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Abstract

Cortical dynamics of speech motor sequencing and production

Jessie R. Liu

Speech is one of the most e�cient and e↵ortless ways to communicate. Producing speech re-

quires planning speech targets, sequencing speech-motor movements, and coordinating a dy-

namic system of articulators to shape breath in real time, generating the sounds we perceive

and interpret as needs, ideas, and emotions. Loss of this ability, through neurodegenerative

disease or paralysis, is devastating and reduces self-reported quality of life. For many with

this condition, the cortical signals to control their articulators still persist–however these

signals cannot be communicated to their vocal tract, due to injured or diseased descending

pathways leading to vocal tract paralysis. Recent advances in neural recording hardware, our

understanding of how speech production is controlled in the brain (specifically in the ventral

sensorimotor cortex), and machine learning have enabled the development of speech brain

computer interfaces (BCI). A direct speech BCI would translate neural signals into intended

speech, restoring the ability to communicate to these individuals. This body of work first

demonstrates a proof of concept that a direct speech BCI consisting of a 50-word vocabulary

can be developed using high-density neural recording hardware, called electrocorticography,

in a participant who cannot speak due to severe paralysis. We then built upon this proof-

of-concept by developing a spelling-based speech BCI that could be controlled by silently
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attempted speech. The methods we used for these studies were based on our understand-

ing of how articulatory movements are controlled by neural signals. However, much less is

known about how the brain controls the upstream processes of planning and sequencing these

movements. Motivated by the success of translating neuroscientific findings into BCI devel-

opment, we next sought to understand how speech is sequenced in the brain. Using a task

where healthy speakers spoke syllable sequences of varying complexity, we found both neural

activity specific to production and widespread sustained activity associated with planning

syllable sequences. This network, consisting both of areas classically considered to be in-

volved in speech planning, such as Broca’s area, as well as more novel regions like the middle

precentral gyrus (mPrCG), was modulated by the complexity of the sequences. However,

only the mPrCG demonstrated robust sustained activity, sequence complexity encoding, and

was correlated with the participants reaction time, suggesting that this area’s role in speech

planning is specific to speech-motor sequencing. We confirmed this by using direct cortical

stimulation, which induced speech errors only during complex sequences, in the absence of

direct motor or perceptual e↵ects. This work establishes the mPrCG as a critical node of

speech-motor sequencing, redefining traditional notions of how the brain sequences and pro-

duces speech. Together, these studies demonstrate the potential of speech brain computer

interfaces for restoring speech in paralyzed individuals and puts forth new possibilities for

neurobiologically informed algorithms for decoding speech.
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Introduction

The ability to communicate is a critical part of life and the most natural and e�cient way

that we accomplish this is by speaking. Speaking allows us not only to express our emotions

and build relationships with loved ones, but it is also critical for advocating for ourselves and

is one tool that enables us to have agency in our environments. Producing speech involves

dynamically controlling the muscles in our vocal tract which in turn shape the air that we

carefully exhale. Though producing speech is an incredibly complex process we are able to

initiate and articulate speech almost instantly.

Losing the ability to speak, such as through neurodegenerative disease or severe paraly-

sis, can be devastating. Existing alternative or augmentative communication techniques are

much slower and often fatiguing or frustrating to use for long periods of time. This loss or

severe reduction in one’s ability to communicate reduces self-reported quality of life (Felgoise

et al. 2016). In many cases, individuals are cognitively intact and the brain signals required

to produce speech still persist. It is because of diseased or injured descending pathways that

these brain signals are not properly communicated to the vocal tract, leading to vocal tract

paralysis and the inability to speak intelligibly. Given that these brain signals still exist,

technology that could translate these signals into the intended speech (such as phrases or

sentences that the person was attempting to say) has the potential to restore communica-



2

tion in individuals with this condition. Developing this kind of technology presents several

obstacles including how to record neural activity, which brain areas to record from, and

the appropriate algorithms to use to translate the activity into speech. While engineering

advances are undoubtedly crucial to the first and third hurdles, understanding the system

also informs the latter two.

Academics and neurosurgeons have long hypothesized about how the brain controls this

dynamic system, with seminal case studies as early as 1861 (Broca 1861; Penfield et al.

1937). Early on, models of what areas of the brain played a role in speech production relied

on lesion studies, where post-mortem studies of patients with language disorders were used

to link brain damage with observed deficits (Broca 1861). Early models of speech production

were built on behavioral and linguistic studies that importantly began to hypothesize about

what specific processes make up speech production (Levelt 1993; MacNeilage 1998). Though

both direct neurosurgical case studies and behavioral models are important to understanding

speech production, the ability to simultaneously record cortical activity and behavior during

speech production has been critical in advancing our understanding of how the brain facili-

tates speech production. Noninvasive methods, like functional magnetic resonance imaging

(fMRI), have enabled us to measure whole brain activity with varying levels of spatial res-

olution. An advantage of noninvasive methods is that any person’s brain can be measured,

with no medical risk, and a high degree of coverage can be achieved. However, speech is a

fast and dynamic process, and noninvasive methods can be limited by signal-to-noise ratio

and temporal resolution (Chang 2015).
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Invasive recording methods, such as electrocorticography (ECoG), require neurosurgery

to place but yield neural signals with high signal-to-noise ratio at a high temporal resolution

(Chang 2015). Placement of ECoG grids is often used for the surgical treatment of drug

resistant epilepsy, in order to precisely map where a patient’s seizures are originating from

and to determine whether surgical intervention is in danger of disrupting speech or motor

function. Temporary placement (intraoperatively or for acute hospital stays on the order of

one week) of these grids and patients’ consent to participate in research o↵ers a rare oppor-

tunity to record both high fidelity neural activity and behavior simultaneously. Studies using

this type of data have significantly advanced our understanding of how speech production is

represented in the brain.

One area important to controlling articulation is the ventral sensorimotor cortex (vSMC).

The vSMC comprises the ventral portions of both the pre- and postcentral gyri. This area

has been linked to the control of articulation at various levels, such as continuous articula-

tory movements, discrete phonemes, and articulatory gestures (Chartier et al. 2018; Mugler

et al. 2018). In parallel to advancing the neuroscientific understanding of speech production,

these representations can be leveraged to decode intended speech from brain signals. Speech

decoding was first investigated in healthy speakers, with some models explicitly leveraging

articulatory representations (Makin et al. 2020; Sun et al. 2020; Anumanchipalli et al. 2019;

Her↵ et al. 2015). However, it was unknown whether these cortical articulatory represen-

tations would persist years after paralysis and whether these methods would generalize to

individuals who are unable to fluently coordinate their articulatory movements due to severe
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paralysis. To this end, we started a clinical trial (the BCI Restoration of Arm and Voice,

or BRAVO) to study a chronic ECoG-based speech BCI in participants who are unable to

speak.

In Chapter 1, we describe a proof-of-concept study demonstrating the first successful

direct-word speech BCI (this chapter is directly adapted from Moses*, Metzger*, Liu*, et al.

2021). This work involved our first clinical trial participant, Bravo-1, who had an ECoG grid

surgically placed over primarily the vSMC in the spring of 2019. Due to a brainstem stroke,

Bravo-1 is both severely paralyzed and has been diagnosed with anarthria, or the inability

to articulate speech. Bravo-1 has extremely limited control over his facial muscles and vocal

tract and can only make unintelligible noises at a slow rate. We recorded neural activity

while Bravo-1 attempted to say 50 English words out loud. Using artificial neural networks,

we trained two models–a speech detector and a speech classifier. The speech detection model

predicted when Bravo-1 was attempting to say a word, only using neural activity. When

a speech attempt was detected, this would pass the relevant window of neural activity to

the classifier which would predict which of the 50 words was being said. Finally, we also

leveraged the statistical structure of English by applying a natural language model to the

predicted sequences of words. This model would correct unlikely sequences of decoded words.

Our decoding framework enabled fast, flexible decoding of a limited vocabulary that

can be invoked and disengaged volitionally just by Bravo-1’s natural speech attempts. This

served as an important proof-of-concept in several regards. First, all previous human BCI

studies used intracortical arrays, where the implanted recording hardware consists of small
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needle-like electrodes that penetrate the cortex and record from single neurons. While this

greatly enhances spatial resolution, these arrays cover much smaller areas of cortex and are

often prone to signal instability. ECoG had been theorized to have greater signal stability, but

had not yet been tested for e�cacy in BCI studies targeting speech. Here, we demonstrate

that it indeed feasible to have a chronic ECoG-based BCI. Second, there had previously been

two intracortical BCI studies decoding speech, but the accuracies were too low to be clinically

viable. Here, for a limited vocabulary, we show that high accuracy can be achieved. Finally,

this work demonstrated that even after 15 years of paralysis, neural signals correlated with

attempted articulation still persist.

Though this first work was an important milestone, it only applied to a small vocabulary

and required Bravo-1 to attempt to vocalize, which is fatiguing for him. In Chapter 2,

we investigated whether we could use silent speech attempts to control a spelling system

(this chapter is directly adapted from Metzger*, Liu*, Moses* et al. 2022). The advantages

here are two-fold. Silently attempted speech refers to speech attempts where one’s mouth

could be moving, but there is no vocalization. This is di↵erent from completely imagined

speech attempts, which involve no orofacial movement at all. Using silent speech attempts is

advantageous because they are not as e↵ortful and therefore are often faster. Second, using

a spelling system has the potential to generalize to an unlimited vocabulary instead of being

limited to a finite-sized vocabulary.

We designed a spelling system similar to our decoding framework in Chapter 1, us-

ing a speech detector, speech classifier, and language modeling, with some key di↵erences.
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In this work, we had Bravo-1 use the NATO phonetic alphabet to spell out words. The

NATO alphabet was developed with phonetic discriminability in mind (e.g. “Alpha” for

“A”, “Bravo” for “B”, and so on), and so we hypothesized that speech attempts using this

set, as opposed to singular letters (e.g. “A”) would yield better discriminability of the neu-

ral data. Additionally, we incorporated more neural features in our decoding. Previous

ECoG work predominantly used neural activity in the high-gamma range (from 70 to 150

Hz) though other frequency bands are also known to hold useful information (Mugler et al.

2018; Sun et al. 2020; Proix et al. 2022; Anumanchipalli et al. 2019). Here, we included

low-frequency signals (from 0.3 to 100 Hz) in addition to high-gamma activity. And finally,

all of Bravo-1’s speech attempts were silently attempted. We found that even when not

vocalizing, silently attempted speech evoked neural activity patterns in the vSMC. Further,

we found that NATO code words could be decoded from neural activity with high accuracy,

aided by the combination of low and high frequency signals. Though we only tested the

system in real time with a vocabulary of about 1000 words, o✏ine simulations showed that

we could generalize to vocabularies of over 9000 words with no significant loss of accuracy.

These first two chapters served as important groundwork for establishing ECoG-based

methods of speech decoding for participants who cannot speak. Part of what contributed

to the success of these methods was our understanding of how articulation is represented in

the vSMC. While there are several engineering avenues to improving speech BCI methods,

including improving hardware and decoding algorithms, improving our understanding of the

system we’re trying to mimic, the process of speech production, can also be important.



7

While we know much more today about how articulation might be controlled in the

brain, we know far less about the potential upstream processes involved before the actual

articulation of intended speech targets. There are many potential processes that are crucial

to speech production and occur upstream of articulation, including conception of ideas and

lexical access (e.g. word choice), but we chose to focus on speech-motor planning as it

may be the process just before continuous articulation (Levelt 1993; Guenther et al. 2016).

Though there are many linguistic theories of how speech-motor movements are planned and

sequenced, we know very little about what brain areas and temporal dynamics facilitate this

process.

In Chapter 3, we investigated the process of speech-motor sequencing in healthy speak-

ers. Using ECoG grids placed for the surgical treatment of epilepsy, we recorded from

multiple cortical areas implicated in various aspects of speech production. During recording,

participants read a target sequence presented to them on a computer screen, then waited

a short delay, before being given a go-cue to repeat what they had read. We found that

this task evoked not only phasic activity associated with articulation, but also widespread

sustained activity. That is, we identified a network across multiple cortical areas where ac-

tivity that was evoked by reading the sequence, remained sustained throughout the delay

period, during the period just before they started speaking, as well as during speech. This

network involved regions classically thought to be involved in speech planning and sequenc-

ing, such as Broca’s area (Bohland et al. 2006; Guenther et al. 2016; Hickok et al. 2022),

but remarkably it was the precentral gyrus with the most robust sustained activity. Further,
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we specifically modulated the sequence complexity at the syllable and phoneme levels of

the target sequences, referred to as sequence and articulatory complexity respectively. We

found that an area in the middle of the precentral gyrus (which we term the mPrCG) supe-

rior to the vSMC, most consistently encoded sequence complexity, while other areas more

transiently encoded sequence complexity. Importantly, this area had not been previously

considered to be involved in speech-motor planning. It was this area alone that, in addition

to sustained activity encoding sequence complexity, also correlated with behavioral aspects

of speech production such as reaction time. These results suggest that sequence complexity

in the mPrCG is specific to speech-motor sequencing, rather than reflecting higher order

levels of processing.

These results represent new insights into the neural correlates of speech-motor sequencing.

With ECoG, we have the additional advantage of being able not only to record neural

activity but also to deliver stimulation. Stimulation mapping is commonly used to map

out which brain areas are critical to speech or motor functions (Lu et al. 2021; Leonard

et al. 2019)—delivering stimulation disrupts normal brain circuits, thus identifying which

areas are necessary and causal for a particular function. In four of our participants, we

stimulated putative sequencing sites in the mPrCG. Remarkably, we found that stimulation

caused speech errors only on complex syllable sequences, directly mirroring the sequence

complexity encoding we had observed, in the absence of direct motor e↵ects, perceptual

e↵ects, or other known e↵ects such as speech arrest. In contrast, stimulation in other brain

areas with sequence complexity encoding did not yield speech errors. Strikingly, speech errors
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induced by stimulation of the mPrCG resembled those found in apraxia of speech (AOS),

which is a clinical speech disorder hypothesized to occur from a deficit in speech motor

programming or sequencing (Strand et al. 2014). Though AOS was originally thought to

result from damage to the insula or to Broca’s area, more recent lesion studies and resection

case studies have instead suggested that AOS arises from damage to the mPrCG (Itabashi

et al. 2016; Gra↵-Radford et al. 2014; Chang et al. 2020; Levy et al. 2023). We provide, to

our knowledge, the first neurobiological link between speech-motor sequencing, the mPrCG,

and AOS. These results force us to reconsider classical models of speech production that do

not account for sustained activity or that attribute sequencing to Broca’s area.

These works demonstrate a key proof of concept that speech BCIs can be used to restore

speech in people with paralysis and highlight a novel speech-motor circuit that o↵ers poten-

tial to further improve naturalistic speech decoding. Together, they represent a culmination

of machine learning, neurobiological, and neurosurgical techniques that have made it possi-

ble to investigate these topics. These results set a foundation for future studies of speech

BCI in people who cannot speak, and for developing neurobiologically informed methods of

decoding.
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Chapter 1

Neuroprosthesis for decoding speech

in a paralyzed person with anarthria

Disclaimer: This chapter is a direct adaptation of the following article. Supplementary

material is not included in this adaptation, but is available online.

David A. Moses*, Sean L. Metzger*, Jessie R. Liu*, et al. (2021). Neuroprosthesis for

Decoding Speech in a Paralyzed Person with Anarthria. New England Journal of Medicine,

385(3), 217-227. doi: 10.1056/NEJMoa2027540.

* Denotes equal contribution.

Personal contributions: I trained and developed the real-time speech detection models and

performed speech detection performance, electrode contribution, and neural stability analyses.

With David A. Moses and Sean L. Metzger, I collected data, edited all figures, and with Edward

F. Chang we wrote the original draft of the manuscript with input from all authors.
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1.1 Abstract

Background: Technology to restore communication for paralyzed patients who have lost

the ability to speak has the potential to improve autonomy and quality of life. Decoding

words and sentences directly from the neural activity of a paralyzed individual who cannot

speak may be an improvement over existing methods for assisted communication.

Methods: We implanted a high-density, subdural multi-electrode array over the speech

motor cortex of a person with anarthria, the loss of the ability to articulate speech, and

spastic quadriparesis caused by brainstem stroke. Across 48 sessions, we recorded 22 hours

of cortical activity while the participant attempted to say individual words from a 50-word

vocabulary. Using deep learning, we created computational models to detect and classify

words from patterns in the recorded cortical activity. We applied these models and a language

model, which describes how frequently certain word sequences occur in natural language, to

decode full sentences as he attempted to say them.

Results: We decoded sentences from the participant’s cortical activity in real time at

a median rate of 15 words per minute with a median word error rate of 26%. In post-hoc

analyses, we detected 98% of individual word production attempts and classified words with

47% accuracy using cortical signals that were stable throughout the 81-week study period.

Conclusions: In a person with anarthria caused by brainstem stroke, we used machine

learning and a natural language model to decode words and sentences directly from cortical

activity as the person attempted to speak.
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1.2 Introduction

Anarthria is the loss of the ability to articulate speech. It can result from a variety of

conditions, including stroke and amyotrophic lateral sclerosis (Beukelman et al. 2007). Pa-

tients with anarthria may have intact language and cognition, and some are able to produce

limited oral movements and undi↵erentiated vocalizations when attempting to speak, but

neuromuscular disorder prevents speech (Nip et al. 2017). For paralyzed individuals with

severe movement impairment who are unable to operate assistive devices, it hinders commu-

nication with family, friends, and caregivers, reducing self-reported quality of life (Felgoise

et al. 2016).

Advances have been made with typing-based brain-computer interfaces that allow speech-

impaired individuals to spell out messages using cursor control (Sellers et al. 2014; Vansteensel

et al. 2016; Pandarinath et al. 2017; Brumberg, Pitt, et al. 2018; Linse et al. 2018). However,

letter-by-letter selection interfaces driven by neural signal recordings are slow and e↵ortful.

A more e�cient and natural approach may be to directly decode whole words from brain

areas that control speech. Our understanding of how the speech motor cortex orchestrates

the rapid articulatory movements of the vocal tract has expanded (Bouchard et al. 2013;

Lotte et al. 2015; Guenther and Hickok 2016; Emily M Mugler et al. 2014; Chartier et al.

2018; Salari et al. 2019). Engineering e↵orts have leveraged these findings and advances in

machine learning to demonstrate that speech can be decoded from brain activity in people

without speech impairments (Her↵ et al. 2015; Angrick et al. 2019; Anumanchipalli et al.
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2019; David A. Moses, Metzger, et al. 2021; Makin et al. 2020).

For paralyzed individuals who cannot speak, neural activity cannot be precisely aligned

with intended speech due to the absence of speech output, posing an obstacle for training

computational models (Martin et al. 2018). In addition, it is unclear whether neural signals

underlying speech control are still intact in individuals who have not spoken for years or

decades. In earlier work, a paralyzed person used an implanted intracortical two-channel

microelectrode device and an audiovisual interface to generate vowel sounds and phonemes

but not full words (Guenther, Brumberg, et al. 2009; Brumberg, Wright, et al. 2011).

To determine if speech can be directly decoded from the neural activity of a person who

is unable to speak, we tested real-time word and sentence decoding from the cortical activity

of a person with limb paralysis and anarthria resulting from brainstem stroke.

1.3 Methods

Trial overview

This work was performed as part of the BRAVO study (BCI Restoration of Arm and Voice

function, clinicaltrials.gov, NCT03698149), which is a single-institution clinical trial to eval-

uate the potential of electrocorticography, a method for recording neural activity from the

cerebral cortex using electrodes placed on the surface of the brain, and custom decoding

techniques for communication and movement restoration. The device used in this study
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received Investigational Device Exemption approval by the United States Food and Drug

Administration. At the time of writing, only one participant has been implanted with the

device. Due to regulatory and clinical considerations concerning proper handling of the

percutaneous connector, the participant did not have the opportunity to use the system

independently for daily activities.

This work was approved by the UCSF Committee on Human Research and supported

in part by a research contract under Facebook’s Sponsored Academic Research Agreement.

Only the authors were involved in the design and execution of the clinical trial; the collection,

storage, analysis, and interpretation of the data; and the writing of the manuscript and

decision to publish it. No study hardware or data were transferred to any sponsor, and

we did not receive any hardware or software from a sponsor to use in this work. There

were no agreements between the authors and any sponsor restricting the authors’ analysis

or publication of the data. All authors confirm that the clinical study, data, analyses, and

reporting of outcomes are valid and adhere to the protocol.

Participant

The participant is a right-handed male who was 36 years old at the start of the study. At

age 20, he su↵ered extensive bilateral pontine strokes associated with a right vertebral artery

dissection, which resulted in severe spastic quadriparesis and anarthria as confirmed by a

speech language pathologist and neurologists.
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He is cognitively intact, scoring 26 out of 30 points on the Mini-Mental Status Exam and

being physically incapable of scoring the remaining 4 points due to his paralysis. He is able

to vocalize grunts and moans but unable to produce intelligible speech. He has unimpaired

eye-movement control. He normally communicates using an assistive computer-based typing

interface controlled by his residual head movements, with typing rates at approximately 5

correct words or 18 correct characters per minute.

Implant device

The neural implant used to acquire brain signals from the participant is a customized combi-

nation of a high-density electrocorticography electrode array (PMT Corporation, MN, USA)

and a percutaneous connector (Blackrock Microsystems, UT, USA). The rectangular elec-

trode array has a length of 6.7 cm, width of 3.5 cm, and thickness of 0.51 mm and consists

of 128 flat, disc-shaped electrodes with 4-mm center-to-center spacing arranged in a 16-by-

8 lattice formation. During surgical implantation, the participant was put under general

anesthesia and the left-hemisphere speech sensorimotor cortex, identified using anatomical

landmarks of the central sulcus, was exposed via craniotomy. The electrode array was then

laid on the surface of the brain in the subdural space. The electrode coverage enabled sam-

pling from multiple cortical regions that have been implicated in speech processing, including

portions of the left precentral gyrus, postcentral gyrus, posterior middle frontal gyrus, and

posterior inferior frontal gyrus (Bouchard et al. 2013; Chartier et al. 2018; Guenther and
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Hickok 2016; Emily M. Mugler et al. 2018). The dura was sutured closed and the cranial bone

flap was replaced. The percutaneous connector was placed extracranially on the contralat-

eral skull convexity and anchored to the cranium. This percutaneous connector conducts

cortical signals from the implanted electrode array through externally accessible contacts to

a detachable digital link and cable, enabling transmission of the acquired brain activity to

a computer (Figure 1.6). The participant underwent surgical implantation of the device in

February 2019 and had no complications. The procedure lasted approximately 3 hours. We

began collection of data for this study in April 2019. Neural data acquisition and real-time

processing

Using a digital signal processing system (NeuroPort System, Blackrock Microsystems),

signals from all 128 electrodes of the implant device were acquired and transmitted to a

separate computer running custom software for real-time analysis (Figure 1.6, Figure 1.7

(David A Moses et al. 2018; David A. Moses, Leonard, et al. 2019). Informed by previous

research that has correlated neural activity in the 70–150 Hz (high gamma) frequency range

with speech motor processing (Bouchard et al. 2013; Chartier et al. 2018; Emily M. Mugler

et al. 2018; David A. Moses, Leonard, et al. 2019; Salari et al. 2019), we measured high

gamma activity for each channel on this separate computer to use in all subsequent analyses

and during real-time decoding.
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Task design

The study consisted of 55 sessions over 81 weeks and took place at the participant’s residence

or in a nearby o�ce. The participant engaged in two tasks: an isolated word task and a

sentence task (Figure 1.8).

On average, we collected approximately 27 minutes of neural data with these tasks during

each session. In each trial of each task, the participant was visually presented with a target

word or sentence as text on a screen and then attempted to produce (say aloud) that target.

In the isolated word task, the participant attempted to produce individual words from a

set of 50 English words. This word set contained common English words that can be used

to create a variety of sentences, including words that are relevant to caregiving and words

requested by the participant. In each trial, the participant was presented with one of these

50 words, and, after a 2-second delay, he attempted to produce that word when the word

text on the screen turned green. We collected a total of 9800 trials of the isolated word task

with the participant across 48 sessions throughout the study period.

In the sentence task, the participant attempted to produce word sequences from a set

of 50 English sentences consisting only of words from the 50-word set. In each trial, the

participant was presented with a target sentence and attempted to produce the words in

that sentence (in order) at the fastest rate that he was comfortably able to. Throughout the

trial, the word sequence decoded from neural activity was updated in real time and displayed

as feedback to the participant. We collected a total of 250 trials of the sentence task with
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the participant across 7 sessions at the end of the study period. A conversational variant of

this task, in which the participant was presented with prompts and attempted to respond

to them, is depicted in Figure 1.1.

Modeling

We used neural activity collected during the tasks to train, optimize, and evaluate custom

models. Specifically, we created speech detection and word classification models that both

leveraged deep learning techniques to make predictions from the neural activity. To decode

sentences from the participant’s neural activity in real time during the sentence task, we

used a decoding approach containing these two models, a language model, and a Viterbi

decoder, which are all described below (Figure 1.1).

The speech detection model processed each time point of neural activity during a task and

detected onsets and o↵sets of attempted word production events in real time (Figure 1.9).

We fit this model using only neural data and task timing information from the isolated word

task.

For each detected event, the word classification model predicted a set of word probabilities

by processing the neural activity spanning from 1 second before to 3 seconds after the

detected onset (Figure 1.10). The predicted probability associated with each word in the

50-word set quantified how likely it was that the participant was attempting to say that

word during the detected event. We fit this model using neural data from the isolated word



23

task.

In English, certain sequences of words are more likely than others. To use this underlying

linguistic structure, we created a language model that yielded next-word probabilities given

the previous words in a sequence (Kneser et al. 1995; Chen et al. 1999).

We trained this model on a collection of sentences consisting only of words from the

50-word set, which was obtained using a custom task on a crowdsourcing platform.

We used a custom Viterbi decoder as the final component in the decoding approach,

which is a type of model that determines the most likely sequence of words given predicted

word probabilities from the word classifier and word sequence probabilities from the language

model (Viterbi 1967, Figure 1.11). By incorporating the language model, the Viterbi de-

coder was capable of decoding more plausible sentences than what would result from simply

stringing together the predicted words from the word classifier.

Evaluations

To evaluate the performance of our decoding approach, we analyzed the sentences that were

decoded in real time using two metrics: word error rate and words per minute. The word

error rate of a decoded sentence is defined as the number of word errors made by the decoder

divided by the number of words in the target sentence. Words per minute is equal to the

number of words that were decoded per minute of neural data.

To further characterize the detection and classification of word production attempts from
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the participant’s neural activity, we processed the collected isolated word data with the

speech detection and word classification models in o✏ine analyses. We measured classi-

fication accuracy as the percent of isolated word production attempts in which the word

classifier correctly predicted the identity of the target word. We also measured electrode

contributions as the impact that each individual electrode had on the predictions made by

the detection and classification models (Simonyan et al. 2014; Makin et al. 2020).

To investigate the clinical viability of our approach for a long-term application, we evalu-

ated the stability of the acquired cortical signals over time using the isolated word data. By

sampling neural data from four di↵erent date ranges spanning the 81-week study period, we

assessed if detection and classification performance on data in the final subset could be im-

proved by including data from the three earlier subsets during model training, which would

indicate that training data accumulated across months or years of recording would reduce

the need for frequent model recalibration in practical applications of our approach.

