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A B S T R A C T

Background. Erythropoietin (EPO) has been reported as a
novel determinant of fibroblast growth factor 23 (FGF23) pro-
duction; however, it is unknown whether FGF23 is stimulated
by chronic exposure to EPO or by EPO administration in non-
polycystic chronic kidney disease (CKD) models.
Methods. We analyzed the effects of chronic EPO on FGF23 in
murine models with chronically high EPO levels and normal

kidney function. We studied the effects of exogenous EPO on
FGF23 in wild-type mice, with and without CKD, injected with
EPO. Also, in four independent human CKD cohorts, we evalu-
ated associations between FGF23 and serum EPO levels or ex-
ogenous EPO dose.
Results. Mice with high endogenous EPO have elevated circu-
lating total FGF23, increased disproportionately to intact
FGF23, suggesting coupling of increased FGF23 production
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with increased proteolytic cleavage. Similarly, in wild-type mice
with and without CKD, a single exogenous EPO dose acutely
increases circulating total FGF23 out of proportion to intact
FGF23. In these murine models, the bone marrow is shown to
be a novel source of EPO-stimulated FGF23 production. In
humans, serum EPO levels and recombinant human EPO dose
are positively and independently associated with total FGF23
levels across the spectrum of CKD and after kidney transplanta-
tion. In our largest cohort of 680 renal transplant recipients, se-
rum EPO levels are associated with total FGF23, but not intact
FGF23, consistent with the effects of EPO on FGF23 production
and metabolism observed in our murine models.
Conclusion. EPO affects FGF23 production and metabolism,
which may have important implications for CKD patients.

Keywords: anemia, chronic kidney disease, CKD-MBD, eryth-
ropoietin, fibroblast growth factor 23

I N T R O D U C T I O N

The development of anemia [1] and elevated fibroblast growth
factor 23 (FGF23) levels [2] are among the earliest changes ob-
served in chronic kidney disease (CKD), and complex relation-
ships among FGF23, anemia and anemia-related factors are
emerging. It has recently been demonstrated that iron defi-
ciency [3–6] and erythropoietin (EPO) [7–10] are previously
unrecognized nonmineral determinants of FGF23 production.
Characterization of the relationships among these factors is im-
portant as, in CKD, both elevated FGF23 levels and anemia are
associated with disease progression [11–15], cardiovascular
morbidity [16–20] and all-cause mortality [12, 21, 22].
Furthermore, higher EPO dosing is itself associated with cardio-
vascular morbidity and mortality in CKD [23, 24].

A critically important hormone in CKD-mineral bone
disorder (CKD-MBD), FGF23 is secreted by osteocytes,
induces phosphaturia and decreases renal 1a-hydroxylase
expression [25], physiologically functioning as a homeostatic
regulator of phosphate and a counterregulatory hormone to
1,25-dihydroxyvitamin D. FGF23 levels increase early in the
course of CKD and continue to rise as the glomerular
filtration rate (GFR) decreases [2, 26–28]. Regulation of FGF23
in CKD remains incompletely understood. Several factors may
increase FGF23 production, including phosphate [29, 30],
1,25-dihydroxyvitamin D [29, 31], parathyroid hormone (PTH)
[32, 33], calcium [34], inflammation [5] and iron deficiency [3–6].

In murine models demonstrating the effect of iron deficiency
on FGF23, the iron deficiency is accompanied by anemia, rais-
ing the question of whether other anemia-related factors, such
as EPO, may also affect FGF23 metabolism. Indeed, recombi-
nant human EPO (rhEPO) acutely increases circulating FGF23
levels in rodents with normal kidney function [7–10], mice with
CKD (Jck model of polycystic kidney disease) [7] and humans
with normal kidney function [7]. The effect of EPO on FGF23
production may be relevant for patients with impaired kidney
function, during both early and late stages of CKD. Early on,
endogenous serum EPO levels increase as hemoglobin declines
[35]. As CKD progresses and increased serum EPO

concentrations become insufficient to maintain adequate he-
moglobin levels, exogenous rhEPO is administered to bolster
erythropoiesis.

