UCLA

Posters

Title

Design, Installation, and Performance of a Delay Tolerant Seismic Network in Mexico (SEI 1)

Permalink

https://escholarship.org/uc/item/2h1844r3

Authors

Allen Husker Igor Stubailo Martin Lukac <u>et al.</u>

Publication Date

2006

5 Center for Embedded Networked Sensing

Design, Installation, and Performance of a Delay **Tolerant Seismic Network in Mexico**

Allen Husker, Igor Stubailo, Martin Lukac, Alma Quezada, Steven Skinner, Irving Flores, Paul Davis, Richard Guy, Deborah Estrin - Seismology – http://www.cens.ucla.edu/portal/seismic_monitoring/

Impetus: Seismological study in remote location – Where is plate tectonic subducted slab?

Question of slab position Two possible models for flat slab subduction 7.8 Ma 10.9 Ma Geochemical model from Ferrari, 2004 (left) Geodynamical model from Billen and Hirth 2005 (below) · Young slab leads to flat-slab subduction Shape of the slab from seismicity No knowledge of slab beyond the Trans-Mexican Volcanic Belt (TMVB) C

Solution: A dense seismometer network in Mexico

100 station seismic network measuring subduction from the coast across Mexico

- What we have achieved that other networks have not in remote locations
- Near real-time knowledge of problems within the network
- Dynamic network reconfiguration
- Delays on the order of a few weeks can be tolerated within the network
- · Improvements still to be made

the system.

- Addition of in-network timing for those locations where GPS is not available (e.g. buildings, tunnels)
- Add CENS suite of tools to see data using Google Earth in near real time and simplify software for field technicians.

CDCC SUPA SAPE Zacualtip KM67 PSIQ ECID TI74 Banco-I SNLU SALU TECA

Challenges

- Environment (see picture at right) trees growing and blocking signalsflooding
- · strong wind changing antenna direction - Computer network and Internet connection
- reliability - Obtaining skilled technical assistance

Pachuca Line

Example of network topology

Following CDCC Lat

Zacualtipan-R

Cubitos-R

Zacualtipan-R

TIZA

KM67 Cubitos-R

Banco-F Banco-F

COAC

COA

0°05.270' 98°47.485

20°02.018' 98°48.422'

10050 400' 08051 818' 19°58.432' 98°51.703' Zacualtipan (re

19°57.061' 98°52.395' 19°54.061' 98°54.588'

19°51.996' 98°55.703'

19°49.053' 98°55.578'

19°47.304' 98°58.732'

19°41.166' 99°02.772'

98°58.819' San Lu

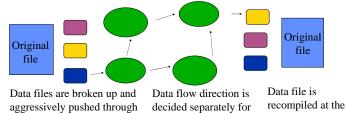
08050 77

19º41.975' 98º58.849' Tecamad

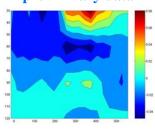
19°47.060'

sur de Pachi

tierra publi


Banco de Material (rep

EI Cid


- Cultural and language differences

DTS has been developed to aid data flow for a system with weak or variable links

Evidence of slab already seen in preliminary data

sink node. each file portion. UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced

