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ABSTRACT OF THE THESIS
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by
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Masters of Science in Bioinformatics

University of California, Los Angeles, 2024

Professor Michael Edward Alfaro, Chair

The emerging field of spatial phylogenetics allows scientists to understand biodiversity

and community ecology with the added lens of deep time. Biodiversity metrics that account for

the shared evolutionary history in an ecosystem can give insight into the environmental filters

that drive patterns of community assembly, and can help guide conservation efforts toward

preservation of functional diversity. Here I present a new method: Community Phylogenetic

Analysis at Speedy Time (C-PHAST), which builds on existing frameworks to produce a

comprehensive pipeline for analysis of large-scale phylogenetic dispersion and community

assembly. I apply this new method to characterize the phylodiversity of birds, plants
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squamates, mammals and butterflies that are endemic to California. I create high resolution

visualizations of the distribution of phylogenetic diversity across these clades within California,

and find that patterns of over- and under- dispersion have low relative cross-clade correlation.

Cumulative evolutionary history across clades reveals patches of overdispersion in northeastern

California, in the southern Palm Springs desert regions, and in select coastal areas. I use the

C-PHAST findings to pinpoint unmanaged regions harboring exceptionally high

evolutionary history across taxonomic groups as recommendations for future conservation

efforts.
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INTRODUCTION

Introduction to Phylogenetic Diversity

Biodiversity– described as the “vast diversity of life on earth” (Wilson 1988) is a central

concept to modern conservation biology. Preservation of biodiversity is prioritized largely

because it is correlated with a diverse representation of functional traits and consequently, with

long-term sustainability of ecosystem services (Cadotte et al. 2011). As such, quantitative

metrics of biodiversity have become part of the common toolkit of park managers and

conservation scientists. Species richness, which is simply a count of the number of species within

a region, remains the most widely used and readily accessible measure of biodiversity (Gotelli et

al. 2001). Traditional diversity metrics that build from species richness include alpha measures of

species per area, rank-abundance calculations, and beta diversity metrics comparing assemblages

between communities (Moreno et al 2017). However, contemporary research has revealed that

richness metrics applied in isolation fail to account for community evolutionary distinctiveness,

and can result in extremely misleading decisions about how to best protect and preserve

threatened areas (Gotelli et al. 2001, Buerki et al 2014, Miller et al. 2018)

To address these shortcomings, conservation scientists have developed a range of

additional statistics to partially improve on species richness-based values. The introduction of

phylogenetic diversity metrics to measure biodiversity marked a revolution in conservation

studies (Faith 1994), as these measures frequently outperform evolutionarily naive methods in

predicting key ecological function in a conservation context (Miller et al. 2018, Winter et al.

2013). Phylogenetic diversity considers not only abundance and richness, but also the relatedness

among species, capturing the extent of evolutionary history represented in a community

(Srivastava et al. 2012). While traditional alpha and beta metrics are useful in directing land
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management practices and conservation techniques, an increase in availability of phylogenetic

data allows a more direct assessment and evaluation of species-specific conservation value

(Cadotte et al. 2010).

Ecological Importance of Phylogenetic Diversity

Phylogenetic diversity metrics are useful foremost in their approximation of functional

diversity: we expect more closely related species to have more closely related traits (Winter et al.

2013, Lean et al. 2016). Functional diversity examines the range of biological functions

performed by species and serves as an estimator of ecosystem resilience in the face of pulsating

or rapid ecological change (Ceulemans et al. 2019). However, it can be difficult to quantify

empirically for large scale communities without sufficient availability of trait data and with

sporadic sampling accessibility (Swenson 2013). Quantifications of phylogeny-based

evolutionary history can provide a reasonable approximation of functional diversity and capture

the evolutionary potential of communities (Winter 2013, Cavender-Bares et al. 2009). As the

scale of phylogenies increase to span large clades or multiple large taxonomic groups, traits

follow increasing conservatism, and analysis of phylogenies becomes stronger in estimation of

community functional diversity (Cavender-Bares et al. 2009). Under the assumption that traits on

large phylogenetic scales are relatively conserved, metrics of phylogenetic diversity can, at the

very least, help to approximate the underlying drivers of community assembly. Following this

theory, abiotic and biotic forces acting on traits across clades can predictably drive patterns of

phylogenetic signal that are captured in the communities we analyze.

When studied in the context of functional diversity, phylogenetic diversity provides

valuable insight into community assembly processes. We see phylogenetic clustering, or

2



underdispersion, in a community that captures less evolutionary history than expected under

neutral assembly given its size. This tends to occur when conserved traits dictate habitat

suitability by influencing tolerance to abiotic conditions (Vamosi et al. 2009, Webb et al. 2002).

Conversely, overdispersion occurs when a community captures more evolutionary history than

expected under neutral assembly given its size, and arises when convergent traits are filtered, or

when competitive exclusion occurs among species inhabiting similar niches (Vamosi et al. 2009,

Webb et al. 2002). Measuring phylogenetic dispersion allows us to directly connect inferred trait

evolution to underlying ecological filters. For example, a study by Montaño‐Centellas et al. 2019

details the latitudinal variation of both evolutionary and functional diversity in avian species, and

highlights abiotic features like elevation and precipitation as candidate forcers on phylogenetic

clustering. The evolutionary information gleaned from analyses like this is crucial in

understanding and managing extant communities (Lean et al. 2016).

Linking phylogenetics, functional diversity and community assembly is vital when

informing conservation priorities, as the incorporation of phylogenetic diversity metrics in policy

has proven to increase biodiversity outcomes tenfold (Hartmann et al. 2013). Selective expansion

of targeted protected areas, particularly in the context of diminishing land availability, has the

potential to increase captured phylodiversity across clades in excess of 30% (Pollock et al. 2015,

Rosauer et al. 2017). Unfortunately, current positioning of protected areas without phylogenetic

planning often fails to capture evolutionarily distinct communities and high-risk species (Isaac et

al. 2007).
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Common Metrics of Community Phylogenetic Structure

Several methods and packages for numerical quantification of phylodiversity exist and

can be applied to help us understand drivers of community assembly (Kembel et al 2010, Revell

2012). The first and most common metric is Faith’s Phylogenetic diversity (PD) (Faith 1992),

which is formally defined as:

where m is the number of branches in the minimum spanning path of the tree that connects all

the species in the set and li is the length of the ith branch. Here, branch length corresponds to the

amount of evolutionary time passed. Essentially, PD answers the question: How much

evolutionary history is captured in a species set?

Another common metric, Mean Pairwise Distance (MPD) is defined as:

where n is the number of taxa in the species set and Cij represents the cophenetic distance

between taxa i and j. MPD is sensitive to recent divergence in a community, and is a measure of

the mean phylogenetic distance separating all pairs of taxa in a sample. MPD answers the

question: How recent is the divergence present in a community?

Finally, Mean Nearest Taxon Distance (MNTD) is defined as:

where n is the number of taxa in the community and min(Cij) is the cophenetic distance value

between taxon i and its closest relative in the community, taxon j. MNTD answers the question:

How closely related are sister taxa in a community?
4
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While several other metrics for quantifying evolutionary history exist, when evaluated for

ecological significance, many known metrics tend to cluster both in behavior across species

richness and in core questions they address (Miller et al. 2017, Tucker et al. 2016). Of these

clusters, MPD best represents mean relatedness, MNTD captures nearest-relative measures of

community relatedness, and PD is indicative of total community diversity, thus tracking closely

with species richness (Miller et al. 2017, Tucker 2017). Together, these metrics can accurately

detect habitat filtering and competitive exclusion when assessed with richness-controlling null

models (Miller et al. 2017). In deciphering community assembly patterns, Faith's Phylogenetic

Diversity (PD) and Mean Nearest Taxon Distance (MNTD) consistently demonstrate robustness

in detecting phylogenetic clustering driven by habitat filtering, exhibiting low type I error rates

and high power across various null models (Miller et al. 2017, Kraft et al. 2007). Mean Pairwise

Distance (MPD) focuses on mean relatedness and proves effective in identifying phylogenetic

overdispersion resulting from competitive exclusion (Miller et al. 2017). PD and MPD represent

“anchor” alpha phylodiversity metrics, with the former an encompassing statistic to explore

richness-based questions and the latter a strong indicator of degree of divergence (Tucker et al.

2016). Ultimately, these metrics can be particularly useful in quantifying the underlying forces in

community ecology that lead to variable community assemblages, and are thus vital in

determining areas of highest conservation priority.

Spatial Phylogenetics

One important application of phylodiversity quantification is in spatial

phylogenetics–defined by Mishler et al. 2023 as the transformation of phylo-geographic data into

a GIS layer that can be visualized and analyzed in conjunction with abiotic geospatial features.
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Using this method, biogeographic regions of interest can be studied comparatively with

regionally-specific quantifications of evolutionary history (Scherson et al. 2017). Spatial

phylogenetics has a wide array of applications, but can, for instance, be used to quantify the

relative diversity of protected and non-protected areas, informing conservation tactics and

determining how well reserves capture areas of phylogenetic concern (Thornhill et al. 2016,

Zhang et al. 2022, Nitta et al. 2022). Many such studies have revealed interesting patterns of

phylodiversity and endemism and highlight regions of high conservation value. However, they

are often limited in scope, with an overrepresentation of plants and a lack of representation of

large animal clades (Emerson et al. 2008, Vamosi et al. 2009). Relying on patterns of over- and

under-dispersion of a single lineage to inform spatial phylogenetic-driven conservation efforts

may fail to capture areas of significant evolutionary history in orthogonal clades (Emerson et al.