In order to further investigate links between EPO and
FGF23, we characterized murine models with high endogenous
EPO levels, assessed the effects of a single rhEPO dose in a
(nonpolycystic) murine CKD model, and evaluated associations
between endogenous serum EPO levels and FGF23 in nondialy-
sis, pre- and posttransplant human CKD cohorts and between
exogenous rhEPO dose and FGF23 in dialysis patients.

M A T E R I A L S A N D M E T H O D S

Full methods are detailed in the Supplemental Material. To as-
sess the effects of endogenous EPO on FGF23, we characterized
murine models with chronically high EPO levels: transgenic
mice overexpressing human EPO (Tg6 mice [36], which de-
velop relative iron deficiency) and transgenic EPO mice supple-
mented with iron and beta-thalassemia intermedia mice
[Hbbth3/þ mice (Th3/þ), which spontaneously develop iron
overload on a standard iron diet]. To assess the effects of exoge-
nous EPO on FGF23, we injected wild-type C57BL/6 mice, with
and without 0.2% adenine diet-induced CKD, with a single in-
traperitoneal rhEPO dose (�67 U/g) and assessed FGF23
parameters 6 and 24 h post-injection. At the time of euthanasia,
we collected whole blood, plasma, serum, livers and tibias, from
which we flushed the bone marrow with saline solution and
28 G syringes. We assessed bone Fgf23 mRNA expression, mar-
row Fgf23 mRNA expression, plasma C-terminal (total) FGF23
and plasma intact FGF23 (iFGF23), among other parameters.
Whereas the C-terminal (total) FGF23 assay detects both intact
FGF23 and C-terminal FGF23 fragments, thus functioning as a
surrogate measure of all translated FGF23, the intact FGF23 as-
say detects only full-length, bioactive FGF23.

To assess associations between serum EPO levels or rhEPO
dose and FGF23 levels in humans with CKD, we characterized
multiple human cohorts across the spectrum of CKD, including
predialysis, dialysis-dependent and post-kidney transplant
CKD patients. The nontransplant CKD patients were from the
University of California Los Angeles, and the posttransplant
CKD patients from the University Medical Center Groningen.
The posttransplant patients comprised the largest cohort, num-
bering 680 subjects. Multiple linear regression models were de-
veloped to investigate EPO–FGF23 associations. Models were
adjusted for age, sex, estimated GFR (eGFR), time since trans-
plantation (in the posttransplant cohort), calcium, phosphate,
PTH, hemoglobin, ferritin and C-reactive protein (CRP) levels.
Mediation analysis was performed in the posttransplant cohort
to assess whether hemoglobin mediated the association between
EPO and FGF23, independent of adjustment for potential
confounders.

R E S U L T S

Characterization of transgenic EPO-overexpressing
mice

To assess the effects of chronically high endogenous EPO
levels on FGF23, we characterized 7- to 11-week-old transgenic
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mice overexpressing human EPO (Tg6 mice [36]). Whereas the
wild-type littermates had undetectable plasma human EPO, the
Tg6 mice had increased human EPO concentrations (mean
295 6 69 mIU/mL). Compared with their wild-type littermates,
the Tg6 mice were polycythemic (Figure 1a), had similar kidney
function (Figure 1b], had similar phosphate levels (Figure 1c)
and were relatively iron deficient, as indicated by significantly

