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Abstract
Motivation: Recent initiatives for federal grant transparency allow direct knowledge extraction from large volumes of grant texts, serving as a
powerful alternative to traditional surveys. However, its computational modeling is challenging as grants are usually multifaceted with constantly
evolving topics.

Results: We propose Turtling, a time-aware neural topic model with three unique characteristics. First, Turtling employs pretrained biomedical
word embedding to extract research topics. Second, it leverages a probabilistic time-series model to allow smooth and coherent topic evolution.
Lastly, Turtling leverages additional topic diversity loss and funding institute classification loss to improve topic quality and facilitate funding insti-
tute prediction. We apply Turtling on publicly available NIH grant text and show that it significantly outperforms other methods on topic quality
metrics. We also demonstrate that Turtling can provide insights into research topic evolution by detecting topic trends across decades. In sum-
mary, Turtlingmay be a valuable tool for grant text analysis.

Availability and implementation: Turtling is freely available as an open-source software at https://github.com/aicb-ZhangLabs/Turtling.

1 Introduction

Advances in machine learning algorithms and the recent ini-
tiatives for federal grant transparency have allowed direct
knowledge extraction from large volumes of publicly avail-
able online databases, potentially serving as a powerful alter-
native to traditional survey-based technologies. As a result, it
is now possible to directly obtain quantitative and less biased
grant text information that can broadly benefit scientific
investigators, policy analysts, and funding agencies. Here, we
aim to comprehensively navigate the funding landscape by ex-
ploring 466 730 public grant texts over the past 36 years from
the National Institute of Health (NIH), the world’s largest
funding agency for biomedical research.

Computational modeling on NIH grant text data can be
challenging for two reasons. First, NIH grant texts are usually
multifaceted because they can be individually or jointly
awarded from 27 distinct institutes/centers (ICs) with overlap-
ping priorities. Second, research topics have evolved quickly
over the past decades as new technologies or health challenges
have appeared (e.g. HIV and COVID pandemics in the 1980s
and 2020s).

Previous researchers have leveraged topic models on NIH
grant text to discover patterns reflecting latent research topics
(Talley et al. 2011). Topics learned from their methods are ro-
bustly correlated with specific NIH institutes, providing a ba-
sis for the discovery of interrelationships among biomedical
concepts from NIH grant abstract documents. Later on, other

researchers have used a labeled topic model to take the insti-
tute category information into consideration (Park et al.
2016). Their work showed how text classification techniques
can be used to analyze funding patterns of a specific institute.
However, two problems limited the application of their mod-
els. First, training NIH data from scratch cannot capture rare
word distributions. Second, while research topics have
changed dramatically over the past 20 years, authors there
used a static model that cannot capture temporal evolution in-
formation of research topics. Recently, some new topic
modeling methods have been developed to capture topic
trends in the general NLP area (Blei et al. 2003, Blei and
Lafferty 2006, Dieng et al. 2019, 2020). Specifically, they use
pretrained word embeddings to improve their topic quality
and probabilistic time series to allow topics to vary smoothly
over time. Nevertheless, it is challenging to directly apply
them to NIH grant data due to its rare biomedical terminolo-
gies and complicated institute category information.

To tackle these challenges, we propose Turtling, a time-
aware neural topic model with multitask losses, which
encourages diverse topics and IC classification. Turtling has
three unique characteristics compared with existing models.
First, Turtling extracts topics from biomedical word embed-
ding space, lessening the word scarcity problem. Second, it
leverages a probabilistic time-series model, which allows
smooth and coherent topic evolution. Lastly, Turtling lever-
ages additional topic diversity (TD) loss and IC classification
loss to further improve extracted topic quality and topic
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correlation with specific NIH institutes. The losses above con-
tribute to the extraction of diverse and high-quality topics
that contain IC-specific information.

To verify its applicability, we have collected the Grant data-
set, which includes 466 730 grant abstract documents and
their corresponding ICs across 36 years (1985–2020). We
tested the performance of Turtling against baseline methods
on the extracted topic quality and IC prediction accuracy us-
ing the Grant dataset. Our experimental results showed that
our method significantly outperformed baselines on topic co-
herence (TC), diversity, and perplexity. Furthermore, we used
our model to detect the topic trend across decades, providing
valuable information on the evolution of research interests in
the biomedical field. We then leveraged the topic proportions
of a grant to predict its best-suited IC for success. We also
found that grants from the same IC share similar topics in our
visualizations as their topic proportion vectors were closer to
each other, allowing for more interpretable predictions of IC
selection given the grant abstract. In summary, our method
provides an unbiased way for retrieving meaningful topics in
NIH grants and its relation with NIH ICs.

2 Methods
2.1 Dataset

We collect 466 730 grant abstract documents from the NIH
RePORTER website offered by the NIH to construct the
Grant dataset (https://reporter.nih.gov/). We download the
raw text data from the RePORTER website updated on July
26, 2022. The documents are across 36 years from 1985 to
2020. Each document is submitted to a certain IC. Figure 1
shows the number of new grants and new ICs every year.
Among all ICs in our dataset, there are 62 that have been ac-
tive for more than 10 years. As many grants receive funding
for multiple years, we only include grants that received sup-
port for the first time.

We preprocess the Grant dataset by filtering out stop words
and words with extremely high or low frequency. Specifically,
we remove words that have a high frequency, appearing in
more than 80% of a document, as well as words that have a
frequency of less than 10 times in a document. We then use

the Wordnet lemmatizer in NLTK to get the stem for each
word (Bird and Loper 2004). After preprocessing, we further
remove documents that contain less than 10 words. In total,
we obtained a vocabulary with 35 108 distinct words.

2.2 Turtling’s topic modeling with word

embeddings

As shown in Fig. 2, Turtling adopts recent advances in proba-
bilistic generative models of documents, such as latent
Dirichlet allocation and word embeddings (Blei et al. 2003,
Dieng et al. 2020). Specifically, Turtling leverages vectorized
word embeddings to calculate the word distribution for each
topic and assumes that the semantically related word embed-
dings and topic embeddings are closer to each other in the em-
bedding space (Mikolov et al. 2013a,b).

As shown in Table 1, we use a vector dtj 2 RV to denote the
bag of words (BOW) representation for the jth document in year
t, where V is the size of the vocabulary and t represents a spe-
cific year. We then use Dt 2 RNt�V to denote the concatenation
of all Nt vectors dtj ð1 � j � NtÞ, where Nt is the number of
grants for year t. Therefore, Dt is a matrix that contains BOW
information for all of the grant documents in year t. We then
use Dt ¼ fD1;D2; . . . ;DTg to denote our complete dataset,
where T stands for the total number of years. For each BOW
vector d 2 Dt, we assign a corresponding label yd 2
f1; 2; . . . ;Mtg to the document based on the IC it was submitted
to. Mt denotes the total number of ICs at a single year t.

We first consider the modeling process on a single year
dataset. We define K topics bið1 � k � KÞ, where each topic
is a word distribution over the vocabulary, and K topic
embeddings akð1 � k � KÞ with the same dimension as
word embeddings. The word embedding q 2 RL�V contains
all of the words in the vocabulary, and L is the dimension of
the embedding. We then calculate word distribution for each
topic in Equation (1) as follows:

bk ¼ Softmax qTak

� �
1 � k � Kð Þ; (1)

where Softmax zð Þi ¼ eziP
j
e

zj
: In this way, it calculates the gen-

erative probability for each word in proportion to the cosine

Figure 1. Statistics of the grant dataset. Left panel ss the number of new grants every year from 1985 to 2020, and right panel shows the number of ICs

every year.
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similarity between each word embedding and the topic em-
bedding. In the document generation process, we sample each
word from its corresponding topic using this generative
probability.