Statistical analyses

Results for each experimental condition are presented with 95% confidence intervals when

appropriate. No adjustments were made for experiment-wide multiple comparisons. Word

error rate, words per minute, and classification accuracy evaluation metrics were prespecified

before the start of data collection. Stability analyses were designed post hoc.
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1.4 Results

Sentence decoding

During real-time sentence decoding, the median decoded word error rate across 15 sentence

blocks (each block contained 10 trials) was 60.5% (95% confidence interval: 51.4% to 67.6%)

without language modeling and 25.6% (95% confidence interval: 17.1% to 37.1%) with lan-

guage modeling (Figure 1.2A). The lowest word error rate observed for a single test block was

6.98% (with language modeling). The median word error rate was 92.1% (95% confidence

interval: 85.7% to 97.2%) when measuring chance performance with sentences randomly

generated by the language model. Across all 150 trials, the median decoding rate was 15.2

words per minute when including all decoded words and 12.5 words per minute when only

including correctly decoded words (with language modeling; Figure 1.2B). In 92.0% of trials,

the number of detected words was equal to the number of words in the target sentence (Fig-

ure 1.2C). Across all 15 sentence blocks, 5 speech events were erroneously detected before

the first trial in the block and were excluded from real-time decoding and analysis (all other

detected speech events were included). For almost every target sentence, the average num-

ber of word errors decreased when the language model was used (Figure 1.2D). Furthermore,

over half of the sentences were decoded without error (80 out of 150 trials; with language

modeling). Use of the language model during decoding improved performance by correcting

grammatically and semantically implausible word sequence predictions (Figure 1.2E).
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Word detection and classification

In o✏ine analyses with 9000 isolated word production attempts, the mean classification

accuracy (described in the Modeling section) was 47.1% when using the speech detector and

word classifier to predict the identity of the target word from cortical activity (chance was

2% accuracy; predictions were made without using the language model; see Figure 1.12 and

Figure 1.13. for additional isolated word analysis results). 98% of these word production

attempts were successfully detected (191 attempts were not detected), and 968 detected

events were spurious (not associated with a speech attempt). Electrodes contributing to word

classification performance were primarily localized to the ventral-most aspect of the ventral

sensorimotor cortex, with electrodes in the dorsal aspect of the ventral sensorimotor cortex

contributing to both speech detection and word classification performance (Figure 1.3A).

Classification accuracy was consistent across the majority of the word targets (Figure 1.3B;

47.1% mean and 14.5% standard deviation of the classification accuracy along the diagonal

of the row-normalized confusion matrix).

Long-term signal stability

Long-term stability of the speech-related cortical activity patterns recorded during isolated

word production attempts enabled consistent model performance throughout the 81-week

study period without requiring daily or weekly model recalibration (Figure 1.14). When

using the speech detection and word classification models to analyze cortical activity recorded
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at the end of the study period, classification accuracy increased when the training dataset

included data recorded over a year prior to the test dataset (Figure 1.4).

1.5 Discussion

We demonstrated that high-density recordings of cortical activity in the speech motor area

of an anarthric and paralyzed person can be used to decode full words and sentences in real

time. Our deep learning models were able to use the participant’s neural activity to detect

and classify his attempts to produce words from a 50-word vocabulary, and we could use

these models together with language modeling techniques to decode a variety of meaningful

sentences. Enabled by the long-term stability of the implanted device, our models could use

data accumulated throughout the 81-week study period to improve decoding performance

on held-out data recorded at the end of the study.

Previous demonstrations of word and sentence decoding from neural activity were con-

ducted with participants who could speak and did not require assistive technology to commu-

nicate (Her↵ et al. 2015; Angrick et al. 2019; Anumanchipalli et al. 2019; David A. Moses,

Leonard, et al. 2019; Makin et al. 2020). Similar to decoding intended movements from

someone who cannot move, the lack of precise time alignment between intended speech and

neural activity poses a challenge during model training. We managed this time-alignment

problem with speech detection approaches (Kanas et al. 2014; David A. Moses, Leonard,

et al. 2019; Dash et al. 2020) and classifiers that used machine learning techniques, such as
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model ensembling and data augmentation, to increase tolerance to minor temporal variabil-

ities (Sollich et al. 1996; Krizhevsky et al. 2012). Additionally, decoding performance was

largely driven by neural activity patterns in ventral sensorimotor cortex, consistent with pre-

vious work implicating this area in intact speech production (Bouchard et al. 2013; Chartier

et al. 2018; Emily M. Mugler et al. 2018). This finding informs electrode placement decisions

for future studies and demonstrates the persistence of functional cortical speech representa-

tions after more than 15 years of anarthria, analogous to previous findings of limb-related

cortical motor representations in tetraplegic individuals years after loss of limb movement

(Shoham et al. 2001; Hochberg et al. 2006).

Incorporation of language modeling techniques reduced median word error rate by 35%

and enabled perfect decoding in over half of the sentence trials. This improvement was

facilitated by using all of the probabilistic information provided by the word classifier during

decoding and by allowing the decoder to update previously predicted words each time a new

word was decoded. These results demonstrate the benefit of integrating linguistic information

when decoding speech from neural recordings. Speech decoding approaches generally become

usable at word error rates below 30% (Watanabe et al. 2017), suggesting that our approach

may be applicable in other clinical settings.

In previously reported brain-computer interface applications, decoding models often re-

quire daily recalibration prior deployment with a user (Pandarinath et al. 2017; Wolpaw

et al. 2018), which can increase the variability of decoder performance across days and im-

pede long-term adoption of the interface for real-world use (Wolpaw et al. 2018; Silversmith
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et al. 2020). Due to the relatively high signal stability of electrocorticographic recordings

(Chao et al. 2010; Vansteensel et al. 2016; Rao et al. 2017; Pels et al. 2019), we could ac-

cumulate cortical activity acquired by the implanted electrodes across months of recording

to e↵ectively train our decoding models. Overall, decoding performance was maintained or

improved by accumulating large quantities of training data over time without daily recalibra-

tion, demonstrating the suitability of high-density electrocorticography for long-term speech

neuroprosthetic applications.

These results demonstrate the early feasibility of direct word-based speech decoding from

cortical signals in a paralyzed anarthric person.

Disclosure forms provided by the authors are available with the full text of this article at

NEJM.org.
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Figure 1.1. Schematic depiction of the spelling pipeline. (continued on next page).
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(Previous page.) Figure 1.1. Schematic depiction of the spelling pipeline. Shown is how neural
activity acquired from an investigational electrocorticography electrode array implanted in a clinical study
participant with severe paralysis is used to directly decode words and sentences in real time. In a conversa-
tional demonstration, the participant is visually prompted with a statement or question (A) and is instructed
to attempt to respond using words from a predefined vocabulary set of 50 words. Simultaneously, cortical
signals are acquired from the surface of the brain through the electrode array (B) and processed in real time
(C). The processed neural signals are analyzed sample by sample with the use of a speech-detection model
to detect the participant’s attempts to speak (D). A classifier computes word probabilities (across the 50
possible words) from each detected window of relevant neural activity (E). A Viterbi decoding algorithm
uses these probabilities in conjunction with word-sequence probabilities from a separately trained natural-
language model to decode the most likely sentence given the neural activity data (F). The predicted sentence,
which is updated each time a word is decoded, is displayed as feedback to the participant (G). Before real-
time decoding, the models were trained with data collected as the participant attempted to say individual
words from the 50-word set as part of a separate task (not depicted). This conversational demonstration is
a variant of the standard sentence task used in this work, in that it allows the participant to compose his
own unique responses to the prompts.
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Figure 1.2. Decoding a Variety of Sentences in Real Time through Neural Signal Processing
and Language Modeling. (continued on next page).
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(Previous page.) Figure 1.2. Decoding a Variety of Sentences in Real Time through Neural
Signal Processing and Language Modeling. Panel A shows the word error rates, the numbers of words
decoded per minute, and the decoded sentence lengths. The top plot shows the median word error rate
(defined as the number of word errors made by the decoder divided by the number of words in the target
sentence, with a lower rate indicating better performance) derived from the word sequences decoded from the
participant’s cortical activity during the performance of the sentence task. Data points represent sentence
blocks (each block comprises 10 trials); the median rate, as indicated by the horizontal line within a box, is
shown across 15 sentence blocks. The upper and lower sides of the box represent the interquartile range, and
the bars 1.5 times the interquartile range. Chance performance was measured by computing the word error
rate on sentences randomly generated from the natural-language model. The middle plot shows the median
number of words decoded per minute, as derived across all 150 trials (each data point represents a trial).
The rates are shown for the analysis that included all words that were correctly or incorrectly decoded with
the natural-language model and for the analysis that included only correctly decoded words. Each violin
distribution was created with the use of kernel density estimation based on Scott’s rule for computing the
estimator bandwidth; the thick horizontal lines represent the median number of words decoded per minute,
and the thinner horizontal lines the range (with the exclusion of outliers that were more than 4 standard
deviations below or above the mean, which was the case for one trial). In the bottom chart, the decoded
sentence lengths show whether the number of detected words was equal to the number of words in the target
sentence in each of the 150 trials. Panel B shows the number of word errors in the sentences decoded with
or without the natural-language model across all trials and all 50 sentence targets. Each small vertical
dash represents the number of word errors in a single trial (there are 3 trials per target sentence; marks for
identical error counts are staggered horizontally for visualization purposes). Each dot represents the mean
number of errors for that target sentence across the 3 trials. The histogram at the bottom shows the error
counts across all 150 trials. Panel C shows seven target sentence examples along with the corresponding
sentences decoded with and without the natural-language model. Correctly decoded words are shown in
black and incorrect words in red.
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Figure 1.3. Distinct Neural Activity Patterns during Word-Production Attempts. (continued
on next page).
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(Previous page.) Figure 1.3. Distinct Neural Activity Patterns during Word-Production At-
tempts. Panel A shows the participant’s brain reconstruction overlaid with the locations of the implanted
electrodes and their contributions to the speech-detection and word-classification models. Plotted electrode
size (area) and opacity are scaled by relative contribution (important electrodes appear larger and more
opaque than other electrodes). Each set of contributions is normalized to sum to 1. For anatomical ref-
erence, the precentral gyrus is highlighted in light green. Panel B shows word confusion values computed
with the use of the isolated-word data. For each target word (each row), the confusion value measures how
often the word classifier predicted (regardless of whether the prediction was correct) each of the 50 possible
words (each column) while the participant was attempting to say that target word. The confusion value is
computed as a percentage relative to the total number of isolated-word trials for each target word, with the
values in each row summing to 100%. Values along the diagonal correspond to correct classifications, and
o↵-diagonal values correspond to incorrect classifications. The natural-language model was not used in this
analysis.
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Figure 1.4. Signal Stability and Long-Term Accumulation of Training Data to Improve Decoder
Performance. Each bar depicts the mean classification accuracy (the percentage of trials in which the
target word was correctly predicted) from isolated-word data sampled from the final weeks of the study
period (weeks 79 through 81) after speech-detection and word-classification models were trained on di↵erent
samples of the isolated-word data from various week ranges. Each result was computed with the use of a
10-fold cross-validation evaluation approach. In this approach, the available data were partitioned into 10
equally sized, nonoverlapping subsets. In the first cross-validation “fold,” one of these data subsets is used
as the testing set, and the remaining 9 are used for model training. This was repeated 9 more times until
each subset was used for testing (after training on the other subsets). This approach ensures that models
were never evaluated on the data used during training (Sections S6 and S14). Error bars indicate the 95%
confidence interval of the mean, each computed across the 10 cross-validation folds. The data quantities
specify the average amount of data used to train the word-classification models across cross-validation folds.
Week 0 denotes the first week during which data for this study was collected, which occurred 9 weeks after
surgical implantation of the study device. Accuracy of chance performance was calculated as 1 divided by
the number of possible words and is indicated by a horizontal dashed line.
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Figure 1.5. MRI results for the participant Panel A shows a sagittal MRI for the participant, who
has encephalomalacia and brain-stem atrophy (labeled in blue) caused by pontine stroke (labeled in red).
Panel B shows two additional MRI scans that indicate the absence of cerebral atrophy, suggesting that
cortical neuron populations (including those recorded from in this study) should be relatively una↵ected by
the participant’s pathology.
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Figure 1.6. Real-time neural data acquisition hardware infrastructure Electrocorticography
(ECoG) data acquired from the implanted array and percutaneous pedestal connector are processed and
transmitted to the Neuroport digital signal processor (DSP). Simultaneously, microphone data are acquired,
amplified, and transmitted to the DSP. Signals from the DSP are transmitted to the real-time computer.
The real-time computer controls the task displayed to the participant, including any decoded sentences that
are provided in real time as feedback. Speaker data (output from the real-time computer) are also sent to the
DSP and synchronized with the neural signals (not depicted). During earlier sessions, a human patient cable
connected to the pedestal acquired the ECoG signals, which were then processed by a front-end amplifier
before being transmitted to the DSP (the human patient cable and front-end amplifier, manufactured by
Blackrock Microsystems, are not depicted here, but they replaced the digital headstage and digital hub in
this pipeline when they were used).
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Figure 1.7. Real-time neural signal processing pipeline Using the data acquisition headstage and
rig, the participant’s electrocorticography (ECoG) signals were acquired at 30 kHz, filtered with a wide-
band filter, conditioned with a software-based line noise cancellation technique, low-pass filtered at 500 Hz,
and streamed to the real-time computer at 1 kHz. On the real-time computer, custom software was used
to perform common average referencing, multi-band high gamma band-pass filtering, analytic amplitude
estimation, multi-band averaging, and running z-scoring on the ECoG signals. The resulting signals were
then used as the measure of high gamma activity for the remaining analyses. This figure was adapted
from our previous work (David A. Moses, Leonard, et al. 2019), which implemented a similar neural signal
preprocessing pipeline.
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Figure 1.8. Data collection timeline Bars are stacked vertically if more than one data type was collected
in a day (the height of the stacked bars for any given day is equal to the total number of trials collected that
day). The irregularity of the data collection schedule was influenced by external and clinical time constraints
unrelated to the implanted device. The gap from 55–88 weeks was due to clinical guidelines concerning the
COVID-19 pandemic.
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Figure 1.9. Speech detection model schematic The z-scored high gamma activity across all electrodes
is processed time point by time point by an artificial neural network consisting of a stack of three long short-
term memory layers (LSTMs) and a single dense (fully connected) layer. The dense layer projects the latent
dimensions of the last LSTM layer into probability space for three event classes: speech, preparation, and
rest. The predicted speech event probability time series is smoothed and then thresholded with probability
and time thresholds to yield onset (t⇤) and o↵set times of detected speech events. During sentence decoding,
each time a speech event was detected, the window of neural activity spanning from �1 to +3 seconds
relative to the detected onset (t⇤) was passed to the word classifier. The neural activity, predicted speech
probability time series (upper right), and detected speech event (lower right) shown are the actual neural
data and detection results across a 7-second time window for an isolated word trial in which the participant
attempted to produce the word “family”.
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Figure 1.10. Word classification model schematic For each classification, a 4-second time window of
high gamma activity is processed by an ensemble of 10 artificial neural network (ANN) models. Within each
ANN, the high gamma activity is processed by a temporal convolution followed by two bidirectional gated
recurrent unit (GRU) layers. A dense layer projects the latent dimension from the final GRU layer into
probability space, which contains the probability of each of the words from the 50-word set being the target
word during the speech production attempt associated with the neural time window. The 10 probability
distributions from the ensembled ANN models are averaged together to obtain the final vector of predicted
word probabilities.
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Figure 1.11. Sentence decoding hidden Markov model This hidden Markov model (HMM) describes
the relationship between the words that the participant attempts to produce (the hidden states qi) and the
associated detected time windows of neural activity (the observed states yi). The HMM emission probabilities
py0|q0 can be simplified to pwi|yi (the word likelihoods provided by the word classifier), and the HMM
transition probabilities pqi|qi�1 can be simplified to pwi|i (the word-sequence prior probabilities provided by
the language model).
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Figure 1.12. Auxiliary modeling results with isolated word data Panel A shows the e↵ect of the
amount of training data on word classification accuracy (left) and cross-entropy loss (right) using cortical
activity recorded during the participant’s isolated word production attempts. Lower cross entropy indicates
better performance. Each point depicts mean ± standard deviation across 10 cross-validation folds (the error
bars in the cross-entropy plot were typically too small to be seen alongside the circular markers). Chance
performance is depicted as a horizontal dashed line in each plot (chance cross-entropy loss is computed as
the negative log (base 2) of the reciprocal of the number of word targets). Performance improved more
rapidly for the first four hours of training data and then less rapidly for the next 5 hours, although it did not
plateau. When using all available isolated word data, the information transfer rate was 25.1 bits per minute
(not depicted), and the target word appeared in the top 5 predictions from the word classifier in 81.7% of
trials (standard deviation was 2.1% across cross-validation folds; not depicted). Panel B shows the e↵ect
of the amount of training data on the frequency of detection errors during speech detection and detected
event curation with the isolated word data. Lower error rates indicate better performance. False positives
are detected events that were not associated with a word production attempt and false negatives are word
production attempts that were not associated with a detected event. Each point depicts mean ± standard
deviation across 10 cross-validation folds. Not all of the available training data were used to fit each speech
detection model, but each model always used between 47 and 83 minutes of data (not depicted). Panel C
shows the distribution of onsets detected from neural activity across 9000 isolated word trials relative to the
go cue (100 ms histogram bin size). This histogram was created using results from the final set of analyses
in the learning curve scheme (in which all available trials were included in the cross-validated evaluation).
The distribution of detected speech onsets had a mean of 308 ms after the associated go cues and a standard
deviation of 1017 ms. This distribution was likely influenced to some degree by behavioral variability in
the participant’s response times. During detected event curation, 429 trials required curation to choose a
detected event from multiple candidates (420 trials had 2 candidates and 9 trials had 3 candidates).
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Figure 1.13. Acoustic contamination investigation Each blue curve depicts the average correlations
between the spectrograms from a single electrode and the corresponding spectrograms from the time-aligned
microphone signal as a function of frequency. The red curve depicts the average power spectral density
(PSD) of the microphone signal. Vertical dashed lines mark the 60 Hz line noise frequency and its harmonics.
Highlighted in green is the high gamma frequency band (70–150 Hz), which was the frequency band from
which we extracted the neural features used during decoding. Across all frequencies, correlations between
the electrode and microphone signals are small. There is a slight increase in correlation in the lower end of
the high gamma frequency range, but this increase in correlation occurs as the microphone PSD decreases.
Because the correlations are low and do not increase or decrease with the microphone PSD, the observed
correlations are likely due to factors other than acoustic contamination, such as shared electrical noise. After
comparing these results to those observed in the study describing acoustic contamination (which informed
the contamination analysis we used here) (Roussel et al. 2020), we conclude that our decoding performance
was not artificially improved by acoustic contamination of our electrophysiological recordings.
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Figure 1.14. Long-term stability of speech-evoked signals Panel A shows neural activity from a single
electrode across all of the participant’s attempts to say the word “Goodbye” during the isolated word task,
spanning 81 weeks of recording. Panel B shows the participant’s brain reconstruction overlaid with electrode
locations. The electrode shown in Panel A is filled in with black. For anatomical reference, the precentral
gyrus is highlighted in light green. Panel C shows word classification outcomes from training and testing
the detector and classifier on subsets of isolated word data sampled from four non-overlapping date ranges.
Each subset contains data from 20 attempted productions of each word. Each solid bar depicts results
from cross-validated evaluation within a single subset, and each dotted bar depicts results from training
on data from all of the subsets except for the one that is being evaluated. Each error bar shows the 95%
confidence interval of the mean, computed across cross-validation folds. Chance accuracy is depicted as a
horizontal dashed line. Electrode contributions computed during cross-validated evaluation within a single
subset are shown on top (oriented with the most dorsal and posterior electrode in the upper-right corner).
Plotted electrode size (area) and opacity are scaled by relative contribution. Each set of contributions is
normalized to sum to 1. These results suggest that speech-evoked cortical responses remained relatively
stable throughout the study period, although model recalibration every 2–3 months may still be beneficial
for decoding performance.
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Table 1.1. Hyperparameter definitions and values.

Hyperparameter Search Value Optimal
Model description space type range values1

Speech Smoothing size Uniform (integer) [1, 80] (8, 5, 22)
detector Probability threshold Uniform [0.1, 0.9] (0.297, 0.319,

0.592)
Time threshold Uniform (integer) [25, 150] (79, 82, 93)
duration

Word Number of GRU layers Uniform (integer) [1, 3] (2, 2)
classifier Nodes per GRU layer Uniform (integer) [64, 512] (434, 420)

Dropout fraction Uniform [0.5, 0.95] (0.704, 0.646)
Convolution kernel Uniform (integer) [1, 2] (2, 2)
size and skip

Language Initial word Logarithmically [0.001, 1000] 0.576
model smoothing ( ) uniform

Viterbi Language model Logarithmically [0.1, 10] 0.913
decoder scaling factor (L) uniform
1 For the speech detection hyperparameters, three values are listed: the first is the optimal value
found when optimizing the detector on the isolated word optimization subset (used to detect word
production attempts in the cross-validation subsets for evaluation by the word classifier), the second
is the optimal value found when optimizing the detector on a subset of the pooled cross-validation
subsets (used to detect word production attempts in the isolated word optimization subset for use
during hyperparameter optimization of the word classifier), and the third is the optimal value found
during hyperparameter optimization of the decoding pipeline with the sentence optimization subset
(the value used during online sentence decoding). For the word classification hyperparameters, two
values are listed: the first is the optimal value found when optimizing the classifier on the isolated word
optimization subset (the value used for all isolated word evaluations) and the second is the optimal
value found when optimizing the classifier on a small subset of isolated word trials near the end of the
study period (the value used for o✏ine sentence optimization and online sentence decoding). For the
language modeling and Viterbi decoding hyperparameters, the optimal value listed was found when
optimizing the decoding pipeline with the sentence optimization subset (the value used for online
sentence decoding).
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severe limb and vocal paralysis

Disclaimer: This chapter is a direct adaptation of the following article. Supplementary

material is not included in this adaptation, but is available online.

Sean L. Metzger*, Jessie R. Liu*, David A. Moses*, et al. (2022). Generalizable spelling

using a speech neuroprosthesis in an individual with severe limb and vocal paralysis. Nature

Communications, 13(6510). doi: 10.1038/s41467-022-33611-3.

* Denotes equal contribution.

Personal contributions: I designed and trained the real-time speech detection model, per-

formed nearest-class distance and evoked signal analyses, performed statistical assessments,

and contributed to the neural-feature analyses. With Sean L. Metzger, I generated figures,

with David A. Moses we collected data and designed the spelling process. With Edward F.

Chang we wrote the original draft of the manuscript with input from all authors.



58

2.1 Abstract

Neuroprostheses have the potential to restore communication to people who cannot speak

or type due to paralysis. However, it is unclear if silent attempts to speak can be used

to control a communication neuroprosthesis. Here, we translated direct cortical signals in

a clinical-trial participant (ClinicalTrials.gov; NCT03698149) with severe limb and vocal-

tract paralysis into single letters to spell out full sentences in real time. We used deep-

learning and language-modeling techniques to decode letter sequences as the participant

attempted to silently spell using code words that represented the 26 English letters (e.g.

“alpha” for “a”). We leveraged broad electrode coverage beyond speech-motor cortex to

include supplemental control signals from hand cortex and complementary information from

low- and high-frequency signal components to improve decoding accuracy. We decoded

sentences using words from a 1,152-word vocabulary at a median character error rate of

6.13% and speed of 29.4 characters per minute. In o✏ine simulations, we showed that our

approach generalized to large vocabularies containing over 9,000 words (median character

error rate of 8.23%). These results illustrate the clinical viability of a silently controlled

speech neuroprosthesis to generate sentences from a large vocabulary through a spelling-

based approach, complementing previous demonstrations of direct full-word decoding.



59

2.2 Introduction

Devastating neurological conditions such as stroke and amyotrophic lateral sclerosis can lead

to anarthria, the loss of ability to communicate through speech (Beukelman et al. 2007).

Anarthric patients can have intact language skills and cognition, but paralysis may inhibit

their ability to operate assistive devices, severely restricting communication with family,

friends, and caregivers and reducing self-reported quality of life (Felgoise et al. 2016).

Brain-computer interfaces (BCIs) have the potential to restore communication to such pa-

tients by decoding neural activity into intended messages (Brumberg et al. 2018; Vansteensel

et al. 2016). Existing communication BCIs typically rely on decoding imagined arm and hand

movements into letters to enable spelling of intended sentences (Pandarinath et al. 2017;

Willett et al. 2021). Although implementations of this approach have exhibited promising

results, decoding natural attempts to speak directly into speech or text may o↵er faster and

more natural control over a communication BCI. Indeed, a recent survey of prospective BCI

users suggests that many patients would prefer speech-driven neuroprostheses over arm- and

hand-driven neuroprostheses (Branco et al. 2021). Additionally, there have been several re-

cent advances in the understanding of how the brain represents vocal-tract movements to

produce speech (Bouchard et al. 2013; Carey et al. 2017; Chartier et al. 2018; Lotte et al.

2015) and demonstrations of text decoding from the brain activity of able speakers (Her↵

et al. 2015; Makin et al. 2020; Mugler et al. 2014; Sun et al. 2020; Dash, Ferrari, et al.

2020; Wilson et al. 2020; Cooney et al. 2022; Angrick et al. 2021), suggesting that decod-
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ing attempted speech from brain activity could be a viable approach for communication

restoration.

To assess this, we recently developed a speech neuroprosthesis to directly decode full

words in real time from the cortical activity of a person with anarthria and paralysis as

he attempted to speak (David A. Moses, Metzger, et al. 2021). This approach exhibited

promising decoding accuracy and speed, but as an initial study focused on a preliminary

50-word vocabulary. While direct word decoding with a limited vocabulary has immediate

practical benefit, expanding access to a larger vocabulary of at least 1000 words would cover

over 85% of the content in natural English sentences (Adolphs et al. 2003) and enable ef-

fective day-to-day use of assistive-communication technology (Tilborg et al. 2016). Hence,

a powerful complementary technology could expand current speech-decoding approaches to

enable users to spell out intended messages from a large and generalizable vocabulary while

still allowing fast, direct word decoding to express frequent and commonly used words. Sep-

arately, in this prior work the participant was controlling the neuroprosthesis by attempting

to speak aloud, making it unclear if the approach would be viable for potential users who

cannot produce any vocal output whatsoever.

Here, we demonstrate that real-time decoding of silent attempts to say 26 alphabetic code

words from the NATO phonetic alphabet can enable highly accurate and rapid spelling in

a clinical-trial participant (ClinicalTrials.gov; NCT03698149) with paralysis and anarthria.

During training sessions, we cued the participant to attempt to produce individual code

words and a hand-motor movement, and we used the simultaneously recorded cortical activity
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from an implanted 128-channel electrocorticography (ECoG) array to train classification

and detection models. After training, the participant performed spelling tasks in which he

spelled out sentences in real time with a 1152-word vocabulary using attempts to silently

say the corresponding alphabetic code words. A beam-search algorithm used predicted

code-word probabilities from a classification model to find the most likely sentence given

the neural activity while automatically inserting spaces between decoded words. To initiate

spelling, the participant silently attempted to speak, and a speech-detection model identified

this start signal directly from ECoG activity. After spelling out the intended sentence,

the participant attempted the hand-motor movement to disengage the speller. When the

classification model identified this hand-motor command from ECoG activity, a large neural

network-based language model rescored the potential sentence candidates from the beam

search and finalized the sentence. In post-hoc simulations, our system generalized well

across large vocabularies of over 9000 words.

2.3 Results

Overview of the real-time spelling pipeline

We designed a sentence-spelling pipeline that enabled a clinical-trial participant (Clinical-

Trials.gov; NCT03698149) with anarthria and paralysis to silently spell out messages using

signals acquired from a high-density electrocorticography (ECoG) array implanted over his
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sensorimotor cortex (Figure 2.1). We tested the spelling system under copy-typing and con-

versational task conditions. In each trial of the copy-typing task condition, the participant

was presented with a target sentence on a screen and then attempted to replicate that sen-

tence. In the conversational task condition, there were two types of trials: Trials in which

the participant spelled out volitionally chosen responses to questions presented to him and

trials in which he spelled out arbitrary, unprompted sentences. Prior to real-time testing,

no day-of recalibration occured; model parameters and hyperparameters were fit using data

exclusively from preceding sessions.

