in missing firm

characteristics.

Using the notation established in this section, the objective earnings expectations

are represented as:

EPt [ef,τ+1] = g (ef,τ−1,Ft [ef,τ+1] , Pf,t, rf,t) (2.31)

To implement the XGBoost algorithm, we split our sample into three non-overlapping

time periods: training subsample, validation subsample, and testing subsample. The

training sample covers the period between 1976 and 1983 and is used to estimate the

13. Realized earnings in I/B/E/S are not restated.
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model using a set of hyper-parameter values.

Our validation sample encompasses the period between 01/1984 and 11/1985 and

is used to conduct quasi-out-of-sample tests: we construct predicted earnings for 1986

and 1987 based on our model and compute the mean squared error corresponding

to the set of hyper-parameters used to train the model. Next, we reestimate the

model using a different set of hyper-parameters. We grid-search over various hyper-

parameter combinations and select the combination that minimize the out-of-sample

mean squared error of our model. Once the hyper-parameters are chosen, we use the

same parameters for all of our out-of-sample tests.

We start our out-of-sample forecasts in 11/1985 and use ten-year rolling windows

to train the model. The algorithm provides us with two-year earnings forecasts for

the period between 12/1985 and 11/2019. The objective forecasts do not rely on

information that is not available to the market participants by the end of month t.

Therefore, the trading strategy proposed in the next subsection is implementable in

real time.

2.5.4.3 Return predictability in the data

The XGBoost algorithm outlined in the previous subsection provides us with ob-

jective two-year earnings forecasts for each month t between 12/1985 and 11/2019.

Given the objective forecasts, we can compute the predictable component of analysts’

expectation errors using the following formula:

ÊEτ+1
f,t = EPt [ef,τ+1] − Ft [ef,τ+1]

Pf,t−1
(2.32)
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Negative values of ÊE indicate that analysts’ expectations are excessively opti-

mistic and positive values of the measure indicate excessive pessimism. Following

Engelberg, McLean, and Pontiff (2018), the difference between the expectations un-

der the objective and subjective forecasts is normalized by lagged stock prices to

ensure greater comparability across firms.

In order to test the predictions of the model regarding return predictability, we

sort stocks into quintiles based on the value of ÊE at the end of month t. Panel A

of Table 2.5 reports the one-month holding period returns of the five portfolios. The

results reported in the table are for the period between 01/1986 and 12/2019.

The results in Panel A of Table 2.5 support the predictions of the model: the

value-weighted portfolio returns increase monotonically in ÊE. In particular, a port-

folio that is long on stocks in the fifth quintile and short on stocks in the first quintile

earns an average return of 1.59% per month. For the rest of this paper, we refer to this

long-short trading strategy as pessimistic-minus-optimistic or PMO. The t-statistic

testing whether the PMO premium is zero is 6.82. Thus, PMO clears the hurdle

of a t-statistic ≥ 3.0 proposed by Harvey, Liu, and Zhu (2015). Monthly returns

of 1.59% seem large in comparison to existing trading strategies (for comparison,

the average value-weighted market return between 01/1986 and 12/2019 is about

1%). However, the profitability of our strategy is in line with the profitability of the

strategies considered by Van Binsbergen, Han, and Lopez-Lira (2022).

In order to assess the degree to which PMO’s profitability is driven by the smallest

and most illiquid stocks within our sample, we construct an alternative long-short

trading strategy by restricting our investment opportunity set to only include stocks

whose market capitalization is above the 90th percentile of market capitalizations in a
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given year.14 The results of the trading strategy that invests only in large-cap stocks

are reported in Panel B of Table 2.5. Unsurprisingly, the results in this instance are

somewhat weaker than those reported in Panel A but the return of the long-short

portfolio is still about 0.77% (t-statistic = 4.74) per month. Implementing the PMO

trading strategy using only the most liquid stocks in our sample generates significant

positive returns.

In Panel C, we examine if the profitability of the PMO strategy is driven by the

earlier years within our sample. In this test, we exclude the years between 1986 and

2002 from our sample. The return of the long-short portfolio for the period between

01/2003 and 12/2019 is about 1.53% per month (t-statistic = 5.23) and we are un-

able to reject the hypothesis that the returns during the second half of our sample

are equal to the returns during the first half of our sample (t-statistic = −0.34).

