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Due to significant computational expense, discrete element method simulations of jammed pack-
ings of size-dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the
correspondence between simulations and real-world granular materials with large size dispersity.
Invoking a recently developed neighbor binning algorithm, we generate mechanically-stable jammed
packings of frictionless spheres with power-law size distributions containing up to nearly four mil-
lion particles with size ratios up to 1:100. By systematically varying the width and exponent of
the underlying power laws, we analyze the role of particle size distributions on the structure of
jammed packings. The densest packings are obtained for size distributions that balance the relative
abundance of large-large/intermediate and small-small particle contacts. Although the proportion
of rattler particles and mean coordination number strongly depend on the size distribution, the
mean coordination of non-rattler particles attains the frictionless isostatic value of six in all cases.
The size distribution of non-rattler particles that participate in the load-bearing network exhibits
no dependence on the width of the total particle size distribution beyond a critical particle size for
low-magnitude exponent power laws. This signifies that only particles with sizes greater than the
critical particle size contribute to the mechanical stability. However, for high-magnitude exponent
power laws, all particle sizes participate in the mechanical stability of the packing.

I. INTRODUCTION

Packings of stiff granular particles with a high degree of
size dispersity are of widespread geophysical and indus-
trial relevance, with applications including powder tech-
nology and the mechanics of soil and construction mate-
rials [1–6]. The distribution of particle sizes can adopt
discrete or continuous forms, both of which have been
shown for frictionless particles to produce overall pack-
ing densities, φ, that are greater than the frictionless,
monodisperse value φmono ≈ 0.64 [7]. The simplest dis-
crete form is the bidisperse case, for which Furnas [3]
predicted the theoretical limiting value of φbi ≈ 0.87 for
an infinitely large size ratio; recent large-scale numerical
simulations of bidisperse packings produced packing den-
sities approaching the Furnas limit [8, 9]. To date, most
three-dimensional (3D) numerical simulations of contin-
uous, highly disperse systems with size distributions of
diverse functional forms have been limited to largest-to-
smallest particle size ratios of order 10 or less, and typ-
ically only reach packing densities ∼ 0.71 or smaller at
low confining pressures [8, 10–15]. To our knowledge,
the main exception is the work of Oquendo-Patiño and
Estrada [16, 17, 18], who considered power-law-like par-
ticle size distributions. These distributions were gener-
ated by matching the scaling behavior of the cumulative
particle size distributions to early experimental observa-
tions by Fuller and Thompson [1]. Oquendo-Patiño and
Estrada [16, 17, 18] simulated particle size ratios of up to
32, and achieved packing densities close to 0.86 depend-
ing on the characteristics of the particle size distribution.

Here, we consider power-law particle size distributions

to study packings of highly disperse particles. From a nu-
merical perspective, power laws are one of the simplest
continuous distributions, since there are only two param-
eters governing the distribution: the maximum particle
size ratio and the power-law exponent. Power-law dis-
tributions have been measured to emerge naturally from
various fragmentation mechanisms, including that of sea-
ice floes [19] and comminution [4, 20–23]. Further, power
laws display scale invariance and fractal behavior; the
geometric Apollonian packing is one such example of a
fractal packing with an underlying power-law size distri-
bution [24–27].

One of the challenges associated with simulating
power-law distributions is that the tail of the distribu-
tion has significant weight and decays slowly, thus re-
quiring simulating very large size ratios of particles to
accurately sample the distribution. Computational costs
of 3D discrete element method (DEM) simulations with
broad particle size disparities have been prohibitive un-
til recently due to algorithmic limitations. Conventional
neighbor list generation methods, e.g., those available by
default in popular molecular dynamics (MD) packages
like LAMMPS [28, 29] exhibit poor scaling with increas-
ing size ratios and become intractable beyond particle
size dispersity of order 10 [30]. Ogarko and Luding [31]
recently developed an improved neighbor list generation
scheme. A similar approach has since been implemented
in LAMMPS by Shire et al. [32]. This implementation
has been expanded upon and was used to study bidisperse
packings of both frictionless and frictional particles with
particle size ratios of up to 40 [9]. For our study, we have
exerted this simulation capability further to investigate
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strongly disperse power-law-distributed systems of fric-
tionless particles with unprecedented particle size ratios
of up to 100.

Packings of highly disperse particles require care-
ful treatment as relaxation may occur over disparate
time scales. Unlike volume-controlled jamming proto-
cols, pressure-controlled jamming protocols are guar-
anteed to produce mechanically-stable packings, and
yield greater accessibility to the jamming point in the
low pressure regime [33, 34]. Recently, the isobaric-
isoenthalpic (NPH) thermodynamic ensemble, one exam-
ple of a constant-pressure protocol, was successfully ap-
plied to multi-friction-mode monodisperse packings [35]
and to frictionless and frictional bidisperse packings [9].
The NPH ensemble implementation in LAMMPS can be
leveraged to enforce the condition of zero shear stresses
applied to the simulation box concurrently with isotropic
compression. For the highly disperse systems considered
in this work, permitting the relaxation to zero of the off-
diagonal components of the internal stress tensor, Pint, is
crucial as this technique produces packings that are also
stable with respect to shear deformations.

This article describes numerical simulations performed
using a constant-pressure (NPH) compression protocol
to generate jammed packings of frictionless, power-law-
distributed disperse spherical particles. The interparticle
contact model is described in Section IIA. Section II B
elucidates how distributions of particle sizes are gener-
ated and characterized. Section IIC contains a brief de-
scription of the multi-neighboring scheme used in this
work. Further details and benchmark results can be
found in the Appendix. The packing protocol is described
in Section IID. In Section IIIA, the results of packed sys-
tems of power-law-distributed particles are characterized.
Finally, Section III B examines several properties of the
resultant force-bearing networks.

II. METHODS

A. Contact model

Spherical particle-based 3D DEM packing simula-
tions were conducted using the GRANULAR package in
LAMMPS [28, 29, 36]. The scope of this study is limited
to frictionless, purely repulsive normal contacts, where
particles interact via a damped Hookean pair potential
penalizing overlap. The normal force Fn between con-
tacting particles i and j with diameters Di and Dj and
separation rij = ri − rj is

Fn = knδn̂−Meffγnvn, (1)

where kn = 1 is the Hookean spring constant, δ =
(Di+Dj)/2−|rij | is the overlap,Meff = MiMj/(Mi+Mj)
in terms of the particle masses Mi and Mj , and γn = 0.5
is a damping coefficient, reflecting particle inelasticity.
The unit vector connecting the particle centers is n̂ =

rij/|rij |, and vn is the relative velocity of the two par-
ticles projected along n̂. Note that in principle the net
normal force in Eqn. (1) can be attractive, i.e., if the
damping component is greater than the Hookean compo-
nent when particles are moving apart. An extra switching
function is employed to set the magnitude of Fn to zero
if this condition occurs during the simulation. We do not
expect this formulation to cause any significant changes
for slow compression simulations, but it may be an impor-
tant consideration for high-rate deformation simulations,
for instance.

The material density of individual particles is ρ = 1,
such that particle massesMi are proportional to the par-
ticle volumes Vi and given by Mi = ρVi = ρπD3

i /6. The
unit of length is the smallest particle diameter Dmin = 1,
and the unit of pressure is kn/Dmin; all lengths and pres-
sures are given in terms of these quantities. The simula-
tion timestep is ∆t = 0.02τ , where τ =

√
Mmin/kn with

Mmin ≡ ρπ/6.

B. Particle size distributions

Particle sizes are represented using diameters D and
are distributed according to power-law distributions such
that the probability of finding a particle with diameter
between D and D + dD is P (D)dD ∝ D−βdD, where
β is the power-law distribution exponent. Particle sizes
are limited to a range 1 ≤ D ≤ λ, where the parame-
ter λ denotes the maximum size ratio of the distribution.
Each system is required to have at least 10 particles with
diameters larger than 0.95λ, meaning that the total num-
ber of particles in each system depends upon both λ and
β. In the geophysical literature, distributions of particle
sizes are often given in terms of their fractal dimensions
df , meaning that the number of particles ND larger than
size D satisfies ND ∼ D−df [4]. For power-law particle
size distributions,

ND ∝
∫ ∞
D

D′−βdD′ ∝ D1−β

1− β
, (2)

for β > 1, so that df = β − 1.
A central quantity of interest is the cumulative volume

fraction (CVF), which gives the fraction of particle vol-
ume (and mass, since ρ is constant) contained in particles
smaller than a given size. The CVF is easily obtained for
power-law distributions with β < 4 as

CVF =

∫D
1
D′3−βdD′∫ λ

1
D′3−βdD′

=
D4−β − 1

λ4−β − 1
. (3)

The CVF exponent, α, is defined using Eqn. (3) as α ≡
4−β, and gives the scaling of the CVF in the limitsDα �
1 and λα � 1 as CVF ∼ (D/λ)α. Note that α plays a
similar role as the grain-size distribution (GSD) exponent
η in Refs. [16–18], i.e., GSD ∼ [(D − 1)/(λ − 1)]η, but
cannot be compared directly (except in the specific case
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(b)(a)

FIG. 1. (a) Cumulative volume fractions for select values of α and λ = 50. Points are computed from the particle distributions
used in the simulations and lines are the analytic curves obtained from Eqn. (3). The dashed black line corresponds to α = 1.5
and is included as an example case for α > 1.0, for which the CVF is concave up. (b) Example packings obtained at applied
pressure pa = 10−6, shaded by particle diameter for the indicated α. Both simulation boxes are triclinic but have small tilt
factors. The overall number of particles for α = 0.2 is ∼16× larger than for α = 1.0, and the packed volume fractions are close
to φ = 0.82 and φ = 0.80 for α = 0.2 and α = 1.0, respectively.

α = η = 1.0, corresponding to β = 3) as the underlying
particle size distributions in Refs. [16–18] are not power
laws characterized by a single exponent.

This work mainly considers exponents in the range
3.0 ≤ β ≤ 3.8, or 0.2 ≤ α ≤ 1.0, emblematic of soil com-
minution [4, 20–23]. Several of these CVFs are shown in
Fig. 1(a) plotted against the reduced particle diameter
(D − 1)/(λ − 1). A simple interpretation of Fig. 1(a)
is that more than half of the particle volume (mass) is
contained in particles with diameters smaller than the
arithmetic mean diameter (λ+ 1)/2, or reduced particle
diameter 1/2, for α < 1.0—the concave down curves in
Fig. 1(a)—and more than half of the particle volume is
contained in particles larger than (λ + 1)/2 for α > 1.0.
As demonstrated in Sec. IIIA, the range of values of α
shown in Fig. 1(a) brackets the densest obtainable pack-
ing for λ � 1. As α → 0 (β → 4), the preponder-
ance of particles have diameters close to D = 1 and the
total count of particles rises sharply. For example, for
λ = 50, the α = 1.0 system has 233, 653 particles while
for α = 0.2 there are 3, 739, 236 particles. The corre-
sponding packings obtained at low applied pressure (see
Section IID) for these two systems are shown in Fig. 1(b),
rendered in OVITO [37].

C. Efficient multi-neighboring scheme

To identify potentially interacting atoms/particles in
MD and DEM packages, the most computationally effi-
cient basic algorithm builds a neighbor list with all pairs
of nearby particles using a spatial grid with a length scale
set by the largest interaction cutoff. This becomes im-
practical as the size disparity ratio λ increases, as the

same bin size is used for all particle pairs. An alternative
approach was implemented into LAMMPS by in ’t Veld
et al. [30], which uses the smallest cutoff to set the bin size
and to adjust how many bins are searched based on parti-
cle types [30]. In LAMMPS, particle types are a discrete
categorization used to set interaction parameters such as
cutoffs for MD or friction coefficients for DEM.While this
method allows simulations to reach larger λ, it also be-
comes exceedingly expensive as λ increases beyond ∼10.
To overcome this limitation, an improved algorithm was
recently proposed by Ogarko and Luding [31] and initially
modified for LAMMPS by Stratford et al. [38] and Shire
et al. [32]. This approach further tailored the neighbor
list construction based on a particle’s type to ensure that
the computational cost of building a neighbor list does
not grow faster with λ than the force calculation.