Then, we further consider a topic proportion vector hd with
dimension K for each document, and each element of hd rep-
resents the probability of that topic to appear in document d.
Formally, the generative process is as follows:

• Sample topic proportion hd � LNð0; IÞ
• For nth word wdn in document d

a) Sample topic assignment zdn � Cat hdð Þ 1 � zdn � Kð Þ
Sample word wdn � Catðbzdn

Þ

where LN denotes the logistic normal distribution and Cat
denotes the categorical distribution (Blei and Lafferty 2007).
zdn is an integer that takes value from 1 to K.

2.3 Time-aware topic modeling

We then extend the method mentioned above to evolve dy-
namically on a multiyear dataset by allowing topics to vary

smoothly over time. Within this model, the number of topics,
denoted as K, remains consistent throughout all years, though
the topic embeddings for each year exhibit slight variations
compared to those from preceding years. Formally, for each
time point t, Turtling defines a time specific topic embedding
at

k 2 RL. Similarly, it calculates the time-specific word distri-
bution bt

k 2 RV for each topic with the following formula:

bt
k ¼ Softmax qTat

k

� �
1 � k � Kð Þ: (2)

Different from the method in Section 2.2, the time-specific
topic distribution for each document ht

d is generated from a
distribution that also evolves over time:

ht
d � LN gt; �

2I
� �

; (3)

where � is a hyperparameter of the model and gt is a latent
variable that defines the prior mean of topic proportion at a
specific time t. We assume that every gt is a vector with di-
mension K generated by a random walk starting from gt�1

with Gaussian noise d, so the conditional distribution of gt

given gt�1 is as follows:

p gtjgt�1ð Þ ¼ LN gt�1; d
2I

� �
: (4)

Similarly, we assume the topic representation also evolves
by random walk with Gaussian noise c:

p at
k

� ��at�1
k Þ ¼ LN at�1

k ; c2I
� �

: (5)

At time step t ¼ 0, we assume both a0
k and g0 follow

Gaussian distribution Nð0; IÞ. Thus, the generative process of
Turtling can be summarized as follows:

1) Sample initial topic embeddings a0
k � Nð0; IÞ

2) Sample initial topic proportion mean g0 � Nð0; IÞ
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Figure 2. Flowchart of Turtling. Turtling leverages time-aware graphical topic model to extract high quality topics from grant documents across several

years. The extracted topics can be used for several downstream tasks such as topic trend analysis and IC classification.

Table 1. List of symbolsa.

Symbol Remark

dtj BOW vector for the jth document in year t
Dt Document dataset at time t
hd Topic proportion of document d
bk Word distribution for topic k
ak Embedding for topic k
gt Prior of topic proportion at time t
zdn Topic assignment for nth word in document d
wdn nth word in document d
Cat Categorical distribution
LN Logistic normal distribution

a We list the important symbols and notations used in this article and
briefly describe each symbol.
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3) For time step t ¼ 1, 2, . . ., T:
a) Sample topic embeddings at

k � LNðat�1
k ; c2IÞ

b) Sample topic proportion mean gt � LNðgt�1; d
2IÞ

c) Calculate bt
k ¼ SoftmaxðqTat

kÞ
4) For each document d 2 Dt:

a) Sample topic proportion hd � LNðgt; �I
2Þ

b) For each word, wdn in document d:
i) Sample topic assignment zdn � CatðhdÞ
ii) Sample word wdn � Catðbt

zdn
Þ

Since Turtling learns topics in an embedded space, it can as-
sign topics to words that do not appear in the training corpus
as long as their embedding is given.