When the participant was ready to begin spelling a sentence, he attempted to silently

say an arbitrary word (Figure 2.1a). We define silent-speech attempts as volitional attempts

to articulate speech without vocalizing. Meanwhile, the participant’s neural activity was

recorded from each electrode and processed to simultaneously extract high-gamma activ-

ity (HGA; between 70 and 150 Hz) and low-frequency signals (LFS; between 0.3–100 Hz;

Figure 2.1b). A speech-detection model processed each time point of data in the combined

feature stream (containing HGA+LFS features; Figure 2.1c) to detect this initial silent-

speech attempt.

Once an attempt to speak was detected, the paced spelling procedure began (Figure 2.1d).

In this procedure, an underline followed by three dots appeared on the screen in white text.

The dots disappeared one by one, representing a countdown. After the last dot disappeared,

the underline turned green to indicate a go cue, at which time the participant attempted

to silently say the NATO code word corresponding to the first letter in the sentence. The
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time window of neural features from the combined feature stream obtained during the 2.5-s

interval immediately following the go cue was passed to a neural classifier (Figure 2.1e).

Shortly after the go cue, the countdown for the next letter automatically started. This

procedure was then repeated until the participant volitionally disengaged it (described later

in this section).

The neural classifier processed each time window of neural features to predict probabil-

ities across the 26 alphabetic code words (Figure 2.1f). A beam-search algorithm used the

sequence of predicted letter probabilities to compute potential sentence candidates, auto-

matically inserting spaces into the letter sequences where appropriate and using a language

model to prioritize linguistically plausible sentences. During real-time sentence spelling,

the beam search only considered sentences composed of words from a predefined 1152-word

vocabulary, which contained common words that are relevant for assistive-communication

applications. The most likely sentence at any point in the task was always visible to the

participant (Figure 2.1d). We instructed the participant to continue spelling even if there

were mistakes in the displayed sentence, since the beam search could correct the mistakes

after receiving more predictions. After attempting to silently spell out the entire sentence,

the participant was instructed to attempt to squeeze his right hand to disengage the spelling

procedure (Figure 2.1h). The neural classifier predicted the probability of this attempted

hand-motor movement from each 2.5-s window of neural features, and if this probability was

greater than 80%, the spelling procedure was stopped and the decoded sentence was finalized

(Figure 2.1i). To finalize the sentence, sentences with incomplete words were first removed
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from the list of potential candidates, and then the remaining sentences were rescored with

a separate language model. The most likely sentence was then updated on the participant’s

screen (Figure 2.1g). After a brief delay, the screen was cleared and the task continued to

the next trial.

To train the detection and classification models prior to real-time testing, we collected

data as the participant performed an isolated-target task. In each trial of this task, a NATO

code word appeared on the screen, and the participant was instructed to attempt to silently

say the code word at the corresponding go cue. In some trials, an indicator representing

the hand-motor command was presented instead of a code word, and the participant was

instructed to imagine squeezing his right hand at the go cue for those trials.

Decoding performance

To evaluate the performance of the spelling system, we decoded sentences from the partici-

pant’s neural activity in real time as he attempted to spell out 150 sentences (two repetitions

each of 75 unique sentences selected from an assistive-communication corpus; see Table 2.1)

during the copy-typing task. We evaluated the decoded sentences using word error rate

(WER), character error rate (CER), words per minute (WPM), and characters per minute

(CPM) metrics (Figure 2.2). For characters and words, the error rate is defined as the

edit distance, which is the minimum number of character or word deletions, insertions, and

substitutions required to convert the predicted sentence to the target sentence that was dis-



65

played to the participant, divided by the total number of characters or words in the target

sentence, respectively. These metrics are commonly used to assess the decoding performance

of automatic speech recognition systems (Hannun et al. 2014) and brain-computer interface

applications (Willett et al. 2021; David A. Moses, Metzger, et al. 2021).

We observed a median CER of 6.13% and median WER of 10.53% (99% confidence inter-

val (CI) [2.25, 11.6] and [5.76, 24.8]) across the real-time test blocks (each block contained

multiple sentence-spelling trials; Figure 2.2a, b). Across 150 sentences, 105 (70%) were

decoded without error, and 69 of the 75 sentences (92%) were decoded perfectly at least

one of the two times they were attempted. Additionally, across 150 sentences, 139 (92.7%)

sentences were decoded with the correct number of letters, enabled by high classification

accuracy of the attempted hand squeeze (Figure 2.2e). We also observed a median CPM of

29.41 and median WPM of 6.86 (99% CI [29.1, 29.6] and [6.54, 7.12]) across test blocks, with

spelling rates in individual blocks as high as 30.79 CPM and 8.60 WPM (Figure 2.2c, d).

These rates are higher than the median rates of 17.37 CPM and 4.16 WPM (99% CI [16.1,

19.3] and [3.33, 5.05]) observed with the participant as he used his commercially available

Tobii Dynavox assistive-typing device (as measured in our previous work (David A. Moses,

Metzger, et al. 2021)).

To understand the individual contributions of the classifier, beam search, and language

model to decoding performance, we performed o✏ine analyses using data collected during

these real-time copy-typing task blocks (Figure 2.2a, b). To examine the chance performance

of the system, we replaced the model’s predictions with randomly generated values while
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continuing to use the beam search and language model. This resulted in a CER and WER

that was significantly worse than the real-time results (z = 7.09, P = 8.08 ⇥ 10�12 and z =

7.09, P = 8.08 ⇥ 10�12 respectively, two-sided Wilcoxon Rank-Sum test with 6-way Holm-

Bonferroni correction). This demonstrates that the classification of neural signals was critical

to system performance and that system performance was not just relying on a constrained

vocabulary and language-modeling techniques.

To assess how well the neural classifier alone could decode the attempted sentences, we

compared character sequences composed of the most likely letter for each individual 2.5-

second window of neural activity (using only the neural classifier) to the corresponding

target character sequences. All whitespace characters were ignored during this comparison

(during real-time decoding, these characters were inserted automatically by the beam search).

This resulted in a median CER of 35.1% (99% CI [30.6, 38.5]), which is significantly lower

than chance (z = 7.09, P = 8.08 ⇥ 10�12, two-sided Wilcoxon Rank-Sum test with 6-way

Holm-Bonferroni correction), and shows that time windows of neural activity during silent

code-word production attempts were discriminable. The median WER was 100% (99%

CI [100.0, 100.0]) for this condition; without language modeling or automatic insertion of

whitespace characters, the predicted character sequences rarely matched the corresponding

target character sequences exactly.

To measure how much decoding was improved by the beam search, we passed the neural

classifier’s predictions into the beam search and constrained character sequences to be com-

posed of only words within the vocabulary without incorporating any language modeling.
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This significantly improved CER and WER over only using the most likely letter at each

timestep (z = 4.51, P = 6.37 ⇥ 10�6 and z = 6.61, P = 1.19 ⇥ 10�10 respectively, two-sided

Wilcoxon Rank-Sum test with 6-way Holm-Bonferroni correction). As a result of not using

language modeling, which incorporates the likelihood of word sequences, the system would

sometimes predict nonsensical sentences, such as “Do no tooth at again” instead of “Do

not do that again” (Figure 2.2f). Hence, including language modeling to complete the full

real-time spelling pipeline significantly improved median CER to 6.13% and median WER

to 10.53% over using the system without any language modeling (z = 5.53, P = 6.34⇥ 10�8

and z = 6.11, P = 2.01 ⇥ 10�9 respectively, two-sided Wilcoxon Rank-Sum test with 6-way

Holm-Bonferroni correction), illustrating the benefits of incorporating the natural structure

of English during decoding.

Discriminatory content in high-gamma activity and low-frequency

signals

Previous e↵orts to decode speech from brain activity have typically relied on content in the

high-gamma frequency range (between 70 and 170 Hz, but exact boundaries vary) during

decoding (Her↵ et al. 2015; Makin et al. 2020; David A. Moses, Leonard, et al. 2019).

However, recent studies have demonstrated that low-frequency content (between 0 and 40

Hz) can also be used for spoken- and imagined-speech decoding (Mugler et al. 2014; Sun

et al. 2020; Dash, Paul, et al. 2020; Proix et al. 2022; Anumanchipalli et al. 2019), although
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the di↵erences in the discriminatory information contained in each frequency range remain

poorly understood.

In this work, we used both high-gamma activity (HGA; between 70 and 150 Hz) and low-

frequency signals (LFS; between 0.3 and 16.67 Hz after downsampling with anti-aliasing) as

neural features to enable sentence spelling. To characterize the speech content of each fea-

ture type, we used the most recent 10,682 trials of the isolated-target task) to train 10-fold

cross-validated models using only HGA, only LFS, and both feature types simultaneously

(HGA+LFS). In each of these trials, the participant attempted to silently say one of the

26 NATO code words. Models using only LFS demonstrated higher code-word classification

accuracy than models using only HGA, and models using HGA+LFS outperformed the other

two models (z = 3.78, P = 4.71 ⇥ 10�4 for all comparisons, two-sided Wilcoxon Rank-Sum

test with 3-way Holm-Bonferroni correction; Figure 2.3a, Figure 2.10, Table 2.4), achieving

a median classification accuracy of 54.2% (99% CI [51.6, 56.2], Figure 2.3a, Figure 2.11).

Confusion matrices depicting the classification results with each model are depicted in Fig-

ure 2.11, Figure 2.12, and Figure 2.13.

We then investigated the relative contributions of each electrode and feature type to

the neural classification models trained using HGA, LFS, and HGA+LFS. For each model,

we first computed each electrode’s contribution to classification by measuring the e↵ect that

small changes to the electrode’s values had on the model’s predictions (Simonyan et al. 2014).

Electrode contributions for the HGA model were primarily localized to the ventral portion

of the grid, corresponding to the ventral aspect of the ventral sensorimotor cortex (vSMC),
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pars opercularis, and pars triangularis (Figure 2.3b). Contributions for the LFS model were

much more di↵use, covering more dorsal and posterior parts of the grid corresponding to

dorsal aspects of the vSMC in the pre- and postcentral gyri (Figure 2.3d). Contributions

for the HGA model and the LFS model were moderately correlated with a Spearman rank

correlation of 0.501 (n = 128 electrode contributions per feature type, P < 0.01). The sepa-

rate contributions from HGA and LFS in the HGA+LFS model were highly correlated with

the contributions for the HGA-only and LFS-only models, respectively (n = 128 electrode

contributions per feature type, P < 0.01 for both Spearman rank correlations of 0.922 and

0.963, respectively; Figure 2.3c, e). These findings indicate that the information contained

in the two feature types that was most useful during decoding was not redundant and was

recorded from relatively distinct cortical areas.

To further characterize HGA and LFS features, we investigated whether LFS had in-

creased feature or temporal dimensionality, which could have contributed to increased de-

coding accuracy. First, we performed principal component analysis (PCA) on the feature

dimension for the HGA, LFS, and HGA+LFS feature sets. The resulting principal compo-

nents (PCs) captured the spatial variability (across electrode channels) for the HGA and

LFS feature sets and the spatial and spectral variabilities (across electrode channels and

feature types, respectively) for the HGA + LFS feature set. To explain more than 80%

of the variance, LFS required significantly more feature PCs than HGA (z = 12.2, P =

7.57 ⇥ 10�34, two-sided Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni correction;

Figure 2.3f) and the combined HGA+LFS feature set required significantly more feature
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PCs than the individual HGA or LFS feature sets (z = 12.2, P = 7.57 ⇥ 10�34 and z =

11.6, P = 2.66 ⇥ 10�33, respectively, two-sided Wilcoxon Rank-Sum test with 3-way Holm-

Bonferroni correction; Figure 2.3f). This suggests that LFS did not simply replicate HGA

at each electrode but instead added unique feature variance.

To assess the temporal content of the features, we first used a similar PCA approach

to measure temporal dimensionality. We observed that the LFS features required signifi-

cantly more temporal PCs than both the HGA and HGA+LFS feature sets to explain more

than 80% of the variance (z = 12.2, P = 7.57 ⇥ 10�34 and z = 12.2, P = 7.57 ⇥ 10�34,

respectively, Figure 2.3g; two-sided Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni

correction). Because the inherent temporal dimensionality for each feature type remained

the same within the HGA+LFS feature set, the required number of temporal PCs to explain

this much variance for the HGA+LFS features was in between the corresponding numbers

for the individual feature types. Then, to assess how the temporal resolution of each fea-

ture type a↵ected decoding performance, we temporally smoothed each feature time series

with Gaussian filters of varying widths. A wider Gaussian filter causes a greater amount of

temporal smoothing, e↵ectively temporally blurring the signal and hence lowering temporal

resolution. Temporally smoothing the LFS features decreased the classification accuracy

significantly more than smoothing the HGA or HGA+LFS features (Wilcoxon signed-rank

statistic = 737.0, P = 4.57⇥10�5 and statistic = 391.0, P = 1.13⇥10�8, two-sided Wilcoxon

signed-rank test with 3-way Holm-Bonferroni correction; Figure 2.3h). The e↵ects of tem-

poral smoothing were not significantly di↵erent between HGA and HGA+LFS (Wilcoxon
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signed-rank statistic = 1460.0, P = 0.443). This is largely consistent with the outcomes of

the temporal-PCA comparisons. Together, these results indicate that the temporal content

of LFS had higher variability and contained more speech-related discriminatory information

than HGA.

Di↵erences in neural discriminability between NATO code words

and letters

During control of our system, the participant attempted to silently say NATO code words to

represent each letter (“alpha” instead of “a”, “beta” instead of “b”, and so forth) rather than

simply saying the letters themselves. We hypothesized that neural activity associated with

attempts to produce code words would be more discriminable than letters due to increased

phonetic variability and longer utterance lengths. To test this, we first collected data using a

modified version of the isolated-target task in which the participant attempted to say each of

the 26 English letters instead of the NATO code words that represented them. Afterwards,

we trained and tested classification models using HGA+LFS features from the most recent

29 attempts to silently say each code word and each letter in 10-fold cross-validated analyses.

Indeed, code words were classified with significantly higher accuracy than the letters (z =

3.78, P = 1.57 ⇥ 10�4, two-sided Wilcoxon Rank-Sum test; Figure 2.4a).

To perform a model-agnostic comparison between the neural discriminability of each type

of utterance (either code words or letters), we computed nearest-class distances for each
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utterance using the HGA+LFS feature set. Here, each utterance represented a single class,

and distances were only computed between utterances of the same type. A larger nearest-

class distance for a code word or letter indicates that that utterance is more discriminable in

neural feature space because the neural activation patterns associated with silent attempts

to produce it are more distinct from other code words or letters, respectively. We found that

nearest-class distances for code words were significantly higher overall than for letters (z =

2.98, P = 2.85 ⇥ 10�3, two-sided Wilcoxon Rank-Sum test; Figure 2.4b), although not all

code words had a higher nearest-class distance than its corresponding letter (Figure 2.4c).

Distinctions in evoked neural activity between silent- and

overt-speech attempts

The spelling system was controlled by silent-speech attempts, di↵ering from our previous

work in which the same participant used overt-speech attempts (attempts to speak aloud) to

control a similar speech-decoding system (David A. Moses, Metzger, et al. 2021). To assess

di↵erences in neural activity and decoding performance between the two types of speech

attempts, we collected a version of the isolated-target task in which the participant was

instructed to attempt to say the code words aloud (overtly instead of silently). The spatial

patterns of evoked neural activity for the two types of speech attempts exhibited similarities

(Figure 2.14), and inspections of evoked HGA for two electrodes suggest that some neural

populations respond similarly for each speech type while others do not (Figure 2.5a–c).
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To compare the discriminatory neural content between silent- and overt-speech attempts,

we performed 10-fold cross-validated classification analyses using HGA+LFS features associ-

ated with the speech attempts (Figure 2.5d). First, for each type of attempted speech (silent

or overt), we trained a classification model using data collected with that speech type. To

determine if the classification models could leverage similarities in the neural representations

associated with each speech type to improve performance, we also created models by pre-

training on one speech type and then fine-tuning on the other speech type. We then tested

each classification model on held-out data associated with each speech type and compared

all 28 combinations of pairs of results (all statistical results detailed in Table 2.7). Models

trained solely on silent data but tested on overt data and vice versa resulted in classifica-

tion accuracies that were above chance (median accuracies of 36.3%, 99% CI [35.0, 37.5]

and 33.5%, 99% CI [31.0, 35.0], respectively; chance accuracy is 3.85%). However, for both

speech types, training and testing on the same type resulted in significantly higher perfor-

mance (P < 0.01, two-sided Wilcoxon Rank-Sum test, 28-way Holm-Bonferroni correction).

Pre-training models using the other speech type led to increases in classification accuracy,

though the increase was more modest and not significant for the overt speech type (median

accuracy increasing by 2.33%, z = 2.65, P = 0.033 for overt, median accuracy increasing

by 10.4%, z = 3.78, P = 4.40 ⇥ 10�3 for silent, two-sided Wilcoxon Rank-Sum test, 28-way

Holm-Bonferroni correction). Together, these results suggest that the neural activation pat-

terns evoked during silent and overt attempts to speak shared some similarities but were not

identical.
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Generalizability to larger vocabularies and alternative tasks

Although the 1152-word vocabulary enabled communication of a wide variety of common

sentences, we also assessed how well our approach can scale to larger vocabulary sizes.

Specifically, we simulated the copy-typing spelling results using three larger vocabularies

composed of 3303, 5249, and 9170 words that we selected based on their words’ frequencies

in large-scale English corpora. For each vocabulary, we retrained the language model used

during the beam search to incorporate the new words. The large language model used when

finalizing sentences was not altered for these analyses because it was designed to generalize

to any English text.

High performance was maintained with each of the new vocabularies, with median char-

acter error rates (CERs) of 7.18% (99% CI [2.25, 11.6]), 7.93% (99% CI [1.75, 12.1]), and

8.23% (99% CI [2.25, 13.5]) for the 3303-, 5249-, and 9170-word vocabularies, respectively

(Figure 2.6a; median real-time CER was 6.13% (99% CI [2.25, 11.6]) with the original vo-

cabulary containing 1,152 words). Median word error rates (WERs) were 12.4% (99% CI

[8.01, 22.7]), 11.1% (99% CI [8.01, 23.1]), and 13.3% (99% CI [7.69, 28.3]), respectively (Fig-

ure 2.6b; WER was 10.53% (99% CI [5.76, 24.8]) for the original vocabulary). Overall, no

significant di↵erences were found between the CERs or WERs with any two vocabularies (P

> 0.01 for all comparisons, two-sided Wilcoxon Rank-Sum test with 6-way Holm-Bonferroni

correction), illustrating the generalizability of our spelling approach to larger vocabulary

sizes that enable fluent communication.
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Finally, to assess the generalizability of our spelling approach to behavioral contexts

beyond the copy-typing task structure, we measured performance as the participant engaged

in a conversational task condition. In each trial of this condition, the participant was either

presented with a question (as text on a screen) or was not presented with any stimuli. He

then attempted to spell out a volitionally chosen response to the presented question or any

arbitrary sentence if no stimulus was presented. To measure the accuracy of each decoded

sentence, we asked the participant to nod his head to indicate if the sentence matched his

intended sentence exactly. If the sentence was not perfectly decoded, the participant used

his commercially available assistive-communication device to spell out his intended message.

Across 28 trials of this real-time conversational task condition, the median CER was 14.8%

(99% CI [0.00, 29.7]) and the median WER was 16.7% (99% CI [0.00, 44.4]) (Figure 2.6c,

d). We observed a slight increase in decoding error rates compared to the copy-typing task,

potentially due to the participant responding using incomplete sentences (such as “going

out” and “summer time”) that would not be well represented by the language models.

Nevertheless, these results demonstrate that our spelling approach can enable a user to

generate responses to questions as well as unprompted, volitionally chosen messages.

2.4 Discussion

Here, we demonstrated that a paralyzed clinical-trial participant (ClinicalTrials.gov;

NCT03698149) with anarthria could control a neuroprosthesis to spell out intended mes-
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sages in real time using attempts to silently speak. With phonetically rich code words to

represent individual letters and an attempted hand movement to indicate an end-of-sentence

command, we used deep-learning and language-modeling techniques to decode sentences

from electrocorticographic (ECoG) signals. These results significantly expand our previous

word-decoding findings with the same participant (David A. Moses, Metzger, et al. 2021) by

enabling completely silent control, leveraging both high- and low-frequency ECoG features,

including a non-speech motor command to finalize sentences, facilitating large-vocabulary

sentence decoding through spelling, and demonstrating continued stability of the relevant

cortical activity beyond 128 weeks since device implantation.

Previous implementations of spelling brain-computer interfaces (BCIs) have demonstrated

that users can type out intended messages by visually attending to letters on a screen (Rezeika

et al. 2018; Sellers et al. 2014) or by using motor imagery to control a two-dimensional com-

puter cursor (Vansteensel et al. 2016; Pandarinath et al. 2017) or attempt to handwrite

letters (Willett et al. 2021). BCI performance using penetrating microelectrode arrays in

motor cortex has steadily improved over the past 20 years (Gilja et al. 2012; Kawala-Sterniuk

et al. 2021; Serruya et al. 2002), recently achieving spelling rates as high as 90 characters

per minute with a single participant (Willett et al. 2021), although this participant was

able to speak normally. Our results extend the list of immediately practical and clinically

viable control modalities for spelling-BCI applications to include silently attempted speech

with an implanted ECoG array, which may be preferred for daily use by some patients due

to the relative naturalness of speech (Branco et al. 2021) and may be more chronically ro-



77

bust across patients through the use of less invasive, non-penetrating electrode arrays with

broader cortical coverage.

In post-hoc analyses, we showed that decoding performance improved as more linguistic

information was incorporated into the spelling pipeline. This information helped facilitate

real-time decoding with a 1152-word vocabulary, allowing for a wide variety of general and

clinically relevant sentences as possible outputs. Furthermore, through o✏ine simulations,

we validated this spelling approach with vocabularies containing over 9000 common English

words, which exceeds the estimated lexical-size threshold for basic fluency and enables general

communication (Laufer 1989; Webb et al. 2009). These results add to consistent findings

that language modeling can significantly improve neural-based speech decoding (Her↵ et al.

2015; Sun et al. 2020; David A. Moses, Metzger, et al. 2021) and demonstrates the immediate

viability of speech-based spelling approaches for a general-purpose assistive-communication

system.

In this study, we showed that neural signals recorded during silent-speech attempts by

an anarthric person can be e↵ectively used to drive a speech neuroprosthesis. Supporting

the hypothesis that these signals contained similar speech-motor representations to signals

recorded during overt-speech attempts, we showed that a model trained solely to classify

overt-speech attempts can achieve above-chance classification of silent-speech attempts, and

vice versa. Additionally, the spatial localization of electrodes contributing most to classifica-

tion performance was similar for both overt and silent speech, with many of these electrodes

located in the ventral sensorimotor cortex, a brain area that is heavily implicated in artic-
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ulatory speech-motor processing (Bouchard et al. 2013; Carey et al. 2017; Chartier et al.

2018; Conant et al. 2018).

Overall, these results further validate silently attempted speech as an e↵ective alternative

behavioral strategy to imagined speech and expand findings from our previous work involving

the decoding of overt-speech attempts with the same participant (David A. Moses, Metzger,

et al. 2021), indicating that the production of residual vocalizations during speech attempts

is not necessary to control a speech neuroprosthesis. These findings illustrate the viability of

attempted-speech control for individuals with complete vocal-tract paralysis (such as those

with locked-in syndrome), although future studies with these individuals are required to

further our understanding of the neural di↵erences between overt-speech attempts, silent-

speech attempts, and purely imagined speech as well as how specific medical conditions might

a↵ect these di↵erences. We expect that the approaches described here, including recording

methodology, task design, and modeling techniques, would be appropriate for both speech-

related neuroscientific investigations and BCI development with patients regardless of the

severity of their vocal-tract paralysis, assuming that their speech-motor cortices are still

intact and that they are mentally capable of attempting to speak.

In addition to enabling spatial coverage over the lateral speech-motor cortical brain re-

gions, the implanted ECoG array also provided simultaneous access to neural populations

in the hand-motor (hand knob) cortical area that is typically implicated during executed or

attempted hand movements (Gerardin et al. 2000). Our approach is the first to combine

the two cortical areas to control a BCI. This ultimately enabled our participant to use an
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attempted hand movement, which was reliably detectable and highly discriminable from

silent-speech attempts with 98.43% classification accuracy (99% CI [95.31, 99.22]), to indi-

cate when he was finished spelling any particular sentence. This may be a preferred stopping

mechanism compared to previous spelling BCI implementations that terminated spelling for

a sentence after a pre-specified time interval had elapsed or extraneously when the sentence

was completed (Pandarinath et al. 2017) or required a head movement to terminate the sen-

tence (Willett et al. 2021). By also allowing a silent-speech attempt to initiate spelling, the

system could be volitionally engaged and disengaged by the participant, which is an impor-

tant design feature for a practical communication BCI. Although attempted hand movement

was only used for a single purpose in this first demonstration of a multimodal communication

BCI, separate work with the same participant suggests that non-speech motor imagery could

be used to indicate several distinct commands (Silversmith et al. 2021).

One drawback of the current approach is that it relies on code words instead of letters

during spelling. Although the use of these longer code words improved neural discriminabil-

ity, they are less natural to use. Separately, the participant had to attempt to produce code

words at a pre-defined pace during spelling, which enabled straightforward parcellation of

the neural activity into separate time windows for classification but reduced flexibility for

the user. Future work can focus on improving letter decoding and implementing flexible,

user-controlled pacing (for example, through augmented speech-attempt detection) to facil-

itate more naturalistic spelling. Additionally, the present results are limited to only one

participant; to fully assess the clinical viability of this spelling system as a neuroprosthesis,
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it will need to be validated with more participants.

In future communication neuroprostheses, it may be possible to use a combined approach

that enables rapid decoding of full words or phrases from a limited, frequently used vocab-

ulary (David A. Moses, Metzger, et al. 2021) as well as slower, generalizable spelling for

out-of-vocabulary items. Transfer-learning methods could be used to cross-train di↵erently

purposed speech models using data aggregated across multiple tasks and vocabularies, as

validated in previous speech-decoding work (Makin et al. 2020). Although clinical and regu-

latory guidelines concerning the implanted percutaneous connector prevented the participant

from being able to use the current spelling system independently, development of a fully im-

plantable ECoG array and a software application to integrate the decoding pipeline with

an operating system’s accessibility features could allow for autonomous usage. Facilitated

by deep-learning techniques, language modeling, and the signal stability and spatial cover-

age a↵orded by ECoG recordings, future communication neuroprostheses could enable users

with severe paralysis and anarthria to control assistive technology and personal devices using

naturalistic silent-speech attempts to generate intended messages and attempted non-speech

motor movements to issue high-level, interactive commands.
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2.5 Methods

Clinical trial overview

This study was conducted as part of the BCI Restoration of Arm and Voice (BRAVO)

clinical trial (ClinicalTrials.gov; NCT03698149). The goal of this single-institution clinical

trial is to assess the incidence of treatment-emergent adverse events associated with the

ECoG-based neural interface and to determine if ECoG and custom decoding methods can

enable long-term assistive neurotechnology to restore communication and mobility. The data

presented here and the present work do not support or inform any conclusions about the

primary outcomes of this trial. The clinical trial began in November 2018. The Food and

Drug Administration approved an investigational device exemption for the neural implant

used in this study. The study protocol was approved by the Committee on Human Research

at the University of California, San Francisco. The data safety monitoring board agreed to

the release of the results of this work prior to the completion of the trial. The participant

gave his informed consent to participate in this study after the details concerning the neural

implant, experimental protocols, and medical risks were thoroughly explained to him.

