Lawrence Berkeley National Laboratory

LBL Publications

Title

TERTIARY PHOSPHINE COMPLEXES OF THE f-BLOCK METALS; PREPARATION OF PENTAMETHYLCYCLOPENTADIENYL-TERTIARY PHOSPHIEN COMPLEXES OF YTTERBIUM(II AND III) AND EUROPIUM(II). THE CRYSTAL STRUCTURE OF Yb(Me5C5)2CI (Me2PCH2PMe2)

Permalink

https://escholarship.org/uc/item/2h4708qk

Authors

Tilley, T.D. Anderson, R.A. Zalkin, A.

Publication Date

1982-04-01

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

RECEIVED LAWRENCE

Materials & Molecular Research Division

WH1 2.8 1982

LIBRARY AND DOCUMENTS SECTION

To be published in Inorganic Chemistry

TERTIARY PHOSPHINE COMPLEXES OF THE f-BLOCK METALS; PREPARATION OF PENTAMETHYLCYCLOPENTADIENYL-TERTIARY PHOSPHINE COMPLEXES OF YTTERBIUM(II AND III) AND EUROPIUM(II). THE CRYSTAL STRUCTURE OF $Yb(Me_5C_5)_2Cl(Me_2PCH_2PMe_2).$

T. Don Tilley, Richard A. Andersen and Allan Zalkin

April 1982

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. TERTIARY PHOSPHINE COMPLEXES OF THE f-BLOCK METALS; PREPARATION OF PENTAMETHYLCYCLOPENTADIENYL-TERTIARY PHOSPHINE COMPLEXES OF YTTERBIUM(II AND III) AND EUROPIUM(II). THE CRYSTAL STRUCTURE OF Yb(Me5C5)2Cl(Me2PCH2PMe2).

T. Don Tilley, Richard A. Andersen and Allan Zalkin*

Materials and Molecular Research Division Lawrence Berkeley Laboratory and Department of Chemistry University of California Berkeley, California 94720 USA

APRIL 1982

ABSTRACT

The diphosphine, $Me_2PCH_2CH_2PMe_2$, reacts with $M(Me_5C_5)_2(OEt_2)$ to give insoluble $M(Me_5C_5)_2(Me_2PCH_2CH_2PMe_2)$, where M is Eu or Yb. In contrast, Me₂PCH₂PMe₂ gives the hydrocarbon soluble complexes $M(Me_5C_5)_2(Me_2PCH_2PMe_2)$, where M is Eu or Yb. The ytterbium complex reacts with YbCl₃ in toluene to give $Yb(Me_5C_5)_2Cl(Me_2PCH_2PMe_2)$ and the crystal structure shows that the phosphine is acting as a monodentate ligand. $Yb(Me_5C_5)_2Cl(Me_2PCH_2PMe_2)$ crystallizes in the monoclinic space group P2₁/c with <u>a</u> = 16.358(6) Å, <u>b</u> = 8.595(4) Å, <u>c</u> = 20.712(7) Å, β = 104.75(4)°, $V = 2816 \text{ Å}^3$ and d(calcd) = 1.45 g cm⁻³ for Z = 4 and mol wt = 615.15. Diffraction data were collected with a CAD-4 automated diffractometer, and the structure refined to R = 0.054 for 3309 reflections with 4° < 2 Θ < 45° (MoK α radiation). The Yb is coordinated to the two Me_5C_5 groups, the chlorine atom, and to one phosphorus atom of the bis(dimethylphosphino)methane ligand. The Yb-P and Yb-Cl distances are 2.94 Å and 2.53 Å, respectively. The centroids of the C_5Me_5 ligands, the Cl and P atoms are in an approximate tetrahedral arrangement about the Yb atom.

INTRODUCTION

The coordination chemistry of lanthanide metals with nitrogen or oxygen ligands is extensive.¹ Since lanthanide ions form their most stable coordination complexes with nitrogen or oxygen rather than with phosphorus or sulfur ligands, these metals are classified as "class a"^{2a} or "hard"^{2b} acceptors.³ Until recently the idea that f-block metals could form isolatable complexes with tertiary phosphines was viewed with considerable skepticism. The successful isolation of bis-1,2-dimethylphosphinoethane (dmpe) complexes of tetravalent thorium or uranium of the type $MX_4(dmpe)_2^{4a}$ and of the trivalent uranium species, $U(Me_5C_5)_2Cl(dmpe)^{4b}$ raises an obvious question about the "class a" classification of the f-block metals.

In order to examine the coordinative affinity of f-block metals for phosphine ligands we have begun a systematic study of their general coordination chemistry. In this paper we describe the phosphine complexes of the di- and tri-valent bis(pentamethylcyclopentadienyl)ytterbium and the divalent europium fragments. In a related study we described the preparation and crystal structure of $Yb[N(SiMe_3)_2]_2(dmpe)$, and some related europium (II) derivatives.⁵

<u>Synthetic Studies</u>. Addition of one molar equivalent of bis-1,2-dimethylphosphinoethane to the diethyl ether complex of bis(pentamethylcyclopentadienyl)ytterbium (II) in benzene results in instantaneous precipitation of a green material whose elemental analysis suggests the formulation $Yb(Me_5C_5)_2(dmpe)$. Support for this composition is obtained by aqueous hydrolysis of the complex suspended in

benzene-d₆. Examination of the benzene solution by ¹H NMR spectroscopy shows resonances due to Me_5C_5H and $Me_2PCH_2CH_2PMe_2$ in an area ratio of 2:1. In addition, the ³¹P{¹H} NMR spectrum of this solution shows the presence of $Me_2PCH_2CH_2PMe_2$ as the only phosphorus containing species. The compound is insoluble in hot toluene though sparingly soluble in diethyl ether. The complex dissolves in tetrahydrofuran giving $Yb(Me_5C_5)_2(thf)^6$. The europium complex, $Eu(Me_5C_5)_2(0Et_2)$ behaves similarily, affording red, insoluble $Eu(Me_5C_5)_2(dmpe)$.

The infrared spectra and melting points (see experimental section for details) of these two phosphine complexes are identical which suggests that the complexes have a similar structure. The insolubility in non-coordinating solvents indicates that the dmpe complexes are some type of coordination polymer. One such polymer is shown (I). The phosphine ligand is acting as a bridging rather than as a chelating ligand yielding an eight coordinate

See illustration, next page

complex (defining the coordination number of the pentamethylcyclopentadienyl ligand as three). Eight coordination is not unusual since some $M(Me_5C_5)_2L_2$ complexes, where $M = Yb^{7a}$ or Sm^{7b} and L is a monodentate ligand, have been described. If it is accepted that (I) is a reasonable structural formulation then replacing the ethylene bridge in $Me_2PCH_2CH_2PMe_2$ by a methylene bridge should prevent polymerization, due to increased steric hindrance between the Me_5C_5 groups on adjacent metal atoms. Thus, $Me_2PCH_2PMe_2$ should yield hydrocarbon-soluble, monomeric complexes.

Addition of a slight excess of bis-dimethylphosphinomethane (dmpm) to a toluene solution of $Yb(Me_5C_5)_2(OEt_2)$ yields a green solution from which green, diamagnetic $Yb(Me_5C_5)_2(dmpm)$ may be isolated by crystallization from that solvent. The NMR spectral data (see experimental section for details) support this formulation. In particular, the $^{31}{\rm P}\{^1{\rm H}\}$ NMR spectrum of the complex contains a single resonance at &-39.6, significantly deshielded from that of the free phosphine at δ -55.7. The red europium complex, $Eu(Me_5C_5)_2(dmpm)$, was prepared similarly. As europium (II) is paramagnetic (a f^7 ion) no NMR spectral data are obtainable. However, hydrolysis of a benzene solution of the complex and examination of this solution by $^1\mathrm{HMR}$ spectroscopy shows that $\mathrm{Me}_5\mathrm{C}_5\mathrm{H}$ and $\mathrm{Me}_2\mathrm{PCH}_2\mathrm{PMe}_2$ are present in a 2:1 ratio. Further, the ${}^{31}P{}^{1}H}$ NMR spectrum of the hydrolysate shows only the presence of Me₂PCH₂PMe₂. Not surprisingly the infrared spectra and melting points of the Yb(II) and Eu(II) complexes are identical. It is noteworthy that diethyl ether displaces the coordinated $Me_2PCH_2PMe_2$, giving $M(Me_5C_5)_2(OEt_2)$, M = Yb or Eu. This is to

be contrasted with the observation that diethyl ether will not, though tetrahydrofuran will, displace dmpe from (I).

It is significant that we have been unable to isolate complexes with the monodentate phosphines, PMe_3 or PBu_3^n , nor with the bidentate phosphine, $Ph_2PCH_2CH_2PPh_2$. In the monodentate phosphine case this is presumably due to the inability of two monodentate phosphines to fit comfortably around the sterically congested metal atom and the heat of formation of one metal-phosphorus bond is less than that of one metaloxygen bond. In the bidentate phosphine case, the reason is less clear since $Ph_2PCH_2CH_2PPh_2$ is a poorer σ -donor than its per-methyl analogue and it is also sterically larger.

We^{8a} and others^{8b} have shown that the divalent species, Yb(Me₅C₅)₂(L), where L is tetrahydrofuran or 1,2-dimethoxyethane, may be oxidized by ytterbium trichloride or dichloromethane to the trivalent metallocene, Yb(Me₅C₅)₂Cl(L). The divalent phosphine complex behaves similarly. Mixing Yb(Me₅C₅)₂(dmpm) and YbCl₃ in toluene gives the purple, hydrocarbon soluble Yb(Me₅C₅)₂Cl(dmpm). The complex is paramagnetic, $\mu_{\rm B} = 4.4$ B.M. at 30°C in benzene solution, and accordingly we have been unable to observe a ³¹P(¹H) NMR spectrum of this complex.

The coordination geometry of this complex is of considerable interest as numerous possibilities exist. If both phosphorus atoms of the diphosphine are coordinated to the ytterbium atom, a nine-coordinate complex will result. Nine coordination in bis-pentamethylcyclopentadienyl lanthanide chemistry is unknown, though eight coordination is common.^{7,9} Two eight coordinate formulations are possible. In one isomer, $Me_2PCH_2PMe_2$ is acting as a monodenatate phosphine and in the other

isomer an outer sphere complex, $[Yb(Me_5C_5)_2(dmpm)]Cl$ may be written. To answer this question, an X-ray crystal structure determination was undertaken, and the results are described below.

<u>Structural Studies</u>. ORTEP diagrams of Yb(Me_5C_5)₂Cl($Me_2PCH_2PMe_2$) are shown in Figs. 1 and 2. Positional and thermal parameters are given in Table I and some selected bond lengths and angles are listed in Tables II and III. The key point to emerge from the X-ray study is that the diphosphine is acting as a monodentate ligand giving an eight-coordinate complex. The coordination geometry may be described as pseudo-tetrahedral if the mid-points of the two Me_5C_5 -centroids occupy two coordination sites. The other two coordination positions are occupied by a phosphorus atom and a chlorine atom. The angle defined by the intersection of the two planes that contain the centroid-Yb-centroid and P(1)-Yb-Cl atom is 88.1°. In a regular tetrahedron this angle is 90°. The centroid-Yb-centroid angle is 134.9°, and the C(1...5)centroid-Yb-P(1) and C(1...5)centroid-Yb-Cl angles are 108.0° and 106.3°, respectively. The C(6...10)centroid-Yb-P(1) and C(6...10)centroid-Yb-Cl angles are 105.7° and 108.6°, respectively. The P(1)-Yb-Cl angle is 79.69(9)°.