2008, Laity et al. 2015, Thornill et al. 2016).

In conservation management, the traditional focus on single species or specific clades

often neglects many supporting or auxiliary species that are essential for sustaining ecosystem

functions (Toffelmier et al. 2022). Failing to identify regions of significant phylogenetic diversity

at various geographical scales results in poorly targeted conservation strategies and an

irresponsible management of valuable ecosystem services (Veron et al. 2019). Initiatives exist to

formalize and map global biodiversity across clades using traditional richness-based metrics

(Ferrier et al. 2004). However, the few studies that have explored cross-clade phylogenetic

diversity and the relative impact on conservation often find incongruences between species

richness and evolutionary distinctiveness, highlighting major differences in the behavior of

phylodiversity statistics across clades (González-Orozco et al. 2015, Laity et al. 2015).
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Previous Spatial Phylogenetics Methods

The current commonly employed method for large spatial phylogenetic analyses is the

Biodiverse (Laffan et al 2010) pipeline, which has been employed to analyze the expected spatial

phylodiversity of many regions across the world (Mishler et al. 2014, Earl et al. 2021,

González-Orozco et al. 2015). In this randomization method, a geographic area is divided into a

rectangular grid, and true phylodiversity metric values are calculated for each cell. Bootstrapping

randomizations then re-assign taxa randomly to each grid cell from the regional taxa pool, such

that the new cell-specific community is equal in richness to the original community, and such

that the total number of occurrences of each species in the regional pool is held constant. This

method is repeated 1,000 times to generate 1,000 distinct communities for each cell. From these

communities, phylodiversity statistics can be calculated to form bootstrapped null distributions,

which can be evaluated against the true statistic in non-parametric tests.

Reliance on past methods requires an exponentially increasing amount of time for

repeated randomizations with increasing species richness due to the combinatorial complexity

and combinatorial explosion. As the number and size of communities observed in a given region

increases, bootstrapping of the 95% confidence intervals will become expensive and redundant.

For example, if we had 10,000 communities covering a geographic area, we would require 10

million randomizations to conduct our analyses.

The commonly used Biodiverse method also applies unnecessary constraints in analyzing

range data, as it holds the number of occurrences of each species in a region constant across all

cells through the randomizations. However, this tactic is not explicitly necessary when the

community species pool does not contain count data (Miller et al. 2017). Using modeled species

ranges can avoid sampling bias in occurrence data that causes error propagation in downstream
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analysis, and provides a more comprehensive baseline for modeling changes in biodiversity with

a changing climate (Howard et al. 2014). It is imperative that we are consistent in evaluating

large cross-clade geospatial patterns of evolutionary history, and that the framework for spatial

analyses is compatible with range data.

Current methods generally assume a fixed null species pool for metric comparison, and

cannot accommodate variable spatial scales of analyses. Many spatial phylogeographic studies

are restricted to a political boundary such as a state or country. Ecoregions and bioregions are

geographic areas that partition areas based on ecology (largely floral communities), geography,

and climate (Province 2006). Ecoregions are shown to strongly delineate biotic communities and

conservation planning at the ecoregion level supports persistence at both the species and

community level (Smith et al. 2018). The ability to focus on high conservation priority within

both the larger political boundary and natural ecoregions using phylogenetic dispersion permits

conservation prioritization via socially and ecologically informed spatial scales.

Finally, methods of spatial randomization separate areas of interest into grids of equally

sized square pixels. Although rectangular lattices are common in ecological systems, hexagons

are a better choice for spatial sampling and data visualization. Hexagons effectively tessellate a

geospatial area without leaving gaps, while achieving a low perimeter-to-area ratio. This helps

minimize sampling bias and edge effects compared to squares (Birch et al. 2007). Thus, to

increase precision of geospatial patterns in phylodiversity, a hexagonal approach should be

favored over a rasterized approach.

8



A New Tool for Spatial Phylogenetics

I introduce a new algorithm for enabling the rapid assessment of community evolutionary

history called Community Phylogenetic Analysis at Speedy Time (C-PHAST). C-PHAST

replaces expensive repeated randomizations with lookup tables, accommodates for the

presence/absence form of range data, compares communities against both ecoregions and

encompassing governing boundaries, and provides users with a high-resolution visualization of

spatial phylogenetic dispersion.

Using C-PHAST we investigate the evolutionary history of California and test whether

existing reserve structures capture exceptional diversity across birds, plants, mammals,

squamates and butterflies. California is an excellent study system as it hosts more species of

plants and animals than any other state in the USA, contributing to about one-third of all species

in the country. Of the approximately 5,500 plant species in California, 40 percent are endemic,

and the unique ecoregions harbor world-class biodiversity hotspots (CNRA 2024). Several recent

phylogenetics projects (Goldberg et al. 2011, Toffelmier et al. 2023) explore speciation,

extinction, and the evolution of regional diversity in California. However, very few studies have

used spatial phylogenetics approaches to quantify the statewide phylodiversity, and those that

exist focus on plant communities (Thornhill et al. 2017, Kraft et al. 2010). Here, I improve on

current knowledge of spatial phylogenetics in California by extending my study to include not

only plants, but also birds, mammals, squamates and butterflies endemic to the region. I also

analyze, at a finer ecological scale, unique ecoregions within the state, many of which have been

identified as areas of high biodiversity and endemism (Ricketts et al. 2003). In this paper I

explore the following questions:
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1. How do patterns of community phylogenetic diversity across large taxonomic groups

compare to what might be expected under random assembly across California, and under

random assembly within Ecoregions?

1. What are the relationships, if any, between patterns of phylogenetic dispersion across

taxonomic groups?

2. How well do California protected areas capture phylogenetic dispersion?

Based on the literature, we might expect to see more clustering in less mobile clades, and

stronger clustering under the California null model than the Ecoregion null model. This follows

the evidence that at smaller scales, density-dependent interactions dominate, shifting to

environmental filtering at intermediary habitat scale, with a further transition to domination of

biogeographical processes at even larger scales (Cavender-Bares et al. 2009). Concerning

outcomes in taxonomic group comparisons, existing studies have found little correlation between

plant taxa and animal taxa in patterns of phylodiversity (Zupan et al. 2014), but some evidence of

correlation within these groups and between internal clades (González-Orozco et al. 2015).

While the five clades in this analysis have not yet been studied in tandem, we might expect low

correlation in patterns of phylodiversity significance between plant and animal groups and higher

correlation within clades in these groups. Finally, in examining California’s protected areas,

following previous findings of low or incomplete coverage of evolutionary distinctiveness, we

expect that current reserve placement is not optimized to capture evolutionary history across the

state (Aguilar-Tomasini et al. 2021, Saraiva et al. 2018).
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METHODS

Overview of Community Phylogenetic Analysis at Speedy Time (C-PHAST)

The novel C-PHAST pipeline builds on existing methods to provide a tool to move from

a collection of observation lists (ie: species in different reserves across California) to a

high-resolution spatial analysis of phylodiversity. A key goal of spatial phylogeography is to

identify regions where the community evolutionary history is either exceptionally overdispersed

(meaning that the sample has more evolutionary history than expected given the size of the

community) or underdispersed (meaning the opposite: that the sample has captured less

evolutionary history than expected given its size). C-PHAST streamlines the calculation of the

95% confidence limits of expected evolutionary history for arbitrarily sized communities. To do

this the pipeline relies on three core observations:

1. In order to estimate whether the evolutionary history of a community is over- or under-

dispersed (p < 0.05), the true phylodiversity statistic of a given community can be

compared to the expected 95% confidence interval of the statistic using a non-parametric

bootstrapping test (Lean et al. 2016).

2. Of all possible alpha diversity metrics, significance testing of PD, MPD and MNTD

perform best in detecting ecological processes such as habitat filtering and competitive

exclusion (Miller et al. 2017).

3. For PD, MPD and MNTD, the 95% CI appears to vary smoothly as a saturating function

of tree size (Miller et al. 2017).
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These observations are key to understanding how C-PHAST enables rapid calculations of

spatial phylogenetics. Using a traditional community phylogenetic approach on a focal spatial

cell would require: 1) the identification of all species in that cell, 2) extraction of the subtree

containing those taxa and calculation of true diversity metrics (PD, MPD, MNTD) from that tree,

and 3) a series of randomizations constructing random communities of equal size cells sampled

from the regional pool to determine if the observed diversity value falls into the tails of the

expected distribution. Steps 1-3 are needed for every spatial cell of the mapped region, making

the calculation of diversity metrics at fine scale computationally expensive. C-PHAST greatly

accelerates these calculations by replacing the time-consuming simulations in step 3 with a

lookup-table of the imputed values of the 95% confidence limits for a subtree matching the size

of the community at hand. This is made possible by the well-defined behavior of PD, MPD and

MNTD as they vary with tree size, behavior that can be predicted with a continuous function.

