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Purpose of review

This review considers recent insights into the neurobiology of repair after stroke in

animals and humans, the range of emerging therapies to promote repair and recovery

after the acute phase of stroke, and issues related to optimizing trials of such therapies

Recent findings

Animal studies continue to shed light on the molecular, vascular, glial, neuronal,

behavioral, and environmental events that are important to the spontaneous behaviora

recovery that is observed during the weeks after a stroke. Animal and human studies are

examining a wide range of potential interventions that may favorably modify outcome

including small molecules, growth factors, cell-based approaches, electromagnetic

stimulation, a range of devices and robots, and intense physiotherapy methods,

including constraint-induced movement therapy. Optimal prescription of these

restorative therapies in human patients with stroke requires further study, including

defining potential roles for functional neuroimaging.

Summary

A wide range of therapies shows promise for improving poststroke brain repair. Insights

into the neurobiology of brain repair after stroke in animals and in humans continue to

accrue. This information might prove useful in designing and implementing clinical trials

that aim to measure the clinical effects of restorative therapies after stroke.
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Introduction
Stroke remains a leading cause of death and disability in

the USA and many other countries. It can cause deficits in

a number of neurologic domains, most commonly in the

motor system [1]. In most patients some degree of

spontaneous behavioral recovery is observed during the

weeks to months after stroke onset [2,3]. This recovery is

generally incomplete, however. A key challenge is to

elucidate the mechanisms of spontaneous behavioral

recovery after stroke, and to use this information to guide

optimal prescription of restorative therapeutics after

stroke.

Clinical studies of the natural history of behavioral

recovery after stroke show divergent patterns across

different domains of neurologic function. Nakayama

et al. [2] found that maximum arm motor function was

achieved by 95% of patients within 9 weeks. Pedersen

et al. [4] found that final level of language function was

achieved in 95% of patients by 6 weeks poststroke. Hier

et al. [5] also found that recovery from neglect was largely

complete by 3 months. One pattern across these and

other studies is that individuals with more severe deficits

recover over a longer time period.
1350-7540 � 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins
.
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Animal studies have provided clues to a number of the

key molecular events that are important to spontaneous

recovery after stroke [6–8,9�,10]. Direct measure of these

molecular events is generally not possible in humans.

Brain mapping can be used to derive insights into the

basis of spontaneous recovery after stroke in humans,

however, and many results have been concordant with

findings in animals. Recent reviews have considered this

issue [11–13].

A critical determinant of behavioral outcome in humans is

the function of elegant and eloquent neocortical areas

that, at prestroke baseline, are central to generation of

behaviors such as movement, language, and attention.

The extent to which these areas are injured and exhibit

reduced function has a primary influence on behavioral

outcome [14,15�]. Probing the function of primary

neocortex after stroke is complicated by the difficulty

of disentangling the effects of injury from plasticity.

Depending on the topography of injury, the location of

cortical function can be displaced to neighboring

areas [16,17], a process that arises independently of

other poststroke plasticity events such as change in

inter-hemispheric balance [18]. Other studies have found
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that the topography of stroke injury influences functional

reorganization after stroke [19]. Regional changes in brain

function after stroke can have anatomic correlates such as

increased cortical thickness [20].

Although activation in the peri-infarct zone has been

specifically noted [21–23], its behavioral significance

remains to be fully clarified. One recent functional

magnetic resonance imaging (fMRI) study of patients

with cortical stroke did not identify a significant

correlation between extent of peri-infarct activation

and behavioral outcome after stroke [24]. This assess-

ment was complicated, however, by the additional

observation that the T2�-weighted MRI signal

used to measure brain activation with fMRI was itself

altered in the peri-infarct zone, perhaps because of glial

scarring.

Increased activation within multiple nodes of secondary,

association cortex that together comprise a distributed

network is a common poststroke activation pattern

[17,21,25–27], described in brain networks related to a

range of neurologic domains including motor, language,

and attention functions. Maintenance of behavioral

output after injury to one node of a network is associated

with increased activation within surviving network areas.