For this work, the implementation by Stratford et al.
[38] was expanded upon by fully integrating it with
the LAMMPS codebase and releasing it in the public
LAMMPS distribution [39]. The method is generalized
to support DEM by removing the use of particle types,
since these are typically intended to describe material
properties and not necessarily particle sizes. Neighbor
list construction can be tuned by pre-defining a set of
diameter intervals irrespective of particle types, stream-
lining optimization of simulations. The crux of the tech-
nique is that each particle searches for neighbors with
diameters that fall in its own diameter interval, and in
larger diameter intervals. This approach takes advan-
tage of the inherent asymmetry in the computational ef-
fort required to generate lists of neighbors centering on
small particles as opposed to using large particles as the
point of reference. Previous work demonstrated that this
method can be used to model jamming of frictionless and
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FIG. 2. Particle volume fraction φ, overall mean coordina-
tion 〈Z〉 (dashed), and non-rattler mean coordination 〈Z〉nr
(solid), plotted against simulation time for λ = 50 and
α = 0.7. The inset magnifies the end of the simulation, at
which time φ and 〈Z〉nr cease evolving.

frictional bidisperse packings up to λ = 40 [9]. Here, this
methodology is applied to study packings of frictionless
particles with a power-law distribution with λ as large
as 100, although larger λ are feasible. See the Appendix
for arguments regarding the computational complexity of
the algorithm and benchmark results.

D. Constant-pressure packing protocol

Packings are created via a constant-pressure protocol
using the NPH ensemble implemented in LAMMPS [9,
35]. The symmetric applied pressure tensor, Pa, has the
form Pa,xx = Pa,yy = Pa,zz = pa and all off-diagonal
components are zero. Here, pa is set to 10−6 to work in
the limit of small particle overlaps; for context, in systems
of monodisperse particles the typical fractional overlap
is δ/D ∼ pa (in units of D/kn). The simulation box is
fully periodic and initially cubic. Under the constraint
of no overlaps, i.e., there are no inter-particle forces at
time t = 0, particles are randomly placed throughout
the simulation box at low volume density. The overall
particle volume fraction, is defined as φ ≡ (

∑
i Vi) /V ,

where V is the instantaneous simulation box volume and
the sum runs over all the particles in the system.

During the simulation, the applied pressure compresses
the simulation box and forces particles into contact; see
Fig. 2 for an illustration of the typical variation of φ with
simulation time. At the end of the simulation, the inter-
nal pressure tensor balances the applied pressure, giving
Pint = Pa within numerical tolerance. While the simula-
tion box is triclinic, the box tilt factors are typically small

compared to the characteristic box side length. The rate
of compression is slow enough that the simulation box
volume monotonically decreases until the system jams,
and particle overlaps are much smaller than the particle
diameters.

As the number of particles and the distribution of par-
ticle volumes vary substantially, we do not identify the
final jammed state by using a fixed kinetic energy cut-
off. Rather, several criteria are used to determine when
to stop jamming simulations. In addition to the numeri-
cal equivalence of the final internal and applied pressure
tensors, other quantities are also considered, including
the evolution of φ and the mean number of contacts per
particle, 〈Z〉, where 〈·〉 refers to the average over all parti-
cles. After jamming is achieved, φ and 〈Z〉 do not evolve
in time and the total kinetic energy is small: the aver-
age kinetic energy per-particle is of order 10−13 or less.
For several of the largest systems—λ = 50 systems with
β & 3.6 (α . 0.4)—a simulation time cutoff of at least
1.2× 107τ and up to ∼ 4× 107τ is employed out of com-
putational necessity to stop simulations. Most quantities
extracted from the simulations, such as φ and 〈Z〉, evolve
slowly if at all after such long run times (see Fig. 2).

In frictionless, monodisperse systems under vanish-
ingly small pressure, the isostatic number of contacts per
particle is Ziso = 6. The number of excess contacts per
particle, ∆Z = Z −Ziso, grows systematically with pres-
sure as √pa [7, 35, 40]. For highly disperse packings, a
large proportion of particles are rattlers, i.e, those parti-
cles participating in too few contact pairs to be mechan-
ically stable. Such particles substantially dilute the cal-
culation of 〈Z〉, but a separate, more informative value,
〈Z〉nr, can be obtained by excluding rattler particles from
the calculation. The difference between the two measures
is evident by comparing the two red curves in Fig. 2. This
issue will be discussed in greater detail in Sec. III.

As a separate test of mechanical stability, we con-
ducted several additional simulations to verify that the
packings with the most extreme fractions of rattler parti-
cles are still stable after removing rattlers (see Sec. III A).
For example, for α = 1.0 approximately 83% and 97% of
all particles are rattlers for λ = 20 and 50, respectively.
For several high-α values, the simulations were restarted
after removing rattlers from the packed configurations
and checked for re-convergence of the macroscopic quan-
tities, including φ and 〈Z〉nr, under the same stress state.

A final useful metric, the Cundall parameter C, quan-
tifies the typical unbalanced net per-particle force, per
contact, in the system [16]:

C =

∑
p |Fp|∑
c |Fc|

, (4)

where the numerator sums over the magnitude of the
net per-particle force and the denominator sums over the
magnitude of each contact force. Our results showed that
a value of C . 10−6 was indicative of a mechanically-
stable system.
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FIG. 3. Variation in the particle volume fraction φ of jammed
packings plotted against α for the indicated values of the max-
imum particle size λ. The vertical dashed line corresponds to
the CVF exponent αA ≈ 0.53 corresponding to the random
Apollonian packing.

III. RESULTS

A. Characterization of packings

Using the constant-pressure packing protocol, packing
volume fractions φ were obtained for different power-law
particle size distributions. Results comparing the varia-
tion of φ with α and λ are shown in Fig. 3. For each λ,
φ is lowest at the endpoints of the range of α considered
and peaks near the center of the range. The peak shifts
slightly to smaller α and becomes sharper with increas-
ing λ. The sharpening trend with increasing λ is similar
to behavior observed in bidisperse packings, for which
increasing the particle size ratio changes φ at the Furnas
peak from smoothly non-monotonic to cusped [9, 41].
System size and packing equilibration constraints pre-
vent us from exploring the entire range of α for λ = 100
to see if the sharpening trend persists in the power-law-
distributed case.

The results in Fig. 3 are consistent with the pack-
ing densities obtained by Oquendo-Patiño and Estrada
[16, 18? ], who employed the Hertz contact model and
volume-controlled isotropic compression. Several other
differences between our simulations and those described
in Refs. [16–18] warrant mentioning. Based on the max-
imum fractional overlaps quoted in Ref. [16], the peak
pressure reached in the simulations conducted in that
work is estimated to be of order pa ∼ 10−4, or two orders
of magnitude larger than in our simulations. Test simula-
tions we conducted for λ = 20 comparing the Hooke and
Hertz contact models at identical pa = 10−4 using the
compression protocol described in Section IID showed

that φ is ∼1% larger in Hertzian systems with all other
variables kept constant, perhaps because the Hertz model
does not penalize incipient particle overlap (the contact
stiffness is zero at first contact). Most importantly, as
noted earlier, the GSD characterized by the exponent η
in Ref. [16] does not correspond to an underlying single-
exponent power-law size distribution, except in the case
α = η = 1.0.

Considering individual values of λ, it is possible to
compare our CVFs with the GSDs in Ref. [16] to esti-
mate a value of α that compares most favorably with η.
For λ = 32—the largest λ used in Ref. [16]—a GSD with
η = 0.8 approximates a CVF with α = 0.75, η = 0.6 is
similar to α = 0.5, and η = 0.4 bears some resemblance
to α = 0.2, etc. For η . 0.3, the approximated CVFs
are logarithmic or have α < 0. In general, α values are
smaller than the corresponding values of η. Moreover, the
GSD tends to exhibit a higher particle volume fraction
contained by small particles, while the CVF and GSD
exhibit similar scaling behaviors as D → λ. Despite this,
the peak φ value obtained in this work is within ∼5% of
that in Ref. [16] and occurs at comparable α and η values,
for λ = 32. Given the role of λ, the discrepancy between
these results should reduce as the maximum particle size
ratio increases.

Figure 3 also indicates the CVF exponent of the power-
law particle size distribution corresponding to the ran-
dom Apollonian packing, αA ≈ 0.53 [18, 24–27]. Inter-
estingly, αA is quite close to the corresponding α used to
obtain the peak φ for λ = 50, α = 0.55, and as noted
above the peak trends towards smaller α with increas-
ing λ (see also discussion in Ref. [18]). The power-law
exponent of the Apollonian packing is conjectured to be
the lower bound of exponents that result in full coverage
obtained via geometric packing protocols [42]. The cor-
responding upper bound in 3D is β = 4 (α = 0) [42].
Our λ = 50 data can be compared with an extrapola-
tion of data from Ref. [27], which explored the physical
fractal behavior of random Apollonian packings. The
densest packing we obtained gave φ ≈ 0.85, a packing
significantly less dense than the corresponding Apollo-
nian packing φA ≈ 0.93. Apollonian packings are cre-
ated using particle insertion methods, which circumvent
physical constraints on particle motion and have not been
tested for mechanical stability, while in DEM simulations
particles cannot move freely through constrictions/pores
smaller than their diameters. Thus, in jammed configu-
rations, DEM-generated microstructures are expected to
contain larger pores, resulting in overall looser packings
than traditional Apollonian states.

The presence of the peak at intermediate α in Fig. 3
suggests that obtaining the optimal packing density de-
pends on balancing the abundance of the large-on-large
particle contact pairs comprising the majority of the
force-bearing backbone with the amount of small par-
ticles filling in the gaps between. This supposition was
suggested by Furnas [3] and is qualitatively supported
by the snapshots shown in Fig. 1(b) for α = 1.0 and
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(a)

(b)

FIG. 4. (a) Joint contact probability distributions for particle diameter pairs with D1 ≥ D2 for the indicated α and λ = 50.
(b) Conditional contact probability distribution for the same set of systems.

α = 0.2. For the former, it is apparent that large parti-
cles regularly contact others of comparable size, but the
relative scarcity of small particles available to populate
the gaps results in a somewhat porous microstructure.
For the latter, contacts between large particles are rare
because they are embedded in a sea of small particles.
Qualitatively similar behavior is observed in bidisperse
packings, with high/low-α power-law disperse packings
corresponding to low/high fractions of small particles in
the bidisperse case [9].

To quantify this observation, the joint probability dis-
tributions for contacting pairs of particles are computed
as determined by the particle diameters, Pc(D1, D2), as
are the associated conditional contact probability distri-
butions, Pc(D1, D2)/P (D = D1), for λ = 50. The re-
sults, ordered such that D1 ≥ D2, are shown in Fig. 4
for several α. From Fig. 4(a), the most probable pair
of sizes for contact for α = 0.9 occurs when both par-
ticles have intermediate diameters ∼ 5 − 7, close to the
geometric mean of the maximum size ratio,

√
λ. Con-

versely, for α = 0.3 most contacts exist between pairs
of particles with diameters near the smallest value. Of

course, since large particles are less abundant by con-
struction, contacts between them make up a negligible
fraction of the full set of contacts. Figure 4(b) shows the
conditional contact probability distributions, which bet-
ter account for large particle scarcity. Panel (b) shows
that contacts including a particle with D1 ∼ λ = 50
are more common than might be otherwise expected (be-
cause these particles have the greatest surface area), and
further, that the diameter of its contact pair partner falls
from D2 ∼

√
λ for high α to D2 ∼ 1 for low α. This re-

sult underscores the increasing importance of small par-
ticles in stabilizing the packing as α decreases. Minh
and Cheng [22] pointed out that changes in large particle
connectivity from being large-particle-dominated to be-
ing small-particle-dominated may reduce the propensity
of large particles to fracture. If this hypothesis is cor-
rect, then our results indicate that low-α packings should
be less susceptible to inter-particle fracture than high-α
packings.

Figure 4 does not show a strong signature distinguish-
ing results for the densest packing obtained for λ = 50
(α = 0.55) from results for other α. From Fig. 3, the
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densest packing is not obtained for contact probabil-
ity distributions that are large-large/intermediate pair
dominated (e.g., α = 0.9 in Fig. 4) or large-small pair
dominated (e.g., α = 0.3 in Fig. 4), but rather for
α = 0.55, which from Fig. 4 lies somewhere in between
these two extremes. This observation aligns with the be-
havior of bidisperse packings, which reach optimal den-
sity through a saturation of large-large and small-small
contact pairs [3, 9].

In power-law disperse systems, the number of contacts
for each particle depends upon its size, but the behavior
of the mean number of contacts or coordination 〈Z〉 is
less clear. As noted in Sec. IID, rattler particles strongly
influence the calculation of 〈Z〉. However, the overall
value of 〈Z〉 and a rattlers-excluded value 〈Z〉nr can be
computed separately [43]. For the latter, rattler particles
are identified by determining particles with fewer than 3
contacts and removed from the list of contact pairs. Note
that each rattler removed decrements the total number
of contacts for its contact pair partners, so the removal
process is done iteratively [44].