Participant

The participant, who was 36 years old at the start of the study, was diagnosed with severe

spastic quadriparesis and anarthria by neurologists and a speech-language pathologist after

experiencing an extensive pontine stroke. He is fully cognitively intact. Although he retains
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the ability to vocalize grunts and moans, he is unable to produce intelligible speech, and

his attempts to speak aloud are abnormally e↵ortful due to his condition (according to

self-reported descriptions). He typically relies on assistive computer-based interfaces that he

controls with residual head movements to communicate. This participant has participated in

previous studies as part of this clinical trial (David A. Moses, Metzger, et al. 2021; Silversmith

et al. 2021), although neural data from those studies were not used in the present study.

He provided verbal consent (using his assistive computer-based interface) to participate

in the study and allow his image to appear in material accompanying this chapter. He

also provided verbal consent (again using this interface) to have a designated third-party

individual physically sign the consent forms on his behalf.

Neural implant

The neural implant device consisted of a high-density electrocorticography (ECoG) array

(PMT) and a percutaneous connector (Blackrock Microsystems) (David A. Moses, Metzger,

et al. 2021). The ECoG array contained 128 disk-shaped electrodes arranged in a lattice

formation with 4-mm center-to-center spacing. The array was surgically implanted on the

pial surface of the left hemisphere of the brain over cortical regions associated with speech

production, including the dorsal posterior aspect of the inferior frontal gyrus, the poste-

rior aspect of the middle frontal gyrus, the precentral gyrus, and the anterior aspect of the

postcentral gyrus (Bouchard et al. 2013; Chartier et al. 2018; Guenther et al. 2016). The
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percutaneous connector was implanted in the skull to conduct electrical signals from the

ECoG array to a detachable digital headstage and cable (NeuroPlex E; Blackrock Microsys-

tems), minimally processing and digitizing the acquired brain activity and transmitting the

data to a computer. The device was implanted in February 2019 at UCSF Medical Center

without any surgical complications.

Data acquisition and preprocessing

We acquired neural features from the implanted ECoG array using a pipeline involving

several hardware components and processing steps (Figure 2.8). We connected a headstage

(a detachable digital connector; NeuroPlex E, Blackrock Microsystems) to the percutaneous

pedestal connector, which digitized neural signals from the ECoG array and transmitted

them through an HDMI connection to a digital hub (Blackrock Microsystems). The digital

hub then transmitted the digitized signals through an optical fiber cable to a Neuroport

system (Blackrock Microsystems), which applied noise cancellation and an anti-aliasing filter

to the signals before streaming them at 1 kHz through an Ethernet connection to a separate

real-time computer (Colfax International). The Neuroport system was controlled using the

NeuroPort Central Suite software package (version 7.0.4; Blackrock Microsystems).

On the real-time processing computer, we used a custom Python software package (rtNSR)

to process and analyze the ECoG signals, execute the real-time tasks, perform real-time de-

coding, and store the data and task metadata (David A. Moses, Metzger, et al. 2021; David
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A. Moses, Leonard, et al. 2019; David A Moses et al. 2018). Using this software package, we

first applied a common average reference (across all electrode channels) to each time sample of

the ECoG data. Common average referencing is commonly applied to multi-channel datasets

to reduce shared noise (Ludwig et al. 2009; Williams et al. 2018). These re-referenced sig-

nals were then processed in two parallel processing streams to extract high-gamma activity

(HGA) and low-frequency signal (LFS) features using digital finite impulse response (FIR)

filters designed using the Parks-McClellan algorithm (Parks et al. 1972) (Figure 2.8; filters

were designed using the SciPy Python package (version 1.5.4)). Briefly, we used these FIR

filters to compute the analytic amplitude of the signals in the high-gamma frequency band

(70–150 Hz) and an anti-aliased version of the signals (with a cuto↵ frequency at 100 Hz).

We combined the time-synchronized high-gamma analytic amplitudes and downsampled sig-

nals into a single feature stream at 200 Hz. Next, we z-scored the values for each channel

and each feature type using a 30-s sliding window to compute running statistics. Finally, we

implemented an artifact-rejection approach that identified neural time points containing at

least 32 features with z-score magnitudes greater than 10, replacing each of these time points

with the z-score values from the preceding time point and ignoring these time points when

updating the running z-score statistics. During real-time decoding and in o✏ine analyses,

we used the z-scored high-gamma analytic amplitudes as the HGA features and the z-scored

downsampled signals as the LFS features (and the combination of the two as the HGA+LFS

feature set). The neural classifier further downsampled these feature streams by a factor of 6

before using them for inference (using an anti-aliasing filter with a cuto↵ frequency at 16.67
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Hz), but the speech detector did not.

We performed all data collection and real-time decoding tasks in the participant’s bed-

room or a small o�ce room nearby. We uploaded data to our lab’s server infrastructure and

trained the decoding models using NVIDIA V100 GPUs hosted on this infrastructure.

Task design

We recorded neural data with the participant during two general types of tasks: an isolated-

target task and a sentence-spelling task (Figure 2.7). In each trial of the isolated-target task,

a text target appeared on the screen along with 4 dots on either side. Dots on both sides

disappeared one by one until no dots remained, at which point the text target turned green

to represent a go cue. At this go cue, the participant either attempted to say the target

(silently or aloud, depending on the current task instructions) if it was either a NATO code

word or an English letter. If the target was a text string containing the word “Right” and an

arrow pointing right, the participant instead attempted to squeeze his right hand. We used

the neural data collected during the isolated-target task to train and optimize the detection

and classification models and to evaluate classifier performance.

The sentence-spelling task is described in the start of the Results section and in Figure 2.1.

Briefly, the participant used the full spelling pipeline (described in the following sub-section)

to either spell sentences presented to him as targets in a copy-typing task condition or to spell

arbitrary sentences in a conversational task condition. We did not implement functionality
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to allow the participant to retroactively alter the predicted sentence, although the language

model could alter previously predicted words in a sentence after receiving additional character

predictions. Data collected during the sentence-spelling task were used to optimize beam-

search hyperparameters and evaluate the full spelling pipeline.

Modeling

We fit detection and classification models using data collected during the isolated-target task

as the participant attempted to produce code words and the hand-motor command. After

fitting these models o✏ine, we saved the trained models to the real-time computer for use

during real-time testing. We implemented these models using the PyTorch Python package

(version 1.6.0). In addition to these two models, we also used language models to enable

sentence spelling. We used hyperparameter optimization procedures on held-out validation

datasets to choose values for model hyperparameters (see Table 2.8). We used the Python

software packages NumPy (version 1.19.1), scikit-learn (version 0.24.2), and pandas (version

0.25.3) during modeling and data analysis.

Speech detection

To determine when the participant was attempting to engage the spelling system, we devel-

oped a real-time silent-speech detection model. This model used long short-term memory

layers, a type of recurrent neural network layer, to process neural activity in real time and de-

tect attempts to silently speak (David A. Moses, Metzger, et al. 2021). This model used both
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LFS and HGA features (a total of 256 individual features) at 200 Hz. The speech-detection

model was trained using supervised learning and truncated backpropagation through time.

For training, we labeled each time point in the neural data as one of four classes depending on

the current state of the task at that time: ‘rest’, ‘speech preparation’, ‘motor’, and ‘speech.’

Though only the speech probabilities were used during real-time evaluation to engage the

spelling system, the other labels were included during training to help the detection model

disambiguate attempts to speak from other behavior. See Figure 2.9 for further details about

the speech-detection model.

Classification

We trained an artificial neural network (ANN) to classify the attempted code word or hand-

motor command yi from the time window of neural activity xi associated with an isolated-

target trial or 2.5-s letter-decoding cycle i. The training procedure was a form of maximum

likelihood estimation, where given an ANN classifier parameterized by ✓ and conditioned

on the neural activity xi, our goal during model fitting was to find the parameters ✓⇤ that

maximized the probability of the training labels. This can be written as the following

optimization problem:

✓⇤ = argmax
✓

Y

i

p✓(yi|xi) = argmin
✓

�
X

i

log p✓(yi|xi) (2.1)

We approximated the optimal parameters ✓⇤ using stochastic gradient descent and the

Adam optimizer (Kingma et al. 2017).
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To model the temporal dynamics of the neural time-series data, we used an ANN with

a one-dimensional temporal convolution on the input layer followed by two layers of bidi-

rectional gated recurrent units (GRUs) (Cho et al. 2014), for a total of three layers. We

multiplied the final output of the last GRU layer by an output matrix and then applied a

softmax function to yield the estimated probability of each of the 27 labels ŷi given xi.

Classifier ensembling for sentence spelling

During sentence spelling, we used model ensembling to improve classification performance

by reducing overfitting and unwanted modeling variance caused by random parameter ini-

tializations (Fort et al. 2020). Specifically, we trained 10 separate classification models using

the same training dataset and model architecture but with di↵erent random parameter ini-

tializations. Then, for each time window of neural activity xi, we averaged the predictions

from these 10 di↵erent models together to produce the final prediction ŷi.

Incremental classifier recalibration for sentence spelling

To improve sentence-spelling performance, we trained the classifiers used during sentence

spelling on data recorded during sentence-spelling tasks from preceding sessions (in addition

to data from the isolated-target task). In an e↵ort to only include high-quality sentence-

spelling data when training these classifiers, we only used data from sentences that were

decoded with a character error rate of 0.
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Beam search

During sentence spelling, our goal was to compute the most likely sentence text s⇤ given the

neural data X. We used the formulation from Hannun et al. (Hannun et al. 2014) to find s⇤

given its likelihood from the neural data and its likelihood under an adjusted language-model

prior, which allowed us to incorporate word-sequence probabilities with predictions from the

neural classifier. This can be expressed formulaically as:

s⇤ = argmax
s

pnc(s|X)plm(s
↵)|s|� (2.2)

Here, pnc(s|X) is the probability of s under the neural classifier given each window of

neural activity, which is equal to the product of the probability of each letter in s given

by the neural classifier for each window of neural activity xi. plm(s) is the probability of

the sentence s under a language-model prior. Here, we used an n-gram language model

to approximate plm(s). Our n-gram language model, with n = 3, provides the probability

of each word given the preceding two words in a sentence. We implemented this language

model using custom code as well as utility functions from the NLTK Python package (version

3.6.2). The probability under the language model of a sentence is then taken as the product

of the probability of each word given the two words that precede it.

As in Hannun et al. (Hannun et al. 2014), we assumed that the n-gram language-model

prior was too strong and downweighted it using a hyperparameter ↵. We also included

a word-insertion bonus � to encourage the language model to favor sentences containing
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more words, counteracting an implicit consequence of the language model that causes the

probability of a sentence under it plm(s) to decrease as the number of words in s increases.

|s| denotes the cardinality of s, which is equal to the number of words in s. If a sentence s

was partially completed, only the words preceding the final whitespace character in s were

considered when computing plm(s) and |s|.

We then used an iterative beam-search algorithm as in Hannun et al. (Hannun et al. 2014)

to approximate s⇤ at each timepoint t = ⌧ . We used a list of the B most likely sentences from

t = ⌧ � 1 (or a list containing a single empty-string element if t = 1) as a set of candidate

prefixes, where B is the beam width. Then, for each candidate prefix l and each English

letter c with pnc(c|x⌧ ) > 0.001, we constructed new candidate sentences by considering l fol-

lowed by c. Additionally, for each candidate prefix l and each text string c+, composed of an

English letter followed by the whitespace character, with pnc(c+|x⌧ ) > 0.001, we constructed

more new candidate sentences by considering l followed by c+. Here and throughout the

beam search, we considered pnc(c+|x⌧ ) = pnc(c|x⌧ ) for each c and corresponding c+. Next,

we discarded any resulting candidate sentences that contained words or partially completed

words that were not valid given our constrained vocabulary. Then, we rescored each re-

maining candidate sentence l̃ with p(l̃) = pnc(l̃|X1:⌧ )plm(l̃)↵|l̃|�. The most likely candidate

sentence, s⇤, was then displayed as feedback to the participant

We chose values for ↵, �, and B using hyperparameter optimization.

If at any time point t the probability of the attempted hand-motor command (the

sentence-finalization command) was > 80%, the B most likely sentences from the previ-
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ous iteration of the beam search were processed to remove any sentence with incomplete or

out-of-vocabulary words. The probability of each remaining sentence l̂ was then recomputed

as:

p(l̂) = pnc(l̂|X1:t�1)plm(l̂)
↵|l̂|�pgpt2(l̂)↵gpt2 (2.3)

Here, pgpt2(l̂) denotes the probability of l̃ under the DistilGPT-2 language model, a

low-parameter variant of GPT-2 (implemented using the lm-scorer Python package (version

0.4.2)), and ↵gpt2 represents a scaling hyperparameter that was set through hyperparameter

optimization. The most likely sentence l̃ given this formulation was then displayed to the

participant and stored as the finalized sentence.

Performance evaluation

Character error rate and word error rate

Because CER and WER are overly influenced by short sentences, as in previous studies

(Willett et al. 2021; David A. Moses, Metzger, et al. 2021) we reported CER and WER as

the sum of the character or word edit distances between each of the predicted and target

sentences in a sentence-spelling block and then divided this number by the total number of

characters or words across all target sentences in the block. Each block contained between

two to five sentence trials.
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Assessing performance during the conversational task condition

To obtain ground-truth sentences to calculate CERs and WERs for the conversational con-

dition of the sentence-spelling task, after completing each block we reminded the participant

of the questions and the decoded sentences from that block, and then, for each decoded sen-

tence, he either confirmed that the decoded sentence was correct or typed out the intended

sentence using his commercially available assistive-communication device. Each block con-

tained between two to four sentence trials.

Characters and words per minute

We calculated the characters per minute and words per minute rates for each sentence-

spelling (copy-typing) block as follows:

rate =

P
i NiP
i Di

(2.4)

Here, i indexes each trial, Ni denotes the number of words or characters (including

whitespace characters) decoded for trial i, and Di denotes the duration of trial i (in min-

utes; computed as the di↵erence between the time at which the window of neural activity

corresponding to the final code word in trial i ended and the time of the go cue of the first

code word in trial i).
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Electrode contributions

To compute electrode contributions using data recorded during the isolated-target task, we

computed the derivative of the classifier’s loss function with respect to the input features

across time as in Simonyan et al. (Simonyan et al. 2014), yielding a measure of how much

the predicted model outputs were a↵ected by small changes to the input feature values for

each electrode and feature type (HGA or LFS) at each time point. Then, we calculated the

L2-norm of these values across time and averaged the resulting values across all isolated-

target trials, yielding a single contribution value for each electrode and feature type for that

classifier.

Cross-validation

For each fold, we used stratified cross-validation folds of the isolated-target task. We split

each fold into a training set containing 90% of the data and a held-out testing set containing

the remaining 10%. In all, 10% of the training dataset was then randomly selected (with

stratification) as a validation set.

Analyzing neural-feature principal components

To characterize the HGA and LFS neural features, we used bootstrapped principal compo-

nent analyses. First, for each NATO code word, we randomly sampled (with replacement)

cue-aligned time windows of neural activity (spanning from the go cue to 2.5 s after the go

cue) from the first 318 silently attempted isolated-target trials for that code word. To clearly
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understand the role of each feature stream for classification, we downsampled the signals by

a factor of 6 to obtain the signals used by the classifier. Then, we trial averaged the data

for each code word, yielding 26 trial averages across time for each electrode and feature set

(HGA, LFS, and HGA+LFS). We then arranged this into a matrix with dimensionality N

⇥ TC, where N is the number of features (128 for HGA and for LFS; 256 for HGA+LFS),

T is the number of time points in each 2.5-s window, and C is the number of NATO code

words (26), by concatenating the trial-averaged activity for each feature. We then performed

principal component analysis along the feature dimension of this matrix. Additionally, we

arranged the trial-averaged data for each code word into a matrix with dimensionality T ⇥

NC. We then performed principal component analysis along the temporal dimension. For

each analysis, we performed the measurement procedure 100 times to obtain a representative

distribution of the minimum number of principal components required to explain more than

80% of the variance.

Nearest-class distance comparison

To compare nearest-class distances for the code words and letters, we first calculated av-

erages across 1000 bootstrap iterations of the combined HGA+LFS feature set across 47

silently attempted isolated-target trials for each code word and letter. We then computed

the Frobenius norm of the di↵erence between each pairwise combination. For each code

word, we used the smallest computed distance between that code word and any other code

word as the nearest-class distance. We then repeated this process for the letters.
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Generalizability to larger vocabularies

During real-time sentence spelling, the participant created sentences composed of words

from a 1152-word vocabulary that contained common words and words relevant to clinical

caregiving. To assess the generalizability of our system, we tested the sentence-spelling

approach in o✏ine simulations using three larger vocabularies. The first of these vocabularies

was based on the ‘Oxford 3000’ word list, which is composed of 3000 core words chosen based

on their frequency in the Oxford English Corpus and relevance to English speakers (About

the Oxford 3000 and 5000 word lists at Oxford Learner’s Dictionaries 2021). The second

was based on the ‘Oxford 5000’ word list, which is the ‘Oxford 3000’ list augmented with an

additional 2,000 frequent and relevant words. The third was a vocabulary based on the most

frequent 10,000 words in Google’s Trillion Word Corpus, a corpus that is over 1 trillion words

in length (Brants et al. 2006). To eliminate non-words that were included in this list (such

as “f”, “gp”, and “ooo”), we excluded words composed of 3 or fewer characters if they did

not appear in the ‘Oxford 5000’ list. After supplementing each of these three vocabularies

with the words from the original 1152-word vocabulary that were not already included, the

three finalized vocabularies contained 3303, 5249, and 9170 words (these sizes are given in

the same order that the vocabularies were introduced).

For each vocabulary, we retrained the n-gram language model used during the beam-

search procedure with n-grams that were valid under the new vocabulary and used the larger

vocabulary during the beam search. We then simulated the sentence-spelling experiments
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o✏ine using the same hyperparameters that were used during real-time testing.

Statistics and reproducibility

Statistical analyses

The statistical tests used in this work are all described in the figure captions and text. In

brief, we used two-sided Wilcoxon Rank-Sum tests to compare any two groups of observa-

tions. When the observations were paired, we instead used a two-sided Wilcoxon signed-rank

test. We used Holm-Bonferroni correction for comparisons in which the underlying neural

data were not independent of each other. We considered P-values < 0.01 as significant.

We computed P-values for Spearman rank correlations using permutation testing. For each

permutation, we randomly shu✏ed one group of observations and then determined the corre-

lation. We computed the P-value as the fraction of permutations that had a correlation value

with a larger magnitude than the Spearman rank correlation computed on the non-shu✏ed

observations. For any confidence intervals around a reported metric, we used a bootstrap

approach to estimate the 99% confidence interval. On each iteration (of a total of 2000

iterations), we randomly sampled the data (such as accuracy per cross-validation fold) with

replacement and calculated the desired metric (such as the median). The confidence interval

was then computed on this distribution of the bootstrapped metric. We used SciPy (version

1.5.4) during statistical testing.
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Reproducibility of experiments

Because this is a pilot study with a single participant, further work is required to definitively

determine if the current approach is reproducible with other participants.

Data exclusions

During the copy-typing condition of the sentence-spelling task, the participant was instructed

to attempt to silently spell each intended sentence regardless of how accurate the decoded

sentence displayed as feedback was. However, during a small number of trials, the participant

self-reported making a mistake (for example, by using the wrong code word or forgetting his

place in the sentence) and sometimes stopped his attempt. This mostly occurred during ini-

tial sentence-spelling sessions while he was still getting accustomed to the interface. To focus

on evaluating the performance of our system rather than the participant’s performance, we

excluded these trials (13 trials out of 163 total trials) from performance-evaluation analyses,

and we had the participant attempt to spell the sentences in these trials again in subsequent

sessions to maintain the desired amount of trials during performance evaluation (2 trials for

each of the 75 unique sentences). Including these rejected sentences when evaluating perfor-

mance metrics only modestly increased the median CER and WER observed during real-time

spelling to 8.52% (99% CI [3.20, 15.1]) and 13.75% (99% CI [8.71, 29.9]), respectively.

During the conversational condition of the sentence-spelling task, trials were rejected if

the participant self-reported making a mistake (as in the copy-typing condition) or if an
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intended word was outside of the 1152 word vocabulary. For some blocks, the participant

indicated that he forgot one of his intended responses when we asked him to report the

intended response after the block concluded. Because there was no ground truth for this

conversational task condition, we were unable to use the trial for analysis. Of 39 original

conversational sentence-spelling trials, the participant got lost on 2 trials, tried to use an

out-of-vocabulary word during 6 trials, and forgot the ground-truth sentence during 3 trials

(leaving 28 trials for performance evaluation). Incorporating blocks where the participant

used intended words outside of the vocabulary only modestly raised CER and WER to

median values of 15.7% (99% CI [6.25, 30.4]) and 17.6%, (99% CI [12.5, 45.5]) respectively.
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Figure 2.1. Schematic depiction of the spelling pipeline. (continued on next page).
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(Previous page.) Figure 2.1. Schematic depiction of the spelling pipeline. a At the start of a
sentence-spelling trial, the participant attempts to silently say a word to volitionally activate the speller.
b Neural features (high-gamma activity and low-frequency signals) are extracted in real time from the
recorded cortical data throughout the task. The features from a single electrode (electrode 0, Figure 2.5a)
are depicted. For visualization, the traces were smoothed with a Gaussian kernel with a standard deviation of
150 milliseconds. The microphone signal shows that there is no vocal output during the task. c The speech-
detection model, consisting of a recurrent neural network (RNN) and thresholding operations, processes
the neural features to detect a silent-speech attempt. Once an attempt is detected, the spelling procedure
begins. d During the spelling procedure, the participant spells out the intended message throughout letter-
decoding cycles that occur every 2.5s. Each cycle, the participant is visually presented with a countdown
and eventually a go cue. At the go cue, the participant attempts to silently say the code word representing
the desired letter. e High-gamma activity and low-frequency signals are computed throughout the spelling
procedure for all electrode channels and parceled into 2.5-s non-overlapping time windows. f An RNN-based
letter-classification model processes each of these neural time windows to predict the probability that the
participant was attempting to silently say each of the 26 possible code words or attempting to perform
a hand-motor command (g). Prediction of the hand-motor command with at least 80% probability ends
the spelling procedure (i). Otherwise, the predicted letter probabilities are processed by a beam-search
algorithm in real time and the most likely sentence is displayed to the participant. g After the participant
spells out his intended message, he attempts to squeeze his right hand to end the spelling procedure and
finalize the sentence. h The neural time window associated with the hand-motor command is passed to the
classification model. i If the classifier confirms that the participant attempted the hand-motor command, a
neural network-based language model (DistilGPT-2) rescores valid sentences. The most likely sentence after
rescoring is used as the final prediction.
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Only neural decoding

Idonotwantthat
Thankytu
Yeucanyaythatagain
Tellmeaboutyoulfamily
Fonftoothatagajn
Ithinkthiyibpreteygrod
Easyfomwvutrsle
Weaavetobtop
Youraiigittobekvvding
Whichoneikit
Itthioeanrthengisanyx
 
  

     

+ Vocab constraints

I do not want that
Thank you
You can say that again
Tell me about your family
Do no tooth at again
I think this it pretty good
Easy for i out a say
We have top top
You i a i i got to be kidding
Which one it it
It there an a thing is any i

+ LM (Real-time results)

I do not want that
Thank you
You can say that again
Tell me about your family
Do not do that again
I think this is pretty good
Easy for you to say
We have to stop
You have got to be kidding
Which one edit
Is there a nothing I can do

f

  1. correct sentence: Which one is it
2. correct sentence: Is there anything I can do

1
2

Figure 2.2. Performance summary of the spelling system during the copy-typing task. a
Character error rates (CERs) observed during real-time sentence spelling with a language model (LM),
denoted as ‘+LM (Real-time results)’, and o✏ine simulations in which portions of the system were omitted.
In the ‘Chance’ condition, sentences were created by replacing the outputs from the neural classifier with
randomly generated letter probabilities without altering the remainder of the pipeline. In the ‘Only neural
decoding’ condition, sentences were created by concatenating together the most likely character from each of
the classifier’s predictions during a sentence trial (no whitespace characters were included). In the ‘+Vocab.
constraints’ condition, the predicted letter probabilities from the neural classifier were used with a beam
search that constrained the predicted character sequences to form words within the 1152-word vocabulary.
The final condition ‘+ LM (Real-time results)’ incorporates language modeling. The sentences decoded with
the full system in real time exhibited lower CERs than sentences decoded in the other conditions (***P<
0.0001, P-values provided in Table 2.2, two-sided Wilcoxon Rank-Sum test with 6-way Holm-Bonferroni
correction). b Word error rates (WERs) for real-time results and corresponding o✏ine omission simulations
from A (***P< 0.0001, P-values provided in Table 2.3, two-sided Wilcoxon Rank-Sum test with 6-way Holm-
Bonferroni correction). c The decoded characters per minute during real-time testing. d The decoded words
per minute during real-time testing. In a–d, the distribution depicted in each boxplot was computed across
n=34 real-time blocks (in each block, the participant attempted to spell between 2 and 5 sentences), and
each boxplot depicts the median as a center line, quartiles as bottom and top box edges, and the minimum
and maximum values as whiskers (except for data points that are 1.5 times the interquartile range, which are
individually plotted). e Number of excess characters in each decoded sentence. f Example sentence-spelling
trials with decoded sentences from each non-chance condition. Incorrect letters are colored red. Superscripts
1 and 2 denote the correct target sentence for the two decoded sentences with errors. All other example
sentences did not contain any errors.
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Figure 2.3. Characterization of high-gamma activity (HGA) and low-frequency signals (LFS)
during silent-speech attempts. (continued on next page).
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(Previous page.) Figure 2.3. Characterization of high-gamma activity (HGA) and low-frequency
signals (LFS) during silent-speech attempts. a 10-fold cross-validated classification accuracy on silently
attempted NATO code words when using HGA alone, LFS alone, and both HGA+LFS simultaneously. Clas-
sification accuracy using only LFS is significantly higher than using only HGA, and using both HGA+LFS
results in significantly higher accuracy than either feature type alone (**P=4.71⇥10�4, z=3.78 for each com-
parison, two-sided Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni correction). Chance accuracy is
3.7%. Each boxplot corresponds to n = 10 cross-validation folds (which are also plotted as dots) and depicts
the median as a center line, quartiles as bottom and top box edges, and the minimum and maximum values
as whiskers (except for data points that are 1.5 times the interquartile range). b–e Electrode contributions.
Electrodes that appear larger and more opaque provide more important features to the classification model.
b, c Show contributions associated with HGA features using a model trained on HGA alone (b) vs using
the combined LFS+HGA feature set (c). d, e depict contributions associated with LFS features using a
model trained on LFS alone (d) vs the combined LFS+HGA feature set (e). f Histogram of the minimum
number of principal components (PCs) required to explain more than 80% of the total variance, denoted as
�2, in the spatial dimension for each feature set over 100 bootstrap iterations. The number of PCs required
were significantly di↵erent for each feature set (***P< 0.0001, P-values provided in Table 2.5, two-sided
Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni correction). g Histogram of the minimum number
of PCs required to explain more than 80% of the variance in the temporal dimension for each feature set
over 100 bootstrap iterations (***P< 0.0001, P-values provided in Table 2.6, two-sided Wilcoxon Rank-Sum
test with 3-way Holm-Bonferroni correction, *P< 0.01 two-sided Wilcoxon Rank-Sum test with 3-way Holm-
Bonferroni correction). h E↵ect of temporal smoothing on classification accuracy. Each point represents
the median, and error bars represent the 99% confidence interval around bootstrapped estimations of the
median.
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Figure 2.4. Comparison of neural signals during attempts to silently say English letters and
NATO code words. a Classification accuracy (across n=10 cross-validation folds) using models trained
with HGA+LFS features is significantly higher for NATO code words than for English letters (**P=1.57 ⇥
10�4, z=3.78, two-sided Wilcoxon Rank-Sum test). The dotted horizontal line represents chance accuracy.
b Nearest-class distance is significantly larger for NATO code words than for letters (boxplots show values
across the n = 26 code words or letters; *P=2.85 ⇥ 10�3, z=2.98, two-sided Wilcoxon Rank-Sum test). In
a, b, each data point is plotted as a dot, and each boxplot depicts the median as a center line, quartiles as
bottom and top box edges, and the minimum and maximum values as whiskers (except for data points that
are 1.5 times the interquartile range). c The nearest-class distance is greater for the majority of code words
than for the corresponding letters. In b and c, nearest-class distances are computed as the Frobenius norm
between trial-averaged HGA+LFS features.
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Figure 2.5. Di↵erences in neural signals and classification performance between overt- and
silent-speech attempts. a MRI reconstruction of the participant’s brain overlaid with implanted electrode
locations. The locations of the electrodes used in b and c are bolded and numbered in the overlay. b Evoked
high-gamma activity (HGA) during silent (orange) and overt (green) attempts to say the NATO code word
kilo. c Evoked high-gamma activity (HGA) during silent (orange) and overt (green) attempts to say the
NATO code word tango. Evoked responses in b and c are aligned to the go cue, which is marked as a vertical
dashed line at time 0. Each curve depicts the mean±standard error across n=100 speech attempts. d Code-
word classification accuracy for silent- and overt-speech attempts with various model-training schemes. All
comparisons revealed significant di↵erences between the result pairs (P< 0.01, two-sided Wilcoxon Rank-Sum
test with 28-way Holm-Bonferroni correction) except for those marked as ‘ns’. Each boxplot corresponds
to n = 10 cross-validation folds (which are also plotted as dots) and depicts the median as a center line,
quartiles as bottom and top box edges, and the minimum and maximum values as whiskers (except for data
points that are 1.5 times the interquartile range). Chance accuracy is 3.84%.
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Questions
1. What is your favorite time of year?
2. Where do you live?
3. What would you change about where you live?
4. What do you like to watch on TV?
5. (Free response; no question shown)  
  
      Answers (Decoded from Brain Activity)
1. Summer time
2. I live in California
3. The food is terrible
4. I like to watch a movie
5. It was nice to see you

Figure 2.6. The spelling approach can generalize to larger vocabularies and conversational set-
tings. a Simulated character error rates from the copy-typing task with di↵erent vocabularies, including
the original vocabulary used during real-time decoding. b Word error rates from the corresponding simu-
lations in a. In a and b, each boxplot corresponds to n=34 blocks (in each of these blocks, the participant
attempted to spell between two to five sentences). c Character and word error rates across the volitionally
chosen responses and messages decoded in real time during the conversational task condition. Each boxplot
corresponds to n=9 blocks (in each of these blocks, the participant attempted to spell between two to four
conversational responses; each dot corresponds to a single block). In a-c, each boxplot depicts the median
as a center line, quartiles as bottom and top box edges, and the minimum and maximum values as whiskers
(except for data points that are 1.5 times the interquartile range, which are individually plotted). d Exam-
ples of presented questions from trials of the conversational task condition (left) along with corresponding
responses decoded from the participant’s brain activity (right). In the final example, the participant spelled
out his intended message without being prompted with a question.