The ytterbium-chloride bond length of 2.532(3) Å is longer than that found in $\text{Li(thf)}_4[(\text{Me}_3\text{Si})_2\text{CH}]_3\text{YbCl}$, 2.486(6) Å,¹⁰ as expected since the latter is a four-coordinate Yb(III) ion whereas the former is eight coordinate. The latter distance is close to the value of 2.43 Å suggested for three coordinate, monomeric YbCl₃ in the gas phase.¹¹

These are the only terminal Yb-Cl distances that are available, though several Yb-(μ -Cl) distances are known. These distances are 2.58 Å in Yb₂[(Me₃Si)₂C₅H₃]₄(μ -Cl)₂, ^{9C} 2.756 ± 0.004 Å in Yb(Me₅C₅)₂(μ -Cl)₂AlCl₂, ^{9a} and 2.637 ± 0.010 Å in Yb₂(MeC₅H₄)₄(μ -Cl)₂.¹²

The ytterbium-phosphorus(1) distance of 2.941(3) Å is unique and no comparisons are possible. The other ytterbium-phosphorus distance, YB...P(2) is greater than 3.5 Å and is obviously non-bonding.

It is instructive to compare the bond lengths and angles of monodentate $Me_2PCH_2PMe_2$ in $Yb(Me_5C_5)_2Cl(Me_2PCH_2PMe_2)$ with that of free $Me_2PCH_2PMe_2$ in the gas phase. The averaged P-C distance in the ytterbium complex is 1.849 \pm 0.006 Å. This is identical to that found in the free phosphine, 1.849(2) Å.¹³ The averaged C-P-C and P-C-P angles in the complexed phosphine of 100.4 \pm 2.2° and 118.0(5)° also are identical to those found in the free phosphine, 100° and 118°, respectively. Further the P...P distance in the coordination complex of 3.157(4) Å is very close to that found [3.139(9) Å] in the free phosphine. Thus, $Me_2PCH_2PMe_2$ is not perturbed very much upon coordination to $Yb(Me_5C_5)_2Cl$.

The averaged ytterbium-carbon bond length in the phosphine complex of 2.65 \pm 0.03 Å is equal to that (2.63 \pm 0.03 Å) found in Yb(Me₅C₅)₂S₂SNEt.¹⁴ This is expected since the coordination environment of ytterbium is similar in both complexes. The averaged ytterbium to carbon bond length is in the range found for related complexes (2.56 - 2.65 Å).⁹

EXPERIMENTAL SECTION

All reactions were performed under nitrogen. Analyses were carried out by the microanalytical laboratory of this department. Proton, carbon, and phosphorus NMR spectra were obtained on a JEOL-FX90Q instrument operating at 89.56, 22.50 and 36.25 MHz, respectively.

<u>Eu(Me₅C₅)₂(Me₂PCH₂CH₂PMe₂).</u> 1,2-Dimethylphosphinoethane (0.17 mL, 0.0010 mol) was added to the diethyl ether complex of bis(pentamethylcyclopentadienyl)europium (0.51 g, 0.0010 mol) in toluene (20 mL). The red suspension was stirred for 1 h and the solid was collected by filtration, washed with toluene (75 mL), and dried under reduced pressure. A small quantity (<u>ca</u>. 0.15 g) of the precipitate was crystallized from diethyl ether (<u>ca</u>. 20 mL, -10°C), mp. 288-292°C. <u>Anal</u>. Calcd for C₂₆H₄₆EuP₂: C, 54.5; H, 8.10; P, 10.8. Found: C, 53.7; H, 7.83; P, 10.5. IR(Nujol); 2721 w, 1421 m, 1302 m, 1284 w, 1150 w, 1091 w, 1015 w, 945 s, 926 m, 889 w, 829 w, 796 w, 720 s, 672 w, 624 m, 637 w, 589 w, 360 m, 349 m and 253 s cm⁻¹. A portion of the complex was hydrolyzed (H₂0) in benzene-d₆ and the benzene solution was shown to contain Me₅C₅H and Me₂PCH₂CH₂PMe₃ in a 2:1 area ratio by ¹H NMR spectroscopy. The phosphine was identified by its ³¹P{¹H} NMR spectrum.

<u>Yb(Me₅C₅)₂(Me₂PCH₂CH₂PMe₂).</u> 1,2-Dimethylphosphinoethane (0.17 mL, 0.0010 mol) was added to the diethyl ether complex of bis(pentamethylcyclo-pentadienyl)ytterbium (0.48 g, 0.00093 mol) in benzene (25 mL). After stirring for 1 h the green suspension was collected by filtration, washed

with toluene (75 mL) and dried under reduced pressure. A small portion (ca. 0.2 g) was crystallized from diethyl ether (<u>ca</u>. 20 mL, -10° C), mp: 283-285°C. <u>Anal</u>. Calcd for C₂₆H₄₆P₂Yb: C, 52.6; H, 7.81; P, 10.4. Found: C, 51.8; H, 7.69; P, 10.0. The infrared spectrum was identical to that of its europium analogue.

 $\underline{Eu(Me_5C_5)_2(Me_2PCH_2PMe_2)}.$ 1,2-Dimethylphosphinomethane (0.30 mL, 0.0018 mol) was added to the diethylether complex of bis(pentamethylcyclopentadienyl)europium (0.87 g, 0.0018 mol) in toluene (40 mL) and the red solution was stirred for 30 min. The solution was cooled (-10°C) and the red needles, mp 251-253°C, were isolated in quantitative yield. <u>Anal</u>. Calcd for C₂₅H₄₄EuP₂: C, 53.8; H, 7.94; P, 11.1. Found: C, 53.4; H, 7.85; P, 10.8. IR(Nujol); 2720 w, 1420 m, 1380 m, 1285 m, 1161 w, 1109 m, 1055 w, 1015 m, 942 s, 925 m, 888 s, 830 m, 795 w, 749 s, 725 s, 705 w, 693 w, 647 w, 623 w, 589 w, 352 s, and 253 s cm⁻¹. A portion of the complex was hydrolyzed (H₂0) in benzene-d₆ and the benzene solution was shown to contain Me₅C₅H and Me₂PCH₂PMe₂ in an area ratio of 2:1. The ³¹p{¹H} NMR spectrum of the solution contained only Me₂PCH₂PMe₂.

 $\frac{Yb(Me_5C_5)_2(Me_2PCH_2PMe_2)}{(Me_5C_5)_2(Me_2PCH_2PMe_2)} \quad 1,2-Dimethylphosphinomethane (0.16)$ mL, 0.0011 mol) was added to bis(pentamethylcyclopentadienyl)diethylether-ytterbium (0.57 g, 0.0011 mol) in toluene (25 mL). After stirring for 8 h, the green solution was filtered and the filtrate was cooled (-10°C). The green needles, mp 250-253°C, were isolated in quantitative yield. <u>Anal</u>. Calcd for C₂₅H₄₄P₂Yb: C, 51.8; H, 7.65; P, 10.7.

Found: C, 50.6; H, 7.41; P, 10.2. The infrared spectrum was identical to that of its europium analogue. ¹H NMR (PhH-d₆, 26°C): δ 2.17 s (30 H), Me_5C_5 ; 1.78 d, J = 4.1 Hz (2 H), CH_2P ; and 0.95 s (12 H), Me_2P . ¹³C{¹H} NMR (PhH-d₆, 26°C): δ 112 s, Me_5C_5 ; 44.6 s; CH_2P , 15.8 s, Me_2P ; and 12.0 s, $\underline{Me_5C_5}$. ³¹P{¹H} NMR (PhH-d₆, 26°C): δ -39.6.

<u>Yb(Me₅C₅)₂Cl(Me₂PCH₂PMe₂).</u> Bis(pentamethylcyclopentadienyl)(1,2dimethylphosphinomethane)ytterbium (0.74 g, 0.0013 mol) in toluene (75 mL) was added to a suspension of ytterbium trichloride (0.36 g, 0.0013 mol) in toluene (10 mL). The suspension was stirred for 24 h, the solution was filtered and the filtrate was concentrated to <u>ca</u>. 10 mL and cooled (-10°C). The prisms (0.52 g, 66%) were collected and dried under reduced pressure, mp 208°C(dec). <u>Anal</u>. Calcd for $C_{25}H_{44}ClP_2Yb$: C, 48.8; H, 7.21; Cl, 5.77; P, 10.1. Found: C, 48.6, H, 7.06; Cl, 5.77; P, 9.88. IR(Nujol); 2718 w, 1292 m, 1276 w, 1149 m, 1087 w, 1014 m, 943 s, 908 s, 880 w, 830 w, 799 w, 759 m, 723 m, 709 w, 699 w, 683 w, 615 w, 590 w, 372 m, 298 s, and 248 s cm⁻¹. The effective magnetic moment (PhH, 30°C) was 4.4 B. M.

X-RAY CRYSTALLOGRAPHY

A crystal, approximately 0.4 x 0.4 x 0.25 mm in size, was sealed inside a quartz capillary and mounted on a CAD4 automatic diffractometer, and a set of θ -2 θ scan data were collected. Details are given in Table IV. Data were corrected for crystal decay, absorption¹⁵ and Lorentz and polarization effects.

The ytterbium atom position was located with the use of a 3-dimensional Patterson map, and subsequent least-squares and electron density maps resolved the location of all of the non-hydrogen atoms. The structure was refined to convergence using anisotropic thermal parameters for the Yb, Cl and P atoms and isotropic thermal parameters for the carbon atoms. Atomic scattering factors of Doyle and Turner¹⁶ were used, and anomalous scattering corrections¹⁷ were applied. The final R factors for 3202 unique data, ($F^2 > 3\sigma(F^2)$), are $R_F = 0.053$ and $R_{wF} = 0.073$.¹⁸ An extinction correction was applied to the observed structure factors.¹⁹

ACKNOWLEDGMENT

This work is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract number DE-AC03-76SF00098. We thank Dr. F. L. Hollander, staff crystallgrapher of the U.C. Berkeley X-ray facility (CHEXRAY) for collecting the X-ray data.

SUPPLEMENTARY MATERIAL AVAILABLE

Listing of anisotropic thermal parameters and listings of observed and calculated structure factors (14 pages). Ordering information is given on any current masthead.

REFERENCES

- (a) Sigha, S. P. <u>Structure and Bonding</u> 1976, <u>25</u>, 69. (b) Moeller, T. in "Comprehensive Inorganic Chemistry," Bailar, J. C.; Emeleus, H. J.; Nyholm, R.; Trotman-Dickenson, A. F. Pergamon Press, London, Vol. 4, 1973, p. 1. (c) Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry" John Wiley, New York, 4th ed, 1980, p. 981.
- 2. (a) Ahrland, S.; Chatt, J.: Davies, N.R. <u>Quart. Rev.</u> 1958, <u>12</u>, 265.
 (b) Pearson, R. G. <u>J. Am. Chem. Soc.</u> 1963, <u>85</u>, 3533.
- Classification of acceptors as "class a" or "hard" (those metals whose coordinative affinity for Lewis bases is in the sequence N>>P>As) or as "class b" or "soft" (those metals whose coordinate affinity for Lewis bases is in the sequence N<<P>As) is generally accepted. However, the reasons for the origin of the phenomenon is not without controversy.
 (a) Ahrland, S. <u>Structure and Bonding</u> 1966, <u>1</u>, 207 and 1973, <u>15</u>, 167.
 (b) Jorgensen, C. K. <u>ibid.</u>, 1966, <u>1</u>, 234.
 (c) Williams, R. J. P.;
 Hale, J. D. <u>ibid.</u>, 249.
 (d) For a general discussion see, Huheey, J.
 E. "Inorganic Chemistry" Harper and Row, New York, 2nd ed. 1978, p. 276.
- 4. (a) Edwards, P. G.; Andersen, R. A.; Zalkin, A. <u>J. Am. Chem. Soc.</u> 1981, <u>103</u>, 7792. (b) Duttera, M. R.; Fagan, P. J.; Marks, T. J.; Day, V. W. <u>J. Am. Chem. Soc.</u> 1982, <u>104</u>, 365.
- 5. Tilley, T. D.; Andersen, R. A.; Zalkin, A. <u>J. Am. Chem. Soc.</u> in press; and references therein.
- Tilley, T. D.; Andersen, R. A.; Spencer, B.; Ruben, H.; Zalkin, A.; Templeton, D. H. <u>Inorg. Chem.</u> 1980, 19, 2999.