Spanning regressions

We further use spanning regressions to assess the ability of traditional factor

models to explain the profitability of the PMO strategy. Specifically, we estimate

the following regressions and examine the significance of the regression intercepts

(alphas):

PMOt = α +
N∑
j=1

βjFj,t + εt (2.33)

where Fj,t, j = {1, 2, 3, ..., N} are the excess market return, the five Fama and French

(2015) factors augmented with the WML factor, or the four factors of the q-factor

14. The minimum market capitalization of a firm included in the megacap sample is about 2
billion in the early parts of the sample and over 21 billion near the end of the sample.
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model (Hou, Xue, and Zhang 2014). The results of the spanning regressions are

reported in Table 2.6.

The full-sample tests in Panel A of Table 2.6 show that PMO earns a significant

alpha with t-statistics greater than 5.0 relative to the three models considered in

the table. This suggests that the factors considered in the table are unable to fully

account for the profitability of the PMO strategy. In Panels B and C we verify that

our conclusions regarding the inability of factor models to account for the profitability

of PMO hold in both the first half (1986-2002) and the second half (2003-2019) of

our sample. It is noteworthy that the performance of PMO improves significantly

relative to the explanatory trading strategies in the second half of our sample.

In unreported tests, we show that the profitability of the PMO strategy cannot

be explained using a combination of popular trading strategies proposed in the lit-

erature. While an explanation of the profitability of the PMO strategy is beyond

the scope of this paper, we believe that the PMO strategy should receive a rigorous

treatment in the literature going forward.

2.6 Conclusion

In this paper, we document the existence of time variation in the stickiness of financial

analysts’ expectations. The stickiness of analysts’ expectations declines during high-

volatility periods. Additionally, expectation stickiness experiences a sustained decline

over our sample.

To account for these stylized facts, we build a simple featuring time-varying

inattention. We explore the asset pricing implications of our model and show that
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it is consistent with positive unconditional momentum returns, momentum crashes,

the profitability of volatility-managed momentum, and the diminishing profitability

of momentum over our sample.

In order to test our model’s prediction regarding return predictability, we extract

the predictable component of analysts’ forecast errors and propose a trading strat-

egy that is long (short) on stocks with excessively pessimistic (optimistic) earnings

forecasts. Existing prominent factor models cannot fully explain the profitability of

our trading strategy, especially during the second half of our sample.
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Table 2.1
Forecast Error Predictability Regressions

Dependent variable:
FEf,τ

(1) (2) (3) (4) (5) (6) (7)
RV IV

FRf,t 0.167∗∗∗ 0.243∗∗∗ 0.201∗∗∗ 0.197∗∗∗ 0.285∗∗∗ 0.195∗∗∗ 0.199∗∗∗

[5.195] [5.497] [7.230] [7.546] [4.817] [7.280] [7.722]
FRf,t · σ̂mkt −0.065 −0.056∗

[−1.541] [−1.848]

FRf,t · 1HV −0.126∗ −0.160∗ −0.128∗ −0.190∗∗

[−1.900] [−1.848] [−1.984] [−2.288]

Constant −0.012∗∗∗ −0.013∗∗∗ −0.011∗∗∗ −0.012∗∗∗ −0.007∗∗ −0.011∗∗∗ −0.011∗∗∗

[−8.190] [−5.942] [−8.438] [−8.782] [−2.603] [−7.739] [−8.436]

σ̂mkt 0.001 −0.002
[0.502] [−1.404]

1HV −0.001 0.001 −0.005 −0.002
[−0.236] [0.340] [−1.634] [−0.420]

Observations 78,287 78,287 78,287 78,287 77,969 77,969 77,969
P (1HV = 1) − − 0.20 0.10 − 0.20 0.10
Adjusted R2 0.014 0.015 0.015 0.016 0.015 0.015 0.016
This table reports the results for the forecast error predictability regression FEf,τ = αCG +βCGFRf,t +
εt,τ and the modified regression FEf,τ = αCG+αCG