109

Figure 2.7. Data collection timeline Each bar depicts the total number of trials collected on each
day of recording. The participant and implant date are the same as in our previous work (David A. Moses,
Metzger, et al. 2021). If more than one type of dataset was collected in a single day, the bar is colored by
the proportion of each dataset collected. Each color represents a specific dataset (as specified in the legend).
Datasets vary in task type (isolated-target or real-time sentence spelling), utterance set (English letters,
NATO code words (which included the attempted hand squeeze), copy-typing sentences, or conversational
sentences), and, for the real-time sentence-spelling datasets, the purpose of the data (for hyperparameter
optimization or for performance evaluation). All speech-related trials were associated with silent-speech
attempts, except for the dataset with “(overt)” in its legend label. Additionally, 3.06% of trials in this
overt dataset were actually recorded during a version of the copy-typing sentence-spelling task in which the
participant attempted to overtly produce the code words. Datasets were collected on an irregular schedule
due to external and clinical time constraints that were unrelated to the neural implant. The gap from 55–88
weeks was specifically due to clinical guidelines during the start of the COVID-19 pandemic that limited or
prevented in-person recording sessions.
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Figure 2.8. Real-time signal-processing pipeline A detachable data-acquisition headstage (NeuroPlex
E, Blackrock Microsystems) attached to the percutaneous pedestal connector applied a hardware-based wide-
band Butterworth filter (between 0.3 Hz and 7.5 kHz) to the ECoG signals, digitized them with 16-bit,
250-nV per bit resolution, and transmitted them at 30 kHz through additional connections to a Neuroport
system (Blackrock Microsystems), which processed the signals using software-based line noise cancellation
and an anti-aliasing low-pass filter (at 500 Hz). Afterwards, the processed signals were streamed at 1 kHz
to a separate computer for further real-time processing and analysis, where we applied a common average
reference (across all electrode channels) to each time sample of the ECoG data. The re-referenced signals
were then processed in two parallel streams to extract high-gamma activity (HGA) and low-frequency signal
(LFS) features. To compute the HGA features, we applied eight 390th-order band-pass finite impulse response
(FIR) filters to the re-referenced signals (filter center frequencies were within the high-gamma band at 72.0,
79.5, 87.8, 96.9, 107.0, 118.1, 130.4, and 144.0 Hz). Then, for each channel and band, we used a 170th-
order FIR filter to approximate the Hilbert transform. Specifically, for each channel and band, we set the
real component of the analytic signal equal to the original signal delayed by 85 samples (half of the filter
order) and set the imaginary component equal to the Hilbert transform of the original signal (approximated
by this FIR filter) (Romero et al. 2012). We then computed the magnitude of each analytic signal at
every fifth time sample, yielding analytic amplitude signals at 200 Hz. For each channel, we averaged the
analytic amplitude values across the eight bands at each time point to obtain a single high-gamma analytic
amplitude measure for that channel. To compute the LFS features, we downsampled the re-referenced
signals to 200 Hz after applying a 130th-order anti-aliasing low-pass FIR filter with a cuto↵ frequency of 100
Hz. We then combined the time-synchronized values from the two feature streams (high-gamma analytic
amplitudes and downsampled signals) into a single feature stream. Next, we z-scored the values for each
channel and each feature type using Welford’s method with a 30-second sliding window (Welford 1962).
Finally, we implemented a simple artifact-rejection approach to prevent samples with uncommonly large
z-score magnitudes from interfering with the running z-score statistics or downstream decoding processes.
We adapted this figure from our previous works (David A. Moses, Leonard, et al. 2019; David A. Moses,
Metzger, et al. 2021), which implemented similar preprocessing pipelines to compute high-gamma features.
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Figure 2.9. Speech-detection model schematic To detect silent-speech attempts from the participant’s
neural activity during real-time sentence spelling, first the z-scored low-frequency signals (LFS) and high-
gamma activity (HGA) for each electrode are processed continuously by a stack of 3 long short-term memory
(LSTM) layers. Next, a single dense (fully connected) layer projects the latent dimensions of the final LSTM
onto the 4 possible classes: speech, speech preparation, rest, and motor. The stream of speech probabilities
is then temporally smoothed, probability thresholded, and time thresholded to yield onsets and o↵sets of
full speech events. Once the participant attempts to silently say something and that speech attempt is
detected, the spelling system is engaged and the paced spelling procedure begins. The depicted neural
features, predicted speech-probability time series (upper right), and detected speech event (lower right) are
the actual neural data and detection results for a 5-second time window at the beginning of a trial of the
real-time sentence copy-typing task. This figure was adapted from our previous work (David A. Moses,
Metzger, et al. 2021), which implemented a similar speech-detection architecture.
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Figure 2.10. E↵ects of feature selection on code-word classification accuracy A. Classification
accuracy improves for each code word when using high-gamma activity (HGA) and low-frequency signals
(LFS) together (the combined HGA+LFS feature set) instead of only HGA features. The accuracies are
significantly correlated with a Spearman rank correlation of 0.512 (P = 0.0085, permutation testing with
2000 iterations). B. Classification accuracy improves for almost every code word when using HGA+LFS
instead of LFS alone. The accuracies are significantly correlated with a Spearman rank correlation of 0.760
(P ⇡ 0.00, permutation testing with 2000 iterations). Because not all possible permutations were tested
(the number of possible permutations for 26 elements is 4.03 ⇥ 1026, so we approximate this test with 2000
iterations), the P -value is approximately 0.00 in this case. In both A and B, code words are represented as
lower-case letters and the Spearman rank correlations are shown. The associated P -value was computed via
permutation testing. In permutation testing, one group of observations (code-word accuracies for either HGA,
LFS, or HGA+LFS) was shu✏ed before re-computing the correlation between that group of observations and
the other group. 2000 iterations were used during permutation testing for each of the two comparisons. The
P -value was computed as the proportion of the distribution of correlations computed during permutation
testing that were greater in magnitude than the correlation computed on non-shu✏ed data.
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Figure 2.11. Confusion matrix from isolated-target trial classification using HGA and LFS
Confusion values, computed during o✏ine classification of neural data (using both high-gamma activity and
low-frequency signals) recorded during isolated-target trials, are shown for each NATO code word and the
attempted hand squeeze. Each row corresponds to a target code word or the attempted hand squeeze, and
the value in each column for that row corresponds to the percent of isolated-target task trials that were
correctly classified as the target (if the value is along the diagonal) or misclassified (“confused”) as another
potential target (if the value is not along the diagonal). The values in each row sum to 100%. In general,
silent-speech and hand-squeeze attempts were reliably classified. Including both the attempted NATO code
word trials and the attempted hand squeeze trials, the 10-fold cross-validated median accuracy was 56.4%
with a 99% confidence interval of [54.3, 58.2].
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Figure 2.12. Confusion matrix from isolated-target trial classification using only HGA Confu-
sion values, computed during o✏ine classification of neural data (using only high-gamma activity) recorded
during isolated-target trials, are shown for each NATO code word and the attempted hand squeeze. Each
row corresponds to a target code word or the attempted hand squeeze, and the value in each column for
that row corresponds to the percent of isolated-target task trials that were correctly classified as the target
(if the value is along the diagonal) or misclassified (“confused”) as another potential target (if the value is
not along the diagonal). The values in each row sum to 100%. Including both the attempted NATO code
word trials and the attempted hand squeeze trials, the 10-fold cross-validated median accuracy was 32.7%
with a 99% confidence interval of [32.0, 33.6].
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Figure 2.13. Confusion matrix from isolated-target trial classification using only LFS Confusion
values, computed during o✏ine classification of neural data (using only low-frequency signals) recorded
during isolated-target trials, are shown for each NATO code word and the attempted hand squeeze. Each
row corresponds to a target code word or the attempted hand squeeze, and the value in each column for
that row corresponds to the percent of isolated-target task trials that were correctly classified as the target
(if the value is along the diagonal) or misclassified (“confused”) as another potential target (if the value is
not along the diagonal). The values in each row sum to 100%. Including both the attempted NATO code
word trials and the attempted hand squeeze trials, the 10-fold cross-validated median accuracy was 48.2%
with a 99% confidence interval of [42.9, 49.7].
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Figure 2.14. Neural-activation statistics during overt- and silent-speech attempts A. Each image
shows an MRI reconstruction of the participant’s brain overlaid with electrode locations and the maximum
neural activations for each electrode, type of speech attempt (overt or silent), and feature type (high-gamma
activity (HGA) or low-frequency signals (LFS)), measured as maximum peak code-word average magnitudes.
To calculate these values, the trial-averaged neural-feature time series was computed for each code word,
electrode, type of speech attempt, and feature type using the isolated-target dataset (for each trial, the
2.5-second time window after the go cue was used). Then, the peak magnitude (maximum of the absolute
value) of each of these trial-averaged time series was determined. The maximum peak code-word average
magnitude for each electrode, type of speech attempt, and feature type was then computed as the maximum
value of these peak magnitudes across code words for each combination. The two columns show the values
for each type of speech attempt (overt then silent), and the two rows show the values for each feature type
(HGA then LFS). B. The standard deviation of peak code-word average magnitudes. Here, the standard
deviation (instead of the maximum used in A) of the peak average magnitudes across the code words for
each electrode, type of speech attempt, and feature type is computed and plotted, depicting how much
the magnitudes varied across speech targets for that combination. For A and B, the color of each plotted
electrode indicates the true associated value for that electrode, and the size of each electrode depicts the
associated value for that electrode relative to the values for the other electrodes (for a given type of speech
attempt and feature type).
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Table 2.1. Copy-typing task sentences.

Target sentence Decoded sentence in first trial Decoded sentence in second trial
good morning good morning good for legs
you have got to be kidding you have got to be kidding a you have got to be kidding
what do you mean what do you mean what do you mean
good to see you i do i leave you good to see you
i think this is pretty good i think this is pretty good i think they is pretty good
i will check i will check i will the it
thank you thank you thank you
please sit down please sit down please believe
we have to stop we have to stop we have to stop
hand that to me please hand that time please have that time always
i know what you mean i know what you mean i know what you mean
what time is it what time is it what time is it
sit over here with me sit over here with me sit over here with me
no thanks no thanks not happen
you never know you never know you never know
great to see you again great to show my case in great to stay in town
forget about it forget about it forget about it
could you repeat what you said dog lie on repeat what you said could you repeat what you said
where do you live where do you live where do you live
do not be afraid to ask me questions do not be afraid to ask me questions do not be afraid to ask me questions
i cannot believe it i can not believe it i can not believe it
thanks for telling me thank for reading me thanks for telling me
i do not want that i do not want that i do not want that
that is wonderful that is work from a that is wonderful
what do you think about that what do you think about that what do you think about that
thank you very much though it very much thank you very much
i am glad you are here i am glad you are here i am glad you are here
how are you doing how are you doing how are you doing
i agree i agree i agree
i am okay i am okay i am okay
tell me what you are doing tell me what your telling tell me what you are doing
how long did it take how long did it take how long did it take
is there anything i can do is there a nothing i can do is there anything i can do
how are things going for you how are things gives for you how are things going for you
do you know what he did do you know on the ice do you know what he did
was there something else was there to be a high else was there something else
where are you going while are you doing where are you going
who is that who is that why is that
tell me about your family tell me about your family tell me about your family
i could probably do better i could probably do better i could probably do better
you can say that again you can say that again you can say that open
i am sorry to hear that i am to get to hear that i am sorry to hear that
will i see you later will i see you later well i keep by later
i am doing well i am doing well i am doing fine
can that wait until another time can that wait until another time can that wait until another time
how much more is there how much more is there how much were in there
come talk with me come talk with me some take with me
that will be fun that will be fun that will be fun
how often do you do this how often do you do this how often do you do this
how much will it cost how much will it cost how much will it cost
bring that over here clinic hat for hat bring that ever here
turn it o↵ turn it o↵ turn it o↵

(continued on next page).
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(continued from previous page). Table 2.1. Copy-typing task sentences.

Target sentence Decoded sentence in first trial Decoded sentence in second trial
i remember the last time i did that i remember the last time i did that i remember to plan new me i did that
i was just kidding i was mike kidding i was just kidding
i will meet you there i will meet you there i will meet you to eat
i do not really remember i do not really remember ddonoyrballyrlrefbhrh
i feel cold i feel weird i feel cold
excuse me for interrupting excuse me for interrupt any excuse me for interrupting
you are not going to believe this you plan to go in on a bit love this ypuaranpdggingloavlinesoeb
do you understand what i mean do you understand what i mean do you understand what i mean
what are you talking about what are you talking about what are you talking about
which one is it which one edit which one is it
would you like to go with me a all i was like the white me would you like to go with me
i do not understand i do not understand i do not understand
of course i do of course its of course him
anything is possible anything is possible anything is possible
do not do that again do not do that again do not do that again
let me see that let me see that let me see that
what have you been doing what have you been doing what have you been doing
i had a great time i had a great time what a great time
easy for you to say easy for you to say easy for you to say
i want to go i want to go i want to go
how do you feel how do you feel how do you feel
that is all right that is all right that is all right
i told you i do not know i told you i do not know i told you i do not know
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Table 2.2. Statistical comparisons of character error rates across decoding-
framework conditions.

P -value
Statistical comparison1 | z -value | (corrected)2

Chance vs. Only Neural Decoding 7.09 8.08 ⇥ 10�12

Chance vs. + Vocab. Constraints 7.09 8.08 ⇥ 10�12

Chance vs. + LM (Real-time results) 7.09 8.08 ⇥ 10�12

Only Neural Decoding vs. + LM (Real-time results) 6.94 1.21 ⇥ 10�11

+ Vocab. Constraints vs. + LM (Real-time results) 5.53 6.34 ⇥ 10�8

Only Neural Decoding vs. + Vocab. Constraints 4.51 6.37 ⇥ 10�6

1 Each comparison is a two-sided Wilcoxon Rank-Sum test across 34 real-time spelling blocks.
2 6-way Holm-Bonferroni correction for multiple comparisons.
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Table 2.3. Statistical comparisons of word error rates across decoding-framework
conditions.

P -value
Statistical comparison1 | z -value | (corrected)2

Chance vs. + LM (Real-time results) 7.09 8.08 ⇥ 10�12

Only Neural Decoding vs. + LM (Real-time results) 7.09 8.08 ⇥ 10�12

Chance vs. + Vocab. Constraints 6.70 8.16 ⇥ 10�11

Only Neural Decoding vs. + Vocab. Constraints 6.61 1.19 ⇥ 10�10

+ Vocab. Constraints vs. + LM (Real-time results) 6.11 2.01 ⇥ 10�9

1 Each comparison is a two-sided Wilcoxon Rank-Sum test across 34 real-time spelling blocks.
2 6-way Holm-Bonferroni correction for multiple comparisons.
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Table 2.4. Statistical comparisons of classification accuracy across neural-feature
types.

P -value
Statistical comparison1 | z -value | (corrected)2

HGA vs. LFS 3.78 4.71 ⇥ 10�4

HGA vs. HGA+LFS 3.78 4.71 ⇥ 10�4

LFS vs. HGA+LFS 3.78 4.71 ⇥ 10�4

1 Each comparison is a two-sided Wilcoxon Rank-Sum test
across 10 cross-validation folds.
2 6-way Holm-Bonferroni correction for multiple compar-
isons.
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Table 2.5. Statistical comparisons of the number of principal components re-
quired to explain more than 80% of the variance in the spatial dimension across
neural-feature types.

P -value
Statistical comparison1 | z -value | (corrected)2

HGA vs. LFS 12.22 7.57 ⇥ 10�34

HGA vs. HGA+LFS 12.22 7.57 ⇥ 10�34

LFS vs. HGA+LFS 12.02 2.66 ⇥ 10�33

1 Each comparison is a two-sided Wilcoxon Rank-Sum test
across 100 bootstrap iterations.
2 3-way Holm-Bonferroni correction for multiple compar-
isons.
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Table 2.6. Statistical comparisons of the number of principal components re-
quired to explain more than 80% of the variance in the temporal dimension
across neural-feature types.

P -value
Statistical comparison1 | z -value | (corrected)2

HGA vs. LFS 12.22 7.57 ⇥ 10�34

LFS vs. HGA+LFS 12.22 7.57 ⇥ 10�34

HGA vs. HGA+LFS 2.68 0.007 27
1 Each comparison is a two-sided Wilcoxon Rank-Sum test
across 100 bootstrap iterations.
2 3-way Holm-Bonferroni correction for multiple compar-
isons.
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Table 2.7. Statistical comparisons of classification accuracy across attempted-
speech types with various training schemes.

Group 1 Group 2 P -value
Train Test Train Test | z -value | (corrected2)

Silent Silent Silent Overt 3.78 4.4 ⇥ 10�3

Silent Silent Overt Overt 3.78 4.4 ⇥ 10�3

Silent Silent Overt Silent 3.78 4.4 ⇥ 10�3

Silent Silent Overt pre-train, silent fine-tune Silent 3.78 4.4 ⇥ 10�3

Silent Silent Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Silent Overt Overt Overt 3.78 4.4 ⇥ 10�3

Silent Overt Overt pre-train, silent fine-tune Silent 3.78 4.4 ⇥ 10�3

Silent Overt Overt pre-train, silent fine-tune Overt 3.78 4.4 ⇥ 10�3

Silent Overt Silent pre-train, overt fine-tune Silent 3.78 4.4 ⇥ 10�3

Silent Overt Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt Overt Overt Silent 3.78 4.4 ⇥ 10�3

Overt Overt Overt pre-train, silent fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt Overt Silent pre-train, overt fine-tune Silent 3.78 4.4 ⇥ 10�3

Overt Silent Overt pre-train, silent fine-tune Silent 3.78 4.4 ⇥ 10�3

Overt Silent Overt pre-train, silent fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt Silent Silent pre-train, overt fine-tune Silent 3.78 4.4 ⇥ 10�3

Overt Silent Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt pre-train, silent fine-tune Silent Overt pre-train, silent fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt pre-train, silent fine-tune Silent Silent pre-train, overt fine-tune Silent 3.78 4.4 ⇥ 10�3

Overt pre-train, silent fine-tune Overt Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Silent pre-train, overt fine-tune Silent Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt pre-train, silent fine-tune Silent Silent pre-train, overt fine-tune Overt 3.70 4.4 ⇥ 10�3

Silent Overt Overt Silent 3.17 8.99 ⇥ 10�3

Overt pre-train, silent fine-tune Overt Silent pre-train, overt fine-tune Silent 2.76 2.9 ⇥ 10�2

Overt Overt Silent pre-train, overt fine-tune Overt 2.65 3.26 ⇥ 10�2

Overt Overt Overt pre-train, silent fine-tune Silent 2.57 3.26 ⇥ 10�2

Silent Silent Overt pre-train, silent fine-tune Overt 1.51 2.61 ⇥ 10�1

Silent Silent Silent pre-train, overt fine-tune Silent 0.76 4.5 ⇥ 10�1

1 Each comparison is a two-sided Wilcoxon Rank-Sum test across 10 cross-validation folds.
2 28-way Holm-Bonferroni correction for multiple comparisons.
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Table 2.8. Hyperparameter definitions and values.

Hyperparameter Search- Value Optimal
Model description space type1 range values2

Speech Smoothing size Uniform (int) [1, 80] 78
detector Probability threshold Uniform [0.1, 0.9] 0.304

Time threshold Uniform (int) [25, 150] 105
duration

Word Number of GRU layers Uniform (int) [1, 4] 2
classifier Nodes per GRU layer Uniform (int) [128, 512] 274

Dropout fraction Uniform [0.3, 0.8] 0.545
Convolution kernel Uniform (int) [1, 10] 4
size and skip
Jitter amount (seconds), j Uniform [0.0, 2.0] 0.474
Additive noise level, �n Uniform [0.0, 1.0] 0.0027
Scale min., ↵min Uniform [0.8, 1.0] 0.955
Scale max., ↵max Uniform [1.0, 1.2] 1.07
Max. temporal-masking Uniform [0.00, 1.35] 0.871
length (seconds), b
Temporal masking probability, p Uniform [0.0, 0.5] 0.0478
Channel-wise noise, �c Uniform [0.0, 1.0] 0.0283

Beam Language-model scaling factor, ↵ Uniform [0.01, 1.0] (0.642, 0.744)
search Word-insertion weight, � Uniform [0.0, 30.0] (4.03, 10.5)

Number of beams maintained, B Uniform (int) [0, 750] (457, 739)
Distil-GPT2 scaling factor, ↵gpt2 Uniform [0.0, 100.0] (1.53, 1.13)

1 “Uniform (int)” indicates that hyperparameter values were forced to be integers.
2 For the language modeling and beam-search hyperparameters, two values are listed: the first is the
optimal value found when optimizing on the copy-typing sentence-spelling trials prior to the first day of
sentence-spelling evaluations (used during this first day), and the second is the optimal value found when
optimizing on the copy-typing sentence-spelling trials from the first day of sentence-spelling evaluations
(used for the second day and all subsequent days).
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Chapter 3

The cortical dynamics of planning

spoken syllable sequences

Disclaimer: This chapter contains currently unpublished material and is a direct adaptation

of a manuscript that I am preparing for submission to a scientific journal. I encourage those

reading this chapter to first search for the related publication, as it will contain updated

material and interpretations. The published article should have a similar title and will have

myself as first author, followed by Lingyun Zhao, Patrick W. Hullett, and Edward F. Chang.

Personal contributions: I conceived the project (with Edward F. Chang), designed the

task, and along with other lab members collected the data. I performed all analyses (in brief,

including data processing, annotation and behavior quantification, statistics, sequence and

articulatory complexity encoding, reaction time prediction, and figure generation) except for

NMF clustering, task phase decoding, and calculation of articulatory and auditory controls,

which were performed by my co-author Lingyun Zhao. Co-author Patrick W. Hullett and

I designed and collected the stimulation data, and I analyzed and quantified all stimulation

results. I wrote the current draft of the manuscript.
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3.1 Abstract

Speech production requires the fluent sequencing and execution of complex sequences of

speech sounds. This process is traditionally conceptualized as a progression of neural pro-

cesses across distinct cortical regions, each of which underlies speech planning, initiation,

and execution of articulation. Although the general process of speech planning has been

implicated in many frontal areas, speech-motor sequencing in particular is not well under-

stood. We used direct high-density electrocorticography to record cortical activity while

participants performed a delayed go-cue task where we modulated sequencing demands by

increasing sequence complexity at the level of the syllable. Instead of only finding neural

activity isolated to single task phases, we also found a distributed cortical network charac-

terized by sustained neural activity across the encoding of the target sequence, the delay

period, and through the production of the sequence. Sustained population activity reflected

the progression of task phases and was strongly modulated by sequence complexity. Impor-

tantly, sustained activity in the middle precentral gyrus (mPrCG) most consistently encoded

sequence complexity. Sustained activity in the mPrCG additionally predicted reaction time,

indicating the specific role of speech-motor sequencing to the mPrCG. Further, electrocorti-

cal stimulation of the mPrCG caused transient speech disfluencies, consistent with apraxia

of speech. These results suggest that the planning of speech sequences is mediated by a

cortical network with parallel processing. In this network, the mPrCG is a critical node of

speech-motor sequencing.
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3.2 Introduction

Fluent speech production requires the precise planning and coordination of articulatory

movements. While progress has been made in understanding how the brain controls artic-

ulatory movements, less is known about the processes upstream of continuous articulation.

Broadly, traditional models of speech production propose a model of hierarchical process-

ing, where brain areas with particular functions are activated in phasic progression (Levelt

1993). These models typically propose Broca’s area (within the inferior frontal gyrus, IFG)

for planning and sequencing, the supplementary motor area (SMA) for speech initiation, the

precentral gyrus for phoneme level plans and/or articulatory execution, and the superior

temporal gyrus (STG) or supramarginal gyrus (SMG) for phonological targets (Hickok 2012;

Guenther et al. 2016).

For transient stimuli or behavior, there is indeed cortical phasic activity. For example,

neural populations in the STG that are only active in processing perceived speech or neural

populations in the primary motor cortex that are only active in sending low level articula-

tory commands to downstream e↵ectors (Cheung et al. 2016; Chartier et al. 2018). Speech

planning, on the other hand, is not necessarily time locked to behavior and can encompass

several di↵erent processes including higher level functions such as idea formation, syntax,

and lexical access to lower level processes such as motor sequencing (Lashley 1951; Mac-

Neilage 1998; MacKay 1970; Levelt 1993; Hickok 2012; Hickok et al. 2022; Guenther et al.