This extends to the contralesional hemisphere, where

increased recruitment after stroke is seen and can be

quantitated via a laterality index [21], methods for which

have been refined [28]. Such increases in activation are

greatest in those with the poorest behavioral outcome or

largest lesions [18,28–30].
Recent observations related to spontaneous
recovery in animals
Recent studies have substantiated that spontaneous

behavioral recovery after unilateral infarct occurs on

the basis of a wide range of bilateral growth-related brain

events. These include axonal, dendritic, and synaptic

changes; increased activation and migration of endoge-

nous neural stems; and changes in glia, inflammation, and

angiogenesis [7,9�,10]. In many cases, a better under-

standing of these processes might assist in defining

therapeutic targets for improving poststroke brain repair

in humans via pharmacologic [31–36], cell-based [37,38],

immune-based [39,40], gene transfer [41], and physical

[42] therapeutic approaches. A number of factors can

influence these repair-related events, such as infarct size

or degree of environmental enrichment [43]. Dancause

et al. [44] described a specific form of neuroanatomic

reorganization distant from infarct, whereby primates

with primary motor cortex injury produce a novel

projection from ventral premotor cortex to somatosensory

cortex; this model of poststroke remodeling might prove

particularly instructive.
MRI studies have also been instructive. van der Zijden

et al. [45] used MRI to measure changes in brain region

connectivity in rats subjected to occlusion of the middle

cerebral artery. This is of particular importance because,

as with previous work from this laboratory on fMRI in rats

with experimental stroke [46], the MRI investigational

approach is similar to that used in humans. Therefore, the

potential for direct comparison and translation to the

human experience is high.
Recent observations related to spontaneous
recovery in humans
Numerous profound changes evolve in the brain during

the early days after stroke [47]. Significant changes in

organization of brain function can arise as late as 12 months

after stroke, however [48]. Despite this wide range,

Woldag et al. [49] found that day 7 clinical assessments

have the strongest predictive value for final behavioral

outcome.

The influences that drive poststroke repair continue to

be clarified. The degree of vascular insult needed to

incite repair-related reorganization might be much

lower than was previously appreciated [50]. The specific

tracts injured by stroke could be important to elucidat-

ing patterns of deficits, plasticity, and treatment

response [19,51,52��]. Ward et al. [53], in a study of

eight patients, found that a compensatory increase in

regional fMRI activation within several bilateral brain

areas, including both primary and secondary motor

cortices, was linearly related to the degree of reduction

in transcranial magnetic stimulation (TMS) measures of

motor cortex/corticospinal tract functional integrity.

Studies have confirmed that inhibition of the ipsile-

sional hemisphere by the contralesional hemisphere – a

potentially important process whose modulation might

be useful for improving cortical output – can be

increased after stroke [54], although the mechanisms

underlying this finding require further study [55].

Several lines of evidence, including virtual lesions

[56�,57] and other investigative approaches [58],

indicate that bilateral supranormal activations arising

after stroke – whatever their basis is and despite the

fact that they are seen most often in weaker patients –

do contribute to whatever behavioral recovery spon-

taneously arises after stroke. Inflammation has an

important relationship with poststroke repair [59],

highlighting the importance of reports of microglia

traffic measurement during the first month after stroke

[60].

One principle emerging across human brain studies is

that baseline functional anatomy influences the pattern of

poststroke functional anatomy. Thus, swallowing [61],

facial movement [18], and gait [62] are normally more
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bilaterally organized than distal extremity movements.

Also, after stroke, a shift away from the ipsilesional

hemisphere in the balance of hemispheric activity occurs

most often and with greatest clinical gains in these tasks.

This principle suggests the hypothesis that behaviors that

are more bilaterally organized in the normal state might

benefit from a more bilateral approach to therapy.

Genetic factors probably also have important influences on

poststroke repair in humans. Brain-derived neurotrophic

factor (BDNF) is among the most abundant growth factors

in mammalian brain, being necessary for many neuronal

functions. A single nucleotide polymorphism producing a

valine to methionine amino acid substitution at codon

66 occurs in one or both human alleles in more than

27% of the American population [63]. Kleim et al. [64��]

found that individuals with the BDNF val66met poly-

morphism in one or both alleles exhibited significantly

impaired short-term experience-dependent motor cortex

plasticity. Given the importance of cortical plasticity to

behavioral recovery after stroke, this finding suggests that

this polymorphism might have an important influence on

behavioral outcome after stroke. Observations such as

those of Siironen et al. [65], who found that the presence

of this polymorphism was associated with a poorer outcome

after subarachnoid hemorrhage, support this hypothesis.