C-PHAST accommodates both range and observational datasets and can be used to construct

novel Contours of Evolutionary History (CEHs) across clades and geospatial areas. I introduce

CEHs as surfaces that consist of two equations: one predicting the upper 95% CI of a

phylodiversity statistic from richness and one predicting the lower 95% CI (Figure 1). CEH’s

allow a user to quickly determine whether a community with richness n is phylogenetically

distinct. In this study, I apply the C-PHAST pipeline on California taxa across five major clades

in order to gain an understanding of cross-state distribution of phylogenetic dispersion and to

inform the direction of future management agencies.
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Figure 1: Illustration of C-PHAST pipeline. In this example, four plant communities are

surveyed across California (community labels = A, B, C, D), and species composition for each

community is recorded (a). A phylogeny representing all candidate species in the regional pool

is constructed, and is used to calculate the true phylodiversity statistics for each community (b).

These statistics can be any tree-based metrics, such as MPD, MNTD, and PD, and are not

explicitly shown here. Bootstrapping randomizations to test for significance of the statistic of

interest are performed for incremental richness values by reshuffling tips randomly, extracting

sub-trees of size n = 2 to the maximum tip number, and calculating the given summary statistic

for each sub-tree (c). In this case, three randomizations are shown, but in large trees 1000

randomizations are actually performed. The 95% confidence intervals from the bootstrapped

randomizations for each incremental richness value are determined with non-parametric testing

methods (d). Upper and lower CI bounds for each richness are plotted and a continuous

saturating function is fit, producing two contours describing significance bounds varying with

species richness, coined here as Contours of Evolutionary History (CEHs) (e). Finally, true

phylodiversity statistics for each community A,B,C,D across California are compared to the

imputed 95% CI bounds of the statistic as a function of species richness (f).

Partitioning California

In this analysis, I first partition California into communities in the form of geographic

hexagons using the h3 package in R. Hexagons were selected at the level 6 resolution and were

intersected with the boundary of California to produce a grid of 11,000, each with an area of

approximately 36 km^2 (Supplementary birds, plants, mammals, squamates and butterflies 1).

These hexagons represent unique geographic and ecological “communities” across California,
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and can contain species from either (I.) All of California, or (II.) The ecoregion in which they are

located.

The first regional species pool from which these communities can form is drawn from

within the state boundary of California, determined by the CA.gov CA Geographic boundaries

dataset found at https://data.ca.gov/dataset/ca-geographic-boundaries. This is appropriate for

understanding how much of the total diversity in the state is captured at a local scale. The second

regional species pool of comparison is based upon California’s thirteen level IV ecoregions

(Griffith et al. 2016). Communities compared to their respective ecoregional pools provide

information about captured evolutionary history relative to that ecoregion, and might be more

informative for conservation decisions at a more ecologically granular scale

Preparing California Phylogenies and Spatial Data

I used previously published phylogenies for vascular plants (Mishler et al. 2020), birds

(Burleigh et al. 2014), squamates (Title et al. 2024), mammals (Upham et al. 2019), and

butterflies (Kawahara et al. 2021) (Table 1). With the exception of birds, these trees were all

time-calibrated in the parent source. I constructed a time-calibrated phylogenetic tree of extant

bird species using the Burleigh et al. base tree of 7,000 extant taxa, and fossil calibration points

from trees produced by Jarvis et al. and Oliveros et al (Burleigh et al. 2014, Oliveros et al. 2019,

Jarvis et al. 2014). Details of this time calibration including the complete time-calibrated tree can

be found in Supplementary Dataset I.

I collected range data from databases and previously published studies for the five focal

clades. Shape data of ranges of plants, squamates and butterfly species was extracted from

supplementary published data of external publications (plants: Baldwin et al. 2017, squamates:
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Roll et al., 2022 butterflies: Shirey et al. 2021), while ranges of birds and mammals were

collected from public databases with permission (birds: Birdlife International, mammals: IUCN).

All range data was cleaned and manipulated in R using the SF package (Edzer et al. 2018). Files

were first concatenated such that one large SF file was produced for each clade, in which each

tuple in the dataset correlated to a species, and attributes consisted of range geometry and other

species identifiers. I standardized all SF data to the WGS 84 Coordinate Reference System and

all geometry was corrected using the function st_make_valid. All geometries were converted to

the POLYGON or MULTIPOLYGON class, and the few remaining incompatible geometries in

the form of MULTISURFACE were removed from datasets. All scripting required for data

analysis can be found in the Supplementary Code.

Spatial joins between ranges and ecoregions were performed to create species-level taxa

lists for each clade for all of California, and for 13 California ecoregions. Species were

considered to have range overlap with an ecoregion if the range area intersecting the ecoregion

covered at least 5% of the total ecoregion, or if the range area intersecting the ecoregion was

greater than 20% of the total range area. This filtering excludes species from ecoregions in which

they are not significantly or realistically represented, a conundrum that arose because range data

was often rasterized or more coarse than ecoregion boundaries (Supplemental 2). Hexagon-level

taxa lists were also created using the h3 package in R, for all hexagons covering the state of

California. Hexagon-specific taxa lists for each clade were constructed through geometric

intersection of clade-specific California ranger dataframes and each hexagonal area, using the sf

st_intersection function. The final output of this step were regional species pools of birds, plants,

mammals, squamates and butterflies for all of California, the 13 ecoregions, and the communities

represented within individual hexagons.
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I trimmed the global phylogenies for each clade to match the California and ecoregion

species pools and created community phylogenies for each hexagon using the function drop.tips

in APE (Paradis et al. 2019). The available phylogenies incompletely sampled the regional

species pools based upon the shapefiles. To reduce the effects of incomplete sampling on

calculation of biodiversity metrics, I collapsed phylogenies down to the level of genus for any

group with more than 20 % missing species on average across hexagonal communities

(Supplementary I). California-level phylogenies are available to download in Supplementary

Dataset II for all five clades.

Fitting Contours of Evolutionary History

I considered a logistic family of functions as candidates to fit the contours describing the

95% CI on expected evolutionary history as a function of richness. This hypothesis space was

chosen because the PD, MPD and MNTD statistics all exhibit saturating behavior within the

limits of the min and max phylogeny size. I tested the following models: three, four and five

parameter logistic and log logistic regressions, and the baroflex five-parameter log logistic

regression (baro5). Models were fit to the bootstrapped upper and lower limits of the 95% CI’s as

a function of species richness across PD, MPD and MNTD for the all California regional pools

for each major clade using the drc package in R (Ritz et al. 2016). I used Maximum Likelihood

Estimation to determine best fit parameters for each model, and adopted an AIC-based

model-selection framework across the seven selected candidate models for all clade and metric

combinations. Fit was evaluated across clades and metrics using relative Akaike scores

(Supplementary III). Mean Absolute Percent Error (MAPE) was also calculated (Supplementary

III).
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C-PHAST on California

I constructed Contours of Evolutionary History (CEHs) for birds, plants, mammals,

squamates, and butterflies at both the California and Ecoregion levels. Figure 1 depicts the

general pipeline for the production of CEHs, corresponding to the method detailed here. I

repeated all steps detailed below for all five clades of interest.

First, I produced 11,000 community-level phylogenies—one for each hexagon of interest

(Figure 1a)—and calculated phylodiversity statistics (true PD, MPD, and MNTD) for each

community using the R package picante (Kembel 2010). Then, I constructed 14 unique

phylogenies per clade for use in proceeding analyses—one representing all taxa possible in

California, and 13 representing all taxa possible in each ecoregion (Figure 1b). I also built a

cophenetic matrix for each phylogeny to optimize computation for MPD and MNTD. Next, I

applied a parallelized script to each phylogeny to simulate bootstrapped randomizations across

tree sizes. In each script run, I calculated 1,000 iterations of PD, MPD, and MNTD for one clade,

and one particular species richness value (n). This process involved shuffling the tips on the tree

1,000 times (for PD) (Figure 1c), or the rows of the cophenetic matrix 1,000 times (for MPD and

MNTD), and using the R package picante to calculate PD, MPD, and MNTD for the given

richness value (n) (Kembel et al. 2010). Thus, each script produced a single bootstrapped

distribution of expected PD, MPD, and MNTD under the null hypothesis that taxa in a

community of richness (n) are randomly assembled from the larger regional phylogeny (either

the California regional phylogeny or ecoregion regional phylogeny) (Figure 1c). For efficiency in

simulation, I rarefied the computed richness values ranging from n = 0 to n = (phylogeny size -

1) in increments of 2, 5, or 10, depending on the size of the phylogeny. I incremented trees with
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under 50 total taxa by 2, trees between 50 and 350 taxa by 5, and trees greater than 350 taxa by

10. I aggregated results using a Python script that cleaned the data, removed erroneous values,

and filtered errors from parallelization. I then used nonparametric testing methods to calculate

the bounds of the 95% confidence intervals of expected PD, MPD, and MNTD for each richness

value by finding the richness values n, for which p(N<= n ) = 0.025 and p(N>=n) = 0.025. The

output from this script was a data file including the tree size/species richness, and the

corresponding upper and lower boundary points of the 95% confidence intervals for PD, MPD,

and MNTD (Figure 1d). I then exported this file to an R script and fit baro5 models for each

metric (PD, MPD, and MNTD) using the R package drc (Ritz et al. 2016). I fit two models per

metric: one regressing richness with lower-limit confidence values, and one regressing richness

with bootstrapped upper-limit confidence values (Figure 1e), forming a Contour of Evolutionary

History (CEH). The final model output consisted of the maximum likelihood best-fit model

parameters for each metric/null model combination. Thus, for each combination of clade and null

region of interest (e.g., California birds, Central Valley squamates), I produced a five-parameter

equation that could then be used to quickly predict the upper and lower confidence limits for PD,

MPD, and MNTD given a richness value.