- 7. (a) Tilley, T. D.; Andersen, R. A.; Spencer, B.; Zalkin, A. <u>Inorg.</u>
 <u>Chem.</u> in press. (b) Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J.
 L. J. Am. Chem. Soc. 1981, 103, 6507.
- 8. (a) Tilley, T. D.; Andersen, R. A. <u>Inorg. Chem.</u> 1981, <u>20</u>, 3267.
 (b) Watson, P. L. J. Chem. Soc. Chem. Comm. 1980, 652.
- 9. (a) Watson, P. L.; Whitney, J. F.; Harlow, R. L. <u>Inorg. Chem.</u> 1981, <u>20</u>, 3271. (b) No nine-coordinate complexes are known even with the sterically smaller cyclopentadienyl or substituted cyclopentadienyl complexes of the type Cp₂MCl(L). Raymond, K. N.; Eigenbrot, C. E. <u>Acc. Chem. Res.</u> 1980, <u>13</u>, 273. (c) Lappert, M. F.; Singh, A.; Atwood, J. L.; Hunter, W. E. <u>J. Chem. Soc. Chem. Comm.</u> 1981, 1190 and 1191. (d) Evans, W. J.; Wayda, A. L.; Hunter, W. E.; Atwood, J. L. <u>ibid.</u> 1981, 292 and 706. (e) Schumann, H.; Genthe, W.; Brucks, N. <u>Angew. Chem. Internat. Ed.</u> 1981, <u>20</u>, 119. (f) Atwood, J. L.; Hunter, W. E.; Wayda, A. L.; Evans, W. J. <u>Inorg. Chem.</u> 1981, <u>20</u>, 4115.
- Atwood, J. L.; Hunter, W. E.; Rogers, R. D.; Holton, J.; McMeeking, J.;
 Pearce, R.; Lappert, M. F. <u>J. Chem. Soc. Chem. Comm.</u> 1978, 140.
- Krasnov, K. S.; Giricheva, N. I.; Girichev, G. V. <u>J. Struct. Chem.</u> 1976, <u>17</u>, 575.
- 12. Baker, E. C.; Brown, L. D.; Raymond, K. N. Inorg. Chem. 1975, 14, 1376.
- Rankin, D. W. H.; Robertson, H. E.; Karsch, H. H. <u>J. Mol. Struct.</u> 1981, <u>77</u>, 121.
- 14. Tilley, T. D.; Andersen, R. A.; Zalkin, A.; Templeton, D. H. <u>Inorg.</u> <u>Chem.</u> in press.
- 15. Templeton, L. K.; Templeton, D. H. Abstracts, American Crystallographic Association Proceedings, 1973, series 2, Vol. 1, p.143.

- 16. Doyle, P. A.; Turner, P. S. <u>Acta Cryst. Sect. A</u> 1968, <u>24</u>, 390.
- 17. Cromer, D. T.; Liberman, D. <u>J. Chem. Phys.</u> 1970, <u>53</u>, 1891.
- 18. $R_{F} = \Sigma ||F_{o}| |F_{c}|| / \Sigma |F_{o}|;$ $R_{wf} = [\Sigma w (|F_{o}| - |F_{c}|)^{2} / \Sigma w |F_{o}|^{2}]^{1/2}.$
- 19. $(F_0)_{corr} = (1 + kI)F_0$ where $R = 2.6 \times 10^{-7}$ and I is the uncorrected intensity.

Table I. Positional and isotropic thermal $\frac{a}{a}$ parameters in

(C₅Me₅)₂YbCl(Me₂PCH₂CHPMe₂).

Atom	×	У	Ζ	B,Å
YB	.23280(2)	.08305(4)	.17649(2)	2.78*
CL	.31442(19)	.3313(3)	.17174(15)	5.37*
P(1)	.35006(15)	0247(3)	.09936(13)	3.50*
P(2)	.46632(21)	2765(4)	.00839(17)	5.59*
C(1)	.3512(6)	.0223(12)	.2862 (5)	3.64(18)
C(2)	.2933(6)	.1204(12)	.3052(5)	4.08(28)
C(3)	.2179(6)	.0323(13)	.2983(5)	4.28(20)
C(4)	.2296(6)	1139(12)	.2733 (5)	4.07(20)
C(5)	.3129(6)	1219(11)	.2653(5)	3.37(17)
C(6)	.0904(7)	0369(13)	.0976(5)	4.46(21)
C(7)	.0676(7)	.0651(12)	.1431(5)	4.42(21)
C(8)	.0876(6)	.2202(12)	.1281(5)	4.37(20)
C(9)	.1239(6)	.2121(12)	.0711(5)	4.39(21)
C(10)	.1250(7)	.0528(13)	.0533(5)	4.48(21)
C(11)	.4448(8)	.0695(14)	.2951 (6)	5.56(26)
C(12)	.3112(9)	.2808(17)	•3373(7)	7.0(3)
C(13)	.1447(10)	.0904(16)	.3276(8)	7:0:(3)
C(14)	.1719(3)	2524(17)	.2687(7)	E.49(28)
C(15)	.3529(7)	2691(14)	.2473(6)	5.46(24)
C(16)	.0732(9)	2080(17)	.0918(7)	7.1(3)
C(17)	. 8094(9)	.0231(19)	.1852(7)	7.1(3)
C(18)	.0735(9)	.3720(18)	.1620(7)	7.2(3)
C(19)	.1451(8)	.3504(17)	.0356(7)	€.40(28)
C(20)	.1389(8)	0038(18)	0117(7)	6.62(29)
C(21)	.3477(8)	.1055(15)	.0273(7)	5.72(27)
C(22)	.4642(7)	0109(15)	.1403(6)	5.53(25)
C(23)	.3407(6)	2236(12)	.0653(5)	4.03(19)
C(24)	.3318(10)	2246(20)	0724(8)	8.6(4)
C(25)	-3886(10)	48 96 (22)	.0076(8)	8.3(4)

 \underline{a} B values that were derived from anisotropic thermal parameters are marked with an asterisk.

Table II. Selected Interatomic Distances (Å).

Yb-Cl	2.532(3)
Yb-P(1)	2.941(3)
Yb-C(1)	2.635(9)
Yb-C(2)	2.617(10)
Yb-C(3)	2.633(10)
Yb-C(4)	2.634(10)
Yb-C(5)	2.642(9)
Yb-C(6)	2.688(11)
Yb-C(7)	2.617(11)
Yb-C(8)	2.612(10)
Yb-C(9)	2.680(10)
Yb-C(10)	2.718(11)

P(1) = C(21)	1.858(13)
P(1)-C(22)	1.847(12)
P(1)-C(23)	1.841(10)
P(2)-C(23)	1.842(10)
P(2)-C(24)	1.855(17)
P(2)-C(25)	1.854(19)

Table III. Selected angles(°).^a

Cl -Yb -P(1)	79.7(1)
$Cl -Yb -Cp(1)^{\underline{a}}$	106.3
Cl -Yb -Cp(2) <u>a</u>	108.6
$P(1) - Yb - Cp(1)^{\frac{a}{2}}$	108.0
P(1) -Yb -Cp(2) ^a	105.7
Cp(1) <u>a</u> Yb-Cp(2) <u>a</u>	134.9
Yb -P(1) -C(21)	111.3(4)
Yb -P(1) -C(22)	116.9(4)
Yb -P(1) -C(23)	119.9(3)
C(21)-P(1) -C(22)	98.2(6)
P(1) -C(23)-P(2)	118.0(5)
C(23)-P(2) -C(24)	99.2(6)
C(23)-P(2) -C(25)	97.7(6)
C(24)-P(2) -C(25)	99.5(7)

 $^{a}Cp(1)$ is the centroid of the cyclopentadienyl ring represented by atoms C(1) through C(5). Cp(2) is the centroid of atoms, C(6) through C(10).

Table IV. Data collection details for $(C_5^{Me_5})_2^{YbC1}(Me_2^{PCH_2^{PMe_2}})$.

Space Group $P2_1/c$ V = 2816 Å ³	
a = 16.358(4) Å $Z = 4$	
b = 8.595(2) Å mol wt = 615.1	
c = 20.712(6) Å density (calcd	$= 1.45 \text{ g/cm}^3$
$\beta = 104.75(3)^{\circ}$ μ (calcd, MoK α)	$= 35.3 \text{ cm}^{-1}$

Intensity Data Measurement

radiation:	MoKa $(\lambda = 0.71073 \text{ Å}).$
monochromator:	highly oriented graphite, 20 _m = 12.2°
scan type:	ə(crystal) — 2ə(counter)
reflections measured:	+h, +k, ±l from 3° < 20 < 45°
scan speed:	variable from 0.77 to 0.67 deg(ə)/min
scan width:	$\Delta \Theta = 0.5 + 0.347 \tan(\Theta)$
background:	An additional $\Delta 2 \Theta/4$ at each end of the scan
scan collected:	4205 (inc standards) yielding 3309 unique reflections
std reflections:	3 measured every 2 hours. A 10% decay in intensity
	was observed

^aUnit cell parameters were derived by a least squares fit to the setting angles of the unresolved MoK $_{\alpha}$ components of 24 reflections with 20 between 27° and 30.2°.

FIGURE CAPTIONS

- Fig. 1. ORTEP drawing of the molecule showing the numbering scheme.
- Fig. 2. ORTEP view looking down a line through the centroids of the cyclopentadienyl rings. The second methyl carbon of the P(2) atom is eclipsed by the adjacent methyl group.

-1

Supplementary Material for

TERTIARY PHOSPHINE COMPLEXES OF THE f-BLOCK METALS: PREPAATION OF PENTAMETHYLCYCLOPENTADIENYL-TERTIARY PHOSPHINE COMPLEXES OF YTTERBIUM (II AND III) AND EUROPIUM (II). THE CRYSTAL STRUCTURE OF Yb(Me₅C₅)₂Cl(Me₂PCH₂PMe₂)

T. Don Tilley, Richard A. Andersen and Allan Zalkin*

Anisotropic Thermal Parameters in Yb(Me₅C₅)₂Cl(Me₂PCH₂PMe₂)^a.

ATON	B11	822	833	31.2	813	823
YB	2.773(24)	2.565(24)	3.071(24)	.0 17(13)	.888(15)	298(14)
CL	6.47(15)	3.52(12)	6.41(15)	-1.50(11)	2.19(12)	46(11)
P(1)	3.58(11)	3.39(11)	3.77(11)	.14(9)	1.36(9)	24(9)
P'(2)	6.66(16)	5.14(16)	5.94(16)	57(13)	3.38(14)	-1.54(13)

^aThe anisotropic temperature factor has the form $exp[-0.25(B_{11}h^2a*2 + 2B_{12}hka*b* + ...)]$.