2016). Though some studies have found neural populations that are exclusively active prior
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to articulation (Flinker et al. 2015; Castellucci et al. 2022), neural populations with activity

during stimulus presentation or perception and prior to and during speech production have

also been found (Castellucci et al. 2022; Gregory B Cogan et al. 2017; Gregory B. Cogan et

al. 2014; Leonard et al. 2019). The existence of sustained activity challenges the traditional

notion that planning is restricted to a period exclusively before the onset of articulation. It

may be that whether neural populations exhibit phasic or sustained activity is dependent on

cortical location or the specific process of speech planning being supported. In motor neu-

roscience, it is well known that both phasic and sustained activity supports motor planning

(Gnadt et al. 1988; Guo et al. 2017; Zimnik et al. 2021). Further, one study demonstrated

that motor planning does not occur only before an initiated action, but continues to overlap

with execution for subsequent actions (Zimnik et al. 2021).

In particular, sequencing is essential to fluent speech production, translating abstract

speech targets (e.g. the word “production” or the syllables “pro”, “duc”, “tion”) into serially

ordered behavior (Lashley 1951). Speech sequencing has been theorized to occur at both the

phonemic and syllabic levels (Levelt 1993; MacNeilage 1998; Bohland et al. 2006; Peeva et

al. 2010). Importantly, sequencing directly relies on both the correct selection or generation

of speech units in the sequence and the successful execution of these sequences. Sequence

generation may be reflected in processes facilitating phonological target encoding. This

has been hypothesized to occur in regions encompassing the posterior STG and the SMG,

while the motoric aspect of sequencing has been hypothesized to occur in Broca’s area

(Guenther et al. 2016; Hickok et al. 2022). To further contrast these two aspects, errors of
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sequence generation would likely resemble paraphasias, where entire segments are incorrect

but motoric execution is not impaired (e.g. saying “collection” instead of “connection”)

(Binder 2017), whereas errors of motor sequencing may resemble apraxia of speech (AOS),

where di�culty in producing speech increases with increasing sequence complexity (Strand

et al. 2014). Though Broca’s area has been implicated in speech sequencing (Bohland et

al. 2006; Guenther et al. 2016; Hickok et al. 2022; Peeva et al. 2010), lesion, resection, or

stimulation to this area more often causes speech arrest or anomia (a deficit in naming)

(Andrews et al. 2022; Lu et al. 2021). Additionally, recent lesion and resection case studies

have localized AOS to damage in the precentral gyrus (Itabashi et al. 2016; Chang et al.

2020; Levy et al. 2023), leaving an open question for what brain areas control speech-motor

sequencing.

A major challenge in studying the neural correlates of speech-motor sequencing is the

lack of simultaneous spatial and temporal resolution. Functional magnetic resonance imaging

(fMRI) has enabled the localization of putative speech planning areas (Bohland et al. 2006)

but is unable to account for dynamic processes that occur too fast to be grouped into phasic

processes. In fact, fMRI localization methods that rely on defining cortical planning areas

as the subtraction of production activity from pre-production activity, lessens the chance

of localizing areas with sustained activity, which will have both. Both localizing areas with

any (sustained or phasic) relevant planning activity and studying low-level speech-motor

planning therefore require high temporal resolution with a great amount of spatial coverage.

Further, determining whether cortical areas are causally involved in speech-motor planning
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has largely been left to stroke lesion studies and rare case studies, where cortical damage

is rarely specific and focal and analysis is post hoc. Though these studies have greatly

progressed our knowledge of putative causes of disorders of speech-motor planning, like

AOS, there remains a lack of a direct link between a neurobiological process in an area and

perturbation of that area causing disfluencies.

To overcome these challenges, we used high-density electrocorticography (ECoG) record-

ings from all cortical areas that have been implicated in speech production. We used a

delayed go-cue task where participants are asked to produce various syllable sequences. We

vary the sequence and articulatory complexity of these sequences in order to observe the

dynamics of cortical responses when low level sequencing demands are modulated at the

phoneme and syllable. We observe these dynamics across 4 defined task phases: encoding,

delay, pre-speech, and speech. Instead of only phasic activity, where an area is active during

one phase, we found prominent sustained activity across several cortical areas, including tra-

ditional speech planning areas like Broca’s area, the supramarginal gyrus, and the posterior

STG, but also strongly in the precentral gyrus and supplementary motor area. We found

that primarily an area in the precentral gyrus, which we term the “middle precentral gyrus”

(mPrCG) and the posterior STG consistently encode the sequence complexity (complexity

of the sequence at the syllable level, not the phoneme level). The mPrCG in particular also

correlated with reaction time and speech errors, but did not encode articulatory movements,

suggesting that the mPrCG is involved in speech-motor sequencing.

With ECoG, we were able to further directly investigate the causality of sequence com-
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plexity encoding using direct electrocortical stimulation. Indeed, stimulation caused speech

errors consistent with apraxia of speech, a clinical speech disorder of speech-motor program-

ming, without direct motor or perceptual e↵ects, only in the mPrCG and not in any other

sites with sequence complexity encoding, such as Broca’s area. Together, these findings

challenge traditional models of speech production, first by showing that speech planning is

not a purely phasic process and is instead supported in part by sustained activity. Further,

we show that the mPrCG is in fact a critical node of speech-motor sequencing and provide

the first neurobiological link between the mPrCG, sequencing, and apraxia of speech.

3.3 Results

Task and behavior

Thirteen participants performed a delayed go-cue task where they were prompted to read,

wait a short delay, and then repeat syllable sequences (Figure 3.1A, Table 3.1). A target

sequence was displayed on the screen for 2.5 seconds (termed the encoding period) before

being replaced by a white fixation cross, starting the delay period. The delay period duration

was slightly jittered (1 second on average). The white fixation cross would turn green to in-

dicate the go-cue and participants were instructed to say aloud the sequence they saw. These

sequences varied in their sequence and articulatory complexity (Figure 3.1B, Table 3.2). Se-

quence complexity refers to whether the sequence is composed by repeating the same syllable
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(simple, e.g. “ba-ba-ba”) or whether each element in the sequence is unique (complex, e.g.

“ba-da-ga”). Articulatory complexity refers to whether the syllables used in the sequences

are consonant-vowel pairs (simple, e.g. “ba”) or consonant cluster-vowel pairs (complex, e.g.

“gloo”).

Participants were instructed to respond as soon as they could after seeing the go-cue

and reaction times were 0.5 seconds on average. Participants made almost no errors on iso-

lated syllables and simple sequences, but made more errors on complex sequences, especially

complex sequences of complex syllables (Figure 3.17).

Widespread sustained neural activity

We recorded high-density electrocorticography (ECoG) from many cortical areas involved

in speech production while participants performed the task (Figure 3.1B, Figure 3.6). We

extracted the high-gamma (70-150 Hz) analytic amplitude (HGA) from the raw ECoG signal.

This frequency band is known to correlate with local neuronal signaling (Ray et al. 2010;

Steinschneider et al. 2008). We found that electrodes had the greatest HGA during the most

complex condition–complex sequences of complex syllables.

Using trials where the target sequences were complex sequences of complex syllables, we

found many electrodes that had significant HGA neural activity to at least one period of the

task, be it encoding, delay, pre-speech, or execution (speech) (Figure 3.1C, D). Strikingly,

we found electrodes within almost all of these cortical areas with persistent sustained neural
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activity; that is, electrodes active during the delay period were active also during encoding,

pre-speech, and execution (Figure 3.1D, E). For electrodes with neural activity significantly

above baseline for at least one phase, but not all four, we call this group the “non-sustained”

population. Sustained activity was localized to several cortical areas, including the inferior

frontal gyrus (IFG), the middle frontal gyrus (MFG), the supramarginal gyrus (SMG), the

supplementary motor area (SMA), the posterior superior temporal gyrus (pSTG), and the

precentral gyrus extending from the Sylvian fissure to the transverse sulcus. Though we

defined sustained activity based on the most complex condition, we also investigated whether

there was sustained activity when only using trials where the target sequences were simple

sequences of simple syllables. We still found electrodes with sustained activity in the same

cortical areas, but this was a subset of the electrodes with sustained activity during the

most complex condition (Figure 3.7), suggesting that sustained activity may be di↵erently

modulated by each condition but that it is not exclusive to higher complexity.

Sustained activity was heterogeneous with di↵erent temporal patterns. For example,

some electrodes’ neural activity was greater during encoding than during execution. We de-

termined approximately four temporal patterns using convex non-negative matrix-factorization

(Figure 3.1F, G, Figure 3.19). In contrast to the aforementioned pattern, two patterns had

greater neural activity during execution. The final pattern’s neural activity is more evenly

distributed across all task phases, with a small increase in magnitude during delay. This

pattern was most strongly localized to the SMA and the middle and superior frontal gyri.

The precentral gyrus had the greatest amount of sustained neural activity, with the mPrCG



144

containing a more even distribution of the first three clusters than the vPrCG or other

cortical areas (Figure 3.1F).

Sustained activity tracks internal task states

We next asked whether sustained activity contained information about task structure and

behavior, according to the four di↵erent phases (encoding, delay, pre-speech, and speech pro-

duction). We examined trials where the target sequence was complex sequences of complex

syllables (e.g. complex sequence complexity and complex articulatory complexity) as this

condition was used to define sustained activity. For individual electrodes with sustained ac-

tivity, we found that a majority of the electrodes’ average activity was significantly di↵erent

across the four phases (P < 0.05, Friedman test, Figure 3.2A blue circles). Further, a subset

of electrodes had significantly di↵erent activity between all of the four phases (Figure 3.2A

orange triangles). For the non-sustained population, although many electrodes showed sig-

nificantly di↵erent neural activity across the four phases, the overall e↵ect size is smaller

than that of the sustained population (Figure 3.2A).

Though only a subset of sustained electrodes’ neural activity was significantly di↵erent

between all four task phases, we asked whether the population as a whole could reliably di↵er-

entiate task phases. We trained a logistic regression classifier to predict the task phase using

population activity from all sustained electrodes. We found the probability of decoded phase

reflects the actual task phases over time (Figure 3.2B). We further compared the decoding ac-
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curacy of the sustained group to other groups of electrodes, such as the non-sustained group.

Since these groups have di↵erent numbers of total electrodes, we calculated the decoding ac-

curacy using equal numbered subsets of each group, using random resampling. For all groups

of electrodes, decoding accuracy increased when more electrodes were used (Figure 3.2C).

Importantly, the average accuracy when using sustained electrodes is higher than that of the

non-sustained activity when controlling for the number of electrodes included and becomes

significantly greater when including more than 20 electrodes (Figure 3.2C teal circles versus

navy triangles). It was possible that though we observe sustained activity in many cortical

areas, that only a subset contributed to decoding performance. However, we found that

decoder weights were rather distributed across all included electrodes and it was not clear

that any one area was dominant. To further probe this, we trained decoders that were lim-

ited to electrodes in single anatomical regions that had sustained activity. When subsetting

electrodes in mPrCG with sustained activity, the decoding accuracy closely followed that

of all sustained activity, despite being a markedly smaller population (56 sustained mPrCG

electrodes versus 312 total sustained electrodes). As a point of comparison with a cortical

area more traditionally proposed to be involved in planning and sequencing, we also calcu-

lated this growth curve for electrodes in IFG (Broca’s area) with sustained activity. The

decoding accuracy for this group closely followed that of the non-sustained group. Together,

these results show that sustained activity spanning several cortical regions could more read-

ily distinguish the progression of task phases than the non-sustained activity. This suggests

that sustained activity is not simply static or only reflecting sensory processes, but rather
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may reflect an internal state associated with progressing through the task. Further, because

the mPrCG so closely reflects the entire sustained population activity, this suggests that the

mPrCG may play an important role within this network.

To further understand how task phases are represented by sustained activity, we used

principal component (PC) analysis to project the trial-averaged activity from all electrodes

showing sustained activity onto a latent space of the first three PCs (which explained 81.8% of

the variance). We found that sustained population activity formed a trajectory in PC space

with distinct locations for di↵erent task phases (Figure 3.2D). It is worth noting that the

population activity is modulated such that the distances traveled in the encoding and speech

phases are similar (Figure 3.2E). Furthermore, we found that the trajectories across the

encoding phase and across the speech production phase each travel across two separate planes

(adjusted R2 of 0.96 and 0.83 for encoding and speech production, respectively, Figure 3.2F).

These two planes are neither parallel, nor perfectly orthogonal to each other, but intersect

at a 56.2 degree angle. Fitting a PC space on sustained activity from mPrCG results in

a similar trajectory, with each of the four phases distinct from each other (Figure 3.2G).

The proportional distances traveled in the encoding and speech production phases are also

similar to each other and to the total sustained group (Figure 3.2H). We found again that

two planes could each be fit to the encoding and speech production phases (adjusted R2

of 0.94 and 0.95 for encoding and speech production, respectively) and that these planes

similarly intersect at a 49.8 degree angle (Figure 3.2I). In contrast, fitting a PC space on

non-sustained population activity results in a very di↵erent trajectory. The trajectory from
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non-sustained activity mostly represented the pre-speech and speech production phases,

with the encoding and delay phases compressed in the PC space (Figure 3.2J, K). The

trajectories in the encoding and speech production phases are less well described by planes

(adjusted R2 of 0.47 and 0.42 for encoding and speech production, respectively), and the

angle between the planes is more acute than what is found in all sustained activity, at 39.2

degrees (Figure 3.2L). These results suggest that sustained activity during the delay and

speech production is not a replay of sensory processing during encoding, as not only are task

phases distinctly represented but encoding and production trajectories are more orthogonal

than parallel. Further, the similarity of mPrCG population dynamics alone to the whole

of the sustained network suggests that the mPrCG may be a critical node in this sustained

network.

Encoding of sequence and articulatory complexity

Sustained activity prominently encoded sequence and/or articulatory complexity of the pro-

duced syllable sequences (Figure 3.3A). We determined encoding of sequence complexity

by statistically comparing the average HGA magnitude during simple sequences and during

complex sequences with the same articulatory complexity (e.g. “ba-ba-ba” vs “ba-da-ga”)

during set time windows (Figure 3.3B). We determined the encoding of articulatory com-

plexity similarly, comparing complex sequences where the articulatory complexity was either

simple or complex (e.g. “ba-da-ga” vs “blaa-draa-gloo”).
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During encoding, sequence complexity was strongly encoded across most of the sustained

network. During the delay period, however, sequence complexity was encoded mostly in the

precentral and frontal gyri as well as the pSTG. And finally during pre-speech, sequence

complexity was largely localized to the mPrCG, with smaller clusters in the pars opercu-

laris and the pSTG. In comparison, the encoding of articulatory complexity was slightly

distributed throughout the SMG and the vSMC (centered and in close proximity to the

central sulcus) during encoding, and became more strongly localized to the vSMC during

pre-speech (Figure 3.3E).

Though the spatial distribution of the encoding of sequence and articulatory complexity

was not static over the phases of each trial, certain areas consistently encoded each of these

(Figure 3.3F). When considering only electrodes that encoded sequence complexity at every

phase of the task, these were densely localized to the mPrCG and the pSTG, two areas not

or not typically described in models of speech production (Figure 3.3F).

The mPrCG and pSTG, however, have been shown to be involved in other speech re-

lated processes. The mPrCG has been shown to be involved in auditory perception (Cheung

et al. 2016; Venezia et al. 2021) and direct laryngeal control (Dichter et al. 2018; Eichert

et al. 2020), and is possibly involved in articulatory control given its proximity to the vSMC

(Chartier et al. 2018; Mugler et al. 2018). We sought to determine whether sequence and

articulatory complexity e↵ects were driven by these other functions by additionally calculat-

ing whether electrodes had significant auditory responses or encoded articulatory kinematic

trajectories (AKT) (Chartier et al. 2018) (Table 3.3). We found that statistical e↵ects of
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sequence complexity (considering the greatest e↵ect size at any single electrode across the

task phases) are not significantly correlated with either auditory responses or AKT encoding

performance (Figure 3.3G, H). Considering each task phase individually, we still find no

significant correlations (Figure 3.8, Figure 3.9). We in fact find very few electrodes that

have acceptable AKT model performance (r > 0.1). Of these electrodes, we consider the

laryngeal component of the AKT model and also find that this is not significantly correlated

with statistical e↵ects of sequence complexity (Figure 3.3I, Figure 3.10).

Together, we find that sequence complexity is not merely derived from other functions

in these areas (auditory, laryngeal, or articulatory in nature). In the mPrCG and pSTG,

sequence complexity is the dominant e↵ect, with almost no e↵ect of articulatory complexity.

This suggests that the encoding of sequence complexity in the mPrCG and pSTG is indeed

reflective of their role in phonological sequencing, at the syllable level.

Predicting reaction time

Though we established that sustained neural activity was modulated by task variables (se-

quence and articulatory complexity), it was unclear to what degree this activity was related

to higher-level speech planning versus lower-level speech-motor planning. To resolve this,

we investigated whether pre-speech activity was correlated with reaction time of executed

syllable sequences.

We used linear regression to predict single trial reaction times from HGA during the
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encoding, delay, and pre-speech periods (Figure 3.4A). As expected, we found that pre-

speech has the greatest percentage of electrodes that significantly predict reaction time

(Figure 3.4B). Further, we found that when excluding electrodes that encoded articula-

tory movements (AKT model r > 0.1), the mPrCG had a greater percentage of electrodes

that significantly predicted reaction time than the vSMC (Figure 3.4B). These electrodes

were localized to the SMA, the mPrCG, and the vSMC. 20.62% of electrodes in the mPrCG

significantly predicted reaction time, 40.00% of which also encoded sequence complexity

(Figure 3.4B, C). Overlap between sequence complexity, sustained activity, and the predic-

tion of reaction times was found almost exclusively in the mPrCG, suggesting that mPrCG

plays a role in speech-motor planning for the execution of syllable sequences.

Stimulation induced speech errors

Together, the presence of strong sustained activity, the encoding of sequence complexity, the

correlation with speech errors, and the prediction of reaction time suggest that the mPrCG is

involved in phonological sequence planning for execution. However, it was unknown whether

the mPrCG’s involvement is causal and/or critical for speech sequence execution. To de-

termine this, we applied transient electrocortical stimulation while participants produced

simple and complex syllable sequences, as well as other controls (Table 3.4).

We found sites in the mPrCG that resulted in speech errors only during complex speech

sequences, which we refer to as “sequencing errors” (Figure 3.5A). At these sites, because
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of their location in motor cortex, high enough current amplitudes can elicit pure motor

e↵ects (e.g. jaw pulling). To consider a site positive for sequencing errors, we had to be

able to identify a lower current amplitude at which sequencing errors were observed in the

absence of direct or passive motor e↵ects. If possible, stimulation sites were identified before

the stimulation mapping, based on evoked neural activity during the syllable sequencing

task (Figure 3.11, Figure 3.12, Figure 3.13, Figure 3.14). That is, if there was observed

sustained activity or possible sequence complexity encoding, we would include this site during

stimulation. While we observed normal sensorimotor and expected sensorimotor e↵ects at

other stimulation sites, we could not elicit sequencing errors at sites in Broca’s area, at any

current amplitude (Figure 3.5A, Figure 3.15).

Speech errors occurred only in the context of complex speech sequences, both pseudoword

syllable sequences and 4-syllable real words (Figure 3.5B, G). We tested additional controls

to rule out other possible causes of the speech errors. No disruption to vocalization or simple

syllable sequences (e.g. “bababa”) excluded speech arrest (Figure 3.5B, G). No disruption

to orofacial motor movements (e.g. repeatedly performing lip pucker) excluded direct muscle

e↵ects in the context of active movement. We additionally asked 3 participants to produce

complex syllable sequences, but one syllable at a time in isolation (e.g. “ba. . . da. . . ga”),

with no deficits, excluding working memory as causing speech errors. When participants

made speech errors, they were immediately and well aware of this fact. One participant

described it as feeling “stuck on the last syllable”. Of the 4 participants, only 2 made some

speech errors outside of stimulation, in total 7. Of these 7, 6 were all made in the utterance
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directly after stimulation ended, which could still be due to stimulation e↵ects.

Speech errors most commonly included increased syllable segmentation (where increased

inter-syllable silence is observed) and increased syllable duration (Figure 3.5C, F, Fig-

ure 3.16). Distortions were also commonly observed (Figure 3.5C). For example, in trying

to say “catastrophe” the participant would produce “catastuhphe”, where the /r/ is omit-

ted and the vowel /uh/ is slightly distorted (Figure 3.5F). Other errors included stuttering

(including false starts), extended pauses between words or sequences, and arrest (unable to

continue speaking until stimulation had ended). Pause and arrest were much less common,

with arrest being observed once in one participant and twice in another participant. Ad-

ditionally, we observed one subtle instance of phonological simplification where a patient

shortened “ject” to “jec” during one stimulation pulse, though he did not report anything

being di↵erent (Figure 3.16)

While some speech error types, like distortions, are hard to quantify beyond their ob-

servation, syllable segmentation and syllable duration are easily quantified by manually

annotating syllable boundaries. Indeed, we find that syllable segmentation (as measured by

the inter-syllable duration) is significantly increased when stimulation is applied during com-

plex sequences (P < 0.05 for all participants, one-sided Wilcoxon rank-sum test), and not

during simple sequences. For one participant, inter-syllable duration was also significantly

greater during isolated syllables of complex sequences (z=2.05, P=0.04, one-sided Wilcoxon

rank-sum test), though the e↵ect was greater for normal complex sequences (z=3.21, P=8.80

x 10-4, one-sided Wilcoxon rank-sum test). Similarly, we found that syllable duration was
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significantly increased when stimulation was applied during complex sequences for all partic-

ipants (P < 0.05, one-sided Wilcoxon rank-sum test). For one participant (EC276), syllable

duration was also increased when stimulation was applied during simple sequences (z=3.42,

P=2.48 x 10-3, one-sided Wilcoxon rank-sum test). However, the e↵ect was greater for

complex sequences (z=4.24, P=8.78 x 10-5, one-sided Wilcoxon rank-sum test).

In one participant (EC260), we had the opportunity to test whether speech errors were

still made in the absence of auditory feedback, by asking the participant to mime. Even

when miming, the participant still exhibited increased syllable segmentation and duration

(visually observed and self-reported by the participant). With this participant we were able

to further test whether they could initiate behavior that was not a↵ected by stimulation

(e.g. vocalization or orofacial movements) as soon as they started producing speech errors.

For example, the participant would continually cycle through the days of the week and

as soon as stimulation was applied and they began producing speech errors, they would

transition to vocalization, all while stimulation was still ongoing. The participant was able

to switch to these una↵ected behaviors “with no delay” (self-reported). Though only in

one participant, this further points to these speech errors as resultant from perturbations

to speech-motor planning for complex sequences and not disruptions to working memory or

auditory processing.

Strikingly, these speech errors caused by stimulation were consistent with pure apraxia

of speech (AOS). AOS is a clinically diagnosed disorder of speech-motor planning, where

patients have di�culty producing fluent and consistent speech sounds, with typically more



154

di�culty on multisyllabic utterances (Strand et al. 2014). AOS is distinct from dysarthria,

where speech is slurred or e↵ortful due to orofacial muscle weakness and the inability to con-

trol those muscles. AOS is also distinct from other speech errors, like anomia, agrammatism,

or paraphasias, where produced speech may be incorrect but is speech-like with no motor

impairments.

3.4 Discussion

Fluent speech production requires the sequencing of complex articulatory movements. Though

much has been studied about how articulatory movements are represented in the speech-

motor cortex (Chartier et al. 2018; Mugler et al. 2018), the cortical dynamics involved in

speech sequencing are not well understood. We investigated this by directly recording corti-

cal activity with electrocorticography (ECoG) while participants produced syllable sequences

of varying sequence and articulatory complexity. We find a prominent network of sustained

activity across multiple cortical areas, whose population activity reflects processing across

phases of the task. Specifically, we find that the middle precentral gyrus (mPrCG) in this

network consistently encodes syllable sequence complexity and correlates with reaction times

and errors, suggesting that the mPrCG is involved in speech-motor sequencing for complex

syllable sequences. Finally, using direct electrical stimulation to the mPrCG, we confirm that

this area is causally involved in speech sequence execution for complex sequences, with speech

errors resembling that of apraxia of speech (AOS). Importantly, these findings demonstrate
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the need to account for both sustained and phasic temporal dynamics and for the mPrCG’s

role in speech-motor sequencing in models of speech production. These results provide a

clear neurobiological link between AOS, speech sequencing, and the mPrCG.

Speech-motor planning of phonological sequences

Similar to previous studies, we found several cortical areas modulated by sequence and ar-

ticulatory complexity (Bohland et al. 2006; Peeva et al. 2010; Rong et al. 2018). However,

we found the most robust encoding of sequence complexity in the mPrCG, as opposed to

Broca’s area. By specifically testing the mPrCG for motor planning qualities–evoked neural

activity that is before the start of production that is selective for types of movements and

is predictive of how the movement is executed (reaction time) (Svoboda et al. 2018)–we

di↵erentiated sequence complexity encoding in the mPrCG from the rest of the sustained

network as specific to motoric execution. The mPrCG has previously been implicated in

many di↵erent roles related to speech perception and production, including auditory pro-

cessing (Cheung et al. 2016; Venezia et al. 2021), reading (Kaestner et al. 2022; Dehaene

et al. 2001), and laryngeal control (Dichter et al. 2018; Bouchard et al. 2013; Eichert et al.

2020), though it has been unclear whether many functions are facilitated by the mPrCG or

whether a single function subserves all these purposes. In a review, we had proposed that

the mPrCG plays a role in phonological sequencing for execution, and that this function is

used in processes like reading and listening where phonological sequencing may be needed
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(Silva et al. 2022). Our results support that notion and we show that the mPrCG plays a

role in phonological sequencing for execution, where the phonological unit is at the syllabic

level.

Since Broca’s seminal case study, Broca’s area, and not the mPrCG, had long been

theorized to be involved in speech-motor planning and speech sequencing. However, several

studies have challenged the idea that Broca’s area is critical for speech production. Resections

to Broca’s area have been dissociated from Broca’s aphasia and resection or stimulation more

often causes anomia than other speech disfluencies (Lu et al. 2021; Andrews et al. 2022; Mohr

et al. 1978). The “aphemia” that Broca originally described in his case study is now known

to be more consistent with a form of AOS.

Though our analyses suggested that the encoding of sequence complexity in the mPrCG

was specific to motor sequencing, we did still observe sequence complexity in other cortical

areas and we did not have causal evidence to suggest that these other areas, like Broca’s area,

were not involved in sequencing in some aspect. To resolve this, we used direct electrical

stimulation at sites that encoded sequence complexity to observe whether sequencing was

a↵ected. At putative sequencing sites in Broca’s area, we either observed no deficits or

perceptual deficits, rather than any deficits associated with speech production. Rather, it

was sites in the mPrCG where stimulation induced sequence production errors, in the absence

of direct motor e↵ects or speech arrest. Remarkably, these errors only occurred in complex

sequences for both nonword syllable sequences and real words. Participants were also keenly

aware of these errors, indicating that it was not altered working memory or perceptual e↵ects
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driving these errors. Given these results, we find that the mPrCG indeed plays a critical

role in speech-motor sequencing.

Timing of motor sequences has also been shown as a variable that may be facilitated

by premotor areas, in songbird syllable sequences (Long et al. 2008) and in humans with

sequences of finger movements (Kornysheva, Sierk, et al. 2013). Though perturbation of this

variable could explain the slowed speech rate we observed, we did not observe this e↵ect

in isolation and only observed it for complex syllable sequences. Distorted substitutions

and stuttering were also observed, demonstrating that the e↵ect is not unilaterally driven by

altered speech timing. Importantly, when patients make these errors during stimulation they

are immediately aware that they are making errors and remember what they were supposed

to say. This further suggests that what we are disrupting is not related to higher level aspects

of speech planning, like working memory, but rather speech-motor sequencing.