To evaluate California phylodiversity given these null models, I compared true

community phylodiversity statistics for each hexagon to expected bounds of PD, MPD, and

MNTD predicted under neutral assembly across all of California, and within individual

ecoregions. For each hexagon, I extracted the species richness as input to clade-specific

equations to approximate the upper and lower 95% CIs expected for that richness in that clade. I

then compared the true PD/MPD/MNTD values to values from interpolated 95% CI boundaries

expected under the California regional model and the Ecoregion regional model. Hexagons with
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true statistics above and below the confidence intervals have a value of p < 0.05 and are

considered statistically significant (Figure 1f). In the ecoregion-level analysis, if a cell was

located on an ecoregion boundary, I used a weighted average of significance compared to all

overlapping ecoregions to assign a single significance value to that cell at the ecoregion level.

The output from this step consisted of a dataframe containing hexagon IDs as tuples, and

significance values of PD, MPD, and MNTD for birds, plants, mammals, squamates, and

butterflies compared to both California and Ecoregion expected CIs.

Finally, I calculated cumulative phylodiversity significance by summing significance at

each hexagon across all combinations of null model and phylodiversity statistics. For example, if

hexagon ID #1 had significantly high PD in birds and mammals but normal PD in the remaining

clades, the cumulative significance value for that hexagon’s PD would be 2. I repeated the same

for each hexagon for all three statistics. I visualized plots of cumulative California phylodiversity

using the R package ggplot2 (Wickham 2016).

Comparing C-PHAST to Biodiverse

I compared the C-PHAST method to the Biodiverse package, the leading large-scale

spatial phylogenetics tool. I assessed the evolutionary history of California plants using

C-PHAST and compared these results to a similar analysis by Thornhill et al. 2017 using

Biodiverse. Range data used in this study were identical to the range data used in Thornhill et al.

While the phylogenetic treatment between the studies differs due to the OTU-based construction

of the plant phylogeny in Thornhill et al, the molecular data and fossil calibrations are the same,

and there is general agreement in the major features of both trees. To compare the results from

these studies, I transformed Figure 2a from Thornhill et al. describing PD significance across
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California to match the geography and color scale of the C-PHAST output figure, with red areas

representing overdispersion, blue areas representing underdispersion and white areas

representing insignificance. Color-matching was then used to identify differences and similarities

between the two maps.

Cross-Clade Correlations

I analyzed processed matrices containing each hexagon across California and tuples with

PD, MPD and MNTD significance across clades and null models using a Spearman’s Rank

Correlation Test. Pairwise p-values were calculated using the rcorr function in the Hmisc R

package (Harrel et al. 2023) for each metric/regional model combination. P-values below a

significance threshold of 0.05 were considered significant. I constructed six independent

correlation matrices, comparing PD, MPD and MNTD significance across clades under both the

California and ecoregional models.

Analysis of Protected Areas

Protected Areas in California were extracted from the CA.gov open data portal at

https://data.ca.gov/harvest/california-protected-areas. I selected Protected area management

agencies based on cumulative number of reserves (n > 2), reserve “intentions” (excluding

military bases, BLM and other non-restricted land), and geographic breadth. I removed reserves

managed by agencies with fewer than five statewide protected areas, and reserves with low

multi-ecoregion representation. Each management system meeting these conditions was analyzed

for the total protected area that covered regions identified to be either significantly

overdispersed, underdispersed or not significant. I determined potential locations for future
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reserves by visually identifying geographic clusters of phylogenetic overdispersion in areas that

were not overlapped by at least one existing reserve.

RESULTS

California Phylogenies and Spatial Data

Five phylogenies specific to California were constructed for birds, plants, mammals,

squamates and butterflies. A total of 107 squamate species were found to intersect California

based on range data, of which 93 have phylogenetic information. 172 mammals were found to

intersect California with a total of 145 representative species on the phylogeny. Of the 383 bird

species that intersect California, 350 were represented by the larger bird phylogeny. Of the 245

butterfly species with ranges overlapping California, only 63 were represented, and of the 5220

plant species endemic to California, 2025 were represented phylogenetically. Hexagon-specific

incomplete species sampling was calculated using:

Where S represents the set of species and |S| the cardinality of that set. This computation yielded

under 20% median loss for birds, squamates, and mammals at the species level. Due to high

incomplete sampling based on this analysis, butterflies and plants were analyzed at the genus

level. In this reduction, 640 out of 992 plant genera are represented. Of the 97 butterfly genera

that overlap with California, 86 are represented phylogenetically (Supplementary I). Reduction

resulted in a median 10% hexagonal loss for butterflies and a 24% loss for plants (Table 1).
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Clade Phylogeny Source Range Data Source Taxonomic level
used

Percent
Representation

Birds Burleigh et al.
2014

Birdlife
International 2022

Species 91.3

Butterflies Kawahara et al.
2023

Shirey et al. 2021 Genus 88.6

Mammals Upham et al. 2019 IUCN 2023 Species 84.3

Plants Mishler et al. 2020 Baldwin et al. 2017 Species 64.5

Squamates Title et al. 2024 Roll et al. 2022 Species 86.9

Table 1: Data sources for parent phylogenies and range data, in addition to taxonomic level used

and percent representation across clades. Percent representation is the total number of species

present in a phylogeny that also intersect with the area of interest geographically, divided by the

total number of species that intersect with the area.

Contours of Evolutionary History

In order to maximize likelihood and minimize overfitting, the five-parameter baroflex

dose response function (baro5) was chosen as the best fit of PD, MPD and MNTD across clades

(Supplementary III). The function is defined as follows:

where
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Here, r is the richness, and d, c, b1/b2 and e are parameters. The outcome of this function is a

weighted sum of two exponential functions, each modulated by b1 and b2, transitioning

smoothly between the limits c and d. The dynamic parameter f adjusts how much influence

b1and b2 have based on the value of r. As r changes, f changes, which in turn changes the

contributions of the exponential terms in the denominator, ultimately affecting the overall value

of the output. Average AIC for the baro5 model was significantly lower than all compared log

logistic functions (Supplementary III). The baro5 function was consistently scored with >90%

relative likelihood for both PD and MPD across clades. MNTD was divisive, with no clear

majority, but relatively strong performance between LL.4, LL.5 and baro5. Numerical analysis

yielded no difference in prediction outcomes for MNTD significance across clades using the

three model candidates (LL.4, LL.5 and baro5), as all hexagons quantified as significantly low or

high in a metric were exactly the same across model fits. Thus, baro5 was chosen across clades

and metrics to maximize pipeline efficiency. In addition, baro5 yielded the lowest Mean

Absolute Percent Error (MAPE) across models and clades, with a 1.06 % maximum deviation

from predicted values and an average MAPE of 0.48% (Supplementary III).
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Figure 2: Baroflex five parameter log logistic model (baro5) fits for PD (a), MPD (b) and

MNTD (c ).These model fits correlate to the 95% CI’s for plants of California, but a matrix of all

model fits for birds, plants, squamates, mammals and butterflies under the California regional
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model can be found in Supplementary III as can R^2 values for all model fits. Baro5 predicted

value vs. true value plots of all models scaled on {0,1} and overlaid with the expected 1:1 ratio

(d). The red line represents the perfect fit: scaled = predicted, and points represent data from all

California models of PD, MPD and MNTD for birds, plants, mammals, squamates and

butterflies. Individual true vs. predicted plots for metrics of all California models across all

clades can be found in Supplementary III.