OBSERVED STRUCTURE FACTORS, STANDARD DEVIATIONS, AND DIFFERENCES (ALL X 3.0) YTTERBIUM BISCYCLOPENTADIENYL CHLORIDE DIMETHYLPHOSFHCHETHA F (0,0,0) = 3199

- FOB AND FCA ARE THE OBSERVED AND CALCULATED STRUCTURE FACTORS. SG = ESTIMATED STANDARD DEVIATION OF FOB. DEL = /FOB/ - /FCA/. * INDICATES ZERO WEIGHTED DATA.

L	F08	SG	DEL	L	FOB	SG	DEL	L	F08	SG	DEL	L	FOB	SG	DEL	L	FOB	SG	DEL
F	t,Ka	0,	, 0	-21	142	3	7	-1	194	4.	- 32	15	55	3	3	-1	33	3	-12
2	497	11	-51	-20	43	5	-3	1	191	4	-35	19	1.43	3	1	0	377	9	-9
4	80	2	-32	-19	1.45	3	-1	2	490	10	19	1	H,K=	0	, 5	1	34	4	-10
6	730	17	-69	-18	40	3	5	3	170	4	15	-18	126	3	9	2	218	5	-16
8	510	11	-39	-17	76	4	3	4	506	11	-30	-17	194	5	2	3	94	3	1.
10	1.67	4	-5	-14	227	5	13	5	50	5	-15	-15	66	3	-6	5	50	3	-9
12	470	10	-25	-13	25€	7	2	6	254	6	-1	-15	122	3	1	6	318	7	26
14	370	9	-29	-12	40	3	-5	7	86	2	-3	-14	59	3	2	7	49	8	-4
16	136	4	22	-9	258	6	13	8	421	9	-20	-13	73	3	2	8	227	5	6
18	151	3	-5	-6	341	7	49	10	387	8	-40	-12	64	3	16	12	181	- 4	œ 🖁
20	182	- 4	-11	- 5	350	8	17	11	95	2	-8	-11	290	7	48	13	49	3	0
ŀ	ti , K ai	0,	, 1	- 4	210	5	10	1.2	194	- 4	-31	-10	170	4	19	14	1.76	- 4	-16
- 19	112	3	-2	- 3	126	3	12	- 14	102	- 3	-6	-9	302	7	8	16	121	3	- 6
-18	157	4	10	- 2	267	6	-23	15	96	3	- 4 .	-5	116	3	-8	1	H, K=	0,	, 7
-17	241	5	29	-1	498	10	17	16	258	6	0	-7	152	4	14	-14	61	4	-2
- 16	216	5	20	0.	352	7	-43	18	239	5	-13	-6	79	3	11	-1.3	47	5	-5
-15	229	6	26	1	453	9	-29	1	H₊K≠	0	• 4	-5	474	10	- 39	-12	79	3	3
-14	57	2	10	2	258	6	-32	-19	150	3	9	-4	186	5	1.	-11	177	- 4	1.0
- 13	123	3	-6	3	126	3	12	-18	57	3	5	-3	305	7	-5	-10	61	3	Q.
- 12	47	9	-10	4	199	4	-2	-16	37	4	8.	-2	53	3	-10	-9	276	6	9
-11	460	11	18	5	335	7	2	-1.5	243	5	15	-1	141	3	. 13	-6	32	5	7
-10	284	7	14	6	326	7	33	-14	20.8	5	17	1.	144	- 4	16	-5	202	5	1.3
-9	410	9	9	7	555	12	-44	-13	273	6	55	2	59	2	-5	-4	96	3	8
-8 .	2.3.3	6	-4	8	2.52	6	-B '	-1.2	1.0:4	3`	15	3.	305	7.	-5	-3	3'42	8	17
-7	148	3	1.4	9	240	5	-7	-11	1.80	Б,	1.4	4	180	4	-4,	- 2	1.54	4	11
-6	186	4	2.2	1.0	168	4	- S	-1:0	115	3	-2	5	457	1.G	22	-1	156	4	21
•4	414	9	-5	1.1	64	2	2	- 9	251	6	5	6	7'5	3	8	1	157	4	22
•3	503	11	7	12	40	3	-5	- 8	310	7	16	7	146	3	8	2	157	4	14
-2	461	9	•2	13	236	6	-18	-7	663	1.4	2:4	8	1.0 8	3	-17	3.	335	7	11
-1	548	1.2	1.4	1.4	205	5	-9	-6	346	8	18	9	2.8.6	7	-7	4	95	- 3	8
1	489	10	-45	1.5	208	5	- 14	-5	426	10	23	10	157	4	6	5	202	5	13
2	434	9	-29	1.7	71	3	-2	-4	56	2	-12	11	271	E	29	8	28	7	12*
3	476	10	-20	18	38	4	Z	- 3	170	4	-5	12	58	4	10	9	263	0	-
4	395	8	-24	1.9	1.35		-11	-2	350	8	14	13	70	3	0	10.	62	5	1
2	65	2		20	43	5		-1	577	12	-25	14	53	3	-3	11	167		U
	1/5	-	14	21	131	3		U	41	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-11	15	113	3		12		3	-1
	138	3 E	- 24	- 4 -	19 K=	- D 1) J	1	542	12	• 68	10	59		-13	13	77	-	-7
0	210	2	-21	-10	231		2		343		· · · ·	11	106	7	-7	. 14	70		-7
	301	2	-20	-1/	270	[24	- 3	107	4	-45	10	110	3	-1	- 0	79 K 2	- U 4 - L	
TU	201			-10	610		~1	-	73	2	-17			U 1		-3	76		-1
11	417	10	-23	-15	103	5	5	5	40 9	9	5	-15	120	5	-1	-8	192	-	-0
47	446	7	-4.6	- 1 7	113	3 E	- 4 7	5 7	333	47	- 27	-17	700	-	-7		4 1 8	7	-5
44			-14	-12	4 8 7	2	-12		204	13	- 21	-13	76	5	J	-0	1 40	-	-3
14	206	-		-11	102	2	-2		341	/ E	- 4 7	-12	133	7	-		100		-3
42	200	7 2	J 1.	-10	410	7 4 n		7	407	ファ	-13		24	J	24		11		- C 4 #
47	240	7 E	4	-7	400	- U - 2	21	44	167	3	- 7		241		- 47	- 3		2	
49	1 4 4	2	ז ד_ י	-1	75	C F		4 2	±07		2 2		324	U R	- 41	-2	264	5	-2
40	477	1	_0	-0	LIC 20	6	14	42	71 264	۲ ۲	J 96		50	2	.41	+	485		-46
₽ 2 20	10	J	-7	-7	47 677	7 44	- 70	4 4	101	0 L	<u> </u>		20	J	- 40 - 40	4	407 260	J K	
24	12	11	1 24	· •••	170	** L	4 2	45	47U 231	- 4	-1		3 U Q L	7		÷ 2	00	U 4	-16 A
64	4.¥-		, <u> </u>	3	510	44	17 1	45	201	7 6		-3	222	5	.12	2	70 Ke		
r		- - 1	, "	- 6	7	**	40	• •	~~	9				2	- 44	-		-	-0

STRUCTURE FACTORS CONTINUED FOR YTTERBIUM BISCYCLOPENTADIENWL CHLORIDE DIMETHYLPHOSPHCHETHA

ΡΔ	6E	2
		•••

	600	66	051		600	66	051		600	66	051		600	66	061		600	~~	AC I	
L.	F UD	30	UEL	_	F UD'	36	UCL		FUD	30	UEL	L	r ud	39	UEL	6	F 40	26		
5	175	- 4	-9	8	374	8	Z	-18	117	- 3	-5	2	127	3	-6	-6	176	- 4	13	
6	143	- 4	-2	9	322	8	-21	-17	53	3	5	3	438	10	-6.	-5	94	3	3	
7	207	5	-2	11	110	2	-16	-15	227	5	29	6	357		18	-4	417	18	<u> </u>	
	1 4 6			42	4 7 4	7		-1 4	704	ź	35	Ē	7.46	ă	22		24			ა
Š			- U	47	207		- 4		301		59		009	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
3	07	3	• (13	297	(-23	-13	(5	2	ſ	6	67	2	-2	•2	183	4	2	
F	• K=	0	, 9	14	230	6	-3	-12	282	6	- 4	7	- 84	Z	6	-1	45	2	- 5	
-4	192	- 4	-11	15	243	6	7	-18	124	- 3	2	5	209	- 5	8	0	74	2	~ 2	
-3	43	9	54	16	61	6	-8	-9	125	3	20	9	396	g	-17	2	300	7	•9	
-2	209	5	•12	17	78	2	Ā	-8	539	12	32	10	235	E	-6	3	75	3	- q	
-1	22	é	74		94	2	-5	-7	30.3		-5	44	275	2	_0	5	246	Ĕ	22	
	22			10	101	4			34		-0		213				240		23	
2	206	5	-15	19	129	5	-11	-0	601	15	-5	12	47	5			104	5		
- 4	190	- 4	-12	20	104	3	-3	- 4	84	Z	- 3	13	27	5	104	• 7	65	3	-0	
H	1,K=	1	, 0	21	127	4	-10	• 3	123	- 4	-10	15	148	- 4	-19	8	203	- 5	12	
- 20	82	3	5	- 1	H.K=	1,	2	-2	453	9	-13	16	106	3	-1	9	55	3	-7	
- 18	243	6	14	-20	67	3	5	-1	221	5	38	17	218	5	-17	10	251	6	15	
•16	338	Â	44	-19	179	<u> </u>	7		953	21	1.06	1.8	57	3	-	12	1 4.0	3	3	
	600	3	-7	- 4 9	4.0%	7		4	223		40	4.0	474	ž	- 7	47	20	ă	-468	8
- 14	00	2	- 3	-10	104	3	7	1	232	2	12	13	151	3	-2	13	24	7		
-12	404	9	-14	-17	287	7	28	2	218	5	-29	1	4.K#	1	, 5	14	45	4	•1	
-10	729	15	-25	-16	124	3	- 14	- 3	32	7	294	-16	82	3	-3	15	40	5	11	
-8	346	7	-3	-15	126	3	30	- 4	146	3	-6	-15	211	5	8	16	122	- 3	-11	
-6	77	2	14	-14	53	2	6	5	233	5	39	-14	107	3	2	•	1.K=	1.	. 7	
-4	518	11	-75	.13	75	3	13	6	603	13	-14	-13	288	7	27	-15	119	3	•3	
-2	600	4 2	-1 5 3	- 1 2	266	Ē	-2	7	040	7		_ 4 4	4 4 6			-47	467	ž	-7	
-2	077	73.	-122	-12	200	0	-2		74	3		-++	140		7	-13	103		-/	
2	331	20	-/8	-11	345	8	- 5	5	472	10	•14	- 9	159	•	18	-12	83	5	•2	
4	74	Z	-19	-10	307	7	33	9	44	3	11	- 8	195	- 4	-7	-11	67	3	-9	
6	47	2	-17	-9	264	6	1	10	51	- 4	13	-7	448	10	17	-10	73	3	1	
8	574	12	- 52	= 8	23	4	-3	11	59	2	4	-6	178	5	1€	-9	130	3	1	
1.0	489	11	-31	•7	33	4	8	12	290	7	-20	-5	337		Ω	-8	121	3	3	
4.2	105		-20	- 6	4 75	2	-77	47	96			- 7	242	ž	46	-7	320			
41	4 6 6	7	-07	-0	200	3	- 3 3		74 =	-	70	- 3	202		10	-1	323		-	
14	144	3	•23	- 7	521	11	-3	14	314		39	•2	301		-11	-0	111	3	3	
16	319	7	19	- 4	82	2	23	15	32	- 4	3	-1	377	8	-11	-5	203	5	13	
18	200	5	-31	- 3	362	8	-13	16	131	3	- 5	1	109	3	-12	- 4	66	4	•	
20	2€	5	114	-2	313	7	-29	18	70	3	-2	1	503	11	9	-3	55	5	9	
H	1.K=	1	. 1	-1	97	2	9	20	185		-6	2	94	2	6	•2	39	5	12	
• 21	177	4	12	n	8.8	2	-14		da Kiz				94	3	15	- 1	338	7	25	
- 20	4 5 %		- L E	4	304	2	- 4 7	- 10	4 / 12	1			04	3	42		494	. 'r	22	
- 40	134		2		201	0	-14	-13	147	3	14	-	70		14	U A	150	3	22	
-19	11/	5	2	2	209	b	18	-18	118	5	5	2	235	2	14	1	192	4	27	
-18	36	5	12	3	378	8	11	-17	251	6	8	6	189	- 4	-13	2	25	8	2*	•
-15	225	6	30	- 4	319	7	-£	-16	123	3	1	7	470	10	- 29	4	154	3	5	
-14	276	7	23	5	239	5	-4	-15	170	- 4	22	8	168	- 4	-5	5	201	5	-1	
-13	354	9	13	6	226	5	11	-14	43	4	7	9	61	4	۵	6	109	3	-3	
-12	150	L.	-5	7	105	3	-6	-13	1.6.0	3	13	11	119	3	13	7	262	ĥ	•13	
- 1 1	21	L	4.4		125	ž	-43	-12	160	ž	Ĩ	42		L		Å	52	Ă		
	20		**	0	263		-70	-16	443			46				ő	4 9 9		-0	
- 4	398		2		314	(-14	-11	201	<u> </u>	17	13	200	<u> </u>	-/	3	120	3	- 0 -	٣
-8	521	12	-4	10	198	5	-21	-10	214	5	9	14	70	5	-17	11	113	3	•5	
-7	376	8	-9	11	157	- 4	-16	- 9	470	10	1	15	133	3	-17	12	- 74	3	-9	
-4	316	7	-25	12	56	2	-17	-8	315	7	28	16	46	- 4	- 13	13	151	3	-13	
-3	138	3	-21	14	67	2	-1	-7	31	4	18		1.K=	1	. 6		1. K=	1.	. 8	
ň	467	1 0	1 6	15	210	Ā	20		1 94	Ē		-15	164	Ē	Ē		220	Ē	2	
4	16h	1 4	20	46	227	E	1	_ E	- 77 LAE	~		_4 E	707		ر 4_	- 4 4	482	1	_ L	
*		70	20	<u> </u>	223	2		- 7	407	7	3	-13	()	5	-1	-10	7 0 0 7 0 0			
Z	155	3	-12	17	223	5	-19	- 4	315	7	-19	-14	41	5	9	•9	138	3	•Z	
3	60	1	21	18	34	- 4	-13	-3	501	11	- 35	-12	191	- 4	4	-8	67	4	4	
4	428	9	66	19	108	3	-4	-2	234	5	- 0	-18	287	7	15	-6	78	3	-6	
5	558	12	37	20	27	10	-124	• •1	173	4	-6	• 9	36	5	-4	-5	217	5	7	
Ā	713	15	36		 H_ K=	4.		Ā	137	1	17	- 2	1 5 4	Ĺ	22	-	175	Å	•7	
	 		_ 1	_ 2 0	4.04		4 -	u	244 244		-f		***		A		347	-	- , _ E	
		1.14		- 2 1	141		1 7	1	201		-	• 7			-1	- 3	231			

- 10

-9

-3

-23

-9

-11

-9 192

- 8

H,K=

2.

-6

-11

-9 174

STRUCTURE FACTORS CONTINUED FOR YTTERBIUH BISCYCLOPENTAMIENYL CHLORIDE DIHETHYLPHOSPHCHETHA

YTI	TERB:	IUM	BIS	CYCL	OPEN	TAD	CENVI	L CHI	LORI	DE	DIMET	THYL	PHOS	PHCI	HE TH	4		PA	GE 4
L	FOB	SG	DEL	L	F08	SG	DEL	L	F08	SG	DEL	·· L	FOB	SG	DEL	L	FOB	SG	DEL
-8	113	3	-3	-11	. 61.	. · 2	-5	10	94	2	-6	-2	340	7	31	-13	68	. 3	3
-7	193	- 4.	•13	-10	161	<u> </u>	-9	11	181	-5	•12	-1	207	, Š	24	-12	299	7	·*•2
-6	143	Ľ.	-7	9	363	Ř	- 29	12	4.9	2	0	ā	156	3	A	-10	268	6	ĥ
-5	146	. 3	-14	• Å	1.67	. 3	-21	13	83	2	7	1	334	7	-12	-9	46	Ē	-2
-	54		_1 ft	-5	32	2.	44	14	50	3	18	2	266	Ġ	-23	-7	65	3	- L K
	77	ž	-10		45	2	•	+ 5	271	Ē	· • •	7	6200	č	- 20		267	· č	4.2
-3	101	7	- 5		674	4 0 *	- 1 E	1.5	455	6		5	44 /			-5	671	7	- 2
-4	107				411	14	- 13	47	100				747				57 14 E		-6
-1	4 24			. U 4	796	7	21	1 T 4 B	104	4. 7	-44	7 17 6	311	7	- 472		4 2 2	. 7	
U 4	- 161. - 266	- J - C	- 2.		J00 4 E 9	0 1.	-11	70	107		-11	7	- 10.	2	- 71.	- 3	166		
	240	7	4 0	·· .	120	7	10	-40	· 97	- J 	9 J		467	۲ د	- 44		- 247		- 3
4 1	32	3, 1.	. 10.	. 494 '' E	' 33. Eec	4.2		-19	23		21-		103	4	- 11	-1	177	3	- 6
	40	··••	- 7	~ 7 ~ C	770	12	10	-17	21	3	0		200		-1	0	194	-	-0-
7	1/9	- 44). 	- J.	. .	417	3	-14	-13	13		17	10	231	2	U	4	410	3	-3
	144		. U:		440	9	-18	-12	124	3	15	11	332	<u> </u>	27	3	291	2	-0
7.	212	2	-14	; 0	207	2	-4	-11	150	4	r i	12	76	5	9	4	234		12
	112	3	- 4	9	43	5	Z	• /	72	2		14	93	5	-1	2	41	- 1	5
· 9	47	- 4	- 0	. 10	90	2	1	-6	392	9	-13	15	183	4 -	-10	7	45.	, 3	. 9
•	1,K=	2	9	11	173	. 4	, 5	- 4	173	4	•15	- 16	53	- 3		- 5	260	6	12
-4	196	4	-15	12	238	5	. 5	-3	228	5	14	17	173	- 4-	-6	9	61	3	1.3
-2	139	3	=9'	1.3	277	7	13	- 2	480	10	-19	15	40	5	-9	10	308	7	-1
-1	42	4	-6	14	169	4	12	-1	47	3	-19	т I	1,K=	3	5	11	57	3	-2
0	25	14	6,	15	188	6	· 5	. 0	429.	9	-15	-17	19	22	-1'	P 12	.84	3	•7
2	218	5	. • 8	16	46	7	-1	1	29	7	_ =4 #	-16	160	4	- 14	14	120	3	-9
. H	1,K=	3.	, 0	17	79	्र 2	. '-0	2	281	6	17	-15	265.	7	11	1	H, K=	:3,	e 7
- 22	129	3	: 6	18	81	- 2	, -6	· 3'	230	5	16	-14	202	- 5 -	7	-14	75	3	. 5
- 20	123	3	1 - 5	19	194	5	-10	4	387	8	- 5	-13	201	5	, 15	-13	164	4	-13
-18	258	6	14	20	. 69	3	1	5	48	3	-1	-12	116	3	14	-12	84	3	.2
•16	275	6	33	ł	1 , K=	3,)· 2	6	451	10	34	-11	46	4	9,	-10	73	4:	-2
- 12	281	7	10	-20	55	.	-0	. 7	21,	° 6	15*	-10	170	4	-3	-9	159	- 4	- 4 5
-10	E44	14	-50	-19	218	5	10	8	402	. 9	9	-9	267	6	-1	8	179	- 4-	-5
-8	232	- 5	=13	-18	203	5	7	9	43	, 3	-1	- 8	107	3	-12	-7	244	5	•7
-6	446	9.	9	-17	292	7	25	10	91	2	3	-7	229	5	-8	, =6	1,14	3	-2
-4	732	16	-39	-15	131	3	7	11	_75	2	-11	-6	168	4	4	-5	143	3	-1
-2	65	2	-31	=14	20	7	-34	• 12	340	8	29	- 5	278	6	-19	-4	114	· 3	-3
0	223	5	6	-13	243	6	2	14	315	7	18	-4	86	· 2	13	-3	118	3	14
2.	185	4	-11	-12	258	6	-1	1.5	82	3	2	-3	177	4	2	-2	123	3	24
4	817	18	34	-11	482	11	-16	17	40	8	1*	-2	258	6	17	-1	265	, 6	26
6	- 45	- 4	5	-10	327	8	4	18	105	3	9	-1	500	10	26	0	115	-3	11
8	409	9	-4	-9	201	5	6	1	H,K=	31	, 4	0	293	6	21	1	188	4.	16
10	466	10	-13	-7	202	5	-13	-19	125	3	-1	. 1	392	8	16	4	140	3	1
12	267	6	-7	-6	372	8	-3E	-18	143	3	9	2	71	2	1	5	197	4.	8
1 4 [,]	65	2	15	́ −5	617	13	22	-17	251	6	9	3	96	2	- 4	6	186	4	2
16	316	· 7	-6	-4	313	7	3€	-16	118	3	6	4	79	2	6	7	248	6	-3
18	167	4	-16	-3	582	12	5	-15	103	3	24	5	255	6	0	8	35	· 7*	- 24
20	46	3	-3	-2	182	- 4	12	-14	19	22	6*	6	184	- 4	-8	9	77	3	6
H	1•K=	3	, 1	-1	105	3	-11	-13	163	- 4	15	7	296	7	-7	10	83	3	3
- 21	219	5	13	0	250	5	42	-12	222	5	11	8	91	3	5	11	113	3.	-8
- 20	87	. 3	6	1	577	12	44	-11	329	8	-12	9	129	3	13	12	77	3	-9
-19	139	3	. 3	2	301	6	- 1E	-10	167	- 4	12	11	220	5	11	I	1, K=	3,	8
-18	63	3	16	3	613	13	6	-9	195	5	1	12	155	4	-8	-11	181	4	2
-17	175	. 4	17	4	226	5	- 33	-8	67	2	i	13	225	5	-12	-18	84	3.	-2
- 16	124	3	.23	5	121	3	-4	-7	29	6	15*	14	70	3,	-8	-9	176	, 🐪	-8
- 15	253	6	21	6	63	2	-4	-6	-18	6	-6*	15	102	3*	-2	-71	69	3	-11
-14	186	- 4	~-3	7	138	3	-7	- 5	356	. 8	-18	1	1.K=	3,	, 6	-6	57	3	-9
-13	382	9	-12	8	280	6	12	- 4	241	6	-24	-15	180	4	5	-5	189	. 4	-17
-12	263	7	-10	° 9	412	j q	-19	- 3	453	10	-5	-14	78	3	-5	-4	138	· 3	-12