∆ zt+
(
βCG + βCG

∆ zt

)
FRf,t+εt,τ , where zt in columns

(2) and (5) is realized and implied volatility, respectively, and a high volatility indicator in columns (3),
(4), (6), and (7). Realized volatility is based on daily value-weighted CRSP returns for a period of 126
days. The CBOE S&P100 Volatility Index is used as a measure of implied volatility. FEf,τ is defined
as (ef,τ − Ft [ef,τ ]) /Pf,t−1 and FRf,t is defined as (Ft [ef,τ ] − Ft−1 [ef,τ ]) /Pf,t−1 Standard errors are
double-clustered by firm and year. The corresponding t-statistics are in square brackets. Significance at
the 1%, 5%, and 10% is denoted by ∗ ∗ ∗, ∗∗, and ∗, respectively. Earnings forecasts are obtained from
I/B/E/S and cover firms with fiscal year ends between 1/1986 and 11/2021. The volatility measures
are in percent per month.
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Table 2.2
Momentum and Volatility

Dependent variable:
rWML,t

(1) (2) (3) (4) (5) (6) (7)
RV IV

σ̂mkt −2.839∗∗ −1.750∗∗

[−2.038] [−1.977]

1HV −0.026∗ −0.036 −0.028∗∗ −0.066∗∗∗

[−1.805] [−1.459] [−2.077] [−3.092]

Constant 0.009∗∗ 0.037∗∗∗ 0.014∗∗∗ 0.012∗∗∗ 0.038∗∗∗ 0.014∗∗∗ 0.015∗∗∗

[2.207] [2.930] [3.983] [3.459] [2.911] [4.586] [4.564]

Observations 432 432 432 432 422 422 422
P(1HV = 1) − − 0.20 0.10 − 0.20 0.10
This table reports the results for the following regression: rWML,t = α + α∆zt−1 + εt. In columns
(2) and (5) zt−1 is realized and implied volatility, respectively. In columns (3), (4), (6), and (7)
zt−1 is a high volatility indicator. Realized volatility is based on daily value-weighted CRSP returns
for a period of 126 days. The CBOE S&P100 Volatility Index is used as a measure of implied
volatility and the volatility of value-weighted CRSP is used as a measure of realized volatility. The
standard errors are computed using the Newey and West (1987) methodology with six lags. The
corresponding t-statistics are in square brackets. Significance at the 1%, 5%, and 10% is denoted
by ∗ ∗ ∗, ∗∗, and ∗, respectively. The momentum return data is obtained from Kenneth French’s
website and covers the period between 01/1986 and 12/2021.
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Table 2.3
XGBoost Hyper-parameters

η 0.01
γ 0.15
maximum depth 7
subsample 0.15
nrounds 10000

This table reports the hyper-
parameters chosen for the
XGBoost algorithm.

Table 2.4
Mixed Momentum Spanning Regressions

Momentum FF6 q-Factor
Panel A: Unrestricted

α̂ 0.45 0.68 0.89
t-statistic 3.04 3.16 2.25

Panel B: Restricted
α̂ 0.31 0.48 0.70
t-statistic 2.87 2.82 2.02
This table reports the α̂ (in %) obtained by estimating
the following regression: rMM,t = α+

∑N
j=1 βjFj,t+εt

where the factors are: the return on the 12-2 momen-
tum strategy, the five Fama-French factors + WML,
or the four Hou-Xue-Zhang factors. The full sample
covers the period between 01/1986 and 12/2021. The
t-statistics are based on standard errors computed fol-
lowing White (1980).
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Table 2.5
Portfolios Sorted on Expectation Errors

Quintile 1 2 3 4 5 5 − 1
Panel A: All Stocks

Mean −0.11 0.59 0.88 1.03 1.48 1.59
t-statistic −0.32 2.19 3.77 5.10 7.08 6.82

Panel B: Market cap above 90th percentile
Mean 0.56 0.90 0.85 1.07 1.33 0.77
t-statistic 2.04 3.95 4.00 5.47 6.15 4.74