C-PHAST On California

Clade-wide analyses of birds, plants, mammals, squamates and butterflies were

performed across 11,000 hexagonal communities within the state of California. When evaluated

with the C-PHAST pipeline, communities that have true metrics that fall above the expected

95% CI for a statistic capture more phylodiversity than expected and are thus considered

overdispersed. When the true statistic falls below the 95% CI, that community has less

phylodiversity than expected and is considered underdispersed. No communities in California

were significantly over- or under-dispersed in all five clades when compared to either the

California or ecoregion-specific null models. However, several areas of interest are identified as

having abnormally high or low cumulative phylodiversity across clades, particularly when

compared to ecoregion-specific expectation (Figure 3). There appears to be high cumulative

overdispersion in the ecoregion-border areas of the Southern California Mountains, the Baja

California Mountains, and the Sonoran Basin and Range in the southern part of the state. Desert

regions tend to be clustered in a fragmented way, with some rare patches of overdispersion in the

Mojave basin and range. Northern California, at the intersection between the Cascade Ranges

and the High North Coast Range, is overdispersed, as is the Western border of the Central Valley

26



where it intersects with the Western Coast Range. Low clustering signal is present in some

patchy areas within the Central Valley, and low signal present largely from overdispersion of

birds is exhibited along the coastline. Finally, overdispersion is evident at the eastern edge of the

Northern basin and range (Figure 3).

When compared to the null model of all of California, most communities are either

underdispersed (phylogenetically clustered) or as expected under neutral assembly of all

California taxa for PD and MNTD (Figure 3). Patterns of MPD were more even between patterns

of cross-clade clustering and insignificance. Some small patches proved overdispersed in select

clades and metrics, including the strip of the Coast range in Northern California (MNTD), and

the Southern California/Baja Coast range in the South (MPD). In comparing the California

regional model to the Ecoregion regional model, we see a reduction of coverage of significantly

clustered hexagons across all three metrics in the latter, in congruence with an increased

frequency of significantly overdispersed communities. Regional differences standout in the loss

of overdispersion in the strip of the Coast range in Northern California and the Southern

California/Baja Coast range in the South. In addition, the emergence of patchy overdispersion in

Central Northern California in the ecoregion null model is not as strongly reflected in the

California null model. Many regions like the Central Valley, which were phylogenetically

underdispersed by the statewide model, fell into the expected range under the ecoregion-specific

hypothesis.
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Figure 3: Cumulative Significance of PD compared to California (a), and compared to

ecoregions (b), MPD compared to California (c ) and compared to ecoregions (d), and MNTD

compared to California (e) and compared to ecoregions (f) across all five clades of interest

(plants,birds, mammals, squamates and butterflies). Significant cells relative to the California

null model (left), and significant cells relative to ecoregion-specific null models (right).

Cumulative phylodiversity per cell was calculated by summing significance values (1 if

significantly overdispersed, -1 if significantly underdispersed and 0 if normal) for each cell.

Theoretical ranges thus scale from -5 (dark blue) to 5 (dark red), although no single cell was

significantly high (+5) or low (-5) across all five clades.

Comparing C-PHAST with Biodiverse

Major patterns in phylodiversity across California flora produced by C-PHAST mimic

those found in a similar study by Thornhill et al. using the Biodiverse package. In order to
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benchmark C-PHAST, a map of the Phylogenetic diversity of California plants was created using

the new method and compared to a similar map produced by Thornhill et al. 2017 (Figure 2).

While Thornhill formalized 1,000 OTU phylogeny-based taxonomic units, the C-PHAST method

simplifies all taxonomic information to the genus-level, representing a total of 640 plant genera.

Major regions of significance including the Mojave Basin, Central Basin and Eastern Cascades

reflect highly similar patterns in phylogenetic clustering between the two models (Figure 4b). In

addition, both models predict scattered overdispersion in central northern California and in some

desert regions near the Southern California Mountains and Desert intersections. Key differences

include Mishler’s identification of the North-Central Valley along the foothills and Coastal

Mountain intersection as a hotspot for overdispersion, and C-PHAST’s identification of the

Southern Central Valley as a significantly underdispersed region. In addition, C-PHAST analysis

has much higher resolution, with about 11,000 unique hexagons across the state, so areas of high

and low diversity appear less clustered.
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Figure 4: C-PHAST analysis of significantly phylogenetically over- (red) and under- (blue)

dispersed areas across California (a) compared with Biodiverse model output from Thornhill et

al. 2017 (b). Areas of agreement in both over- and under- dispersed regions between the two

studies (c). Red regions represent areas significantly higher than expected in PD with p < 0.05,

and areas in blue represent significantly lower than expected PD with p < 0.05. High agreement

between the two figures in clustered areas is observed, with some inconsistencies in

overdispersed regions.

Cross-Clade correlations

Pairwise Spearman’s rank tests resulted in many significant correlations between

clustering and/or overdispersion across clades (Figure 5). Of these correlations, none were found

to be particularly strong, with the largest magnitude correlation -0.37 between plant MPD and

squamate MPD in the California null model (Figure 5). When considering ecoregional models,

there was pervasively less strength in correlation, and more correlations were found to be

insignificant than when cells were ranked using the California regional model. Overall, 75% of

pairwise comparisons were found to be significant in the context of both null models, though

most correlations were relatively low. Most correlations maintained their sign across null models,

with 25% switching or changing significance. A few discrepancies of note include a switch from

weak positive correlation of MPD of squamates and butterflies in the California replicate to a

weak negative correlation of MPD of squamates and butterflies in the Ecoregion replicate.

MNTD showed the most variability in correlations between the California replicates and the

Ecoregion replicates (Figure 5).
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Figure 5: Symmetric Spearman’s rank correlation matrices for pairwise comparisons between all

clades for all metric significances. Correlation tests were performed on discrete ranked data

valued in the set {-1,0,1}. Rows represent metrics (top = PD, middle = MPD, bottom = MNTD)

and columns represent null models evaluated (left = California, right = Ecoregions). Darker red

values indicate a negative correlation, meaning as rank of one variable increases, rank of the

pairwise variable decreases. Darker blue values indicate a positive correlation, meaning when the

rank of one variable increases, then the rank of the pairwise variable also increases. A value of -1

means perfect negative correlation, and a value of 1 means perfect positive correlation.

Correlations found to be non-significant (p > 0.05) are shown as blank.

Phylodiversity of California’s Protected Areas

Of the 19 management agencies of protected areas in California analyzed, the majority of

reserve lands cover neutral or under-dispersed regions (Supplementary V). When compared to

California, reserves were overwhelmingly clustered in PD, with some representation of neutral

and overdispersed regions in MPD and MNTD. When compared to ecoregions, the majority of

reserve area covered neutrally dispersed hexagons, with roughly 10% overdispersed area across

metrics on average. Of all reserve management systems, the Northcoast Regional Land Trust had

the highest relative area covering overdispersed zones, and the Forest Service, Department of

Fish and Wildlife, and National Audubon Society all had close to 25% land overdispersed in at

least one metric.

University of California reserves performed relatively poorly in capturing areas of high

phylogenetic diversity. Of the reserve area occupied, 11% had significantly high PD, 14% had
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significantly high MPD and 1% had significantly high MNTD. Conversely, UC does an adequate

job in capturing low phylodiversity and clustering, with 51% coverage for significantly low PD,

72% coverage for low MPD and 78% for low MNTD. Remaining UC reserve areas lie in

overlapping regions with no significance (Figure 6).

95.5% of California communities were identified as significantly clustered in at least one

metric when analyzed under the statewide null model. Conversely, 9.0% of hexagons covering

California were found to be overdispersed. When compared to ecoregions, 57.6% of hexagons

were clustered and 20.2% were overdispersed in at least one metric. In the context of the

ecoregion comparison, 77.2% of the hexagons identified as overdispersed by a significantly high

value of PD, MPD and/or MNTD overlap with a protected area or reserve. Of the clustered

regions, reserves cover about 57.09% of available land.

In order to capture the maximum possible amount of evolutionary history (phylogenetic

overdispersion across clades), potential areas of interest for future reserves were reduced to five

main loci (Figure 7). The first area of interest is the boundary between the Central California

foothills and the Northern Coast Range, which stands out in the North. Next, the High Lava

Plains and Pluvial Lake Basin area in the north-east harbor high evolutionary history. The Sierra

Madre Mountains at the border of the Central foothills and the Southern California Coastal

Mountains are another candidate region, as are the Central Sonoran/Colorado Desert Mountains

and the Eastern Mojave Arid Regions (Figure 6). These areas were chosen both because of their
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net positive significance in evolutionary history and for their land availability.

Figure 6: Proportion of reserve areas covering phylogenetically clustered (blue), neutral (cream),

and overdispersed (red) areas across null models and metrics. From left to right panels represent:

PD relative to California (a), MPD relative to California (b), MNTD relative to California (c),

PD relative to Ecoregions (d), MPD relative to Ecoregions (e), MNTD relative to Ecoregions (f).

Reserve management agencies that are represented must have at least five distinct sites across

California.
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Figure 7: Areas of high, low and expected phylodiversity in PD (a), and MPD (b), and MNTD

(c), as compared to the Ecoregion model, overlaid with pixels occupied by already managed

areas (green). Red circles represent areas of interest and focus for the planning of future reserves,

which are not already managed by one of the 19 participating management agencies and which

exhibit cumulative cross-clade phylogenetic overdispersion.
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DISCUSSION

Overview of the Project Goals

Quantifying wide-scale community composition is integral to understanding how humans

can work to preserve existing biodiversity in the midst of a changing landscape and climate, and

shifts in global ecology (Mokany et al. 2015). Two key phenomena of community ecology:

clustering and overdispersion, can be computed using phylogenetic algorithms and can provide

insight into evolutionary and ecological drivers of assembly.