STRUCTURE FACTORS CONTINUED FOF YTTERBIUM BISCYCLOPENTADIENYL CHLORIDE DIMETHYLPHOSPHOMETHA

STRUCTURE FACTORS CONTINUED FOF YTTERBIUM BISCYCLOPENTATIENYL CHLORIDE DIMETHYLPHOSPHOMETHA

STRUCTURE FACTORS CONTINUED FOR YTTERBIUM BISCYCLOPENTAMIENYL CHLORIDE DIMETHYLPHOSPHCMETHA

•

1

 z^{t}

	L	F08	SG	DEL	• L	FOB	SG	DEL	L	FOB	SG	DEL	L,	FOB	SG	DEL	L	FOB	SG,	DEL
	4	36	6	4	6	169	4	11	-15	50	7	-8	10	177	5	27	A	2 58	6	1
	g.	210	Ē	2	7	437	10	-1	-14	31.8	7	4 6		21 6	ŝ	47	4 0	254	ž	
	e	647		_ 7		401		- 4 6	- 4 7	97.6		19	++	210		4.7	10	634	· C/	
	-	104	3	- 7	0	140	3	-10	-13	23	<u> </u>	I.	12	79	3	10	11	00	3	-3
	(184	4 44	-3	. 9	104	5	• (,	-12	64	· · S	-5	14	89	5	5	12	38	- 4	Z
	8:	58	- 4 k	. 2	10	101	- 3	-7	-11	31	. 3	-2	15	203	., 5	-1	1	H, K=	- 51	, 7
	H	I.K=	4	. 9	11	· 293	7	-1	-10	352	8	-6	. 15	100	3	-8	-14	83	3	-2
	•2	64	3	- 3	12	162	4	11	•9	106	3	-11		H.K=	5.	5	-13	117	3	-4
	•1	3.8	4	4	13	243	6	35	• 8	461	11	-38	-18	23	24	-74	-12	รก	Ē.	
			. E.		4 4	44.6	ंर	á	- 7	87		25	-17	- 66	_ <u></u> <u></u>		-11	24	4.0	-15
	. 99	E.7	21	n U.				-9		1.07		- C J	-45	4 5 8	· ·		-40		<u> </u>	-70
	22	71	: J	4,9	. 13					- 403	7	2	-10	170		-	-10	40		
	20	123	· 5	-18.	17	67	5	-9	5	95	2,		-15	1/0	4	•0.	- 9	223	5.	-5
•	-18	341	8	12	18	44 .	3	-5.	-4.	19	4	-24	-14	205	5	-6		.185	4 ,	-3
•	16	105	- 3.,	19	1	H • K≖	51) (2	-3	70	27	-4:	-13	187	4	-3.	-7	162	4.	-5
	14	57	2	- 0	-21	39	4.	-4	-2	.553	12-	-5	-12	42	5	7	-6	90	3	0
•	12	313	17	-22	-20	107	3	-4	-1	131	3	13	-11	82	3	-5	-5	101	3	8.
	10	218	5	-30	-19	229	5	Ż	ñ	707	11	17	-1.0	1 87	L.	2	-4	1.03	Ē	1
	_ 4	200	6			474				777				270	2	44	- 7	4 7 8		
	-0	.20U			-10	1/1		-2		, 33	6			2/0			-3	170	-	-3
-	• b .	317	. 0	-47	-1/	623	· · <u>(</u>	, •D	<u> </u>	20	2	· ·	- 5	.207	2	5	-2	210	2	11
	-4	462	10	-12	-16	63	, 3	* 17	3	-148	3	-0	-7	272	. 6	-3	-1	234	5	8
	-2	320	7	2.	-15	69	2	-5	· 4	457	10.	• 12	-6	95	` 2	-9	0	125·	3	-1
	0.	75	2.1	-18	-14	127	3	-16	5	- 37	2	-6	-5	18	9	21	Þ 1	236	5	: 1
	2.	556	12-	41	-13	310	7	-42	7	58	. 2.	-7	-4	102	2	2	· 3	69	2.	5
	6	219	5	- 2	-12	104	2	-11	Å	195	· 5.	-7	•3	1.66	-	-8	- Ā	118	3	-9
	Å	44	. 6.	4 2		476	4 0	- 22	4 0			2	-2	267	2		Ē	276		
	4.0	- 42G	10	-30	-40	227	70	-40		, 03 33	. <u>.</u>	244	-6	1.77	4 6	-1	2	470		
	10	760	TU	-30	-10	231						61.		413	- T U .			1.7 7		
	12	20	2	. 23	- 9	-215	2	-15	12	378	<u> </u>	44	Ű	288	_ E	-16,	(105	4	2
	.14	173	× 4	17	- 8	32	2	5	13	50	3	5	· 1	119	3.	. 6	8.	. 44	3	-5
١.	16 :	219	6 -	-1.3	- 7;	239	- 5	-15		H, K=	- 51	ya (4 .a	3	106	2`	-9	9.	° 37°	5	8
,	18	1'42	3	8:	-6	274	6	-13	-20	. 79	: 3	9.	- er - L .	197	* - 4-	-15	-10	113	3	3:
	H	•K=	5.	1	- 5	558	12	-28	-19	120	3	-18	5	292	7	. 11	11.	111	3.	-6
-	.22	80	3	- 4		512	11	-22	-1.8	83	3	1	6	139	3	· 5		H. K	5	. Ā
_	. 24	207	Ē	- 0	- 7	2 .	-			470	5. b		7	470	Ľ	74	-18	76	2	
		<u> </u>	2	- u		- 76	. 7		-11	4.1.4	- 19 - 1 9		<u> </u>	217		91 91	-0	4 6 4	3	-2
	20	44.	2	1	2	30	2		-16	141	3	-3		03	3	0	-9	141	3.	<u> </u>
•	19	00	5	5.	-1	128	- 5	25	-15	52	.5	- 10	9	80	- S.	-1	-8	27	. 0	C C
. •	• 1 7 ·	246	. 6	16	0	228	5	-4	-14	29	× 5	-2	10	- 74	3	· 1	-7	65	3	• 6
-	16	18E	4	16	1	606	13	° 15	-13	145	· · 3	18	11	187	4.	7-	-6	77	3	2
	15	351	8	15	2	375	8	-5	-12	145	3	.12	12	138	3	-3	-5	198	4	-6
•	14	112	3	-18	- 3	562	12.	15	-11	30 5	. 7	-12	1.3	165	4	-5	-4	93	3	-2
•	13	155	- 6	- 9	- <u> </u>	169	4	-10	-10	292	· 7	-14	1 4	84	3.	3.	-3	151	3	- 4
•	12	85	. 2		· · · ·	78	2	-2		75			.15	66	3		-2	- L2		1 0.
	. 4 4 -	07:				724	7	-L	- 7	50		4.0			E			70	. <u>.</u>	
	- 4 4 ·	· 7/.	. J: -	U.	í í	JC1	,	· /			× 4	1 U		193.X			U A	77		۵ _ ۱
4	- 10	.134	3		đ	412	3	. 1	- /	71	2	• D.	-10	13/	3	-0	1		. J.	
	-9	445	10	-18	9	378	9	5	•6	21	9	-17	-14	5Z	3	• •8.	Z	1 30	5.	• Z
	-8	124	3	-2	10	175	- 4	-12	- 5	30.7	- 71	-2	-13	154	3	2	. 3	176	4,	-8
•	-7	519	.11	-29	- 11	190	- 5	15	- 4	323	7	13	-12	329	7	- 24	- 4	60	3	-8
	-6	-51	2	-27	13	149	3	- 14	- 3	388	8	17	-10	259	6	-5	5	105	3	5
	-5	83	2	-33	14	92	· 3	7	-2	165	4	. 7	-9	54	3	-11	7	113	3	-1
	-4	79	2	-7	15	231	5	-3	-1	16	7		6.	298	7	24		Hate	6.	
	•2	343	Ā	3 5	16	- 92		-13	ñ	3.30	R	. ă	- 4	340	Å	29	-22	168	Ā	
	_1	L Q A	44	47	47	4 65	,		4	·		42	-7	16		7	-26	4 7 2 2	2	-10
		7 7 0	**			177	_	2	. ≜ .	. JCJ	· -	· # J	-2	- C O	. 7	E				
*	U	200	b	6	- 19	93	5	-1	2	235	5	s 7	-1,	26	Ū.	11	-19	01.	, 4 9	୍ <u>୪</u>
	1	478	10	- 38		H∙K=	5	, 3	3	442	10	15)	. 0	. 254	. E*	24:	-16	339	. 8,	° 44
	2	245	5	- 19	-20	137	- 3	5	: 5	60	20	. -8 -	- 1:	68	: 3	, −3 ≩	-14	271.	63	2-15
	3	190	4	-10	-18	66	3	- 11	7	121	. 3	-11	2	423	G,	43	-12	- 81.	2	13
	4	206	5	-10	-17	72	3	-4	- 8	134	3	10		259	6	33	-18	360	8	-35
	5	619	14	32	•1 F	207	Ā	17	a.	290	. 7	30	ĥ	121	3	-5	- 4	362	ε. Α	-6
	-	· • • •					•					· • •	v		v		v	~ ~ ~	· •	.

30

۰.