Panel C: Post-2002 Sample
Mean 0.15 0.54 0.77 0.94 1.68 1.53
t-statistic 0.30 1.59 2.59 3.83 6.31 5.23
This table reports the time-series average returns on value-
weighted portfolios formed based on the predictable component
of equity analysts’ forecast errors, ÊE. The full sample in Panel
A includes all stocks and covers the period between 01/1986
and 12/2019. In Panel B, the sample is restricted to stocks with
market caps above the 90th percentile of market caps within a
given year. The sample in Panel C covers the period between
01/2003 and 01/2020.
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Table 2.6
PMO Spanning Regressions

CAPM FF6 q-Factor
Panel A: Full Sample

α̂ 1.90 1.51 1.63
t-statistic 8.97 8.78 6.30

Panel B: 01/1986-12/2002
α̂ 1.81 1.22 1.41
t-statistic 5.27 5.55 2.92

Panel C: 01/2003-01/2020
α̂ 2.08 1.68 1.87
t-statistic 8.91 8.88 8.00
This table reports the α̂ (in %) obtained by
estimating the following regression: PMOt =
α +

∑N
j=1 βjFj,t + εt where the factors are:

excess market return, the five Fama-French
factors + WML, or the four Hou-Xue-Zhang
factors. The full sample covers the period be-
tween 01/1986 and 12/2019. The t-statistics
are based on standard errors computed follow-
ing White (1980).
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Figure 2.1
Information Rigidity Over Time

The figure above depicts the coefficient βCG
t on forecast revisions in specification (2.1) estimated

using overlapping two-year windows. The shaded region represents the 95% confidence interval. The
estimation is carried out using data from I/B/E/S and covers firms with fiscal year ends between
01/1986 and 12/2021.
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Figure 2.2
Model Representation
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This figure summarizes the life cycle of an agent born in period 0.
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Figure 2.3
Average Price Path
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The figure above depicts the price paths for the model in Section 2.4. The x-axis represents time
and the y-axis is the price scaled by fundamental value V . The figure is based on the following
parameters: πhv = 0.10, σ2

V,lv = 0.35, σ2
V,hv = 0.60, σ2

S = 0.70, σ2
C = 0.30, ψ = 1, x = 10−5,

ϕ = 0.70, and κ = 4.
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Figure 2.4
Average Price Paths, High and Low Volatility States
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The figure above depicts the price paths based on the model in Section 2.4 for high volatility and
low volatility states. The x-axis represents time and the y-axis is the price scaled by fundamental
value V . The figure is based on the following parameters: σ2

V,lv = 0.35, σ2
V,hv = 0.60, σ2

S = 0.70,
σ2

C = 0.30, ψ = 1, x = 10−5, ϕ = 0.70, and κ = 4.
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Figure 2.5
Mixed Momentum Strategy
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The figure above depicts the cumulative returns of the restricted and unrestricted versions of the
mixed momentum trading strategy developed in Section 2.5.2.1, along with the returns of the
baseline momentum strategy. In this figure, we consider the time period between 01/1986 and
12/2021.
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Figure 2.6
Cost of Information and Momentum
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The figure above depicts the price paths based on the model in Section 2.4 for different marginal
costs of information acquisition. The x-axis represents time and the y-axis is the price scaled by
fundamental value V . The figure is based on the following parameters: σ2

V = 0.35, σ2
S = 0.70,

σ2
C = 0.30, ψ = 1, x = 10−5, ϕbaseline = 0.70, ϕlow cost = 0.50, ϕhigh cost = 0.90 and κ = 4.
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Figure 2.7
Decision Tree Example
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This figure graphically illustrates the structure of a decision tree. Our goal is to predict EPS and we
use past EPS, past price, and past return as predictors. The percentages represent the proportion
of our observations that end up in each node and the numbers in red represent the average EPS of
the stocks within each node.
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APPENDICES

2.A Derivations

2.A.1 Information Acquisition Problem

Our goal is to obtain an expression for Eit−1 [Ui,t].