After removing rattlers, the mean coordination is re-
computed for the reduced contact list and the smaller set
of non-rattler particles. The results of these analyses for
all particles and only non-rattler particles are shown in
Fig. 5(a) as a function of α and for two separate values
of λ. Considering first the overall value of 〈Z〉, shown
using filled symbols, the results are smaller than Ziso for
all α and both λ values. The largest 〈Z〉 is found for
α = 0.2, while 〈Z〉 is close to zero for α = 1.0 for λ = 50.
After removing rattlers, Fig. 5(a) shows that 〈Z〉nr is
approximately equal to Ziso for all α and λ (shown as
open symbols). Since the value of pa used in our sim-
ulations is small, the corresponding non-rattler value of
∆Znr ≡ 〈Z〉nr − Ziso is likewise small but non-zero: typ-
ical values found in this work are ∆Znr ≈ 0.01− 0.03.

The results in Fig. 5(a) imply that the effect of rattler
particles is significant for every system examined. An op-
positely related quantity to 〈Z〉 is the rattler fraction, fr,
the fraction of all particles that are rattlers. Figure 5(b)
quantifies how fr increases with α. In particular, for
α = 1.0 and λ = 50 only a few percent of particles are
non-rattlers; this system, with rattlers removed, is repro-
duced in Fig. 5(c). Rattler fractions of comparable mag-
nitude were also observed in Ref. [16] for η = α = 1.0.
Indeed, the trends shown in Fig. 5 closely mirror those
of Fig. 5 in Ref. [16] and seem to be fairly universal.
Furthermore, the rattler fraction variation with α shown
in Fig. 5(b) is reminiscent of the discontinuous jump in
small particle rattler behavior observed at the Furnas
peak in frictionless, bidisperse packings [3, 9]. In Sec-
tion III B, the implications of these results on the dis-
tribution of particles that participate in the mechanical
stability of the packing will be examined.

While these results show that the mean non-rattler co-
ordination is a constant, the exemplar packings depicted
in Fig. 1(b) suggest that the number of contacts per par-
ticle, Z(D), depends upon both particle diameter D and

the underlying distribution of particle sizes (see Ref. [22]
for a similar calculation for frictional particles). The
quantity Z(D) is calculated by binning particles by size
and computing the mean number of contacts per par-
ticle in each bin. Rattler particles are excluded from
this analysis to mitigate transient effects resulting from
their short-lived participation in contact pairs. Results
for λ = 50 are shown in Fig. 6. The figure demonstrates
the scaling of Z − 3, i.e., the mean excess number of
contacts over the three contacts required for mechani-
cal stability, plotted against (D/λ)2; plotted in this way,
the relationship is linear and corresponding linear fits
to data for large (D/λ)2 were computed (dashed lines).
Note that (D/λ)2 = 0.01 corresponds to D = 5. The re-
lationship Z − 3 ∼ D2 exhibits the same D2 scaling with
diameter as the particle surface area, and represents a
slightly faster scaling than was observed in Ref. [22] for
smaller, frictional particles. It is clear from the linear
fits in Fig. 6 that the prefactor decreases with increasing
α, an intuitive result given that fewer intermediate and
large particles than small particles can be placed in the
available solid angle of any central particle [10, 45]. From
Fig. 4(b), this exclusion of solid angle inherent to large-
large contact pairs has strongest significance for high α,
resulting in the lowest overall maximum per-particle con-
tact count. Linear fits also worked for both λ = 20 and
λ = 100 (not shown), though the prefactors generally
depended upon λ for α . 0.8.

The results in Fig. 6 are striking given that 〈Z〉nr is
approximately six, while Z(D) for the largest particles
is at least an order of magnitude larger. The inset of
Fig. 6 shows the fraction of non-rattler particles fc par-
ticipating in exactly c contacts, which is peaked at c = 4
and essentially independent of α. This low coordination
value is responsible for the deviations away from linear
scaling for small (D/λ)2. Note that this analysis dis-
tinguishes between the discrete contact count c and the
bin-averaged quantity Z(D). Similar results for fc were
reported in Ref. [15] for smaller size dispersity and dif-
ferent underlying particle size distributions. The range
3 ≤ c ≤ 10 encompasses between 90–95% of all non-
rattler particles for each α but only accounts for roughly
80% of 〈Z〉nr =

∑
c cfc. The remaining contributions to

〈Z〉nr come from the high, but rare, contact participation
counts of large particles.

B. Non-rattler particle distributions

Rattler particles contribute to the overall volume frac-
tion and density of the jammed packing, but have no
bearing on its mechanical stability. Large particles are
crucial to the force-bearing network, while sizable frac-
tions of the small particles are rattlers. This suggests that
the input particle size distribution differs from the dis-
tribution of particles in the force-bearing network. This
section examines how the shape of the input particle size
distribution P (D) dictates the resultant distribution of
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(b)(a) (c)

FIG. 5. (a) Mean coordination per particle including rattlers 〈Z〉 (filled symbols) and without rattlers 〈Z〉nr (open symbols)
for the indicated values of the maximum particle size, λ. (b) Fraction of rattler particles for the same systems. (c) Reproduced
α = 1.0 packing from Fig. 1(b) after removing rattlers.

FIG. 6. Mean excess number of contacts per particle than
are required for mechanical stability (Z = 3), as a function of
(D/λ)2 for the indicated α and λ = 50. Rattler particles are
omitted from these results. Dashed lines are linear fits to the
symbols of matching color. Inset: the fraction of non-rattler
particles fc participating in exactly c contacts.

non-rattler particles, Pnr(D), and is motivated by con-
sidering the volume fraction contributed solely by non-
rattler particles φnr, shown in Fig. 7. This measure is
akin to the mechanical void ratio in the geophysical lit-
erature [46, 47]. In contrast to the clear dependence of
the overall particle volume fraction φ on λ shown earlier
in Fig. 3, Fig. 7 shows that φnr is independent of λ (for
λ & 20) at high α. While not shown here, results for
α = 1.5 and α = 2.0 also collapsed for λ ≥ 8. In this

FIG. 7. Volume fraction φnr contributed exclusively by non-
rattler particles for the indicated λ.

shallow power-law limit (β → 0, α → 4.0), λ must be-
come irrelevant. As α grows, φnr gradually approaches
the equivalent monodisperse packing value with rattlers
removed, φmono

nr ; for the constant-pressure protocol and
averaged over five realizations each with 105 monodis-
perse particles, we obtained φmono

nr ≈ 0.629, compared to
the overall packing density φmono ≈ 0.639.