PAGE 6

YTI	ERBI	EUM	BIS	CYCL	OPEN	TAUI	ENVI	- CHI	LORI	DE (DIMET	THYL	PHOS	PHGI	ME TH	A		Pl	A GE	8
L	F08	SG	DEL	L	F08	SG	DEL	L	F08	SG	DEL	L	F08	SG	DEL	L	FOB	SG	0EL	
-8	343	8	-4		H.K=	7.	3	7	224	5	23	3	72	3	7	10	243	6	33	
-7	433	10	- 2	-20	83	3	-6	A	122	3	24	<u> </u>	216	Ē	44	12	300	7	46	
-6	444	2		-18	50	ž	-2	ă	227	Ē	27	5	4 3 3			4 6	95	2	- F	
-5	440	7		-16	257	6	-15	4 0	77	ĥ	5	7	24	7		* * *	97			
- 5	242	E E	- 5	- 4 6	50	7	- 13	4 4	77		- 10		760	ć	-7			Ĭ	6	
- 7	203	7	- 7		25	3		<u> </u>	16	2	- 3	4 0	427	0	-6	- 24	п • К= • с	7		
-3	473	10	4	-14	210		67	13	40	3	-2	10	173	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 20	00	3		
~~	290		3	-13	37	3	72	14	47	3	-0		M+K=			-24	10	3	• .	
U	129	3	-11	-12	124	3	-0	12	140	3	-3	-13	33		11	-13	101		~ 7	
1	32	2	-18	-11	75	5	U .		19 K B) 7	-11	63	3	-3	-10	123	3	• • •	
3	329	<u>(</u>	22	+10	389	9	-13	-18	03	2	-0	-10	59	3	7	-1/	219	2	-10	
4	329		- 4	- 4	47	2	-/	-1/	123		-7		282	2	u c	-14	147	3	13	
2	292	(-21	- 6	447	10	14	-10	00	3	-15	-5	115	3	-0	-13	371	a	-16	
0	52	2	12	•7	47	2	-1:	-15	177	5	-7	-7	180	4	=3	-12	204	2	-26	
	258	6	-5	•6	261	6	•9	-14	152		8	-5	82	5	10	-11	280	7	•2	
9	31	3	10	- 5	81	2	11	-13	107	3	-12	-5	38	3	-3	-10	65	Z	- e1	
10	109	4	-3	-4	322	8	4	-11	113	3	15	-4	44	3	-9	-9	82	2	- 5	
11	348	8	39	- 3	31	3	-2€	-10	84	3	9	-3	181	4	-4	-8	25	3	14	,
12	124	3	5	•2	483	11	16	- 9	309	7	33	-2	241	5	-11	-7	300	6	13	
13	242	6	7	-1	160	4	7	-8	331	7	15	-1	258	6	-3	-6	416	9	-19	
14	67	3	5	0	356	8	-1	-7	242	5	29	0	128	3	1	-5	464	10	4	
17	107	3	-2	1	66	2	9	-6	70	2	2	1	82	3	-4	-4	61	2	- ()	
H	, K=	7 1	, 2	2	101	2	2	-5	113	3	-12	2	41	3	-3	- 3	395	9	- 2	
- 21	82	3	-1	- 4	398	10	-10	-4	76	2	-2	3	114	3	-11	-2	41	2	- 3	
- 20	55	3	- 4	5	211	6	-£	- 3	277	6	-1	4	117	- 3	-7	-1	264	6	6	
-19	187	4	-10	6	458	11	-13	-2	198	4	8	5	225	5	-12	0	224	6	10	
- 18	132	3	- 0	8	54	2	15	-1	235	5	-12	5	125	3	-4	1	650	14	30	
- 17	206	5	6	10	205	5	21	0	183	- 4	-5	7	- 87	3	-12	2	185	- 4	7	
- 16	159	4	- 0	12	277	7	7	1	112	3	8	5	62	3	-3	3	271	€	-9	
- 14	130	3	- 3	14	143	3	-6	2	59	3	9	1	H₽K≡	7	, 8	- 4	57	2	2	
-13	254	6	-6	16	39	4	-5	3	214	5	20	-7	64	3	-3	5	66	2	3	
- 12	216	5	-17	ł	H, K=	7,	, 4	4	219	5	10	-6	122	3	-6	6	167	- 4	-15	
-11	402	9	-15	-19	176	4	-5	5	337	8	17	-5	197	- 4	-11	7	178	- 4	-10	
-10	89	2	- 8	-18	102	3	-4	6	145	4	22	-4	72	3	-4	8	102	2	5	
-9	251	6	-1	-17	85	3	-0	7	151	4	-2	-3	107	3	-12	9	334	8	38	
-7	282	6	-24	-16	47	3	11	9	100	3	6	-1	50	3	3	10	135	3	- 14	
-6	283	6	-6	-14	50	3		10	96	3	2	0	74	2	-0	11	189	4	15	
-5	535	12	-9	-13	229	6	16	11	144	3	-8	1	192	4	4	12	21	6	8	ŧ
-4	302	7	-13	-12	169	4	12	12	95	3	-3	2	106	3	-7	13	135	4	4	
-3	341	8	9	-11	249	6	29	13	155	4	-3	3	97	3	1	14	68	2	-1	
-2	30	2	6	-10	188	4	10	I	1.K=	7,	, 6	4	35	4	1	15	163	4	-8	
-1	14	5	-14	F -9	80	2	1	-16	80	3	4	1	H.K.S	8	, 1	16	73	3	0	
٥	290	6	3	- 8	27	6	-24	-14	110	3	-8	-20	56	3	-2		H, K=	8	2	
1	493	11	14	-7	311	7	10	-13	61	3	-7	-15	62	3	-6	-21	164	- 4	1	
2	206	5	4	-6	257	6	-6	-12	264	6	-15	-15	383	8	17	-20	62	3	5	
3	445	10	6	-5	344	7	3	-10	273	6	•11	-14	299	7	17	-19	24	6	3	*
4	127	3	8	-4	126	3	3	-8	39	7	2	-12	30	2	-15	-17	157	4	=13	
5	62	2	-6	- 3	201	5	2	•7	31	5	5	-18	507	11	6	-16	133	3	2	
7	299	7	7	•2	64	2	-9	•6	323	7	ģ	-8	448	10	29	-15	307	7	20	
Å	167	4	- 4	- 1	141	3	Ś	- 5	56	2	Ś	-6	250	4	-2	-14	262	ĥ	13	
q	289	Â	25	ñ	62	2	ź		346	Ä	33	-4	31.6	7	-34	•13	169	Ĕ	-5	
10	256	ĥ	20	1	265	Ā	-2		125	3	_î	•2	577	13	4	-12		2	•1 3	
44	131	X	7	• •	145	3	- L - L	_ 2	114	ž			278	7	, A	-11	37	Ĩ	- 7	
47	101		4	6 7	310	7		-5		7	-6	9 9	422	10	0 L		107	Ē		
44	AUJ 82	2	÷ 2	J	1 67	1 	-7		224	E E	20	2	285	7	- 24	- 4 4	4 31 4 4 A	10		
15	100	5 6	-0		47	20	-0	U 1	664 60	2		4 4	174	(L	-21		276	4	۵ ۸	
46	A 30 77	7	-2	7	466	5.U 1	7 ' 2		23	د ۵	21		10	7 2	-67	-0	219	ä	ч Я	
				_			_	-		-	<i>~</i> ~		~~~	-				-		

STRUCTURE FACTORS CONTINUED FOR VITERATUM BISCYCLOPENTADIENNL CHLORIDE DIMETHYLPHOSPHOMETHA

STRUCTURE FACTORS CONTINUED FOF YTTERBIUM BISCYCLOPENTADIENYL CHLORIDE DIMETHYLPHOSPHCMETHA

.

41

.

L	F 08	SG	DEL	L	F08	SG	DEL	L	F08	SG	JEL	L	FOB	SG	DEL	L	F08	SG	DEL
-6	233	6	15	-16	65	3	-3	10	125	3	-2	-2	109	3	11	-5	393	9	-11
-5	64	2	-7	-15	216	5	-9	1	H, K=	8,	5	0	585	13	-3	-4	1 32	3	-4.
-4	29	2	4	-14	84	3	2	-14	193	4	8	2	523	11	15	-3	2 32	6	-15
-3	392	9	-3	-13	115	3	5	-11	52	6	2	6	131	3	4	-2	47	2.	0
-2	319	7	5	-12	56	3	11	-10	196	4	-6	8	367	8	39	-1	158	4	- 2
-1	446	10	-27	-11	175	4.	2	•9	83	2	4	10	222	5	32	0	289	7	20
0	287	7	-15	-10	112	3	-2	-8	354	8	11	12	60	3	4	1	374	9	11
1	183	5	-11	-9	342	8	14	-7	50	3	-1	14	191	4	-9	2	292	8	-3
2	103	3	-2	-8	247	6	11	-6	-113	3	9	ļ	H.K.	9.	i	3	294	7	2
3	279	6	16	-7	254	6	-26	-4	186	4	11	-21	110	4	3	4	80	2	8
4	11.4	3	- 8	-6	30	5	-1	-2	330	7	19	-23	46	5	3	6	119	3	
5	411	10	-25	-5	185	5	4	-1	92	3	1	-18	96	3	0	7	263	6	18
6	138	3	-7	-4.	172	4	2	Ő	215	5	<u> </u>	-17	151	4	-14	8	150	4	27
7	220	5	0	-3	292	7	15	1	93	4	-2	-16	160	4	18	9	298	7	28
8	45	4	-2	-2	129	3	-1	2	30	12	-54	-15	293	7	21	10	164	4.	13
9	107	3	12	-1	261	6	-12	4	290	7	1	-14	106	3	18	11	81	3	-1
10	85	2	9	0.	52	2	-7	6	279	7	-9	-13	134	3	16	12	26	5	-5¥
11	256	6	9	1	26	3	19	8	44	3	2	-12	56	2	3	13	97	3	-10
12	221	5	g	2	1.4	8	94	- 10	1.53	4	-4	-11	259	6	- 15	14	103	3	-5
1.3	212	5	-6	3	1.52	3	-3		H.K=	8.	7	-13	245	Ē.	- 30	15	164	4	-1
14	29	6	-124	• •	236	5	12	-12	1.44	3	-9	-9	437	10	-9		H'n Ka	ġ.	3
16	4.9	3	1	5	306	7	19	-11	143	3	-6	-8	197	5	11	-20	93	3	0
H	• K =	8	. 3	5	194	4	23	-10	73	3	3	-7	32.5	7	-1	-19	61	<u> </u>	-1
-20	201	5	3	7	123	3	11	-9	26	6	-54		280	7	8	-18	143	3	-5
-19	49	3	g	. 8	44	3	11	-8	33	4	9	-3	303	7	8	-16	304	7	-10
-18	182	5	-14	ģ	139	3	14	+7	204	5	-0	-2	160	i i		-1.5	65	3	-13
-16	74	2	-1	10	118	3	1	-6	95	3	-2	ā	126	3	Ľ.	-1.4	2.54	6	12
-15	28	5	8	1.1	185	4	-2	•.5	229	5	-1	ť	6.8	2	16	-13	4.9	3	-1
-14	236	5	13	12	93	3	-7	• •	178	Ĺ	-1	2	287	5	+11	-12	48	3	18
-13	5:q.	3	-3	1.3	1.0.4	3	-17	-3	8.9	2	-1	3	276	6	-4	-11	92	2	-5
-12	337	Ř	23	1.6	51	3	-2	- 2	95	3	2	L.	118	3	-2	-10	247	6	16
-11	47	3	2		1.K=	8.	5	-1	93	2	ā	5	303	7	-22	-8	417	10	-10
-10	295	Ā	-3	-17	1 31	3	5	Ū.	127	3	7	5	143	4	-7	-7	102	2	-11
-9	163	ŭ.	13	-15	77	3	-6	-1	195	L.	2	7	158	5	20	-6	26	-	-1
-8	221	5	-16	-14	38	6	1	2	107	3	5		35	3	5	-4	286	7	-9
-6	467	11	1.3	-13	1 8 9	5	-7	3	128	3	-7	ă	qq	2	17	-2	457	11	3
-5	36	-2	11	-12	130	3	5	Ĩ.		L.	Ē.	10	105	3	q	•1	37	-2	2
-4	411	ā		-11	256	6	.	6	49	3	Š	11	276	8	ź	ā	229	6	-5
-3	63	2	11	-10	127	3	1	7	136	3	-8	12	138	3	Ĩ	2	59	2	6
-2	32	2	-7	-9	46	3	Ē	· · ·	Hake	8.	Ř	13	181	ŝ	-9	- 3	54	2	6
-1	104	2		-7	232	5	12	•7	82	3				ģ.	2	4	374	ā	30
ā	264	6	-1 A	-6	285	- 6	ģ	-4	84	3	-9	-20	57	3	-3	5	65	2	1
1	88	2	<u> </u>	-5	320	7	33	-3	186	ŭ	-10	-19	184	5	-6	6	299	7	30
2	447	10	ġ	- 4	118	3	28	-2	106	3		-18	112	3	-6	7	72	2	97
3	90	2	, ,	-3	75	2	7		168	ĥ	-5	-17	126	3	-12	à	32		
4	201	5	10	- 2	35	2 7	5	- 1	100	7	-7	-16	51	ž	- 12	1 1	251	- A	1.0
5	72	2	-2	- 6	92	2	7		40 4 . K .	ā.	-, A	-15	72	2	- J N	12	185	Ă	-9
ĥ	106	2	- 2	- 1	145	7		-20	250	6	1	-14	443	3	ă	13	17	12	64
7	76	2		4	247	2	28	-19	162	6	- 25		274	ĥ	70	14	02		
, 8	372	<u>a</u>	67	>	226	5	5 A	- 1 4	00 00	2	- 20		278	5	2	- - 7	JL H.Ke	a.	4
4 1	164	7	+7	27	200	2	27	-10	774	د ۳	22	-11	290	0 7	-49	ا ۹ ۹ هـ	445	- 71 - 7	т (
44	204	- 4 2	4 4	J	172	5	्र∦ ≝	-19	354	r A	4	-11	50/ 22	ľ	-10	-10	470	7	_4 7
41	144	37	P 4	4 2	443		3	-10	100	5	- 4 9	-10	2 C 8 C			-46	4 72	3	-13
 	***	3	-10	9	200	3 F	-0	-14	720	7	-16		07 62			-45	1 J U 0 7	J 7	7
_ 4 =	19 5 3	0 · 4	, 4	<i>(</i>	607	2	-7	-0	700	7	-2	-7	122	4	7		7J 210	J	5 6
- 10	10	0	-3	0	722		7	- 0	370	7	- 24	-1	376	0	-2	-13	472	0 L	U 4
- 71	202	5	2	Э	1(]	4	-7	- 4	363	<i>r</i>	- 21	-0	174	2	1	-14	712	-	1