First, we plug in the expression for optimal qi,t and obtain the following maxi-

mization problem:

Eit−1

Eit[V ] − pt
ψ

(
Eit[V ] − pt

)
− ψ

2
(Eit[V ] − pt)2

ψ2

 = 1
2ψE

i
t−1

[(
Eit[V ] − pt

)2
]

(2.34)

We expand the square:

1
2ψE

i
t−1

[(
Eit[V ]

)2
− 2ptEit[V ] + p2

t

]
(2.35)

The price pt is only affected by aggregate information choices, therefore each agent i

takes the price as given (as in Kacperczyk, Van Nieuwerburgh, and Veldkamp 2016).

The agents taking prices as given, combined with the fact that the law of iterated

expectations holds at the individual level, allows us to rewrite the expression above

as:
1

2ψ

(
Eit−1

[(
Eit[V ]

)2
]

− 2ptEit−1[V ] + p2
t

)
(2.36)

In this expression, Eit−1

[
(Eit[V ])2]is the only term that depends on λi,t. Therefore,
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we need to evaluate the following expression:

1
2ψE

i
t−1

[(
Eit[V ]

)2
]

(2.37)

We use the definition of variance to rewrite the expression as:

1
2ψ

(
varit−1

(
Eit[V ]

)
+
(
Eit−1

[
Eit[V ]

])2
)

(2.38)

The second term does not depend on λi,t, so we focus on the variance term:

1
2ψ

(
varit−1 (λi,tEt[V ] + (1 − λi,t)Et−1[V ])

)
=
λ2
i,t

2ψ varit−1

(
Eit[V ]

)
(2.39)

2.A.2 Information Rigidity Coefficient

The model-implied version of the forecast error predictability coefficients is:

βCG = cov (V − p2, p2 − p1)
var (p2 − p1)

. (2.40)
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The numerator and denominator in equation (2.40) are given by

cov (V − p2, p2 − p1) =K̄
D

[
λ2

1λ2|A
(
σ2
V + σ2

S

)(
Dσ2

V σ
2
C

(
σ2
S − σ2

C

)
− λ2|Aσ

2
V σ

4
C

(
σ4
C + 2σ2

V σ
2
S + σ2

Sσ
2
C

))

+ (1 − λ1)λ2|ID
2
(
σ2
V + σ2

C

)((
σ2
V + σ2

C

)
− 2λ1λ2|Aσ
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where D = σ2
V σ

2
S + σ2

V σ
2
C + σ2

Sσ
2
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S
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2.A.3 Comparative Statics

The comparative statics of the probability of information acquisition with respect to

σ2
V are shown below:

∂λ1

∂σ2
V

= σ2
V (2σ2

Cσ
2
S + 3σ2

Cσ
2
V + σ4

V )
ψϕ (σ2

V + σ2
C)3 > 0 (2.43)

∂λ2|I

∂σ2
V

= σ2
V (2σ2

S + σ2
V )

ψϕ (σ2
V + σ2

S)2 > 0 (2.44)
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> 0 (2.45)

2.A.4 Momentum

The short-run momentum parameter is defined as

MOMS = cov (p2 − p1, p1 − p0) + cov (V − p2, p2 − p1)
2 (2.46)

The covariances from equation (2.46) are:

cov (p2 − p1, p1 − p0) =λ1σ
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(2.47)

where D and K̄ are defined in section 2.A.2, and cov (V − p2, p2 − p1) is in equation

(2.42). Therefore, the unconditional short-run momentum parameter MOMS from

equation (2.46) is

MOMS = K̄

2D

[
−λ2

1λ
2
2|A

(
σ4
C + 2σ2

V σ
2
S + 2σ2

Sσ
2
C

) (
σ2
V + σ2

S

)
σ2
V σ

4
C

+ (1 − λ1)λ2|ID
2
(
σ2
V + σ2

C

)((
σ2
V + σ2

C

)
− 2λ1λ2|Aσ

2
C

− (1 − λ1)λ2|I
(
σ2
V + σ2

C

))
+ λ1λ2|AD

(
σ2
V + σ2

S

) (
σ2
V + σ2

C

)
σ4
C

]
(2.48)
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The long-run momentum parameter is

cov (V − p2, p2 − p0) =K̄
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(2.49)

2.B Robustness: Jensen-Kelly-Pedersen Momentum Factor

2.B.1 Momentum and Volatility

In this section, we estimate the same regression we estimated in Section 2.5.2:

rWML,t = α + α∆zt−1 + εt (2.50)

where rWML,t are the time t momentum returns and zt−1 is a variable related to

realized or implied volatility volatility.