Examination of the phases of brain repair during the

weeks after a stroke suggests distinct poststroke temporal

epochs, each requiring specific therapeutic approaches.

Similar models have been described in the motor [66] and

language [13] systems.
Promoting repair after stroke
A number of therapies, representing divergent

approaches, are in development to enhance behavioral

outcome beyond that attained spontaneously. The state

of development of these therapies ranges from preclinical

investigation to late phase human trials.

A number of small molecules show promise for promoting

brain repair after stroke. Some, such as extended-release

niacin [67] and sildenafil [35], have prior human appli-

cations in other medical indications. Hopes have been

high for amphetamine in light of prior small positive

reports, but a randomized, double-blind, placebo-

controlled trial of 5 weeks of amphetamine in 71 patients

with subacute stroke did not demonstrate a drug-

related benefit [68�]. Neutralization of the axon growth

inhibitor Nogo-A with monoclonal antibodies might be

useful in a number of neurologic conditions, including

stroke [40].

Growth factors play an important role in development

and spontaneous brain remodelling, and so it is not
surprising that they are emerging as potentially

important restorative agents. Examples of preclinical

effectiveness with exogenous growth factors include

BDNF [69] and granulocyte-colony stimulating factor

[36]. Kolb et al. [34] found that sequential administration

of epidermal growth factor and erythropoietin reduced

deficits, in some cases when treatment was initiated

7 days after stroke onset, with this on the heels of

a positive small study showing safety and benefits

from erythropoietin delivered within 8 h of stroke

onset in humans [70]. The issue of the blood–brain

barrier effects on accessing biologic targets might be

important, with a solution being use of a ‘trojan horse’

approach [38].

The use of exogenous cells is receiving increased atten-

tion in stroke. A small trial in human patients with

subacute stroke found marrow stromal cells to be safe

and possibly effective in reducing disability [71].

The time window after stroke during which intravenous

marrow stromal cells improve final outcome in rats

is now known to be at least 1 month [72��]. Other

forms of exogenous stem cells have shown promise in

related neurologic conditions [73,74]. Genetic modifi-

cation of marrow stromal cells permits local delivery of

specific growth factors, with behavioral gains [37,75–

77]. Inducing changes in the number and behavior of

endogenous stem cells might also be an important

approach [78].

The brain is an electrical organ, and not surprisingly

electromagnetic stimulation can modulate a number of

functions and behaviors. Repetitive TMS can have

inhibitory or excitatory effects on cortical activity [79].

As such, goals can include increasing activity in

ipsilesional cortical regions that are underactive

[80,81], or in contralesional cortical regions that are over-

active and a source of potentially harmful inhibition [82].

Transcranial direct current stimulation has also shown

promise in initial studies [83]. Epidural motor cortex

stimulation can also improve motor function after stroke

[83]. In these approaches, brain mapping studies might

be useful to direct the site of stimulation [84].

A number of devices that interface directly and indirectly

with the human central nervous system are in develop-

ment to improve function after stroke. Examples include

a direct brain–computer interface to modulate motor

function [85�] or alertness [86]. Methods for less invasive

acquisition of brain output to drive such devices are

under exploration [87]. Robotic devices continue to be

developed to improve functional status after stroke [88].

Robotic therapies offer potential advantages in that they

can be active without fatigue for very long time periods,

they can perform in a consistent and precise manner, they

can be programmed, they have the capacity to measure
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a range of behaviors, and they are enabled for tele-

rehabilitation [89,90]. Functional electrical stimulation

can also improve outcome after stroke [91].

Physiotherapy interventions will probably be an important

component of many restorative therapies, alone or as an

adjunct. The EXCITE (Extremity Constraint Induced

Therapy Evaluation) trial, a single-blind, customary

care-controlled, randomized, multisite trial of 222 patients

with moderate motor deficits from a first stroke 3–

9 months previously, demonstrated effectiveness of

constraint-induced movement therapy (CIMT) [92��].