2.4 Inference of topic proportion and topic

assignment

Given a word wdn in document d at time t, we then calculate
the marginal likelihood of wdn to optimize the parameters. As
we do not know the topic proportion hd and topic assignment
zdn in the generative process, we have to marginalize both la-
tent variables. We first marginalize the topic proportion hd, so
the log likelihood p wdnjat ;qð Þ is defined as

p wdnjat;qð Þ ¼
Ð

p hdð Þp wdnjhd; at; qð Þdhd: (6)

We then marginalize topic assignment zdn to compute the
conditional distribution pðwdnjhd; at; qÞ:

p wdnjhd; at;qð Þ ¼
XK

k¼1

p zdn ¼ kð Þp wdnjbt
zdn

� �
: (7)

After getting the log likelihood for each word, we then get
the log likelihood loss function over parameter at and q:

Llk a;qð Þ ¼
XT

t¼1

X
d2Dt

X
w2d

log p wjat; q
� �� �

: (8)

We use amortized variational inference to approximate the
posterior distribution of topic proportion hd for document d
(Kingma and Welling 2013). Particularly, we use neural net-
works l and h that take document d as input to predict the
mean and variance of a Gaussian distribution. This Gaussian
distribution is then used as the approximated posterior distri-
bution of hd. Formally,

q� hdjdð Þ ¼ LN l� Dð Þ;r� Dð Þ
� �

; (9)

where � denotes the parameters of the inference neural
networks. We leveraged a recurrent neural network as the
inference model q in our implementation. This approximate
distribution can be leveraged to compute the evidence lower
bound (ELBO) of the marginal log likelihood. ELBO is a
function of the generative model parameters a;q and the
variational parameters �:

LELBO a;q; �ð Þ ¼
XT

t¼1

X
d2Dt

�X
w2d

Eq log p wjat; q
� �� �� 	

:

�KLðq�jp hdð ÞÞ

 (10)

We then optimize LELBO with regard to parameters
ða;q; �Þ using minibatch Monte Carlo approximation.

2.5 Topic diversity loss

Inspired by the multitask learning method, we optimize two
additional loss terms mentioned in this section and Section
2.6 (Ruder 2017). We propose a TD loss to make extracted
topics more informative. This loss encourages each topic rep-
resentation to be far away from each other in the training pro-
cess. Formally,

LTD ¼
XT

t¼1

X
1� i;j� k

Dis at
i ; a

t
j

� �
; (11)

where Disðx1; x2Þ can be any distance metric. Specifically, we
use Euclidean distance in our model.

2.6 IC classification loss

We propose an IC classification loss to let inferenced topic
proportions of each document contain information for IC pre-
diction. In the training stage, a fully connected neural network
FðxÞ takes the inferenced topic proportion hd as the input and
outputs a probability for each IC regarding which grant docu-
ment might belong to it:

LIC ¼
XT

t¼1

X
d2Dt

CE F hdð Þ; yd

� �
; (12)

where CE represents the cross-entropy loss. We then calculate
the final loss function by adding up all three losses:

L a;q; �ð Þ ¼ LELBO þ k1LTD þ k2LIC: (13)

We optimize this loss function with gradient descent to
compute the optimal topic representations a, word embed-
dings q, and variational parameters �.

2.7 Evaluation methods

We expect a good topic model to generate topics that are in-
terpretable and informative. Moreover, these topics should be
capable of reconstructing the original word distribution.
Therefore, we evaluate the performance of our topic model
using metrics including TC, TD, and test perplexity (Rosen-
Zvi et al. 2004, Mimno et al. 2011).

TC measures the similarity of words drawn from a topic,
indicating whether the topic is semantically interpretable.
Formally, we compute TC for a topic by selecting the top-p
words from the topic and averaging over the similarity be-
tween any pair of words:

TC ¼ 1

p2

X
1� i;j� p

f wi;wjð Þ; (14)

where wi;wj are drawn from the top-p words of a topic and f
is a similarity measure. In this article, we choose three differ-
ent functions for f : pairwise comparison based on context
window (CA), Fitelson’s confirmation measure (CP), and nor-
malized pointwise mutual information (NPMI) (Aletras and
Stevenson 2013, Röder et al. 2015).

TD penalizes the repetitive or similar topics by calculating
the repetitions of topic words. We use the proportion of
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unique top-p words in topics to compute TD in our article.
Formally,

TD ¼ Nu

K� p
; (15)

where K is the number of topics and Nu is the number of
unique words.