In addition to the mPrCG, the pSTG also exhibited sustained activity that consistently

encoded sequence complexity. The pSTG is in a region most would consider to be part of

Wernicke’s area, which has historically been defined as an area critical to language compre-

hension (Binder 2015). More recently, Wernicke’s area has been suggested to not be critical

for language comprehension but instead be critical to speech production (Binder 2015). Le-

sion studies have shown that damage to the pSTG and SMG result in phonemic paraphasia,

suggested to result from impaired phonological retrieval (Binder 2015; Pillay et al. 2014;

Quigg et al. 2006). Direct electrical stimulation studies have also shown that stimulation to

the pSTG can result in speech arrest, anomia, and phonemic paraphasias without impairing
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comprehension (Lu et al. 2021; Leonard et al. 2019; Binder 2015). It may be that sequence

complexity encoding in the pSTG reflects its role in phonological sequence generation while

in the mPrCG this reflects its role in the execution of phonological sequences. Articulatory

complexity was also found, primarily localized to the SMG and vSMC. The mixed encoding

of sequence and articulatory complexity in the vSMC likely reflects a role in between higher

level sequence execution and low level articulatory movements and coordination.

While we focus on establishing the critical role of the mPrCG in speech-motor sequencing,

the mechanism by which speech sequencing is achieved is not yet known. That is, how does

the representation of a target sequence, e.g. “badaga” or “catastrophe”, become serially

ordered and executed in time? Several perspectives on serial order exist and have been

studied in non-human primate and human motor neuroscience, such as competitive queuing

and dynamic systems perspectives (Averbeck et al. 2002; Kornysheva, Bush, et al. 2019).

Some models of speech production include processes that could facilitate sequence encoding,

such as frame and content encoding (Guenther et al. 2016; MacNeilage 1998), or demonstrate

parallel distributed processing to facilitate serial ordering of articulatory movements (Jordan

1997). However, more detailed studies applied to cortical activity are necessary to fully

understand whether these mechanisms occur in areas like the mPrCG.
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Sustained activity for speech-motor planning

Classic models of speech production outline a phasic process of speech production, wherein

processes occurring in designated anatomical regions serially pass information from one to

another until eventually motor commands are sent from the ventral sensorimotor cortex

(vSMC) to be executed. Phasic activity was certainly observed during speech production

articulation and auditory feedback but we also observed prominent sustained activity across

many cortical areas associated with speech production. Importantly, neural activity was

sustained at the single trial level and not simply the result of trial averaging across many

transient peaks.

But what is the purpose of sustained activity? In cued production tasks, the presentation

of the stimulus must be transformed from its external representation (e.g. letters on a screen)

to some internal representation (perhaps phonological targets) that is not time locked to

behavior. In more natural conversation, this may be from deciding or being prompted to

speak and holding that idea to initiating speech. Sustained activity may serve to bridge

sensory inputs to actionable outputs. This logic is supported by detailed animal work in

motor planning that has identified multi-regional circuits associated with motor planning,

where persistent activity across multiple regions, including subcortical structures, facilitates

maintenance and fluent coordination of action sequences (Inagaki et al. 2022; Guo et al.

2017). Further, human studies of speech production have suggested that sustained activity

might facilitate working memory and sensorimotor transformations (Gregory B Cogan et al.
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2017; Gregory B. Cogan et al. 2014).

The sustained activity we observed was not localized to only the mPrCG, but was also

observed in multiple cortical areas that have been associated with various aspects of speech

production. This included Broca’s area which has been linked to syntax and higher level

planning, the SMG with phonological working memory, the SMA with motor planning and

action initiation, the pSTG with phonological targets for speech production, and the vSMC

which has primarily been associated with articulatory control. Though each of these areas

exhibited sustained activity, they di↵erently encoded sequence and articulatory complexity.

For example, the SMG had mixed selectivity to sequence and articulatory complexity, which

may reflect its role in phonological working memory at both phonemic and syllabic scales,

while the vSMC had a greater concentration of articulatory complexity encoding which may

reflect its role in coordinating lower level sequence execution into continuous articulatory

movements around the level of the phoneme. Instead of each area sequentially processing and

passing o↵ information, it may be that they are persistently encoding information together

as a network, with higher level functions modulating or informing lower level planning.

Further, although we identified roughly four patterns of sustained activity, these patterns

did not simply correspond to the four task phases. Namely, it is not the case that each

pattern had a peak exclusively during one phase, with each phase having such a pattern.

It is also not the case that electrodes with the strongest activity during encoding were

found in only one anatomical region. Instead, each cortical area exhibited a mixture of these

patterns, suggesting that this network is made up of neural populations that are continuously
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modulated in parallel. Population level analyses show that the sustained population as a

whole traverses manifolds that are roughly 2D and more orthogonal to each other than

parallel.

Clinical implications

Apraxia of speech (AOS) is a clinical disorder of speech-motor programming where patients

have an impairment in planning and programming speech-motor sequences. AOS is dis-

tinct from aphasia and dysarthria (the inability to articulate due to muscle weakness or

an inability to control the vocal tract), and errors are increasingly observed with complex

articulatory movements and increasing length (Strand et al. 2014). Pure AOS is rare, as

it is often observed after strokes where lesions compromise multiple brain structures at the

same time, and is usually observed alongside dysarthria and/or aphasia. Though AOS was

originally proposed to occur from damage to the superior precentral gyrus of the insula,

more recent studies of stroke lesions instead suggests that AOS may be linked to damage of

the ventral and middle PrCG (Gra↵-Radford et al. 2014; Itabashi et al. 2016). Two recent

case studies with rare resection to almost exclusively the mPrCG (and some MFG) showed

chronic postoperative AOS (pure AOS in Chang et al. 2020, and AOS with mild alexia and

mild agraphia in Levy et al. 2023).

In determining whether sequence complexity encoding in the mPrCG is causal to sequence

execution deficits, the speech errors we observed were strikingly consistent with AOS. One
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test of diagnosing AOS is assessing oral diadochokinesis, where one would expect a patient

with AOS to be able to produce “papapa” but have increased speech errors or di�culty with

“pataka” (Strand et al. 2014)–precisely mirroring the metric of sequence complexity (e.g.

“bababa” vs “badaga”). In line with recent studies localizing AOS to the mPrCG and not

Broca’s area, we only find these apraxic errors from stimulation in the mPrCG.

The mPrCG’s role in complex speech sequencing provides a neurobiological explanation

for why patients with AOS have di�culty with utterances of increasing complexity. Under-

standing of the neurobiological causes of speech disorders can be used to better understand

the etiologies of speech disorders in patients with damage to more than one cortical area.

This information can potentially help clinicians better understand what types of treatment

or speech therapy (if any) may be most e↵ective. In cases where surgical resection is indi-

cated in and around speech areas, patients will undergo clinical mapping for language and

motor functions where stimulation is used to determine what areas, if removed, might result

in speech or motor deficits. Typical clinical language mapping is not as fine-grained as what

we present here and may only use speech tasks with monosyllabic stimuli (e.g. counting).

It is possible that this type of testing would fail to identify sites that may result in AOS.

Instead, testing with stimuli including simple and complex sequences can give clinicians and

surgeons a more detailed understanding of where resections involving the mPrCG can be

more aggressive and where resections might begin to cause chronic speech deficits including

AOS.
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Conclusion

We demonstrate the critical role of the mPrCG in speech-motor planning and establish a

neurophysiological link between phonological sequencing, the mPrCG, and AOS. Clinically,

this link has the potential to inform surgical resection of the mPrCG and diagnosing and

understanding AOS. These results further our understanding of speech-motor planning and

sequencing and stress the importance of accounting for the mPrCG in models of speech

production.

3.5 Methods

Participants

Thirteen individuals voluntarily participated in this study (see Table 3.1 for demographic

information). All participants were fluent English speakers with normal speaking abilities un-

dergoing surgical treatment for epilepsy involving the subdural implantation of high-density

electrocorticography (ECoG) grids for 1-3 weeks. Grids were placed according solely to

clinical needs, usually covering the lateral cortical surface and in two subjects also covering

portions of the medial cortex. All but one participant had ECoG grids implanted on their

left hemisphere. For details on grid placement, see Figure 3.6. Depending on the amount

and type of data collected, some participants were not included in all analyses (described in

Table 3.1). Each participant gave written informed consent before participating in the study.
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Experimental protocol was approved by the Institutional Review Board at the University of

California, San Francisco.

Task design

The task was designed using a delayed go-cue paradigm. In this paradigm, a target utterance

was presented on the screen for 2.5 seconds before being replaced with a white fixation

cross for a variable delay (on average 1 s). After this delay, the fixation cross turns green

and this is the go-cue for the participant to overtly produce the target utterance. For 1

participant (EC267), they found the visual presentation task too di�cult so we instead

auditorily presented the utterance and the delay period started immediately at the end of

the utterance.

Target utterances were chosen to modulate sequence and articulatory complexity (similar

to Bohland et al. 2006). Sequence complexity was defined as whether the syllable sequence

was a repetition of the same syllable three times (simple, e.g. “bababa”) or was composed

of three unique syllables (complex, e.g. “badaga”). We additionally include trials where

only one syllable is said in isolation. Articulatory complexity was defined as whether the

syllable was composed of a single consonant-vowel pair (simple, e.g. “ba”) or of a consonant

cluster-vowel pair (complex, e.g. “bla”). Given three simple syllables and three complex

syllables, and three sequence complexity conditions, there are a total of eighteen possible

target utterances (see Table 3.2).
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The utterances were split into three utterance sets and collected based on variable time

allowances with each participant, with the goal of getting 20 trials per target utterance. The

first and second utterance set covered the target utterances necessary to assess sustained

activity, sequence and articulatory complexity, reaction time decoding, speech errors, and

di↵erences in the encoding of unique sequences for complex sequences of complex syllables.

Ten participants completed these sets (one of these participants doing the auditory presen-

tation version). Three of these ten also completed the third utterance set. The remaining

three participants completed all or some of only the first utterance set.

Data collection and processing

Acquisition and neural signal processing

Neural signals from the ECoG grids were recorded using TDT preamplifiers and digital pro-

cessors while participants performed the delayed go-cue task. A microphone and photodiode

(attached to the screen of the laptop presenting the task to keep track of task phases) were

recorded as analog signals. Raw voltage signals were acquired at 3051.76 Hz and analog

signals were recorded simultaneously at 24414.06 Hz.

Neural signals were preprocessed using custom Python software and the NWB file format.

Each participant’s neural signals were downsampled to 400 Hz and then Notch filtered for

60 Hz (and its harmonics) to remove line noise. Raw signals were then visually inspected.

Electrodes visually appearing to have no signal, excessive noise, or frequent artifacts were
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noted as “bad channels” and excluded from analyses. We also applied an automated proce-

dure to identify electrodes whose 99th percentile raw voltage values, voltage derivative, and

root mean square were 5 stand deviations greater than the rest of their electrodes. These

electrodes were also noted as bad channels.

For analyses using raw data, this raw signal was downsampled to 1000 Hz. To extract the

time-varying high-gamma analytic amplitude (HGA), the Hilbert transform was applied to

8 Gaussian filters with center frequencies between 70 to 150 Hz (center frequencies of 73.0,

79.5, 87.8, 96.9, 107.0, 118.1, 130.4, and 144.0 Hz and standard deviations of 4.68, 4.92, 5.17,

5.43, 5.70, 5.99, 6.30, and 6.62 Hz). The HGA was calculated as the mean of these 8 analytic

signals. Unless otherwise stated, HGA was downsampled to 100 Hz for all analyses.

HGA was visually inspected for each participant. If HGA signals appeared to be abnor-

mally highly correlated or contain artifacts, the raw signals were re-referenced in 64 channel

blocks (according to how the grids are connected to the pre-amplifier, and excluding bad

channels) before Notch filtering and HGA was recomputed. In all analyses, HGA signals

were z-scored relative to inter-trial periods of silence.

Time segment artifact rejection

For all participants, we identified time segments where the HGA signal likely had high

magnitude artifacts. This was done by identifying time segments where the HGA magnitude

or derivative was greater than 5 times the 99th percentile value. Once identified, these time

segments (plus a 15 ms bu↵er on each side of the segment) were excluded from analyses by
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replacing the HGA with NaN values and using metrics that ignored NaNs.

Annotation

All participants’ microphone data were manually annotated in Audacity at the syllable level,

for task and stimulation mapping blocks. Annotations were used to determine the acoustic

onset of speech and whether extraneous speech occurred during inter-trial silence periods

(these silence periods were then excluded from z-scoring and analyses). For one participant

(EC254), they almost exclusively pronounced the target syllable “gloo” as “glow”, regardless

of the context in isolated, simple, or complex sequences. Of the 160 total trials where “gloo”

was in the target sequence, they said “glow” in 121 of those trials. In only 4 trials did they

say “gloo”. Thus, we treated their utterances of “glow” as “gloo”, and marked them as

correct trials.

Data analysis

All data analysis, with few exceptions, was carried out in Python 3.8 using common scientific

computing packages, including NumPy, SciPy, and Pandas. The exceptions, NMF clustering,

task phase decoding, and computing of auditory and articulatory controls, were computed

in Matlab R2019a.
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Determining significant electrodes

To determine whether electrodes had neural activity significantly above baseline during each

of the 4 task phases, we used a non-parametric one-sided Wilcoxon rank-sum test, comparing

task-related neural activity to baseline activity. Task-related neural activity was taken from

trials where the target sequence was a complex sequence of complex syllables and where the

participant did not make mistakes. Baseline activity was taken from 1 second windows in

between each trial where there was no extraneous noise, no produced speech, and nothing on

the task laptop screen. We defined analysis windows for each task phase–0.5 to 1.5 seconds

from target presentation for encoding, 0.0 to 0.75 seconds from the onset of delay for delay,

the time from the go-cue to 0.1 seconds before the acoustic onset of speech for pre-speech,

and finally the window covering the duration of the produced speech for speech. For task-

related and baseline activity, the average over time was taken, leaving a distribution across

single trials for task versus baseline activity. P-values were FDR corrected across electrodes

and the 4 task phases within each participant.

Characterizing sustained neural activity patterns

In order to determine electrodes with sustained activity, we identified electrodes whose task-

related neural activity was significantly above baseline for all of the 4 time periods. We

used convex non-negative matrix factorization (NMF, as in Hamilton et al. 2018) to cluster

trial-averaged neural activity patterns for sustained electrodes. The number of clusters was
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determined by a combination of computing the elbow and selecting the number of clusters

where the temporal patterns were all visually di↵erent (e.g. not having two clusters with

the same relative characteristics but simply lower magnitude in one).

Task phase analyses

In order to determine whether sustained represented relative task information, we first sought

to characterize whether neural activity was di↵erent across task phases. First, we examined

the modulation of single electrode neural activity across task phases by averaging neural ac-

tivity in the analysis windows we defined to determine significantly above baseline electrodes.

This was calculated on trials where the target sequence was a complex sequence of complex

syllables. We then performed a Friedman test to determine electrodes with significantly

di↵erent neural activity across the four phases. We further computed post-hoc Wilcoxon

signed-rank tests to determine which electrodes’ neural activity was not only di↵erent across

the four task phases but was di↵erent for every phase.

After determining that there was modulation at the single electrode level, we tested

whether the sustained population could di↵erentiate task phases from each other. In or-

der to investigate population activity, we needed to combine neural activity from multiple

participants. To accomplish this, we used a procedure of random resampling for all decod-

ing. In brief, data from each participant was randomly split into 100 training and test sets

(80% and 20%, respectively). Within each set, trials were upsampled to 1000 trials, shu✏ed,

and then combined across participants. This yielded one measure of average accuracy for
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each of the 100 test sets, which was used to calculate mean and standard deviations for the

time course. This procedure ensured that train and test sets did not overlap and that a

wide variety of combinations across trials and participants was used. Using this procedure,

we time-averaged neural activity in non-overlapping 100 ms time bins across the four task

phases and fit decoders to predict which of the four task phases each time bin pertained to.

All decoding was performed using L1-regularized logistic regression (with liblinear solvers),

predicted single trials, and balanced class labels during training.

After establishing that task phase could be di↵erentiated across time, we sought to com-

pare decoding accuracy across various neural populations. To avoid the bias introduced by

di↵erent numbers of electrodes in each population, we performed a resampling procedure

in which we randomly selected a subset of electrodes in each group to keep the number of

electrodes (N) included the same for each comparison. For each iteration, we again fit a

logistic regression decoder to predict the task phase. As before, we used the random resam-

pling procedure to combine data across participants. For simplicity, we used time-averaged

neural activity from the previously defined analysis windows, as computing the full time

course was not necessary for this comparison. We repeated this procedure 500 times for each

N and calculated the mean and standard deviation of the decoding accuracy. Significantly

di↵erent decoding accuracy between size-matched populations was determined via two-sided

Wilcoxon rank-sum tests.
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Principal component analyses

In order to compare population dynamics between sustained and non-sustained populations

of electrodes, we performed principal component analysis and projected trial-averaged popu-

lation activity onto the first three principal components (PCs). To compare how trajectories

behaved within task phases we first calculated the proportional distance traveled. For any

given population, we computed the distance traveled by each individual task phase and di-

vided this by the total distance traveled across all four phases, yielding a normalized measure

that we compared across populations. From these projections, it appeared that some trajec-

tories were moving along roughly two dimensional planes. We fit 2D planes for the encoding

and speech portions of the trajectory (and the resulting fit, measured by R2), which then

allowed us to compute the angle between these planes.

Sequence and articulatory complexity

To determine encoding of sequence and articulatory complexity, we considered electrodes

with activity above baseline and specifically looked at the encoding, delay, and pre-speech

time periods. For each electrode and task phase, we compared the time averaged neural activ-

ity between simple and complex levels of complexity across trials, using two-sided Wilcoxon

rank-sum tests. Time windows for each task-phase were defined the same as in determining

above baseline activity. One di↵erence is that for pre-speech, we only included trials with

reaction times between 0.2 and 1.1 seconds. Because the pre-speech windows were variable
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in terms of length, we wanted to first ensure there were at least 10 timepoints to use for time

average. With a cuto↵ at 0.1 s before acoustic onset, this meant that trials needed to have

reaction times greater than at least 0.2 seconds. The upper bound was chosen so that any

window being considered during pre-speech was maximally at 1 second.

For sequence complexity, the comparison was between simple sequences of simple syl-

lables and complex sequences of simple syllables (e.g. “bababa” versus “badaga”), where

articulatory complexity was not modulated (both have simple syllables). For articulatory

complexity, the comparison was between complex sequences of simple syllables and com-

plex sequences of complex syllables (e.g. “badaga” versus “blaadraagloo”), where sequence

complexity was not modulated (both are complex sequences). P-values were FDR corrected

across electrodes and the two complexity comparisons within each participant.

Articulatory and auditory controls

For each participant where complexity encoding was assessed, we determined which of their

electrodes had significant auditory responses or high-performance articulatory encoding. For

auditory responses, two-sided Wilcoxon rank-sum tests were used to determine significant

responses during passive listening compared to baseline. For articulatory encoding, we fit

articulatory kinematic trajectory (AKT) models (Chartier et al. 2018). This yielded a cor-

relation value for how well the AKT model fit at a particular electrode reconstructed high-

gamma neural activity and model weights for each electrode. For one participant (EC237),

there was not enough pitch variation in the articulatory dataset, and so the pitch feature (f0
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pitch, to measure the larynx) was excluded. Details on what utterance sets were used for

both auditory and articulatory measures are detailed in Table 3.3.

Reaction time decoding

For each electrode and each trial (where the target sequence was complex and there were

no mistakes) we took 0.75 second long windows (from -0.85 seconds to -0.1 seconds before

acoustic onset of speech) and computed 3 neural features for each window: the mean across

time, the variance across time, and the estimated slope. We further only included trials

where the reaction time was at least 0.2 seconds long. This was to ensure that there were at

least 10 timepoints of activity between the go-cue and the acoustic onset. Single trial reaction

times were predicted from these 3 neural features using a linear regression model and a leave-

one-out training and testing scheme. We computed the Spearman rank correlation between

the distributions of predicted and true reaction times and significance was determined by

permutation testing where we shu✏ed one group and recomputed the correlation (1000

permutations). We additionally predicted reaction times based on single electrode, single

trial activity for the encoding and delay task phases. The windows we used were identical

to those used in finding significant above baseline activity.

Statistical analysis

Unless stated otherwise, distributions were compared using non-parametric two-sidedWilcoxon

rank-sum tests. Multiple comparisons were corrected using FDR correction. The significance
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threshold was set to 0.05 for all tests.

Density maps

All density maps, unless otherwise stated, were calculated as Gaussian-smoothed normalized

histograms. In brief, two 2D histograms would be computed–one considering all electrodes

with significant activity during a particular phase of interest, which was treated as the “base-

line” histogram, and one including the same electrodes but with weighting. For sequence

complexity and articulatory complexity densities, these weights were simply valued at 1 for

electrodes with significant complexity encoding or 0 otherwise. The resulting weighted his-

togram would then be divided by the “baseline” histogram and smoothed with a Gaussian

kernel (standard deviation of 2). For the overlap between reaction time and pre-speech se-

quence complexity electrodes, a density was computed for each. Since sequence complexity

electrodes were pertaining specifically to those during pre-speech, the sequence complexity z-

value was used as weighting with nonsignificant electrodes set to 0. In order to combine these

densities, each density was first normalized to sum to 1 before summing the two densities

and dividing by the maximum value.

Stimulation mapping

For 4 participants (EC260, EC267, EC276, and EC282), we investigated whether the mPrCG

was causally involved in the execution of syllable sequences by using electrocortical stimula-

tion. As part of their clinical treatment for epilepsy, participants normally undergo stimula-
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tion mapping to determine cortical areas critical for motor function and language production

and processing. We used this paradigm to additionally test whether stimulation caused a

deficit for producing complex syllable sequences in the mPrCG as well as sites in Broca’s

area and the pSTG.

Stimulation was performed using a Natus clinical stimulator with standard settings. De-

livered stimulation was recorded with a stimulation trigger (cable connecting the output

stimulation from the Natus stimulator to the analog recordings) aligned to the recorded

microphone signal (in one participant, the stimulation trigger was not recorded and so deliv-

ery of stimulation was instead estimated from the recorded neural activity). Sites at which

stimulation resulted in after discharges were not tested further. Duration of stimulation was

set to capture the duration of roughly two production attempts. Stimulation current varied

between stimulation site, participant, and between some of the tasks. For sites involved in

speech production, high enough current amplitudes can induce passive motor e↵ects (e.g.

lip twitch) which could contribute to speech errors. To divorce direct motor e↵ects from

any speech production deficits, we first identified this current level and then attempted to

titrate to a lower current level at which we could observe production deficits in the absence

of passive motor e↵ects. If a site was found to have deficits producing 4-syllable real words

(e.g. “catastrophe”) at a particular current amplitude and/or higher current amplitudes

caused motor e↵ects, this site was further tested (referred to here as a potential sequencing

site). If a lower amplitude could not be found to induce production deficits in the absence

of passive motor e↵ects or if only passive motor or sensory e↵ects were observed, sites were
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marked as “motor” or “sensory” sites.

Further testing of potential sequencing sites involved testing whether the lower current

amplitude (which did not cause passive motor e↵ects) also caused production deficits in

complex syllable sequences (e.g. “badaga”), simple syllable sequences (e.g. “bababa”),

vocalization (vocalizing and holding a vowel), sequences of finger movements, and sequences

of orofacial movements (e.g. repeatedly opening and closing the jaw). Testing complex versus

simple sequences identified whether production deficits were specific to complex sequencing

demands. Testing whether stimulation disrupted vocalization controlled for a potential e↵ect

of speech arrest at these sites at these current amplitudes. Testing finger movements and

orofacial movements determined whether production deficits were specific to speech-motor

movements.

In one participant (EC260), we additionally tested whether mimed speech was a↵ected

by stimulation. With this participant, we also tested whether control tasks could be initiated

just as the participant was noticing di�culty producing speech, while stimulation was still

ongoing.

A full description of tasks and instructions to the participants is described in Table 3.4.

Only stimulation sites at which we tested for sequencing errors are included in Figure 3.5.

Many other sites were tested as a part of the clinical speech and motor mapping, inducing

passive motor, sensory, and perceptual e↵ects consistent with previous studies (Leonard et

al. 2019; Lu et al. 2021) but as they were not additionally tested for sequencing we do not

describe them here.
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Characterization of stimulation induced production errors

Speech errors were manually annotated from the recorded microphone signal. Errors were

categorized according to the following categories:

1. Syllable segmentation: characterized by increased silence between syllables within a

sequence or word.

2. Distortion/distorted substitution: characterized by phonemic insertions, substitutions,

or deletions that are phonetically distorted from typical pronunciation. Distorted sub-

stitutions are distinct from phonemic paraphasias where phonemic substitutions are

made without phonetic distortion.

3. Syllable duration: characterized by increased duration of syllables relative to typical

production.

4. Stuttering disfluencies: characterized by stuttering on phonemes and syllables, defined

here to include false starts, halting, and articulatory groping.

5. Speech arrest: characterized by a pause in speech without recovery until after the end

of the stimulation window.

6. Hesitation: characterized by a pause in speech with recovery during the stimulation

window.



178

7. Phonological simplification: characterized by omissions of phonemes in syllables with-

out phonological distortion.