lower liver iron (Figure 1e) and hepcidin (Figure 1f). The Tg6
mice had evidence of increased FGF23 production, with signifi-
cantly elevated bone Fgf23 mRNA expression (Figure 1g), mar-
row Fgf23 mRNA expression (Figure 1h) and circulating total
FGF23 levels [mean (SD): 3175 (1271) versus 340 (40) pg/mL,
P< 0.001; Figure 1i]. Circulating intact FGF23 levels were also
significantly increased [589 (100) versus 317 (36) pg/mL,
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FIGURE 1: Characterization of FGF23 in transgenic EPO-overexpressing mice and beta-thalassemia intermedia mice. Groups included are
wild-type mice (WT), transgenic EPO-overexpressing mice (TG EPO), transgenic EPO-overexpressing mice treated with a single intraperito-
neal dose of 10 mg iron dextran 24 h prior to euthanasia (TG EPO þ Iron Dextran) and beta-thalassemia intermedia mice. Parameters were
measured at the age of 7–11 weeks for the WT and TG EPO mice, and at the age of 9–28 weeks for the beta-thalassemia intermedia mice, and
include (a) hemoglobin, (b) serum urea nitrogen, (c) serum phosphate, (d) serum iron, (e) liver iron, (f) serum hepcidin, (g) bone Fgf23 mRNA
expression, (h) marrow Fgf23 mRNA expression, (i) plasma C-terminal (total) FGF23, (j) plasma intact FGF23 and (k) percentage intact
FGF23. *Denotes a statistically significant pairwise comparison versus the WT group (P< 0.05, with subsequent Benjamini–Hochberg correc-
tion for multiple comparisons). #Denotes a statistically significant pairwise comparison of TG EPO versus TG EPO þ Iron Dextran (P< 0.05).
Data are presented as mean and SD. n¼ 7–12 mice per group.
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P< 0.001; Figure 1j], but to a much lesser extent than total
FGF23 levels. Indeed, the percentage of circulating FGF23 that
was intact was very low (Figure 1k), suggesting that, in this
model, increased FGF23 production is coupled, albeit incom-
pletely, with increased proteolytic cleavage of FGF23.

The Tg6 mice were relatively iron deficient, which may in-
crease FGF23 levels [3–6]. Iron dextran treatment of Tg6 mice
improved iron parameters (Figures 1e–f). However, iron dex-
tran treatment only partially decreased bone Fgf23 mRNA ex-
pression (Figure 1g), did not change circulating total FGF23
levels (Figure 1i) and only partially decreased circulating
iFGF23 levels (Figure 1j). Therefore, high EPO levels, as op-
posed to relative iron deficiency, predominantly drive increased
FGF23 production in this model.

Characterization of beta-thalassemia intermedia mice

To assess the effects of chronically high endogenous EPO
levels on FGF23 in a contrasting murine model, we character-
ized beta-thalassemia intermedia mice (Th3/þ). Like the Tg6
mice, the Th3/þmice had high EPO levels (mean serum mouse
EPO 1690 6 620 pg/mL), but they differed in their hemoglobin
and iron status. Whereas the Tg6 mice were polycythemic and
relatively iron deficient, the Th3/þmice were anemic and spon-
taneously iron-overloaded (Figures 1a, e–f). Despite differences
in iron status, FGF23 production was similarly elevated in the
two models, correlating with high endogenous EPO levels. The
Th3/þ mice had significantly increased bone Fgf23 mRNA ex-
pression (Figure 1g), marrow Fgf23 mRNA expression (Figure
1h) and circulating total FGF23 levels [3129 (1256) versus 340
(40) pg/mL, P< 0.001; Figure 1i]. Circulating intact FGF23 lev-
els were also significantly increased [436 (52) versus 317 (36)
pg/mL, P< 0.001; Figure 1j], but to a much lesser extent than
total FGF23 levels, again suggesting coupling of increased
FGF23 production with increased FGF23 proteolytic cleavage.

Administration of rhEPO to mice with normal and
impaired kidney function

To evaluate the effects of exogenous EPO administration on
FGF23, we analyzed wild-type mice, with and without CKD, 6 h
and 24 h after a single intraperitoneal injection of rhEPO. Urea
nitrogen concentrations in the EPO-treated non-CKD and
CKD groups did not differ from their respective baselines or
compared with saline-treated time point controls (Figure 2a).
In the EPO-treated non-CKD and CKD groups, serum phos-
phate did not differ from their respective baselines or relative to
saline-treated time point controls (Figure 2b). Serum iron de-
creased only at the 24-h time point in the EPO-treated non-
CKD group, and did not differ from baseline in the EPO-
treated CKD group (Figure 2c). In the EPO-treated non-CKD
and CKD groups, at the 6-h time point, there were large
increases in bone Fgf23 mRNA expression (Figure 2d), marrow
Fgf23 mRNA expression (Figure 2e) and circulating total
FGF23 levels versus baseline [non-CKD: geometric mean (95%
confidence interval, 95% CI) of 3289 (2305–4692) versus 207
(182–236) pg/mL, P< 0.001; CKD: 9376 (2280–38 559) versus
2056 (1282–3297) pg/mL, P¼ 0.007; Figure 2f], demonstrating
EPO-induced increased FGF23 production. In the non-CKD
group, circulating intact FGF23 levels also significantly