Many studies have focused on spatial phylogenetic dispersion and community

composition in a single clade (Emerson et al. 2008). This study extends this analysis framework

to multiple taxonomic groups (birds, plants, mammals, squamates and butterflies), providing a

cross-clade analysis of the phylodiversity present within California ecosystems. The novel

C-PHAST pipeline presents an optimized tool that links large geospatial patterns of cross-clade

phylogenetic diversity to a potential conservation plan.

C-PHAST takes advantage of the universal shape of expected PD, MPD and MNTD (as

these metrics vary with tip number) to construct continuous functions of richness best fit by the

baroreflex five parameter log-logistic growth function. I introduce a new phylogeny attribute–

the Contour of Evolutionary History (CEH)– that provides a quick and accurate estimate of the

bounds of a 95% confidence interval of PD, MPD and/or MNTD for any given species richness.

C-PHAST compares favorably to methods relying on bootstrap randomization, and accurately

identifies general regions of significant phylogenetic signal at a much more granular and

geometrically accurate level than existing frameworks.
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I deployed C-PHAST to analyze the cross-clade community phylogenetic structure of

California. California has an unusual richness of diversity and is often the focus of

conservation-driven solutions to biodiversity loss. All phylodiversity metrics studied showed

high variability and unique trends among and between clades. From these results, I identified

areas of significant cumulative phylodiversity –places that capture an unexpectedly high amount

of evolutionary history– as target areas for ecosystem preservation.

Plants

Plants exhibited a high level of clustering, particularly in PD and MNTD when compared

to both California and Ecoregion-specific null models (Figure 3). Phylogenetic clustering shows

some correlation with tree size and mobility– species capable of moving are more likely to

disperse from their biogeographical history and thus on a large phylogenetic scale, the low

dispersal ability of plants may predict high clustering across large geospatial areas

(Cavender-Bares et al. 2009). Results analyzing floral PD of California are similar to those

presented in Mishler et al. 2017, highlighting the reliability of C-PHAST and how it builds on

previous work with higher granularity and more dynamic flexibility in regional model choice.

Environmental factors like fire and aridity in the Mediterranean climate, have been

shown to force phylogenetic clustering in resilience traits like Hardseededness (Santana et al.

2020). Aridity can also cause different patterns of clustering within plant sub-clades (Massante et

al. 2021). My results bolster this understanding, with evidence of phylogenetic clustering in

some arid fire-prone mountainous regions (Figure 3). In addition, California deserts have been

identified as hotspots of young lineages with low neoendemic age; a finding that correlates to

my observation of high floristic phylogenetic clustering in the Mojave region (Figure 3; Kraft et
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al. 2010). One novel result of C-PHAST is the tendency for overdispersed areas in MPD to

overlap with ecoregion boundaries (Figure 3d). As these boundaries have been shown to

reasonably dictate distinct biotic assemblages, it follows that edge habitats will present unique

ecological patterns (Smith 2018). Biogeographic ecotones and crossroads are hotspots of beta

diversity, richness, and functional radiation, and inhabiting species often have high trait plasticity

and adaptability (Spector et al. 2002). The C-PHAST finding of high overdispersion at these

boundaries supports the consideration of ecotones as urgent conservation priorities for preserving

California flora.

Birds

Birds displayed significantly low PD and MPD compared to neutral community assembly

across the state. Avian spatial phylodiversity is informed both by geographically-linked radiation

events and by biotic trends. Patterns of clustering have been observed for northern temperate

latitudinal regions, while overdispersion has been seen in more tropical areas (Barnagaud et al.

2014). C-PHAST findings in the California mode follow this pattern of underdispersion across

large geographic regions, particularly in PD and MPD (Figure 3a). At the more granular

ecoregion level, patterns of high coastal overdispersion emerge and are likely explained by the

abundance of phylogenetically distinct shorebirds along the coast of the Pacific Ocean and

Salton Sea.

Loss of bird phylodiversity in the modern era is connected to the pervasive increase in

monocropping farmland, and land-sparing techniques in farming and land management can

considerably slow this progression (Hendershot et al. 2020, Edwards et al. 2015). Thus, in

considering preservation of functional diversity in birds, it is important to focus on regions with
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expected or high phylodiversity in prospective agricultural areas. Incorporation of phylogenetic

history and evolutionary distinctiveness into island-style reserve systems in birds has predicted

longer term persistence of larger phylogenetic tree structure, supporting the validity of

phylogeny-based conservation efforts in this clade (Jetz et al. 2014).

Mammals

Phylodiversity of mammals on both large and small geographic scales follows general

patterns of overdispersion, as reflected by behavior of PD and MPD at the statewide and

ecoregion-specific levels. Unexpectedly high areas of evolutionary history in mammalian

communities could be explained by high-trophic level competition between closely related taxa

where traits are conserved, and this pattern is consistent across spatially explicit phylodiversity

studies (Cooper et al. 2008, Emerson et al. 2008).

Identification of mammalian lineages that capture a disproportionate amount of

evolutionary history and display ecologically distinct and unique traits is instrumental in

pinpointing high-risk target species (Isaac et al. 2007). The added layer of phylogeography in

this analysis allows us to correlate these high risk species with their common environment, and

directs focus toward geographic action in conservation. The North Coast is a strong candidate for

mammalian phylodiversity conservation, likely due to the unique old growth forest ecosystems

providing habitat refuge across niches (Figure 3).

Butterflies

Butterflies followed a pattern of relatively neutral phylodiversity across both the

California and Ecoregion-specific null model. However, two notable regions of interest may be

40



ecologically significant – the Central Valley tends to be underdispersed in butterfly diversity

across metrics and models, while the south-eastern desert region of the Sonoran Basin exhibits

overdispersion in some scenarios. This pattern of high desert phylodiversity is reflected in the

results of Earl et al. 2021, and may be explicable by seasonal migratory patterns of butterflies

from Baja California to southern desert regions. Patchy overdispersion in northern regions is also

reflected in Earl et al, although C-PHAST primarily shows neutral dispersion. This might be a

result of scale– Earl et al. analyzes butterflies across all of North America while this study

focuses on a much more specific general study area. In addition, spatial area per cell is much

smaller in this analysis, which lends to higher precision.

Despite their driving ecological importance and strong co-evolution with endemic flora,

insects are generally phylogenetically understudied (Buckley 2007). A deeper understanding of

insect genomics is essential to advance phylogeny-based conservation efforts in this clade

(Buckley 2007). Interestingly, patterns of butterfly and plant phylodiversity are not significantly

correlated according to this study, raising questions of how co-radiation and endemism might

drive diversification of regional plants and pollinators.

Squamates

As ectotherms, squamates have the unusual tendency to exist in high diversity and

richness in arid and desert regions, as the cost of thermoregulation is relatively inexpensive

(Šmíd et al. 2021). While spatial patterns of phylodiversity are not consistent across metrics in

the case of MNTD (Figure 3 e,f) we see a tendency of overdispersion in arid Mojave and high

northern desert regions. In addition, while there is evidence of correlation between increased

phylogenetic diversity and richness on high mountains in the Arabian Peninsula (Šmíd et al.
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2021), no work has studied whether patterns of dispersion in squamates is statistically significant

or whether any observed patterns are connected to geography and climate. In this study,

squamates consistently exhibited significant clustering in the High Sierra mountainous region.

Past phylogenetic analysis of the Squamata clade has shown deep genetic divisions identified in

regions such as the Transverse Ranges, Monterey Bay, Sacramento-San Joaquin Delta, and

southern Sierra Nevada, suggesting that these barriers to dispersal have influenced the

phylogeographical patterns of these species (Feldman et al. 2022). Thus, the high levels of

clustering found in some of these regions might be expected for this clade.

Observed patterns of competition and coexistence in the Squamata clade is

dispersal-limited in lizards, while in snakes sympatric patterns of coexistence persist in island

populations (Alencar et al. 2023). Squamates are evidently not monolithic, and behavior,

evolution, and functionality of independent sub-clades might explain the patchiness of over- and

under- dispersion observed by C-PHAST.

Patterns of Cross-Clade Correlation

C-PHAST analyses follow existing studies that find weak evidence of correlation

between plant taxa and animal taxa in patterns of phylodiversity (Zupan et al. 2014, Laity et al.

2015). Of note in both models across metrics, many correlations are significant but with low

relative magnitude, and inconsistencies within pairwise comparisons and between metrics mirror

existing inter-taxonomic analyses. Generally, correlation strength hovered below 0.15, with

many pairwise comparisons (particularly in the ecoregion-level analysis) having insignificant or

extremely low magnitude correlations. In European Protected Areas, weak overall covariance

between clades was recorded for PD across birds, mammals and amphibians, with little overlap
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in phylogenetically significant regions across clades (Zupan et al. 2014). This suggests that

observed discrepancies in phylodiversity metrics across clades and low relative correlation may

be attributed to phylogeny structure and diversification history, environmental barriers to habitat,

and/or species mobility (Zupan et al. 2014). C-PHAST results align with cross-clade analyses

across the globe that point to high variability in patterns of spatial phylodiversity across clades

(Zupan et al. 2014, González-Orozco et al. 2015, Laity et al. 2015).