Several interesting trends are apparent for α → 0.3 in
Fig. 7. First, φnr levels off at low α, and second, the
plateau values steadily increase with λ. The λ ≥ 20 data
in Fig. 7 suggest that increasing λ may shift the collapse
of φnr to progressively smaller α. Since reducing α cor-
responds to increasing the relative abundance of small



9

FIG. 8. Distributions of non-rattler particles for the indicated
α and λ = 50. For each curve, the power-law behavior at large
D is unchanged from the initial particle size distribution, with
exponent β = α − 4. The limiting cases of such power-law
scalings are indicated.

particles compared to large particles, a plateau in φnr

implies that there may be diminishing returns to adding
more small particles as most become rattlers. However,
adding smaller and smaller particles, i.e., increasing λ,
does lead to denser force-bearing networks in the plateau
regime. It is interesting that while α ∼ 0.55 − 0.6 lead
to the densest overall packings, the force-bearing com-
ponents of such packings are less dense than those for
smaller α. In most cases, the volume fraction lost when
rattlers are removed, φ−φnr, is smaller than 0.1, with the
largest shifts occurring for α = 1.0. This is an indication
that while rattlers may constitute a large fraction of the
total number of particles, they typically only account for
a small fraction of the total particle volume.

The removal of rattler particles permits the identifica-
tion of the non-rattler particle size distributions Pnr, the
distribution governing the force-bearing backbone. Re-
sults for Pnr obtained using λ = 50 are shown in Fig. 8.
For each α, the tail of the distribution maintains its orig-
inal power-law character, while the probability of retain-
ing small particles is reduced, with substantial depen-
dence on α. As α → 1.0, the most probable remain-
ing particle diameters are close to

√
λ (e.g., refer to the

α = 1.0 packing image in Fig. 5(c)), while for α→ 0.2 it
is clear that the smallest non-rattler particles remain the
most probable. Indeed, aside from the exponent of the
power-law tail, only a small amplitude change for D ∼ 1
differentiates α = 0.2 from α = 0.55, the densest over-
all packing. The results shown in Fig. 8, taken together
with the context given by Fig. 5(b) and Fig. 7, imply that
high-α packings do not derive mechanical stability from
small particles, while particles of all sizes are necessary

to stabilize low-α packings.
The collapse of φnr with increasing λ for high α in-

dicates that in such cases the underlying distributions
of non-rattler particles should have similarities. Rather
than considering the non-rattler particle size distribu-
tions themselves, this analysis focuses on the fraction of
non-rattler particles F (x) that are larger than x. This
quantity has the advantages that it varies monotonically
from 1 to 0, and Eq. (2) dictates how it should scale
with D away from the endpoints. To compare data for
different λ on an equal basis, the particle diameters are
normalized by λ such that the scaled diameters fall in
the domain 1/λ ≤ x = D/λ ≤ 1. Results for F (D/λ) are
shown in Fig. 9 for several α and a wide range of λ. For
each data set, F (D/λ) is unity until the smallest non-
rattler particle is encountered, beyond which F (D/λ)
drops to 0 in a manner that exhibits the expected power-
law behavior over narrow ranges of D/λ and accelerates
as D/λ → 1. The power-law regime broadens as α in-
creases, consistent with the results depicted in Fig. 8.

The most striking result shown in Fig. 9 is that F (D/λ)
is identical for all λ for α = 1.5, signifying that the shape
of the non-rattler particle size distribution is constant
with respect to increases in λ beyond λ = 8. Similar re-
sults were obtained for larger α (not shown). However, as
α falls to 1.0 and lower, data for the smallest λ increas-
ingly deviate from the other curves until all data sets are
clearly distinct for α . 0.7. In cases where F (D/λ) col-
lapses, the constant value of D/λ determining the onset
of F < 1 means that there is a reduction of the effective
width of the non-rattler particle size distribution, i.e.,
λ → λ∗, with λ∗ ≤ λ. This results from the removal of
rattler particles with diameters smaller than a threshold
D∗min > Dmin = 1. In what follows, the onset value is
referred to as the magnification, M ≡ 1/λ∗ = D∗min/λ,
which can be estimated for different α. Specifically, us-
ing the λ = 100 data shown in Fig. 9, M is determined
by extracting the onset value of D/λ for which F < 0.99.
Note that there is ambiguity in the precise determination
of M based on the threshold F value—for example, for
α = 1.5, both the λ = 8 and λ = 10 data nearly collapse
on top of the larger λ data despite being smaller than
the nominal λ∗ ≈ 10.5. However, our tests showed that
changes in the estimated magnifications are sharper for
higher F thresholds, and the estimates ofM we obtained
for our threshold choice are sufficient for the discussion
here.

The estimated values ofM are given in the correspond-
ing panels of Fig. 9 for α ≥ 0.7 and indicated with dashed
black lines. In addition, an inset plottingM(α) estimated
from the λ = 100 data is shown in the α = 0.6 panel, and
includes data for several α that are not shown in Fig. 9.
In essence, the definition of M permits us to determine
a criterion, given by 1/λ .M , for which the non-rattler
particle size distribution is independent of λ. For systems
satisfying this criterion, particles with D < D∗min are al-
most always rattlers. Moreover, D∗min replaces Dmin = 1
as the unit of length of the system; as an intensive quan-
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FIG. 9. Fraction of non-rattler particles with diameters larger than D/λ. The dashed black lines and printed labelsM mark the
value of D/λ for which F (D/λ) = 0.99 as estimated from the λ = 100 data. The inset to the upper left panel plots computed
values of M for 0.7 ≤ α ≤ 2.0 that were obtained for λ = 100. Note that M was computed for several additional values of α
for which we omit plots of F (D/λ) data.

tity, φnr is also independent of λ when M is constant.
Note that since the tail of the non-rattler particle size
distribution is unchanged from the original power law, it
is still possible to collapse F for each α, provided that
a λ-dependent rescaling factor is used. In such cases,
however, φnr does not collapse.

To help contextualize these results, the two separate
limits of M = 1 and M = 1/λ can be defined. The
former is relevant for high-α systems that approach the
limit of monodisperse systems, which is defined by a sin-
gular length scale set by the particle diameter. The latter
occurs in cases where the smallest particles are necessary
for ensuring mechanical stability of the packing. From
the trend depicted in the inset of Fig. 9, the M = 1 limit
is likely slowly approached for α > 2.