Although evidence suggests that increased time in therapy

early after stroke can improve functional outcome [93],

application of CIMT very early after stroke at high inten-

sity can be deleterious [94]. Modified forms of CIMT

might increase the fraction of patients who benefit

from this intervention [95]. A number of other forms of

therapy are also under evaluation, including motor

imagery, observation, and imitation, including use of

virtual reality approaches [96–101].
Optimizing approaches to repairing the brain
after stroke in humans
Maximal gains from these restorative therapies might be

achieved if they are applied in light of insights into the

neurobiology of poststroke repair presented above. Thus,

measurement of features of central nervous system

function might serve as guides to some features of

restorative therapies after stroke. There are numerous

examples in the practice of medicine whereby the

physiologic state of the target tissue is probed to guide

decision making and thereby maximally reduce symp-

toms. Examples include use of pulmonary function tests

to guide treatment of chronic obstructive pulmonary

disease, measurement of serum thyroid-stimulating

hormone to guide treatment of hypothyroidism, and

use of exercise treadmill testing to guide treatment of

coronary artery disease.

Approaches to applying functional neuroimaging in this

context are at a relatively early stage. One domain of

application is as a biologic marker of treatment effect,

providing secondary measures of treatment effect as well

as insights into treatment mechanism. One recent

meta-analysis [102] examined studies that have employed

functional neuroimaging as a biologic marker of treatment

effects targeting stroke. Conclusions across 13 studies

included that motor deficits have been most often studied,

that published studies have focused on patients with good

to excellent outcome at baseline, and that there is a paucity

of functional neuroimaging conducted to examine treat-

ment effects during the first few months after stroke. The

review also concluded that further study is required into

the effects of key variables such as lesion site, concomitant
diagnoses (e.g. depression), sex, and age on the perform-

ance of functional neuroimaging in this context.

Another domain of application is to predict treatment

response; such data might be useful in patient selection.

A number of initial efforts in this direction have been

reported, in small cohorts. Stinear et al. [103] examined

17 patients with chronic stroke. Baseline measures that

predicted motor gains across 30 days of motor practice

therapy included fractional anisotropy, a diffusion tensor-

based measure of white matter integrity, in the posterior

limb of internal capsule. Results varied according to

physiologic properties of the corticospinal system. Cramer

et al. [104�] examined 24 patients with chronic stroke

before and after 6 weeks of rehabilitation therapy with

or without investigational motor cortex stimulation.

Several baseline measures correlated with subsequent

trial-related clinical gains and were entered into a forward

stepwise multiple linear regression model, which found

that two baseline measures had independent value for

predicting clinical gains: baseline arm motor status and an

fMRI-based measure of motor cortex function (with lower

motor cortex activation predicting greater potential to

improve with therapy). Interestingly, greater treatment-

related gains were associated with greater increases in

motor cortex activation over time. Koski et al. [105] found

that change in TMS measures across the first two therapy

sessions predicted response to subsequent weeks of

motor therapy. Dong et al. [106] found that the fMRI

laterality index midway through motor therapy predicted

subsequent behavioral gains. The latter two studies

suggest that functional neuroimaging might also be able

to aid in selection of restorative therapy dose.

A number of other avenues are under study to improve

the approaches used to administer restorative therapies

after stroke. Establishment of standardized protocols for

functional neuroimaging might reduce several sources of

variance [107,108]. Disentangling behavioral compen-

sation from actual recovery might be of high importance

[109]. Assessment of a range of neurologic domains might

maximize the likelihood of detecting changes in a subset

of neurologic domains, an approach that is more difficult

when relying exclusively on global neurologic scales to

measure therapeutic effects.
Conclusion
Studies in animals have provided insights into the

neurobiology of spontaneous behavioral recovery after

stroke, and in doing so they have helped to define a

number of therapeutic targets to improve outcome

further. Brain mapping studies have provided insights

into this repair in humans, with results showing many

points of overlap with animal studies. Furthermore, brain

mapping can be a useful source of information relevant to
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decision making in the setting of a restorative interven-

tion trial in humans with stroke.
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