Perplexity measures the likelihood of a topic model on a
held-out test dataset.

2.8 Experimental settings

We utilize BioWordVec as the word embeddings for our
method (Zhang et al. 2019). BioWordVec encompasses 200-
dimensional word embeddings trained on biomedical text
with a biomedical controlled vocabulary, which are more suit-
able to NIH grant abstract text. Note that the parameters of
the word embedding layer were also updated during the train-
ing process.

We use 85% of the Grant dataset for training, 5% for vali-
dation, and 10% for testing. For the purpose of topic quality
evaluation and trend analysis, we trained Turtling with a
topic number of K¼ 50. We set the learning rate of Turtling
to be 0.001 with a small weight decay. We set the batch size
to be 1024 and the dropout rate to be 0.1. We set the hyper-
parameters k1 and k2 in Equation (13) to be 1 and 0.5. We set
the hyperparameters �; d; and c in Equations (3), (4), and (5)
to be 0.01. We trained our model for 500 epochs on an
Nvidia RTX 3090 GPU. We tested different choices of hyper-
parameters K; �; d; and c to select the best value above.
Results for hyperparameters tuning are shown in
Supplementary Fig. S1.

In Section 3.4, we leveraged Turtling for IC classification.
Specifically, we leveraged the topic proportion vector as the
input feature to a random forest classifier, which is lighter
and more interpretable compared to models using entire
documents as input. For a fair comparison, we applied the
PCA method to the BOW representation of each document
with the same output dimension as the number of topics. We
also trained a DETM model and extracted topic proportions
as input features. Here, we selected 20 as the number of
topics. As sometimes, we expected the model to predict sev-
eral possible IC selections, we computed the top-5 accuracy as
well as the top-1 accuracy. We also tested the performance of
a neural network classifier instead of a random forest classi-
fier and the results are shown in Supplementary Fig. S2.

3 Results

Here, we applied Turtling on the Grant dataset and evaluated
its performance on the extracted topic quality and IC classifica-
tion accuracy, as discussed in the following sections. In Section
3.1, we evaluate the performance of our model and compare it
with baseline methods on several topic quality metrics, demon-
strating that Turtling improves the quality of extracted topics. In
Section 3.2, we leverage the topics extracted by Turtling from
the Grant dataset to analyze the research topic trend in recent
years. In Section 3.3, we create a topic heatmap and the topic hi-
erarchy to intuitively show the correlation between extracted
topics. In Section 3.4, we use the topic proportions as an input
feature to predict IC labels on the test dataset, indicating that
topics extracted by Turtling are strongly correlated with the se-
lection of NIH institutes.

3.1 Turtling improves topic quality from NIH grant

text

We applied Turtling on the Grant dataset and benchmarked
its performance from three different aspects. First, we com-
pared the baseline model DETM (Dieng et al. 2019) and our
model using TC (CA, CP, and NPMI), TD and tested perplex-
ity described in detail in Section 2.7. We also evaluated an
ETM model on 1 year of data without time information
(Dieng et al. 2020). As shown in Table 2, Turtling outper-
formed DETM on all metrics, especially in TD and CP.
Furthermore, Turtling achieved comparable topic quality
results with the static topic modeling method ETM. Note that
ETM was evaluated on a single-year dataset which is much
smaller than the complete dataset than the other two methods
used, as ETM cannot capture the dynamic evolution of topics.
We also compared Turtling with a nongenerative topic
modeling method, BERTopic (Grootendorst 2022). Results
are shown in Supplementary Table S1 and Turtling also
achieved competitive results on TC and TD.

3.2 Turtling highlights dynamic research topic

changes over the past decades

As shown in the right part of Fig. 3, we visualized the genera-
tive probability for some words with high generative proba-
bility in four example topics from 1985 to 2020. Note that in
this plot, we normalized the generative probability for each
keyword by setting the generative probability of this word in
1985 as 1 so that we can focus on the developing trend for
each keyword across different years.