The results in Fig. 9 show that the force-bearing com-
ponent of the packing is invariant with respect to changes
in λ provided that the α-dependent scale λ∗ is exceeded.
From this standpoint, no additional benefit is gained by
adding successively smaller particles once λ ≥ λ∗. How-
ever, the overall properties and structure of the pack-
ing, including the packing density, still depend on the

full particle size distribution. Indeed, the relatively low
density of the force-bearing component suggests that the
rattler particles play a significant role in determining the
final configuration, perhaps by restricting the intermedi-
ate configurations that the force-bearing component can
adopt. Intriguing avenues for possible future study in-
clude successive, repeated jamming and removal of rat-
tler particles to isolate the limiting particle size distribu-
tion, and in designing particle size distributions for use
in constructing the densest possible packings that can be
obtained via compaction protocols. In addition, DEM
simulations of frictional and/or cohesive particles with
large size dispersity have not yet been systematically per-
formed, but are crucial to connecting simulation results
with real-world applications.

IV. CONCLUSION

We performed large-scale 3D DEM simulations to
study the packing properties of power-law disperse spher-
ical particles. This work considered a wide range of
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power-law particle size distributions, varying the range of
particle sizes and the exponents characterizing the power
laws. To our knowledge, we have simulated and studied
particle size ratios larger than any other 3D DEM study
to date.

At fixed particle size ratio, the results showed that the
densest overall packings were obtained for power-law par-
ticle size distributions that achieved mechanical stability
while balancing contacts between pairs of large-large and
large-intermediate particles with pairs of small-small and
large-small particles. Distributions containing too many
large particles do not need small particles for mechanical
stability, and so most small particles were rattlers. Con-
versely, distributions with too many small particles pro-
duce packings that are dominated by large-small contact
pairs, and so do not generate contacts between pairs of
particles with diameters in the intermediate size classes.
Further, despite the strong dependence of the mean coor-
dination and rattler fraction on the CVF exponent, the
mean coordination of non-rattler particles was close to
the isostatic value, while the mean number of contacts
per non-rattler particle scaled quadratically with parti-
cle diameter.

Considering only non-rattler particles, volume frac-
tions of non-rattler particles for input distributions with
high α were independent of size dispersity for λ larger
than an α-dependent cutoff value λ∗, while for low α the
non-rattler volume fraction was insensitive to α. In the
former case, the fraction of non-rattler particles with nor-
malized diameters larger than D/λ was independent of
λ, provided that λ ≥ λ∗. This result signifies a separate
effective length scale of the force-bearing network, as de-
termined by α. For the latter case, the results indicated
that increasing the proportion of small particles has lit-
tle effect on the force-bearing component of the packing,
while adding smaller particles tended to improve both
the overall and non-rattler packing densities.

The results presented here provide insight into the
internal microstructure of large size dispersity particle
packings and broaden our understanding of the relation-
ship between features of the overall packing and its force-
bearing backbone. In turn, the understanding gleaned
from studying these systems may provide a pathway to
optimizing the properties, mechanical and otherwise, of
designed particle packings.
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Appendix: Multi-neighboring details and
performance

To simulate systems with large disparity ratios λ in
particle sizes, we leveraged contact detection algorithms
optimized for highly disperse systems. In this Appendix,
we focus on dense, homogeneous systems and derive the
leading order computational costs in λ for three meth-
ods. First, we describe a typical approach for monodis-
perse systems [28, 29]. Next, we consider two additional
methods designed for highly disperse systems: an older
method by in ’t Veld et al. [30] and a more recent tech-
nique by Ogarko and Luding [31] and Krijgsman et al.
[48] that was extended and ported to LAMMPS for the
first time by Stratford et al. [38] and Shire et al. [32]. Our
arguments will highlight a fundamental advantage of the
newest method. A brief description of each approach is
included although further details can be found in their re-
spective references. Finally, we briefly describe changes
in our implementation of the newest method in LAMMPS
aimed at continuous particle size distributions and pro-
vide some benchmark data for the power-law-distributed
systems studied in the main text.

Before calculating contact forces, particle-based sim-
ulations often construct a Verlet neighbor list which
contains all pairs of interacting particles [28, 29]. In
LAMMPS, a link-cell method is used where particles are
spatially binned onto a grid with a bin size ∆ in a pro-
cess that takes O(NT) time where NT is the total number
of particles. Particles use this binning to efficiently gen-
erate a list of potential neighbors consisting of particles
within their own bin and in other nearby bins that are
within the interaction distance. This set of bins that
need to be searched is known as a stencil. A distance is
then only calculated between these candidate neighbors
as opposed to all ∼ N2

T pairs of particles in the system.
In the default algorithm in LAMMPS, labeled default,
∆ is approximately half of the maximum interaction dis-
tance such that the stencil only includes a small number
of adjacent bins [49]. This method is very efficient for
nearly monodisperse systems.

To illustrate how this algorithm fails at large λ, we
consider a d-dimensional, bidisperse packing of NL large
particles and NS small particles with diameters DL and
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FIG. 10. Relative cost of constructing a neighbor list com-
pared to a single force evaluation for 3D binary packings near
jamming with fS = 0.5 and the indicated values of λ and NL

using the default (green), multi/old (red), and multi (blue)
algorithms. Tests were run on a single processor. The dashed
line represents λ3 scaling. Note that typically there are many
force evaluations between neighbor list builds in LAMMPS
and this reported value does not represent a typical ratio over
many timesteps. For perspective at λ = 200, building a sin-
gle neighbor list took less than 9 seconds using multi but over
72 hours using multi/old. Builds were impractically long to
measure using the default method at λ > 100 or multi/old at
λ > 200.

DS, respectively, and a volume fraction of small particles
fS ≡ NSD

d
S/(NSD

d
S + NLD

d
L). As in the main text, one

can treat DS = Dmin = 1 such that DL/DS = λ. We
mainly focus on a fixed volume fraction 0 < fS < 1 such
that NS = NLλ

dfS/(1 − fS) and NT ≈ NS � NL at
large λ, but other cases are briefly discussed at the end
of the Appendix. In the default method, the bin size ∆
is set by DL such that each bin contains Nparticles/bin ∼
Dd

L/D
d
S = λd particles and the stencil only contains a fi-

nite number Nbins/stencil of nearby bins. Therefore, there
are NTNparticles/binNbins/stencil candidate neighbors and
calculating their distances is O(NLλ

2d). This cost is
greater than binning particles and dominates neighbor
list construction for large λ.