In the event that multiple instances of the same error type were present in a single word

or sequence attempt, only one was labeled. For hesitation and speech arrest, where the

error may be occurring in between word or sequence attempts, the error was assigned to the

previous word or sequence attempt.
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Figure 3.1. Sustained cortical activation from encoding to planning and production. (continued
on next page).
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(Previous page.) Figure 3.1. Sustained cortical activation from encoding to planning and pro-
duction. A. The syllable sequence production task is a delayed go-cue paradigm. At the start of each trial,
a target syllable sequence is visually displayed to the participant. After 2.5 seconds, the target sequence
is replaced with a white fixation cross (the delay-cue) for an average of 1 second. When the cross turns
green (the go-cue), the participant produces the target sequence. The task period during which the target
sequence is on the screen is referred to as encoding and the time between the fixation cross and the go-cue
is referred to as delay. Between go-cue and the acoustic onset (dependent on the participant’s reaction
time (RT)) is referred to as pre-speech. B. Single trial high-gamma activity (HGA) for an electrode in the
middle precentral gyrus (highlighted in C.) for every condition, aligned to encoding, delay, the go-cue, and
speech onset. If the o↵set of speech, or additionally the end of the trial, are within the plotted window,
they are marked by black dots. Only trials where no speech production mistakes were made are shown. C.
Electrodes with significant neural activity during at least one phase of the task are plotted as colored dots.
Remaining non-significant electrodes are shown as smaller black dots. Electrodes are shown on an averaged
brain reconstruction (MNI-152) and are colored according to anatomical region. For visualization purposes,
only the medial and lateral left hemisphere is shown (n=10 left hemisphere participants) though cortical ac-
tivity from electrodes in both hemispheres and their medial surfaces are included in other panels (n=1 right
hemisphere participant) unless otherwise noted. D. Single electrode activations during syllable sequence
production task. Heatmap showing the average high gamma activity during a complex sequence of complex
syllables, where each row corresponds to an electrode from C. (except where the electrode is from the right
hemisphere or medial surface). Colors correspond to anatomical regions in C. Each electrode that is defined
as having sustained activity (significant neural activity during the encoding, delay, pre-speech, and speech
phases) is marked with a black dot on the right side of the raster. E. Unsupervised clustering (via NMF)
of sustained electrodes reveals four distinct temporal patterns of cortical activation. Spatial distribution of
electrodes in each cluster is shown on the left lateral and medial surfaces on an average brain. For visual
purposes, only the left lateral and medial surfaces are shown. The opacity of each electrode corresponds to
its NMF weight for its assigned cluster (normalized by the maximum weight for that cluster) with a more
opaque color meaning a stronger NMF weight. F. Each anatomical region and the number of electrodes that
belong to each of the four clusters. The total height of each bar corresponds to the total number of sustained
electrodes in each region, with the mPrCG containing the most. G. Average high gamma activity (mean
± standard error) relative to presentation of the target sequence (left), the go-cue (center), and production
onset (right) across electrodes in each of the four clusters.
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Figure 3.2. Sustained cortical activity di↵erentiates task phases during speech planning and
production. A. Single electrodes have significantly di↵erent time-averaged neural activity across task
phases (P < 0.05, Friedman test) show di↵erences in activity across task phases (tested by averaged activity
in specific time windows during each phase). Chi-square values from the Friedman test are plotted for
sustained and non-sustained electrodes, with significant electrodes shown in blue and nonsignificant electrodes
shown in grey. Additional post-hoc testing identified some electrodes whose time-averaged neural activity
was significantly di↵erent between all pairs of task phases (P < 0.05, two-sided Wilcoxon signed-rank test,
shown as orange triangles). Overall, the sustained population has significantly greater chi-square values than
the non-sustained population (**** P < 1 ⇥ 10�4, two-sided Wilcoxon rank-sum test). A. The sustained
population correctly predicts the task phase across time. The time course of the decoded probability (mean
± standard deviation) of each task phase using the sustained population, aligned to target presentation
(left), go-cue (center), and speech production onset (right). The probability of encoding, delay, pre-speech,
and speech are shown as purple, blue, pink, and green lines, respectively. A. Comparison of task phase
decoding accuracy using di↵erent groups of electrodes, matched for population size (number of electrodes)
by a random resampling procedure. Error bars indicate standard deviation. Asterisks indicate significant
di↵erences between sustained (teal circles) and non-sustained groups (navy blue triangles) for matched
population sizes. Additionally, decoding accuracy is shown for subsets of the sustained population, namely
electrodes in the mPrCG (orange squares) and in the IFG (pink upside down triangles). A. Trajectories
of trial-averaged activity from all sustained electrodes projected onto the first three principal components
(PCs). The starting point of the trajectory is the onset of encoding and the endpoint is 1.5 seconds after the
start of production, with annotated arrows showing the direction of time. Time points are colored according
to their task phase, with purple for encoding, blue for delay, pink for pre-speech, and green for speech.
A. The proportional distance traveled by the trajectory in D. during each phase. Proportional distance is
calculated as the distance traveled during a particular phase divided by the total length of the trajectory.
A. A rotated view of the same trajectory in D., with 2D planes fitted for encoding and speech phases.
The angle between the planes is annotated. (G-I) Similar to D-F, for electrodes in mPrCG with sustained
activity. (J-L) Similar to D-F, for all non-sustained electrodes.
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Figure 3.3. Sequence complexity and articulatory complexity modulate neural activity for
planning spoken syllable sequences. (continued on next page).
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(Previous page.) Figure 3.3. Sequence complexity and articulatory complexity modulate neural
activity for planning spoken syllable sequences. A. The average high-gamma neural activity (HGA)
(mean ± standard error) from example electrodes in the mPrCG, pSTG, and SMG (top to bottom) for three
types of sequences: simple sequences with simple syllables (purple), complex sequences with simple syllables
(orange), and complex sequences with complex syllables (teal). HGA is aligned to target presentation
(left) and production onset (right). For complex sequences, HGA remains sustained throughout the delay
period at a greater magnitude than simple sequences. Shaded regions indicate the encoding, delay, and
pre-speech periods used to determine the e↵ect of sequence and articulatory complexity. Colored bars at
the top of each shaded region indicate the type of complexity e↵ect observed (blue for sequence complexity
only and green for both sequence and articulatory complexity). B. Time-averaged HGA between trials
of simple and complex sequences for the encoding, delay, and pre-speech periods. Wilcoxon rank-sum
testing between simple and complex sequences determines whether the electrode has an e↵ect of sequence
complexity for that time period. Panels from top to bottom are for the three example electrodes in A.
Simple sequences are shown in purple and complex sequences are shown in orange. C. Same as B., for
determining articulatory complexity. Sequences of simple syllables are shown in orange and sequences of
complex syllables are shown in teal. D. Scatter plot comparing the size of complexity e↵ects (absolute value
of the z-statistic) for sustained electrodes during the encoding, delay, and pre-speech periods. The x-axis
indicates articulatory complexity (a di↵erence between sequences of simple and complex syllables) and the
y-axis indicates sequence complexity (a di↵erence between simple and complex sequences). Electrodes with a
significant e↵ect of sequence complexity but not articulatory complexity are shown in blue. Electrodes with
a significant e↵ect of articulatory complexity but not sequence complexity are shown in pink. Electrodes
with significant e↵ects of both sequence and articulatory complexity are shown in green. The example
electrodes from A. are indicated with labels. E. Electrode locations from left hemisphere participants
(n=9). Electrodes from D. with either significant sequence complexity or articulatory complexity e↵ects
are shown in blue and pink. Electrodes with both e↵ects are shown in green. The example electrodes from
A. are indicated with labels. F. Density map of electrodes that maintain sequence (blue) or articulatory
(pink) complexity e↵ects through the encoding, delay, and pre-speech phases. This localizes the mPrCG
and the pSTG as key areas encoding sequence complexity. Articulatory complexity is more consistently
localized to the vSMC with smaller clusters near the mPrCG and the SMG. G. Sequence complexity e↵ect
size compared to auditory response size. The sequence complexity z-value compared here is the greatest
e↵ect per electrode across the 3 task periods shown. Auditory responses are calculated from neural activity
recorded while participants listened to sentences. The e↵ect of sequence complexity is not significantly
correlated with auditory responses. Electrodes contributing to the density map in F. from the pSTG and
mPrCG are represented by blue circles and triangles, respectively. All other sequence complexity electrodes
are represented by gray circles. Electrodes without significant auditory responses have open markers while
electrodes with significant auditory responses have color-filled markers. H. Similar to G., but comparing
sequence complexity e↵ect size to the performance of an articulatory kinematic trajectory (AKT) model.
I. Similar to G., but comparing sequence complexity e↵ect size to the f0 weight (a proxy for laryngeal
movement) from the AKT model.
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Figure 3.4. mPrCG pre-speech activity predicts behavioral reaction time. A. Definition of task
phases and linear regression model for predicting reaction time. For each task phase, electrode, and trial,
the mean, variance, and estimated slope of the HGA in that window is computed and used as features for
predicting reaction time. The Spearman rank correlation coe�cient is computed between the predicted and
true reaction time values. Permutation testing (P=1000) determined which electrodes predicted reaction
time distributions that were significantly correlated (P < 0.05) with the true reaction times. B. Percent of
electrodes in each region with significant neural activity during that task phase that significantly predicted
reaction time. These percentages exclude electrodes that encode articulatory movement. Hashed lines
indicate what percentage were also sequence complexity electrodes. The mPrCG has the highest proportion
of electrodes during pre-speech. C. Spatial distribution of electrodes that significantly predict reaction time
based on pre-speech neural activity projected on a common MNI brain. Electrodes that are also sequence
complexity are marked with triangles. Color scale reflects the Spearman rank correlation coe�cient for
each electrode. Electrodes with significant neural activity above baseline during pre-speech but that did not
significantly predict reaction time or did but also encode articulatory movements are shown as small black
dots. D. Overlap of electrodes that correlate with reaction time, have sustained neural activity, and encode
sequence complexity, shown as venn diagrams. From left to right, the venn diagrams show the overlap when
considering all electrodes, only the mPrCG, or only the vSMC. In contrast to all electrodes and the vSMC,
the mPrCG has a much greater proportion of overlap between sustained activity, reaction time, and sequence
complexity electrodes. E. Spatial density map of the overlap between reaction time electrodes and sequence
complexity. The density map is computed as a Gaussian smoothed histogram, normalized by the number of
electrodes with above baseline pre-speech activity.
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Figure 3.5. Direct cortical stimulation of the mPrCG results in apraxic speech errors. (continued
on next page).
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(Previous page.) Figure 3.5. Direct cortical stimulation of the mPrCG results in apraxic speech
errors. A. Location of electrode pairs on a common MNI brain used during direct cortical stimulation
in 4 patients. Marker shapes correspond to each of the 4 patients while marker color refers to the e↵ect.
A density computed on all subjects depicts the overlap between reaction time and sequence complexity
electrodes (green, same as Figure 3.4E). Sites at which there were apraxic errors separable from direct motor
e↵ects are in orange. Each stimulation site with apraxic errors involved electrodes with sequence complexity
e↵ects during pre-speech (Figure 3.11, Figure 3.12, Figure 3.13, Figure 3.14). Sites at which there were
no apraxic errors but instead direct motor e↵ects or sensory/perceptual e↵ects are in gray. Sites at which
there were no e↵ects, perceptual or to production, have no color and are outlined in black. B. The percent
of utterances with a speech error with and without stimulation. Speech errors resulting from stimulation
occur during complex syllable sequences of both pseudo- and real words. Marker shapes correspond to each
of the 4 patients (as in A.). C. The percent of complex sequence utterances with speech errors, broken
down by 6 error types. Error profile proportions di↵er across patients, but all are characteristic of apraxia of
speech. Marker shapes correspond to each of the 4 patients (as in A.). D. Quantification of the inter-syllable
duration (to measure increased syllable segmentation) for simple and complex sequences with and without
stimulation. Inter-syllable duration is significantly greater for complex sequences, but not simple sequences
(P < 0.05, one-sided Wilcoxon rank-sum test). or complex sequences where each syllable is executed in
isolation, during stimulation. For isolated syllables of complex sequences, EC276 showed also significantly
greater inter-syllable duration. EC267 did not perform this task during stimulation testing and EC282 had
too few samples to statistically evaluate. E. Quantification of the duration of syllables in simple and complex
sequences while stimulation was and was not occurring. For 3 out of 4 patients, only syllables during complex
sequences were significantly longer in duration when stimulation was occurring (P < 0.05, one-sided Wilcoxon
rank-sum test). For EC276, syllables during both simple and complex sequences were significantly longer
during stimulation. For isolated syllables of complex sequences, EC267 did not perform this task during
stimulation testing and EC282 had too few samples to statistically evaluate. F. Representative examples
of stimulation causing apraxic errors during complex syllable sequence production for the 4-syllable word
“catastrophe” and the 3-syllable sequence “blaa-draa-gloo”. In each panel, the stimulation pulse applied to
the orange triangle stimulation site in A. is plotted above a spectrogram of the participant’s speech. Syllable
annotations are marked at their onset. Both examples show a slowed syllable rate (green bars marking syllable
duration increasing during stimulation), increased syllable segmentation (orange bars marking inter-syllable
duration increasing during stimulation), and phonological distortions (marked by red annotated syllables).
G. Representation examples of stimulation evoking no errors during simple syllable sequence production
(fast “pa” repetitions) and sustained vocalization of a vowel.
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Figure 3.6. Participant electrode coverage. Electrode coverage for each participant (n=13, 12 left
hemisphere, 4 included medial coverage) plotted on reconstructions of their brain. Electrodes that were
continually noisy, dead, or artifactual for all recorded blocks are not shown as they were excluded from all
considered analyses.
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Figure 3.7. Electrodes with sustained activity during simple sequences. Electrodes with sustained
activity during simple sequences of simple syllables (i.e. “bababa”, filled green dots) compared to during
complex sequences of complex syllables (i.e. “blaadraagloo”, unfilled orange dots), plotted on an average
brain (MNI-152). In the main text, we consider sustained activity defined by complex sequences of complex
syllables. Considering only simple sequences there is still sustained activity, but it is a subset of the larger
network and most prominent in the precentral gyrus, suggesting that sustained planning activity needed for
any articulated utterance is common to the precentral gyrus while more areas are recruited for more complex
sequences.
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Figure 3.8. Encoding of sequence and articulatory complexity compared to auditory responses.
Absolute valued z-values (from Wilcoxon Rank-Sum testing) of sequence complexity (top row) and articula-
tory complexity (bottom row) for the encoding (left), delay (middle), and pre-speech (right) periods versus
auditory responses. Only electrodes with significant sequence or articulatory complexity e↵ects are shown.
Electrodes without significant auditory responses are shown in gray. The Pearson correlation coe�cient
(p-value determined by permutation testing) was computed for electrodes with both significant complexity
encoding and auditory responses, with no significant correlations.



190

Figure 3.9. Encoding of sequence and articulatory complexity compared to articulatory en-
coding. Absolute valued z-values (from Wilcoxon Rank-Sum testing) of sequence complexity (top row) and
articulatory complexity (bottom row) for the encoding (left), delay (middle), and pre-speech (right) periods
versus articulatory kinematic trajectory (AKT) model performance (correlation of reconstructed neural ac-
tivity). The Pearson correlation and p-value (determined by permutation testing) is shown for each scatter
plot. AKT model performance was not significantly correlated to sequence or articulatory complexity for
any time period. AKT model performance of r=0.1 was chosen as a cut-o↵ for considering an electrode to
encode AKTs (vertical dashed line).
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Figure 3.10. Encoding of sequence and articulatory complexity compared to laryngeal (f0) en-
coding in articulatory models. Absolute valued z-values (from Wilcoxon Rank-Sum testing) of sequence
complexity (top row) and articulatory complexity (bottom row) for the encoding (left), delay (middle), and
pre-speech (right) periods versus the AKT model laryngeal encoding weight (f0). Only electrodes with an
AKT model correlation greater than 0.1 are plotted. The Pearson correlation and p-value (determined by
permutation testing) is shown for each scatter plot. AKT laryngeal encoding was not significantly positively
correlated to sequence or articulatory complexity for any time period.
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Figure 3.11. Sustained activity, complexity encoding, and stimulation sites for EC260. A.
Electrode coverage for this participant on a 3D reconstruction of their brain. Electrodes that had neural
activity significantly above baseline during at least one task phase are plotted in orange, electrodes with
significantly above baseline activity during the encoding, delay, pre-speech, and speech task periods are
plotted as orange with black outlines, and all other electrodes are plotted in gray. Electrodes that were
noisy, dead, or artifactual during all recorded data are not plotted. B. Electrodes with sequence complexity
(blue) or articulatory complexity (red) (or both in green) during the pre-speech period. Other electrodes
with significant activity during pre-speech, but no complexity encoding, are shown in gray. The electrodes
with black outlines correspond to ERPs shown in C. Lines connecting two recording sites correspond to
stimulation sites. Lines are colored by the e↵ect (if any) at that site; orange for apraxic error, purple for
direct motor or other sensory e↵ects, and gray for no deficits. For EC260, the sensory e↵ect at the site in the
IFG was altered visual and auditory perceptions associated with a former teacher they knew as a child. The
sensory e↵ect at the site in the STG was slightly altered pitch, seemingly only for speech sounds and not
for other sounds like the sound of hands rubbing together. C. Selected high-gamma activity (HGA) ERPs
for the 6 task conditions this participant completed. The top row corresponds to the mPrCG electrode, the
middle to the STG electrode, and the bottom to the IFG electrode in B. The site in the STG has sustained
activity, but is not selective for complex sequences, rather this electrode seems selective for any multi-syllabic
sequence.
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Figure 3.12. Sustained activity, complexity encoding, and stimulation sites for EC267. EC267
was only able to complete the task by completing a listen and repeat version (instead of reading the target
sequences on the screen), and so they were excluded from the analyses of Figure 3.1, Figure 3.2, and Figure 3.3
for consistency. This figure depicts the key results from this participant, if they had been included. A.
Electrode coverage for this participant on a 3D reconstruction of their brain. Electrodes that had neural
activity significantly above baseline during at least one task phase are plotted in orange, electrodes with
significantly above baseline activity during the delay, pre-speech, and speech task periods are plotted as
orange with black outlines, and all other electrodes are plotted in gray. Due to this participant’s encoding
period being listening instead of reading, significant activity during this time period was not required for the
electrode to be considered “sustained” for this figure. Electrodes that were noisy, dead, or artifactual during
all recorded data are not plotted. B. Electrodes with sequence complexity (blue) or articulatory complexity
(red) (or both in green) during the pre-speech period. Other electrodes with significant activity during
pre-speech, but no complexity encoding, are shown in gray. The electrodes with black outlines correspond
to ERPs shown in C. Lines connecting two recording sites correspond to stimulation sites. Lines are colored
by the e↵ect (if any) at that site; orange for apraxic error, purple for direct motor or other sensory e↵ects,
and gray for no deficits. For EC267, the sensorimotor deficit at the stimulation site over the postcentral
gyrus was a direct motor e↵ect. At the stimulation site in the mPrCG that caused apraxic errors, speech
arrest due to motor e↵ects was observed at higher stimulation current amplitudes. C. Selected high-gamma
activity (HGA) ERPs for the 4 task conditions this participant completed. The top row corresponds to the
mPrCG electrode in B. while the bottom row corresponds to the IFG electrode in B.
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Figure 3.13. Sustained activity, complexity encoding, and stimulation sites for EC276. EC276
had reaction times that were much slower than the other patients, and so they were excluded from analyses
involving the pre-speech period in Figure 3.2 and Figure 3.3 for consistency. This figure depicts the key
results from this participant, if they had been included. A. Electrode coverage for this participant on a
3D reconstruction of their brain. Electrodes that had neural activity significantly above baseline during at
least one task phase are plotted in orange, electrodes with significantly above baseline activity during the
encoding, delay, pre-speech, and speech task periods are plotted as orange with black outlines, and all other
electrodes are plotted in gray. Electrodes that were noisy, dead, or artifactual during all recorded data are
not plotted. B. Electrodes with sequence complexity (blue) or articulatory complexity (red) (or both in
green) during the pre-speech period. Other electrodes with significant activity during pre-speech, but no
complexity encoding, are shown in gray. The electrodes with black outlines correspond to ERPs shown in C.
Lines connecting two recording sites correspond to stimulation sites. Lines are colored by the e↵ect (if any) at
that site; orange for apraxic error, purple for direct motor or other sensory e↵ects, and gray for no deficits.
For EC276, the sensorimotor deficit at the stimulation site in the mPrCG was spontaneous vocalization.
At the stimulation site across the sequence complexity site outlined in black, spontaneous vocalization was
observed at higher stimulation amplitudes. C. Selected high-gamma activity (HGA) ERPs for the 4 task
conditions this participant completed. The top row corresponds to the mPrCG electrode in B. while the
bottom row corresponds to the SMA electrode in B.



195

Figure 3.14. Sustained activity, complexity encoding, and stimulation sites for EC282. EC282
made errors on all complex sequences of complex syllables and only completed 1 block (5 repetitions per
utterance) and so they were excluded from analyses in Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.4
for consistency. This figure depicts the key results from this participant, if they had been included. A.
Electrode coverage for this participant on a 3D reconstruction of their brain. Electrodes that had neural
activity significantly above baseline during at least one task phase are plotted in orange, electrodes with
significantly above baseline activity during the encoding, delay, pre-speech, and speech task periods are
plotted as orange with black outlines, and all other electrodes are plotted in gray. Electrodes that were
noisy, dead, or artifactual during all recorded data are not plotted. B. Electrodes with sequence complexity
(blue) or articulatory complexity (red) (or both in green) during the pre-speech period. Other electrodes
with significant activity during pre-speech, but no complexity encoding, are shown in gray. The electrode
with a black outline corresponds to the ERP shown in C. Lines connecting two recording sites correspond
to stimulation sites. Lines are colored by the e↵ect (if any) at that site; orange for apraxic error, purple
for direct motor or other sensory e↵ects, and gray for no deficits. For EC282, the sensorimotor deficit at
the stimulation site over the central sulcus in the vSMC was a painful tingling sensation on the patient’s lip
and tongue that increased with stimulation current amplitude. The sensorimotor deficit at the stimulation
site over the postcentral gyrus and supramarginal gyrus was a tingling sensation on the patient’s head.
At the stimulation sites in the mPrCG that caused apraxic errors, direct motor e↵ects were observed at
higher stimulation amplitudes. C. Selected high-gamma activity (HGA) ERP for the 3 task conditions this
participant completed, corresponding to the mPrCG electrode in B.
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Figure 3.15. Stimulation sites for each participant and description of sensory e↵ects. Stimulation
sites are plotted on a common brain (MNI-152). Sites where stimulation caused apraxic speech errors are
shown in orange. Sites where stimulation caused direct motor e↵ects (such as movement or spontaneous
vocalizations) are shown in red. Sites where stimulation caused sensory e↵ects are shown in purple. The
sensory e↵ect at the site in the IFG for EC260 (triangles) was altered visual and auditory perceptions
associated with a former teacher they knew as a child. The sensory e↵ect at the site in the STG for EC260
was slightly altered pitch, seemingly only for speech sounds and not for other sounds like the sound of hands
rubbing together. The sensory e↵ect in the mPrCG for EC260 was right hand numbness. Finally, the sensory
e↵ect in the supramarginal gyrus for EC282 was a tingling sensation on the patient’s head.
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Figure 3.16. Error type and frequency for all tasks and all error types. Each panel depicts the
percent of utterances, without stimulation (blue) and during stimulation (orange), that had a certain type
of speech error. Each patient is depicted with a di↵erent shape; triangles for EC260, circles for EC267,
diamonds for EC276, and stars for EC282. For phonological simplification, this occurred in one patient
(EC276) where they said “jec” instead of “ject” during one stimulation pulse.
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Figure 3.17. Percent correct and mistake trials for each participant. The total number of trials
for each condition is labeled above the bars. Trials where there was extraneous speech at the start of the
production (i.e. “oh sorry bababa” or “¡cough¿ badaga”) were excluded from these counts. For each subject,
the following number of trials were excluded from these counts: 5 for EC217, 8 for EC219, 4 for EC223, 2
for EC237, 4 for EC240, 4 for EC241, 9 for EC253, 8 for EC254, 10 for EC260, 3 for EC263, 32 for EC267,
13 for EC276, and 5 for EC282.
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Figure 3.18. Reaction time distributions for each participant. Reaction times for each correct trial
in each condition for each participant. Individual trials are shown as dots while the median and interquartile
range is shown by box plots. The horizontal dashed line denotes the upper limit of a 1.1 second reaction
time that was used to reject trials in some analyses. 1.1 seconds was chosen because this was applied to
the pre-speech period where the window could be from the go-cue to 0.1 seconds before acoustic onset.
This allowed for a maximum window of 1 second to be used in some analyses (such as sequence complexity
encoding).
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Figure 3.19. Spatial distributions of each sustained cluster. A. Spatial distribution of each temporal
pattern of sustained activity found through unsupervised clustering (NMF) on the left medial surface of a
common brain (MNI-152). B. Same as A. for the left lateral surface.
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Table 3.1. Participant demographics, language experience, and analysis details.
Languages are listed in order of acquisition, though all participants were fluent in English.
Footnotes indicate what analyses each participant was included in.

Participant Age Gender Fluent languages

EC2171 25 Female English
EC2191 22 Female English (Spanish-basic conversation)
EC2231 40 Female English
EC2371 33 Female Russian-English
EC2401 19 Male English
EC2411 38 Male English
EC2531 24 Male English
EC2541 28 Male English
EC2602 23 Male Spanish-English
EC2632 24 Male English
EC2673 44 Male English-Spanish
EC2764 39 Male Spanish-English
EC2825 22 Male English-Spanish

1 All analyses except stimulation.
2 All analyses.
3 Only reaction time prediction and stimulation. Participant’s data was excluded
from other analyses since they completed a version with an auditory stimulus
instead of visual. Despite being excluded from the main figures, Figure 3.12
depicts the results of these analyses.
4 All analyses, except for task phase decoding and pre-speech complexity encod-
ing. Participant’s reaction times were much greater and so they were excluded
from analyses that averaged over the pre-speech period. Despite being excluded
from some of the main figure panels, Figure 3.13 depicts the results of these anal-
yses.
5 Only stimulation analyses. Participant made errors on all complex sequences
of complex syllables and so was excluded from most analyses using these trials.
Despite being excluded from some of the main figure panels, Figure 3.14 depicts
the results of these analyses.
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Table 3.2. Utterance sets with varied sequence and articulatory complexity.
Sequences in italics were only additionally collected only for participants EC253, EC254,
and EC260 due to time constraints.

Syllable type Sequence complexity
(articulatory complexity) Isolated Simple Complex

CV (simple) baa baa-baa-baa baa-daa-gaa
daa daa-daa-daa daa-baa-gaa
gaa gaa-gaa-gaa gaa-daa-baa

baa-gaa-daa
daa-gaa-baa
gaa-baa-daa

CCV (complex) blaa blaa-blaa-blaa blaa-draa-gloo
draa draa-draa-draa blaa-gloo-draa
gloo gloo-gloo-gloo draa-blaa-gloo

draa-gloo-blaa
gloo-blaa-draa
gloo-draa-blaa



203

Table 3.3. Auditory and articulatory datasets used to find significant auditory
responses and fit articulatory kinematic trajectory (AKT) models.

Participant Auditory dataset Articulatory dataset

EC217 Isolated words Days of the week
EC219 TIMIT sentences1 Days of the week
EC223 CV pairs Days of the week
EC237 TIMIT sentences Syllable sequencing (f0

laryngeal variable not
fitted2)

EC240 Instructions to a task Days of the week
EC241 CV pairs Days of the week
EC253 TIMIT sentences MOCHA sentences1

EC254 TIMIT sentences MOCHA sentences
EC260 TIMIT sentences MOCHA sentences
EC263 TIMIT sentences Subset of TIMIT sentences
EC267 TIMIT sentences MOCHA sentences
EC276 Subset of TIMIT sentences Subset of TIMIT sentences

1 TIMIT and MOCHA are both corpora of sentences.
2 For EC237, the only available production dataset was the syllable sequencing task. Compared
to natural speech there is much less pitch variation needed in this task, and so the laryngeal
variable (f0) was unable to be fit well by the model and was then excluded.
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Table 3.4. Description of all tasks used during stimulation. The description of each
task includes the instructions given to the patient. The example utterances are a subset of
the utterances that may have been used during testing.

Task Description Example utterances
or movements

4-syllable real word
repetition

Patient instructed to repeat the word said aloud by
an experimenter. This task was used as a go/no-go
test whether to further investigate a site for complex
sequencing errors. Sometimes, the patient would be
asked to repeatedly produce the word, and the
experimenter would deliver stimulation at di↵erent
times in order to determine the appropriate
stimulation current amplitude.

“catastrophe”,
“interjection”,
“honeysuckle”

Complex syllable
sequences

Similar instructions as the 4-syllable real word task.
Patients were instructed to say the sequences as if
they were a single word. Test sequences chosen for
each patient were based on whether the patient could
say the sequence at baseline (i.e. no stimulation)
with no errors.

“badaga”, “pataka”,
“blaadraagloo”,
“chuhshuhjuh”

Isolated syllables of
complex sequences

Similar instructions as the 4-syllable real word task.
Patients were instructed to say the sequences with
each syllable in isolation. That is, they were holding
a complex syllable sequence in working memory, but
were producing them as isolated syllables.

“ba. . . da. . . ga”

Simple syllable
sequences

Similar instructions as the 4-syllable real word task. “bababa”, “papapa”,
“tatata”

Orofacial motor
movements

Patients were instructed to repeatedly perform an
orofacial movement. Three orofacial movements were
tested for each patient.

Lip pucker, sticking
tongue in and out,
opening and closing
jaw

Vocalization Patients were instructed to hold a vowel for an
extended period of time.

“ee”, “oo”

Natural speech Only tested with EC260. Patient was asked to
describe their first job for a few minutes, while
stimulation was applied during some sentences.

“I stayed after
school”

Hand-motor
sequences

Patients instructed to continually perform a complex
hand movement sequence.

Using dominant
hand, tap index
finger to thumb, then
middle finger to
thumb, then ring,
then pinky, then
reverse and repeat.

Task switching Only tested with EC260. Patient was asked to say
the days of week repeatedly. Patient was instructed
to monitor themselves for speech errors/di�culty. If
they felt they were making errors, they were
instructed to switch to a new task as soon as they
could. Tasks they switched to included vocalization,
orofacial movements, and mimed speech.

Example switching
to vocalization:
“monday tuesday
wed-aaaah”
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