increased at the 6-h time point [385 (322–461) versus 187
(171–203) pg/mL, P< 0.001; Figure 2g), but to a lesser extent
than total FGF23 levels. In the CKD group, changes in intact
FGF23 did not reach statistical significance [4046 (653–25 079)
versus 1648 (741–3665) pg/mL, P¼ 0.17]. The calculated per-
centage intact FGF23 in the EPO-treated CKD and non-CKD
groups at the 6-h time point was decreased (Figure 2h), consis-
tent with a coupling of FGF23 production with proteolytic
cleavage. At the 24-h time point, the effect of EPO on FGF23
parameters was diminished, more so in the non-CKD group
than in the CKD group.

Expression of enzymes involved in FGF23 cleavage

In the mice with high endogenous EPO levels, and in the
mice injected with rhEPO, we assessed bone and marrow
mRNA expression of enzymes involved in FGF23 cleavage, in-
cluding N-acetylgalactosaminyltransferase 3 (GALNT3),
FAM20C, Furin and PC5/6 (Pcsk5) [37, 38]. In the high endog-
enous EPO models, we observed significantly decreased bone
and marrow Galnt3 mRNA expression, no difference in
Fam20c mRNA expression, no difference in Furin mRNA ex-
pression and significantly decreased bone and marrow Pcsk5
mRNA expression (Supplementary data, Figure S1). In the
CKD and non-CKD mice injected with rhEPO, at 6 h postinjec-
tion, we observed no significant differences in bone or marrow
Galnt3, Fam20c or Furin mRNA expression (Supplementary
data, Figure S2). We observed no changes in bone Pcsk5 mRNA
expression; however, marrow Pcsk5 mRNA expression was sig-
nificantly decreased in the EPO-treated non-CKD mice
(Supplementary data, Figure S2).

Associations between serum EPO and circulating FGF23
levels in nondialysis CKD patients

We next assessed associations between serum EPO and circu-
lating FGF23 levels in a cohort of nondialysis CKD patients.
Characteristics of this cohort are listed in Supplementary data,
Table S1. This cohort of 42 CKD patients included both adult and
pediatric subjects. The mean eGFR was 346 18 mL/min/1.73 m2,
and no patient received rhEPO. In multiple linear regression
modeling, after adjusting for age, eGFR, calcium, phosphate,
PTH, transferrin saturation (TSAT), ferritin, hemoglobin and
CRP, serum EPO was positively associated with Log cFGF23
(b¼ 0.48, P¼ 0.001; model-adjusted R2¼ 0.51). However, the
association was attenuated when Log iFGF23 was substituted
for Log cFGF23 in the fully adjusted model as the dependent
variable (EPO b¼ 0.28, P¼ 0.07; model-adjusted R2¼ 0.41).
Qualitatively similar results were obtained when iFGF23 was
measured with the Kainos assay (EPO b¼ 0.27, P¼ 0.06). In the
fully adjusted model, Log cFGF23 was not associated with hemo-
globin (P¼ 0.22) and, in a model adjusted for the aforementioned
covariables, hemoglobin was not associated with serum EPO
(P¼ 0.35).

Associations between rhEPO dose and circulating
FGF23 levels in dialysis patients

We next assessed associations between rhEPO dose and cir-
culating FGF23 levels in a cohort of dialysis patients.

2060 M.R. Hanudel et al.

https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfy189#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfy189#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfy189#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfy189#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfy189#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfy189#supplementary-data


Characteristics of this cohort are listed in Supplementary data,
Table S1. This cohort of 79 dialysis patients included both adult
and pediatric subjects. In multiple linear regression modeling,
after adjusting for age, calcium, phosphate, PTH, TSAT, ferri-
tin, hemoglobin and CRP, rhEPO/kg was positively associated
with Log cFGF23 (b¼ 0.22, P¼ 0.033; model-adjusted
R2¼ 0.43). However, the association was attenuated when Log
iFGF23 was substituted into the fully adjusted model as the de-
pendent variable (rhEPO/kg b¼ 0.13, P¼ 0.21; model-adjusted
R2¼ 0.41). In a model adjusted for Log age, Log cFGF23, cal-
cium, phosphate, Log PTH, TSAT, Log ferritin and Log CRP,
hemoglobin was inversely associated with Log rhEPO/kg
(b¼�0.24, P¼ 0.038). Log cFGF23 was not associated with
hemoglobin (P¼ 0.54) in the previously described fully ad-
justed model.