To put this scaling in context, one can compare it to
the total number of contacts in the system or the com-
putational cost of calculating forces. In a jammed sys-
tem, each small particle can only have a finite number
of contacts independent of λ while each large particle
can have up to ∼ Dd−1

L /Dd−1
S = λd−1 contacts. There-

fore, the total number of contacts in the system scales as
NS + NLλ

d−1 ∼ NS ∼ NLλ
d. This implies that the cost

to build the neighbor list using the default method dom-
inates the total simulation time and simulations become

FIG. 11. Time in seconds to build a single neighbor list per
particle as a function of the number of collection intervals for
jammed packings of power-law-distributed grains for the in-
dicated λ. Calculations were performed on a single processor.
Open symbols: β = 3.0 (α = 1.0); filled symbols: β = 3.6
(α = 0.4).

prohibitively expensive with increasing λ. This disparity
is seen in Fig. 10 for d = 3 and fS = 0.5 where the ratio
of time to construct the neighbor list versus the time to
calculate forces grows as λ3.

To reduce costs, an alternate algorithm was imple-
mented in LAMMPS by in ’t Veld et al. [30]. We re-
fer to this algorithm by its current name in LAMMPS,
multi/old. The multi/old method adjusts spatial binning
based on a particle’s type, a categorization of particles
that is used to set interactions parameters including the
distance cutoff for non-DEM particles. In this approach,
the size of a bin is set by the smallest interaction length
DS such thatNparticles/bin is constant and no longer grows
with λ. Therefore, a different stencil is needed for each
combination of particle types. These stencils extend out
to the order of DL/DS = λ bins for large-large pairs,
(DL + DS)/DS ∼ λ bins for large-small pairs, and a
constant number of bins for small-small pairs. While
this method reportedly accelerates highly disperse simu-
lations up to a factor of 100 for λ = 20 [30], it does not
address the fundamental scaling with λ due to the search
for large-small neighbors. Each small particle searches
Nbins/stencil ∼ (DL/DS)d = λd bins within the large-
small stencil to find potential large neighbors, where most
bins will not contain a large particle, such that O(NSλ

d)
or O(NLλ

2d) operations are still performed. This scal-
ing, with a smaller prefactor than default, is seen in Fig.
10. Practically, we find simulations become intractable
around λ of order 10.

To address this shortcoming, an additional twist de-
scribed in Refs. [31, 38] uses a hierarchy of binning
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grids, one for each particle type in the initial LAMMPS
implementation by Stratford et al. [38]. This method
is referred to as multi, reflecting its current name in
LAMMPS, and includes a separate binning grid for
each particle type with a bin size ∆ set by the same-
type interaction distance. In a binary system, ∆ is
set by DS for small particles and DL for large parti-
cles such that Nparticles/bin does not depend on λ, sim-
ilar to multi/old. The key difference is that each par-
ticle looks for same-type neighbors using its own set
of bins while only small particles look for large neigh-
bors using the large bins. Large particles do not search
for small neighbors. Therefore, Nbins/stencil is also in-
dependent of λ and construction costs are proportional
to NTNparticles/binNbins/stencil ∼ NT ∼ NLλ

d, equivalent
to the force calculation. This scaling is demonstrated in
Fig. 10 where the time to construct a neighbor list nor-
malized by the time to calculate forces has no significant
dependence on λ up to λ = 300 for multi. The only factor
preventing simulations at larger λ was the growing num-
ber of particles in the system, already reaching NT = 27
million at λ = 300.

Here, we considered the case of fixed fS although one
could consider a value of fS that grows or shrinks with
λ. If fS grew with λ approaching the limit of unity,
then NT ∼ NS would grow faster than λd, e.g., as λd+ε.
For multi, Nparticles/bin and Nbins/stencil would still both
be finite such that neighbor costs would still grow as
NT ∼ λd+ε. This increase in cost would mirror a increase
in cost to calculate forces simply due to having more par-
ticles. In contrast for default, Nparticles/bin would still
scale as λd such that neighbor list construction would
be O(NTλ

d) or O(λ2d+ε) and still dominate simulation
time. In the opposite limit, one could consider a shrink-
ing fS exemplified by the extreme case of NS = 1 where
large particles effectively only have a finite number of
contacts with other large particles. Again, Nparticles/bin

and Nbins/stencil would be finite in multi but now only
large-large look ups would be relevant such that building
a neighbor list would be O(NL), equivalent to calculat-
ing forces. For default, the one small particle would be

irrelevant and building the neighbor list would resem-
ble the O(NL) process for a purely monodisperse system,
identical to the scaling of multi although with reduced
overhead. Therefore, in all of these cases, the scaling of
multi will always match that of a force evaluation and will
either scale better than or equivalent to default, although
prefactors depend on the specific system.

For continuous particle size distributions, increasing
the number of collection intervals with increasing λ gen-
erally improves performance as particles are binned using
a bin size ∆ closer to their actual diameter. These sav-
ings grow until the overhead of having additional collec-
tion intervals exceeds the benefit. This is seen in Fig. 11
where the cost of neighbor list construction is plotted
as a function of the number of linearly-spaced intervals
for a variety of jammed systems with different power-law
size distributions. The optimal number of bins and their
spacing ultimately depends on the specific system. It is
worth noting that as the optimal number of collection in-
tervals continues to grow with λ, the computational costs
of building a neighbor list could begin growing faster than
the force evaluations with λ as more binning grids need
to be created and searched. Practically, we have not yet
found this to be a limitation, particularly since the op-
timal number of bins only reaches ∼ 10 for the systems
considered here. Similar studies on the optimization of
power-law-distributed particle sizes were also performed
in Ref. [48].

For this work, we expanded the original multi imple-
mentation of Stratford et al. [38] to fully integrate it with
LAMMPS and added the method to the public distribu-
tion of LAMMPS. As the particle type in LAMMPS is
intended to represent material properties such as mod-
uli or friction coefficients and not necessarily the size of
a particle, we also generalized their implementation and
provided the option for users to select an arbitrary set of
particle size intervals or collections independent of parti-
cle types. This approach more closely reflects the original
discussion of the method by Ogarko and Luding [31] and
helps streamline optimization of neighbor list construc-
tion for continuous particle size distributions.
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