In this section, we use the return of the t = 12 to t = 1 momentum factor from

the Jensen-Kelly-Pedersen data depository to conduct the tests. Our findings are

reported in Table 2.7. The results in the table are qualitatively identical to those

in Table 2.2: momentum delivers positive returns during periods of low volatility

and the profitability of the strategy declines significantly during periods of high

volatility. The dummy variable specifications show that momentum delivers large

negative returns if volatility is within the top 20% (or 10%) of full sample volatility.
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2.B.2 Mixed Momentum

In this section, we implement our mixed momentum strategy using the t = 12 to

t = 1 and the t = 3 to t = 1 momentum factors from the Jensen-Kelly-Pedersen

data repository. Figure 2.8 depicts the performance of the restricted and unrestricted

versions of the mixed momentum strategy relative to the performance of the baseline

momentum strategy.

The difference in performance between the restricted mixed momentum strategy

and the baseline momentum strategy is not as stark as the difference in Figure 2.5.

If we invested $1 in the two strategies in 01/1986, the baseline momentum strat-

egy would generate $2.94 and the restricted mixed strategy would generate $3.52.

However, the mixed strategy works as intended and lessens the extent of momen-

tum crashes during high-volatility episodes. The unrestricted version of the mixed

momentum strategy outperforms both the restricted mixed strategy and the base-

line strategy by levering up and taking on relatively more risk during low-volatility

periods.

2.C XGBoost

Formally, the XGBoost algorithm involves minimizing the following objective func-

tion for the i-th observation at the t-th iteration:

L(t) =
n∑
i=1

`
(
yi, ŷ

(t−1)
i + ft(xi)

)
+ Ω (ft) (2.51)

by greedily adding tree ft that most improves the model.
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Here ` (·) represents a loss function that measures the difference between the

predicted value of the outcome variable, ŷi and the realized value yi, xi represents

the vector of predictors associated with observation i, and the Ω (·) function penalizes

the complexity of the model.
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Table 2.7
Momentum and Volatility

Dependent variable:
rWML,t

(1) (2) (3) (4) (5) (6) (7)
RV IV

σ̂mkt −1.230∗ −0.925∗∗

[−1.834] [−2.227]

1HV −0.014∗ −0.010 −0.015∗∗ −0.033∗∗∗

[−1.915] [−0.894] [−2.128] [−2.935]

Constant 0.004 0.016∗∗ 0.006∗∗∗ 0.005∗∗ 0.019∗∗∗ 0.006∗∗∗ 0.007∗∗∗

[1.610] [2.578] [3.175] [2.017] [3.082] [3.414] [3.318]

Observations 432 432 432 432 422 422 422
P(1HV = 1) − − 0.20 0.10 − 0.20 0.10
This table reports the results for the following regression: rWML,t = α + α∆zt−1 + εt. In columns
(2) and (5) zt−1 is realized and implied volatility, respectively. In columns (3), (4), (6), and (7) zt−1
is a high volatility indicator. The CBOE S&P100 Volatility Index is used as a measure of implied
volatility and the volatility of value-weighted CRSP is used as a measure of realized volatility. The
standard errors are computed using the Newey and West 1987 methodology with six lags. The
corresponding t-statistics are in square brackets. Significance at the 1%, 5%, and 10% is denoted by
∗∗∗, ∗∗, and ∗, respectively. The momentum return data is obtained from the Jensen-Kelly-Pedersen
data repository and covers the period between 01/1986 and 12/2021.
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Figure 2.8
Mixed Momentum Strategy
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The figure above depicts the cumulative returns of the restricted and unrestricted versions of the
mixed momentum trading strategy developed in Section 2.5.2.1, along with the returns of the
baseline momentum strategy. We obtain the momentum data from the Jensen-Kelly-Pedersen data
repository. We consider the time period between 01/1986 and 12/2021.
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