One result particularly visible in the California regional model is a tendency across

metrics (PD, MPD and MNTD) for squamates to covary negatively with plants. This essentially

means that as plants approach values of overdispersion, squamates cluster and vice versa.

Although to our knowledge no study has explicitly identified squamates and plants as negative

covariates in the same spatial area, across spatial phylodiversity studies there is a trend of in

clustering of plants and a weak trend of overdispersion in salamanders (reviewed in Emerson et

al. 2008). Squamate richness tends to align with more arid environments (Šmíd et al. 2021) while

plants are generally avoidant of these regions, a phenomenon that is reflected in the high

clustering of plants in the Mojave desert region in MNTD, and the concurrent overdispersion of

squamates (Figure 3 e,f).

Toward Biodiversity Conservation

In the context of large-scale environmental change, considering multi-trophic and

phylogenetically diverse clades in conjunction can help shed light on how anthropogenic or

climate-driven changes in one clade might affect changes in another. An example illustrated by

Cavender-Bares et al. 2009 details the following scenario. Suppose there is an endemic grassland

with a native herbivore. When herbivores are present, they exert pressure on plant species,
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favoring those with traits that confer defense or tolerance against herbivory. This selection can

lead to the dominance of plant species with these traits, resulting in phylogenetic clustering

within the community. Conversely, if herbivores are excluded or their pressure is reduced–say by

the introduction of a strategic competitor, the dynamics within the plant community can change.

This may allow for the proliferation of plant species that were previously suppressed due to

unfettered herbivory pressure. In this scenario, the dominance of certain plant species may shift,

potentially leading to changes in phylogenetic structure and community composition. Critically,

both the plant and herbivore communities must be examined jointly, as they exist in a dynamic

equilibrium that can only be understood using cross-clade phylogenetic analyses. The strong

negative correlation observed in this study between California squamate and bird phylodiversity

reflects the necessity of conducting these joint analyses across disparate taxonomic groups that

co-occur environmentally, and begs questions about the underlying ecological interactions that

produce this pattern. This result, however, is not universal, and the phylogeographic

inconsistencies in clustering and overdispersion that we observe here speak to underlying

variability in evolution and adaptability (González-Orozco et al. 2015). We might see correlation

between plants and squamates, but why do we see nothing between butterflies and plants, or

birds and butterflies, despite observed environmental co-occurrence? These results force us to

think critically about what kind of diversity we are actually conserving when we consider

umbrella species or taxonomic groups as representative of a larger functional ecosystem.

In order to preserve functional diversity and evolutionary distinctiveness across the tree

of life, it is critical to focus on protecting areas that capture a disproportionate amount of

cross-clade evolutionary history. Highly overdispersed communities have been identified as

stable climate refugia, and thus are imperative in maintaining biodiversity in a rapidly changing
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global climate (Mastrogianni et al. 2019). California conservation land management agencies

were found to cover a total of 77% of the California area identified as hosting particularly high

phylodiversity. While this is promising, 23% of cross-clade overdispersed regions are still

unprotected. This result follows expectations. Reserves generally poorly or stochastically capture

evolutionary history, as reserve management structures do not regularly highlight phylodiversity

in planning. Consequently, protected areas have low relative global coverage of phylogenetic

distinctiveness across taxonomic groups (Aguilar-Tomasini et al. 2021, Saraiva et al. 2018,

Carvalho et al. 2016). Consideration of these phylodiversity metrics is vital in strategically

selecting small geographic pockets that disproportionately capture evolutionarily distinct

lineages, particularly in zones of anthropogenic development (Pollock et al. 2015). My

recommendation of areas with particularly high PD, MPD or MNTD across clades is

corroborated by an established method that maximizes overall intra- and inter-specific

phylodiversity in spatial prioritization (Carvalho et al. 2017).

Using C-PHAST, I identify currently unprotected candidate regions of exceptionally high

cross-clade phylodiversity within California as the the boundary between the Central California

foothills and the Northern Coast Range, the High Lava Plains and Pluvial Lake Basin area in the

north-east, the Sierra Madre Mountains, the Central Sonoran/Colorado Desert Mountains and the

Eastern Mojave Arid Regions, and the Southern California Coastal Mountains. While Vandergast

et al. 2008 identified several regions of the Southern California mountains as interspecific

evolutionary hotspots of genetic divergence, the evolutionary potential of many other regions

highlighted here are less well studied. Together, these diverse ecosystems are expected to house

overdispersed ecological communities and thus are vital loci to target in future management

strategies and choices.
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Study Limitations

Range data and phylogenetic data were both major limitations of the study. Range data is

often interpolated from observational data with variable degrees of accuracy and probability, and

in this study range data were combined from several different sources employing different

methods. Methods for range interpolation are often criticized in their assumption, the

pseudoabsence approach, that a plant, animal or other organism could exist in a place where it

has not been seen (VanDerWal et al. 2009). An alternative to range data is observational data,

which has risen in popularity over the past decade. Observational data was not used in this study

as it is highly variable in quality across and within clades, and is difficult to standardize as many

observational data hubs are operated with a citizen science framework (Kosmala et al. 2016).

Thus, improving the method in which hexagons in California are assigned species lists is

imperative to standardizing this method, and maintaining objectivity in results.

Phylogenies collected in this study were the most complete of each clade to date, but

incomplete sampling still ranged from 20-80% at the species level. It is thus imperative to

continue to expand phylogenetic datasets to enable cross-clade comparisons to fill in gaps in

phylogenetic diversity, and to improve coverage of evolutionary history. Although this study

covers a large scope of the tree of life, many integral clades are missing from the analysis due to

an incomplete checklist and range data, or incomplete phylogenetic data. As phylogenies and

range data become more complete, this model will become more and more accurate in evaluating

statewide evolutionary history.

Finally, the metrics of choice may be considered limiting in truly capturing information

useful to biodiversity conservation. Many other metrics of phylogenetic diversity and endemism
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exist, and while PD is a fundamental statistic in determining evolutionary value of a community

(Faith 1992), there is contention as to whether PD truly follows patterns of functional diversity

and attrition (Mazel et al. 2018). One potential metric of interest for future analyses is

Evolutionary Distinctiveness (ED), which is useful in conservation analyses (Tucker et al. 2016).

Importantly, the flexible framework of C-PHAST allows for the addition of new metrics like this

over time, as long as their confidence bounds can be expressed as some function of species

richness. Thus, this foundational tool opens a door to future incorporation and analysis of more

complex community level analyses.

Conclusion

There exists a strong body of work exploring endemism, evolutionary distinctiveness and

the role of spatial phylogenetics in conservation, and these methods are slowly extending to

understanding the complex biodiversity of California. This study helps to tie together the

collective lattice of research scattered across taxonomic groups and metrics, facilitating the

construction of a cohesive baseline understanding of California’s cross-clade endemic

phylodiversity. C-PHAST breaks computational barriers to present an elegant and succinct

pipeline for spatial phylogeographic analysis, and has revealed novel patterns in inter-clade

phylodiversity correlations, cross-clade patterns, and conservation management efficacy. Future

development of this program will further accommodate new clades, geographics, and statistics,

and will continue to provide insight into patterns of evolutionary history vital for the

conservation of our earth’s biodiversity.
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APPENDIX

Supplementary I: Regional Models (California and Ecoregions)

Figure 1: level 6-resolution hexagons covering California using the uber h3 package (left) and

with overlaid ecoregions (right). Let’s say that we are interested in understanding how the

evolutionary history captured in the community represented by a red dot compares to expected

evolutionary history. Null contours of PD, MPD and MNTD varying with species richness

according to the figure (left) answer the question: What are patterns of phylodiversity under a

statewide assumption of neutral community assembly? Contours varying with species richness

according to the figure (right) answer the question: What are patterns of phylodiversity under an

ecoregion-specific assumption of neutral community assembly? As seen in the figure (right) ,

instead of assuming random community assembly across California in the null hypothesis, we

assume random community assembly within the Sonoran Basin and Range, and compare the red

dot only to species available in that ecoregion.
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Figure 2: Abies amabilis range before ecoregion filtering (left) and after ecoregion filtering

(right). As seen, the four obvious ecoregions (1,4,5,78) are preserved but artifact ecoregions that

have extremely low representation in range data (6,8,9) are removed. This removal only informs

the ecoregion regional species pool and does not affect the taxa occurring in each individual

pixel.
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Supplementary II: Phylogeny Selection and Trimming

Figure 3: Histograms of incomplete sampling across hexagons for all 5 clades at the species

level. From left to right and top to bottom: mammals, butterflies, squamates, amphibians, birds,

plants. Amphibians were omitted from final analysis due to sparsity in range coverage.
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Figure 4: Genus-level histograms of incomplete sampling across hexagons for butterflies (left)

and plants (right) after analysis was trimmed to the genus level.
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Supplementary III: Model Fits