First, we observed clear trends of research topic and word
distribution across years from our Turtling results. For in-
stance, “immune” and “vaccine” (Topic 1) related research
has been increasingly attracting research attention within
Topic 1 since 1985 as shown in Fig. 3a-2. Furthermore,
within Topic 2, breast cancer is one of the top increasing
words, indicating significantly expanded funding opportuni-
ties in the past 20 years under this topic, as shown in Fig. 3b-
2. Similarly, mitochondrial and brain-related also research
topics demonstrated a noticeable popularity gain in recent
years. We further show the evolutionary trend of each topic
of a 20-topic Turtling model in Supplementary Fig. S3.

Next, we showed the temporal evolution of example words
for biomedical research topics. For each of the most popular
topics mentioned above, we listed some examples of top words
in 1985, 1995, 2005, and 2015. To intuitively show the distri-
bution of each word, we generated wordcloud for each topic at
different time points. In wordcloud plots, larger fonts of words
represent a higher generative probability of that word. The visu-
alization results are shown in the left part of Fig. 3.

Furthermore, we observed the keywords for each topic
from the wordcloud across years. In 1985, “blood” was a ma-
jor concern in Topic 3 which contains vascular-related

Table 2. Topic quality resultsa.

Method CA CP NPMI TD Perplexity

ETM 0.13 0.17 0.015 0.82 2986.8
DETM 0.10 �0.2 0 0.52 3617.9
Turtling 0.11 0.15 0.023 0.86 3120.7

a We compared the performance of our model with several baseline topic
models on TC and topic divergence. Bold indicates ETM model
outperformed in metrics CA, CP and Perplexity, whereas DETM model
excelled in metrics NPMI and TD.
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research, but “cardiac” had been more popular since 1995.
We also inferred the main topic name for each plot according
to the top words in that topic. For example, given
“antibody,” “vaccine,” and “virus” in Fig. 3a-1, we can infer
that the research field for this topic is likely to be “immune.”

3.3 Turtling extracts hierarchy research topic

relationships from grant text

Next, we aim to explore the subfields of extracted research
topics by examining connections of models trained with dif-
ferent topic numbers. As shown in Fig. 4, we trained Turtling
models with 5, 10, and 20 topics on the same collected grant
text data. As a result, topics in the 5-topic model can be inter-
preted as broad research areas, while the subfields can be rep-
resented by topics in the 10- and 20-topic models.
Consequently, the broad research area and subfield connec-
tions can be directly measured by the similarities of topic
embeddings from different models.

We found that Topic 2 in the 5-topic model is highly
enriched in “immune” terminologies (the circle with number
2 in Fig. 4a and b). We explored its most closely associated
subfields by calculating its most closely relevant topics in the
subsequent 10 and 20-topic models, as shown in the heat-
maps (Fig. 4a and b). For instance, Topics 0, 7, and 9 in the
10-topic model showed the highest correlation with Topic 2
in the 5-topic model. We can further trace down the higher
resolution subfields in the 20 topic models by showing that
Topics 2 and 6, 3 and 11, and Topic 10 are most connected
to our subtopics in 10 topic models. We further extracted the
word logo using the word frequencies in each topic and found
that cancer and viral infection are important subfields for the
“immune” topic we selected (Fig. 4c). These results demon-
strate that Turtling’s ability to extract hierarchical relation-
ships between different research fields in a completely data-
driven manner.

3.4 Turtling improves IC classification accuracy

Besides traditional research topic extraction tasks, an ideal grant
analysis model should be able to accurately predict the funding IC
and provide appropriate suggestions for future grant text data.
Therefore, we further tested Turtling’s performance on an IC clas-
sification task using the topic distributions (details in Section 2.8).