Associations between serum EPO and circulating FGF23
levels in kidney transplant recipients

We next assessed associations between serum EPO and cir-
culating FGF23 levels in a large cohort of adult kidney trans-
plant patients. Characteristics of this cohort are listed in Table
1. In this cohort of 680 stable kidney transplant recipients, the
mean age was 53 6 13 years, the mean eGFR was 52 6 19 mL/
min/1.73 m2 and assessment occurred at a median of 5.4 (1.9–
12.1) years posttransplant. In univariable analysis, Log EPO
was associated with Log cFGF23 levels (b¼ 0.24, P< 0.001),
but not Log iFGF23 levels (b¼ 0.04, P¼ 0.35). In multivariable
analysis, after adjusting for age, sex, eGFR, time since transplan-
tation, calcium, phosphate, Log PTH, hemoglobin, Log ferritin
and Log CRP, Log EPO remained positively and significantly
associated with Log cFGF23 (b¼ 0.14, P< 0.001). Further, in a
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postinjection. Parameters shown are (a) serum urea nitrogen, (b) serum phosphate, (c) serum iron, (d) bone Fgf23 mRNA expression, (e) marrow
Fgf23 mRNA expression, (f) plasma C-terminal (total) FGF23, (g) plasma intact FGF23 and (h) percentage intact FGF23. *Denotes a statistically sig-
nificant pairwise comparison of an EPO-treated group versus baseline (P< 0.05, with subsequent Benjamini–Hochberg correction for multiple com-
parisons). #Denotes a statistically significant pairwise comparison of an EPO-treated group versus the saline-treated group at the same time point
(P< 0.05, with subsequent Benjamini–Hochberg correction for multiple comparisons). Data are presented as mean and SD. n¼ 4–6 mice per group,
with the exception of the baseline non-CKD group, which contained 8–20 mice, depending on the parameter measured.
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multivariable stepwise backward regression analysis, Log EPO
remained one of the major determinants of Log cFGF23 as
shown in Table 2. Total FGF23 was also independently and in-
versely associated with hemoglobin (b¼�0.20, P< 0.001), and
hemoglobin was independently and inversely associated with
Log EPO (b¼�0.16, P< 0.001), both after adjustment for age,
sex, eGFR, time since transplantation, serum phosphate and
Log CRP levels. Mediation analysis was performed to quantify
how much of the association between total FGF23 and EPO
was explained by variation in hemoglobin. In a multivariable
model adjusted for age, sex, eGFR, time since transplantation,
serum phosphate and Log CRP levels, hemoglobin mediated
only 8.3% of the association between Log EPO and Log cFGF23
(Supplementary data, Table S2). In a sensitivity analysis, we ex-
cluded kidney transplant patients on erythropoiesis-stimulating
agents (ESA, n¼ 15), and repeated the multivariable model.
Log EPO remained independently and positively associated
with Log cFGF23 (b¼ 0.13, P< 0.001).

D I S C U S S I O N

FGF23 is a key hormone in CKD-MBD pathophysiology,
contributing to the maintenance of normophosphatemia until
late-stage CKD [2, 28], but likely at the expense of adverse,
‘off-target’ effects such as CKD progression [11–13] and cardiac
hypertrophy [17]. Studies from our group and others have
demonstrated that EPO stimulates FGF23 production, but
couples increased transcription with increased posttranslational
cleavage, thus attenuating effects on bioactive intact FGF23
levels [7–10].