Figure 5: Contour of Evolutionary History (CEH) fits of California taxa across clades and

metrics, fit with a 4-parameter log logistic growth function using the R drc package (a). Points

show empirical bootstrapped values. Rows represent each clade: birds, plants, mammals,

squamates and butterflies (top to bottom). Null models were fit to species pools considering all

of California, but were also applied to all ecoregions. Plots of predicted vs. true values for all

individual model fits (b) . Columns represent Clades in the order of birds, plants, mammals,

squamates and butterflies (left to right) , and rows represent a model fit in the order of MNTD,

MPD and PD 97.5 percentile fits followed by MNTD, MPD and PD 2.5 percentile fits (top to

bottom).
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Figure 6: Akaike weights for all 7 tested models across all five clades for MPD (top), MNTD

(middle) and PD (bottom). Model fits are shown for the California regional models.

model birds plants butter squam mamm

1 L.3() 1.097E-65 9.396E-153 6.226E-15 6.821E-17 2.644E-20

2 L.4() 8.293E-45 6.883E-93 2.566E-08 7.580E-10 1.582E-12

3 L.5() 1.241E-43 2.9121E-91 1.889E-07 2.135E-09 9.469E-12

4 LL.3() 2.189E-13 1.025E-51 0.001298 0.000210 0.007474

5 LL.4() 1.659E-15 3.989E-45 0.000666 0.002101 0.008031

6 LL.5() 1.274E-13 7.304E-33 0.020789 0.022997 0.004951

7 baro5() 0.9999999 1 0.977246 0.974691 0.979542
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model birds plants butter squam mamm

1 L.3() 1.0314E-37 1.547E-72 3.568E-14 9.944E-10 1.324-22

2 L.4() 1.411E-27 5.594E-49 1.196E-10 3.9549E-06 2.524E-15

3 L.5() 3.585E-27 1.447E-48 3.201E-10 9.931E-06 6.199E-15

4 LL.3() 1.927E-09 1.888E-28 1.719E-07 0.0387859 3.415E-14

5 LL.4() 7.278E-05 0.0100256 0.0037538 0.1900041 0.0046378

6 LL.5() 5.819E-05 0.0188240 0.0015309 0.6941762 0.01523804

7 baro5() 0.9998690 0.97115031 0.99471503 0.0770197 0.98012415

Table 1: Raw Akaike weight values for all 7 tested models across all five clades for PD

(top),MPD (middle) and MNTD (bottom). Model fits are shown for the California regional

models.
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model birds plants butter squam mamm

1 L.3() 5.592E-87 2.496E-152 1.291E-18 1.596E-12 9.336E-30

2 L.4() 3.115E-43 5.123E-88 3.110E-10 8.036E-07 2.095E-15

3 L.5() 3.7316E-43 6.555E-88 7.0674E-10 1.726E-06 4.1305E-15

4 LL.3() 4.245E-32 1.195E-43 2.845E-06 0.4851949 0.00085020

5 LL.4() 0.1199771 0.0013733 0.1269991 0.1644951 0.14361325

6 LL.5() 0.7548709 0.5287106 0.3591225 0.1873673 0.57476628

7 baro5() 0.1251519 0.4699159 0.5138754 0.1629400 0.28077025



Plants

Model MAPE_PD

_Low

MAPE_PD_Hig

h

MAPE_MPD_L

ow

MAPE_MPD_H

igh

MAPE_MNTD_

Low

MAPE_MNTD_

High

row_means

1 L.3() 10.531 7.516 0.634 1.934 7.3812 15.505 7.250

2 L.5() 3.088 2.470 0.617 0.988 1.810 7.020 2.666

3 L.4() 3.030 2.415 0.617 0.988 1.829 7.023 2.650

4 LL.3() 1.157 0.975 0.312 0.847 1.233 1.855 1.063

5 LL.4() 1.319 0.825 0.275 0.328 0.424 0.672 0.641

6 LL.5() 0.829 0.715 0.269 0.328 0.454 0.620 0.536

7 baro5() 0.417 0.194 0.265 0.303 0.426 0.514 0

Squamates

Model MAPE_PD_L

ow

MAPE_PD_Hig

h

MAPE_MPD_L

ow

MAPE_MPD_H

igh

MAPE_MNTD_

Low

MAPE_MNTD

_High

row_means

1 L.3() 6.010 2.842 0.657 0.825 2.832 8.875 3.674

2 L.4() 1.900 1.088 0.619 0.301 1.193 3.342 1.407

3 L.5() 1.925 1.062 0.619 0.298 1.178 3.278 1.393

4 LL.3() 0.754 0.613 0.373 0.180 0.948 0.974 0.640

5 LL.4() 0.829 0.384 0.380 0.152 0.939 1.003 0.615

6 LL.5() 0.739 0.172 0.377 0.151 0.935 0.882 0.543

7 baro5() 0.692 0.316 0.278 0.147 0.937 0.826 0.533
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Birds

Model MAPE_PD_

Low

MAPE_PD_Hig

h

MAPE_MPD_L

ow

MAPE_MPD_H

igh

MAPE_MNTD_

Low

MAPE_MNTD_

High

row_means

1 L.3() 7.586 4.735 1.068 0.925 11.108 25.850 8.546

2 L.5() 3.011 2.259 1.013 0.515 1.427 8.322 2.758

3 L.4() 2.924 2.239 1.013 0.515 1.463 8.355 2.752

4 LL.3() 1.060 0.564 0.423 0.280 2.701 2.794 1.304

5 LL.4() 0.999 0.644 0.411 0.248 0.711 0.605 0.603

6 LL.5() 0.950 0.558 0.405 0.244 0.596 0.601 0.559

7 baro5() 0.582 0.304 0.275 0.238 0.662 0.604 0.444

Butterflies

Model MAPE_PD_

Low

MAPE_PD_Hig

h

MAPE_MPD_L

ow

MAPE_MPD_H

igh

MAPE_MNTD_

Low

MAPE_MNTD_

High

row_means

1 L.3() 7.292 5.223 0.827 0.990 5.439 13.481 5.543

2 L.5() 2.531 1.866 0.767 0.381 1.632 5.150 2.05

3 L.4() 2.252 1.801 0.767 0.382 1.654 5.189 2.008

4 LL.3() 2.060 0.516 0.296 0.445 1.576 1.647 1.090

5 LL.4() 1.897 0.709 0.289 0.138 0.763 1.122 0.819

6 LL.5() 1.105 0.636 0.283 0.139 0.760 0.864 0.631

7 baro5() 0.875 0.382 0.136 0.119 0.759 0.831 0.517
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Mammals

Table 2: Mean Absolute Percent Error across all models for birds, plants, mammals, squamates

and butterflies (top to bottom)
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Model MAPE_PD_

Low

MAPE_PD_Hig

h

MAPE_MPD_L

ow

MAPE_MPD_H

igh

MAPE_MNTD_

Low

MAPE_MNTD

_High

row_means

1 L.3() 4.074 2.585 0.480 2.117 9.273 17.177 5.951

2 L.5() 2.012 1.174 0.459 0.702 2.183 6.589 2.187

3 L.4() 1.957 1.135 0.460 0.707 2.221 6.634 2.186

4 LL.3() 1.022 0.347 0.218 1.175 1.730 1.140 0.939

5 LL.4() 1.072 0.363 0.225 0.194 0.914 1.248 0.669

6 LL.5() 1.027 0.360 0.221 0.169 0.928 1.107 0.635

7 baro5() 0.671 0.341 0.157 0.152 0.926 1.051 0.550



Supplementary IV: Correlation Tests

Figure 7: Symmetric Spearman’s rank correlation matrices for metric/clade combinations ranked

in comparison to all of California (left), and ecoregions (right). Darker red values indicate a

negative correlation and darker blue values indicate a positive correlation. Ranked values exist in

the set [-1, 0, 1], so 1 means that overdispersion or underdispersion always co-occur together,

and values of -1 mean that overdispersion of one clade entirely co-occurs with underdispersion

of the compared clade and vice versa.
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Supplementary V: Reserve Analysis tables

Metric Region Of
Comparison

Clustered Neutral Overdispersed

PD California 0.850 0.149 0.0002

MPD California 0.550 0.361 0.088

MNTD California 0.158 0.732 0.108

PD Ecoregion 0.401 0.464 0.133

MPD Ecoregion 0.171 0.679 0.148

MNTD Ecoregion 0.259 0.654 0.086

Table 3: Average percent cover of clustered, neutral and overdispersed areas across reserve

management systems in California
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Supplementary Datasets

Supplementary Datasets I: Bird TreePL Time Calibration parameterization and output

https://ucla.box.com/s/q9941iilk1x41ojzri8nkn1f8zxl6g6j

Supplementary Datasets II: California-Trimmed phylogenies for birds, plants, mammals,

squamates and butterflies

https://ucla.box.com/s/couxzo9436d8kitk5houa1l8ms315ebd

Supplementary Code

https://github.com/MayaGigChari/bird.git
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