We benchmarked with traditional PCA and DETM models
using top-1 and top-5 IC assignments. As shown in Fig. 5,
Turtling achieved a 31.6% top-1 accuracy, significantly higher
than results from DETM and PCA (22.3% and 29.1% top-1 ac-
curacy, respectively). Furthermore, Turtling achieved a 73.8%
top-5 accuracy which outperforms results from both methods
(59.2% and 72.3% top-5 accuracy, respectively). These experi-
mental results showed that our method outperformed both of
the baseline methods, demonstrating the effectiveness of using
topic proportions generated by our model for IC classification.

3.5 Turtling separates documents from different ICs

To intuitively demonstrate topic proportion vectors generated
by Turtling are separable among different ICs, we then visual-
ized the vector of grant documents from two ICs in 1990,
2000, 2010, and 2020. We selected grants from the
“National Cancer Institute” (NCI) and the “National
Institute of Mental Health” (NIMH), as we expect the topics
to vary significantly between these two ICs. We used UMAP
to generate a two-dimensional representation of topic propor-
tion vectors for visualization (Mcinnes 2018). The results are
shown in Fig. 6. Each dot with a certain color represents a
document from a specific IC. We can observe from the plots
that data points with different colors tend to form different
clusters, indicating that each IC has its own topic preference.

To sum up, qualitative and quantitative analysis both show
that the topic proportions generated by Turtling provide a
useful and interpretable way for IC prediction tasks.

Figure 3. Wordcloud trend and keywords proportion trend for four topics across decades. For each topic, we selected four keywords and normalized their

generative probability for each keyword. We then plot the normalized probability in each year from 1985 to 2020. We also select four specific years to

create the wordcloud according to the generative probability of each topic.
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4 Discussion

In this article, we developed Turtling, a time-aware topic
model to analyze documents from a large grant corpus funded
by the NIH. We constructed the Grant dataset, which con-
tains 466 730 grant abstract documents and their correspond-
ing ICs over the past 36 years. Turtling is novel with three
main characteristics: the combination of biomedical word em-
bedding and topic modeling, the time-aware nature of the
graphical model, and the multitask loss which includes topic
divergence loss and IC classification loss.

We trained our model by optimizing the traditional ELBO
as well as the TD loss and the IC classification loss.

Experimental results showed our method outperformed base-
line methods on all of the metrics. We then leveraged Turtling
to extract research topic trends from 1985 to 2020. We fur-
ther demonstrated that the topic proportions generated by
our method can be used for IC prediction.

In the future, we expect several extensions could be easily
incorporated into our method for further performance im-
provement. First, Turtling leveraged a naı̈ve random forest
classifier for IC classification, which could be substituted with
more advanced deep classification models like transformers
(Vaswani et al. 2017). Second, pretrained language models
(PLMs) have become popular in many NLP applications
(Peters et al. 2018, Devlin et al. 2019). Previous works have
applied large PLMs to topic modeling tasks, but none of them
considered the time-aware topic modeling scenario (Zhang
et al. 2022). As PLMs trained on biomedical text would con-
tain large amounts of biomedical domain information, it may
further improve the performance of topic models on the
Grant dataset (Lee et al. 2020). Lastly, the training process of
Turtling is time-consuming due to its sequential inference
strategy, posing a potential need for efficient inference and
sampling methods.

We have implemented Turtling as an open-source software
that is freely downloadable to the public. With the exponen-
tial growth of publicly available grant text data, Turtling can
be a valuable tool for investigators and funding agencies to
gain research insights in a completely data-driven manner.

Figure 4. Heatmap and hierarchy trees for grant topics. We trained Turtling with 5, 10, and 20 topics, and calculated the correlation factors between

different topics. We show heatmaps of correlation between a 5-topic model and a 10-topic model (a), and a 10-topic model and a 20-topic model (b). We

further created the hierarchy trees for these topics in (c), and extracted the word logos using the word frequencies in topic 2 (d) and topic 10 (e).

Figure 5. IC classification accuracy. We compared top-1 (a) and top-5 (b)

accuracy of IC classification task using DETM, PCA, and Turtling.
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