In the current study, we extend the evidence that EPO, both
endogenous and exogenous, affects FGF23 production and me-
tabolism to the settings of chronically increased circulating
EPO levels and CKD, both pre- and posttransplant. In our mu-
rine models with high endogenous EPO concentrations—the
transgenic EPO-overexpressing mice and the beta-thalassemia
mice—circulating total FGF23 levels are markedly elevated and

Table 1. Baseline characteristics of the posttransplant CKD cohort consisting of 680 renal transplant recipients

Parameter Tertiles of EPO (IU/L)

All patients (n¼ 680) T1 (n¼ 226) [1.0–5.0] T2 (n¼ 226) [5.1–9.4] T3 (n¼ 228) [9.5–539] P-value

Age (years) 53 6 13 50 6 13 54 6 13 56 6 12 <0.001
Sex (male), n (%) 383 (56) 132 (58) 131 (58) 120 (53) 0.37
Body mass index (kg/m2) 26.6 6 4.8 25.8 6 4.2 27.1 6 5.1 27.1 6 4.9 0.006
Body surface area (m2) 1.9 6 0.2 1.9 6 0.2 2.0 6 0.2 1.9 6 0.2 0.12
Alcohol use, n (%) 551 (81) 182 (81) 179 (79) 190 (83) 0.50
Smoking status 0.14

Never smoker, n (%) 306 (45) 110 (49) 104 (46) 92 (40)
Former smoker, n (%) 293 (43) 85 (38) 93 (41) 112 (49)
Current smoker, n (%) 81 (12) 31 (14) 27 (12) 23 (10)

Time since transplantation (years) 5.4 (1.9–12.1) 5.1 (1.8–12.1) 5.6 (1.8–11.0) 5.8 (2.2–13.7) 0.46
Diabetes mellitusa, n (%) 161 (24) 37 (16) 58 (26) 66 (29) 0.005
Systolic blood pressure (mmHg) 136 6 17 135 6 17 135 6 18 137 6 17 0.51
Diastolic blood pressure (mmHg) 82 6 11 83 6 12 82 6 11 83 6 10 0.63
Laboratory measurements
iFGF23 (pg/mL) 61 (43–100) 61 (46–103) 59 (42–92) 63 (47–106) 0.18
cFGF23 (RU/mL) 140 (95–234) 131 (91–184) 137 (94–204) 172 (107–323) <0.001
Hemoglobin (g/dL) 13.2 6 1.7 13.3 6 1.6 13.4 6 1.7 13.0 6 1.9 0.03
MCV (fL) 91 6 6 91 6 5 91 6 6 90 6 7 0.94
Ferritin (mg/L) 118 (54–222) 141 (80–238) 115 (52–242) 92 (42–184) <0.001
TSAT (%) 25.4 6 10.6 28.1 6 10.2 25.2 6 9.8 22.8 6 11.1 <0.001
Total cholesterol (mmol/L) 5.1 6 1.1 5.2 6 1.2 5.1 6 1.0 5.1 6 1.2 0.76
Phosphate (mmol/L) 1.0 6 0.2 1.0 6 0.2 1.0 6 0.2 1.0 6 0.2 0.98
Calcium (mmol/L) 2.40 6 0.15 2.42 6 0.15 2.39 6 0.16 2.40 6 0.14 0.24
PTH (pmol/L) 8.9 (5.9–14.8) 8.5 (5.5–13.8) 9.1 (6.2–14.5) 9.2 (6.3–16.8) 0.16
eGFRb (mL/min/1.73 m2) 52 6 19 50 6 19 52 6 19 52 6 19 0.33
Creatinine (mmol/L) 138 6 59 146 6 69 135 6 55 133 6 51 0.03
Proteinuriac, n (%) 154 (23) 51 (23) 41 (18) 62 (27) 0.07
hs-CRP (mg/L) 1.6 (0.7–4.6) 1.4 (0.6–3.1) 1.7 (0.8–4.9) 1.8 (0.8–5.3) 0.01

Treatment
ACE- inhibitors, n (%) 220 (34) 89 (39) 72 (32) 59 (26) 0.009
Beta-blocker, n (%) 428 (63) 138 (61) 138 (61) 152 (67) 0.38
Calcium channel blockers, n (%) 165 (24) 47 (21) 67 (30) 51 (22) 0.06
Diuretic use, n (%) 275 (40) 76 (34) 88 (39) 111 (49) 0.004
ESA use, n (%) 15 (2) 7 (3) 1 (0) 7 (3) 0.09
Iron supplements, n (%) 41 (6) 14 (6) 11 (5) 16 (7) 0.63

Values are means 6 SD, medians (interquartile range) or proportions (%).
aDiabetes was defined as the use of antidiabetic medication or a fasting plasma glucose �7.0 mmol/L.
beGFR was determined using the Modification of Diet in Renal Disease equation.
cProteinuria was defined as urinary protein excretion �0.5 g/24 h.
ACE, angiotensin-converting enzyme; cFGF23, C-terminal fibroblast growth factor 23; hs-CRP, high-sensitivity C-reactive protein; MCV, mean corpuscular volume; RTRs, renal trans-
plant recipients.
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increased out of proportion to intact FGF23 levels, demonstrat-
ing that increased FGF23 production is coupled, albeit incom-
pletely, with increased FGF23 cleavage. Importantly, these
effects are observed independent of iron status, which is another
factor that affects both FGF23 production and metabolism [3–
6, 22]. In our wild-type mice injected with a single dose of
rhEPO, similar effects were observed: large increases in circulat-
ing total FGF23 levels, with smaller effects on intact FGF23 con-
centrations. Important to note is that, in the CKD model,
changes in intact FGF23 did not reach statistical significance.
Our human data are consistent with the observations made in
the murine models. Across the spectrum of CKD, serum EPO
levels or rhEPO doses are independently associated with total
FGF23, but not intact FGF23, suggesting a coupling of in-
creased production with increased cleavage.

Our results provide further evidence that EPO-stimulated
bone marrow represents a novel source of FGF23 production.
Our high endogenous EPO murine models and our wild-type
mice treated with rhEPO had increased marrow Fgf23 mRNA
expression. This was not caused by contaminating bone frag-
ments within the marrow, as the flushed marrow samples had
little Col1a1 mRNA expression, suggesting the presence of very
few residual bone cells (Supplementary data, Figure S3). We
have previously demonstrated that mice with pharmacologi-
cally ablated bone marrow have attenuated increases in circulat-
ing total FGF23 levels (with no change in bone Fgf23 mRNA
expression) in response to EPO [7]. Furthermore, isolated mu-
rine bone marrow cells treated ex vivo with EPO demonstrate
acute increases in Fgf23 mRNA expression [7]. Although it is
unknown which bone marrow cell subpopulation produces
FGF23 in response to EPO, it has been shown that EPO
markedly increases Fgf23 mRNA expression in Ter119þ cells
(erythroid lineage) [8] and in lineage-negative, Sca1-positive,
c-kit-positive (LSK) cells, a hematopoietic progenitor cell subset
[7], but not in common myeloid progenitor cells [7]. Although
we also observed increased bone Fgf23 mRNA expression, we
cannot rule out some degree of residual marrow contamination.

Since in our murine models, circulating total FGF23 is in-
creased out of proportion to intact FGF23, elevations in total

FGF23 levels represent mostly increased C-terminal fragments,
the biological activity of which is uncertain. Previously, it has
been reported that C-terminal FGF23 at high concentrations
may function as an FGF23 antagonist, competing with intact
FGF23 for binding to the FGF receptor [39]. Additionally, it has
been shown in vitro that treatment with C-terminal FGF23
increases the cell surface area of adult rat ventricular myocytes
[40]. In further studies, the biological relevance of elevated con-
centrations of C-terminal FGF23 fragments needs to be delin-
eated in more detail.

The mechanism by which EPO increases bone and marrow
FGF23 transcription is currently unknown. Furthermore, it is
unknown how EPO increases FGF23 posttranslational cleavage.
Regulation of FGF23 posttranslational cleavage is a complex
process involving several enzymes, including N-acetylgalactosa-
minyltransferase 3 (GALNT3), FAM20C, Furin and PC5/6
(Pcsk5) [37, 38]. Furin and PC5/6 are proprotein convertases
that can cleave FGF23; GALNT3 glycosylates FGF23 at its
cleavage site, inhibiting proteolysis; and FAM20C phosphory-
lates FGF23 at its cleavage site, inhibiting GALNT3-mediated
glycosylation. In the current study, we assessed bone and mar-
row Galnt3, Fam20c, Furin and Pcsk5 mRNA expression. In the
mice with chronically elevated endogenous EPO levels, we ob-
served decreased bone and marrow Galnt3 messenger RNA ex-
pression, which may allow for increased FGF23 cleavage [41].
In wild-type mice with phlebotomy-induced acute elevations in
serum EPO concentrations, Rabadi et al. observed decreased
Galnt3 mRNA expression in unfractionated bone marrow cells
but not in isolated Ter119þ cells [8]. Additionally, in our mice
with high endogenous EPO levels, there were no changes in
Fam20c or Furin mRNA expression, but we did observe de-
creased bone and marrow Pcsk5 mRNA expression, despite in-
creased FGF23 cleavage. Further studies are needed to elucidate
the mechanisms by which EPO may directly or indirectly affect
FGF23 cleavage.

Interestingly, recent studies have also described a converse
direct relationship between FGF23 and EPO. In wild-type mice,
the administration of recombinant human FGF23 decreases se-
rum EPO concentrations [42], and the administration of an

Table 2. Univariable and multivariable linear regression modeling of determinants of circulating total FGF23

Parameter Univariable analysis Multivariable analysis

std. ß P-value std. ß P-value

EPO (IU/L) 0.24 <0.001 0.14 <0.001
Age (years) 0.08 0.05
Sex (male) (yes versus no) 0.05 0.18 �0.09 0.01
Time since transplantation (years) �0.04 0.36
eGFR (mL/min/1.73 m2) �0.50 <0.001 �0.38 <0.001
Calcium (mmol/L) 0.01 0.78
Phosphate (mmol/L) 0.34 <0.001 0.20 <0.001
PTH (pmol/L) 0.17 <0.001 0.12 <0.001
Ferritin (mg/L) �0.34 <0.001 �0.33 <0.001
Hemoglobin (g/dL) �0.37 <0.001 �0.09 0.005
hs-CRP (mg/dL) 0.19 <0.001 0.14 <0.001

Univariable linear regression analysis follow by multivariable stepwise backward linear regression analysis. cFGF23, EPO, ferritin, hs-CRP and PTH levels have been log-transformed
due to skewed distribution.
hs-CRP, high-sensitivity C-reactive protein.
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FGF23 blocking peptide increases serum EPO concentrations
[43]. These data suggest that FGF23 may have negative regula-
tory effects on erythropoiesis. In humans with CKD, elevated
circulating total FGF23 levels are associated with both prevalent
and incident anemia [44]. We observed a similar inverse rela-
tionship between total FGF23 and hemoglobin in our post-
transplant CKD cohort. Given the inverse association between
circulating total FGF23 and hemoglobin, and the inverse associ-
ation between hemoglobin and serum EPO levels [35], the ob-
served positive association between serum EPO and total
FGF23 may be bidirectional in nature. As supported by our mu-
rine studies, EPO may directly increase total FGF23 levels.
Conversely, higher total FGF23 may be indirectly associated
with higher serum EPO via lower hemoglobin concentrations.
However, mediation analysis in the posttransplant CKD cohort
revealed that variation in hemoglobin concentrations explained
relatively little of the positive association between serum EPO
and total FGF23, supporting the possibility of a direct effect of
EPO to increase total FGF23 levels.

In summary, the current results demonstrate that FGF23 pro-
duction and cleavage are increased irrespective of iron status in
murine models with high endogenous EPO concentrations and
in wild-type mice with and without CKD treated with a single
rhEPO dose. In addition, we have shown in human studies across
the spectrum of CKD and postrenal transplantation that serum
EPO and rhEPO dose, independent of iron status and hemoglo-
bin, are positively associated with circulating total FGF23 levels,
but not intact FGF23. Again, this suggests that EPO leads to an
upregulated production and concomitantly increased cleavage of
FGF23. Further studies are needed to identify the mechanisms by
which EPO increases FGF23 expression, as well as the mecha-
nisms by which EPO may affect regulation of FGF23 cleavage. In
the setting of elevated endogenous EPO levels or exogenous EPO
administration, the degree to which increased FGF23 proteolytic
cleavage offsets increased FGF23 production determines the
amount of circulating bioactive intact FGF23. As such, there may
be important implications in CKD, as endogenous EPO levels are
increased in early CKD [35], exogenous EPO is used almost uni-
versally in late CKD, and FGF23 cleavage may be impaired as
CKD progresses [45, 46]. The current study underscores the com-
plex interrelationships among aspects of CKD-related anemia,
CKD-MBD and their respective treatment modalities.
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