PAGE 9

YTI	ERB:	IUM	BIS	CYCL	OPEN'	TADI	EE:N¥	L CHI	LORI	05 0	DIME	THYL	PHOSI	PHC	METH	4		PA	GE10
L.	E 08	SG	DF (L	F09	SG	OFE		FOR	SG	151	1	FGB	56	0 E1	t	FOR	56	DEL
- 11	186	5	10	-3	50	6		- 8	149	4	44	-1 3	45	7	-8	_ 1 0	62	50	- D
-10	20	6	14		54	7		-7	202	7		-12	260	Ĕ	27		6C 6C		-0
- 10 - 0	28	-	-2	- -	24.8	5		-1	254	É	- 1 7	-16	10	6	-24		40		4
•7	328	7	15	2	268	5	44	-6	298	. 0 . 6	-18	-11	487	2	-2	-7	265	5	4 9
	268	É	- 3	ے د	4 74	7	1	- 5	4 6 7 3	2		~19		2		-1	4 3 9	1	42
-0	200	7			131	3	-1	- 7	196	3	-0		4 19 4	2	44		160	3	49
	577	2	-0	7	76	5 E	-1	-3	4 0 0	2	-9	-7	474		-7		497	'	44
-2	55	2	-0	r f	227	7	_7	-6	4 6 9	2	-		407	ä	-2	- 3	107	3	**
-2	477	2	- 9		237	2	-3	-1	225		2	-0		2		-3	243	2	-
-1	146	7	- 0	_ 4 4	446	71	, , 	4	220	7	-44		256	2			279	2	-6
4	714	7	4 1.	-10	70	2	-2		403	* ±	-12		290	5		s 0	462	6	47
2	497	7	24	-10	101	5	-10	2	260	2	-12	-2	720	7	-2	- U 4	266	ž	42
2	123	5	40		72	7	-10		230	2		4	32.7	7	-2		4 70	7	**
3	146	7	4 9	- 7	12	5	-3	2	02	2	-1		47	3	-2	2	197		7
4	110	3	-7	- 1	170		-4	7	705	2	-1	6	203	1	34	5	104	-	-14
7	77	2	4.5	-0	20	3	-1	(240	r E	41	4	20	2	-7			2	
	301	7	4 4		103	3	-7	0	247	0	10	7	170	۲ ۲		2	40 66	3	
0	100	3 E	4	- 7	40	3	- 3	9	217	2	12		230	2	30	0	77	- 7	U - 4 0
9	616	2	1	- 3	100	4	••	10	72	3	1	· ·	70	3	u e	r	101		-10
11	42	 	0	- 2	132	3		11	20	2	-1	5	314		2	0	151	3	- <u>-</u> -
12	33	2	-4	-1	10/	2	-0	12	42	3	I	10	172	4		9	17/		1
13	82	3	• 4	U 2	104	5	-2	13	121	5	-1	12	- 51 	3	•/	IU	73	3	- 4
		71	> >	2	70	3	4 7	14	112	3	-1	- 4 0	70	10.	, 4	1 	1952	104	
- 17	140	3	-4	3	104	3	-12		19 K =	10,	2	-15	30	5	U .	14	139	3	-1
-10	125	<u>১</u>	-1	4	111	3	- 3	-19	31	4	14	-1/	231	2		-13	43	4	-11
- 4 /	213	2	- 0	~	154	3	-3	-10	28	2	5	-15	133	4	1	-12	26	5	5
-14	21		1		Hy KE	144		-1/	1/9	4	-11	-15	190	2	-2	-10	16/	4	-4
•11	131	5	-2	-20	73	5		-16	125	5	-7	-14	45	5	5		254	6	-2
•10	153	5	- 4	-18	194	•	-11	-15	249	ŗ	5	-12	/1	2	1	-0	55	2	1
-9	292	7	11	-15	229	5	5-	-14	53	- 3	7	-11	197	5	-6	•5	24	6	5-
-8	237	5	8	-14	238	5	31	-13	98	4	1	-10	145	4	-1	-4	170	4	-1
•/	109	4	15	-12	172	4	- 1	-11	132	5	10	-9	295	7	21	-2	288	6	-10
-6	112	3	7	-10	428	9	-14	-10	271	7	-12	-8	153	- 4	21	a	120	3	-6
-5	90	Z	- 5	- 8	423	10	-21	-9	293	8	1	-7	168	5	21	2	56	3	8
=4	117	3	25	= 6	169	4	-16	* 8	97	2	Z	•6	134	3	-5	3	65	3	-7
-3	315	7	25	= 4	239	5	-31	-7	191	5	-8	-5	141	4	4	4	197	5	-12
•2	138	3	21	•2	446	10	16	-6	98	2	-15	-4	187	4	13	6	179	4	-10
-1	164	4	18	0	252	6	-5	-5	82	2	-13	-3	346	8	32		He Ka	10,	7
0	122	3	11	2	176	4	•	-4	98	3	1	-Z	131	4	7	-10	57	3	••
1	31	8	1'	- 4	401	9	5	-3	362	9	-15	-1	264	5	39	-9	45	3	4
3	211	5	20	6	231	5	- 34	-2	139	3	-1	0	45	3	- 14	-6	37	- 4	-5
4	105	3	10	8	56	3	6	-1	345	8	-10	2	127	3	-1	-7	170	-	-7
5	266	6	-10	10	271	6	-2	0	219	6	-8	3	247	6	27	-6	99	3	Z
6	158	4	- 8	12	203	5	-15	3	210	5	12	4	122	3	9	=5	194	4	•5
7	96	2	-3	14	73	4	-6	4	186	5	5	5	237	5	8	-4	79	5	-9
9	126	3	-2	1	H,K=	10.	, 1	5	312	8	24	6	123	3	-14	-1	119	3	-
10	74	3	-7	-20	100	3	-8	6	149	3	23	7	105	3	•11	Q	59	2	9
11	177	4	-1	-19	186	4	-12	8	44	4	4	8	41	3	2	1	191	4	2
- F	1, K=	91	6	-18	113	3	-0	9	112	3	0	9	141	3	-1	2	118	3	5
- 14	139	3	-7	-17	102	3	-13	10	65	2	2	10	118	3	7	3	79	3	5
-13	33	8	-2	-15	94	3	4	11	216	5	-2	11	158	4	-12	_ 1	H• K#	11,	, Q
- 12	206	5	-9	=14	149	4	10	12	111	3	-3	l	H•K=	10,	, 5	-20	257	6	- 2
-10	173	4	- 8	-13	277	6	41	13	111	3	-7	-15	71	3	-7	-18	197	4	5
-8	91	3	-6	-12	238	5	•	1	H•K=	10,	3	-14	89	3	4	-16	58	2	-2
-7	56	3	4	-11	295	7	-17	-18	189	5	-4	-13	259	6	-10	-14	219	5	18
-6	309	7	5	-10	39	2	ſ	-17	38	5	-1	-12	97	3	-0	-12	458	10	31
-4	262	6	13	-9	96	2	- (-14	27E	6	5	-11	131	3	-5	-10	125	3	~ 3

STRUCTURE FACTORS CONTINUED FOR

:

*** *** ***

;

1

.;

-

• • • • • •

STRUCTURE FACTORS CONTINUED FOF YTTERBIUM BISCYCLOPENTADIENYL CHLORIDE DIMETHYLPHOSPHOMETHA

a the second reason and a

ł

.

in a subset

ß

×

ata kana a kundi aua kanaara kanaara kana kana ka a

- 44

2

and the second second

ġ

¥

.

L	F 0 8	SG	DEL	L	F08	SG	DEL	L	F08	SG	DEL	L	F08	SG	DEL	L	F08	SG	DEL
-8	297	7	-13	-6	112	3	-3	0	201	5	7	-12	77	2	15	-14	232	5	- 4
-6	507	11	-15	-5	335	8	-5	1	329	8	22	-10	388	8	33	-12	294	7	-3
-4	98	2	-15	-4	69	2	6	2	168	4	1	-8	321	7	19	-11	85	2	3
0	418	9	-30	- 3	147	4 .	0	3	100	. 2	-7	-6	63	2	-9	-8	184	4	9
2	348	8	-9	•2	67	2	-4	5	114	3	3	- 4	386	9	14	-7	121	3	9
4	90	3	5	-1	192	4	4	7	216	5	-1	-2	304	7	17	-6	399	9	29
6	359	8	34	0	85	2	6	8	124	4	3	0	151	3	-1	-5	66	2	7
. 8	276	7	•9	1	252	6	17	9	175	4	-2	2	206	5	18	-4	2 39	6	17
10	84	2	-2	2	197	4	-4	1	H•K=	11,	5	4	388	° g	26	-2	65	2	9
12	93	2	1	3	12.4	3	1 .E	-15	166	4	- 0	6	185	4	10	-1	24	5	1*
1	1,K=	11.	, 1	4	27	- 4	2	-12	60	2	-6	8	158	4	-4	0	334	7	30
- 19	48	3	- 6	5	68	2	3	-11	191	4	-5	10	193	4	-14	2	197	5	7
- 18	56	3	- 6	6	125	3	6	-10	129	3	-3	1	H•K=	12) 1	- 4	43	3	6
- 17	162	- 4	- 6	7	252	6	9	-9	209	5	4	-19	176	4	4	5	36	3	2
-16	177	4	- 0	8	101	2	-0	- 8	66	2	0	-18	67	3	-1	6	204	5	-1
- 15	127	3	1	9	191	4	-3	-7	183	4	4	-15	1.44	3	-4	7	61	2	- 2
-14	87	3	6	10	17	19	-74	-6	75	2	-7	-14	198	5	-11	8	211	5	-9
-1,3	80	2	4	1	H, K=	11,	3	-5	92	2	-7	-1.3	235	5	20	10	100	3	1
-12	51	3	- 2	-1.8	158	4 .	-8	-4	86	3	7	-12	170	4	18	1	H• K=	12,	- 4 -
- 11	220	5	21	-16	248	6	-3	- 3	295	6	1	-11	279	6	25	-16	113	3	-4
- 10	240	6	1.0	-1.4	153	4	-3	-2	162	4	-2	-10	74	2	1	-1.5	194	.4	-5
-9	3,6,3	8	- 6	-1.3	46	4	9	-1	223	5	3	-9	61	2	-1	-14	52	4.	•7
-8	93	2	17	-12	103	3	2	0	42	4	11	-8	1.8.3	5	8	-13	29	5	7
-7	1.1.0	3	3	-10	21.4	5	36	1	82	2	12	-7	344	8	29	-12	102	3	-8
-6	40	2	•6	-,9	42	3	D	2	6.0	2	12	-6	191	4	4.	-11	173	4.	•2
- 5'	168	4	9	- 8	260	6	26	3	1.8.8	4	-9	-5	294	7	28	-10	149	3	-4
-4	200	5	-1	-5	120	3	•7	4	79	2	-3	=4	230	5	1.	•.g	257	6	9
-3	240	6	•9	• ·b ,	2.98	7	12	5	192	4 :	-2	-2	101	Z	-0	-8	1.1.6	3.	-1
- Z	232	5	2	-3	2:8	4	-	6	110	3	-8	-1	191	5	21	•7	94	3	12
-1.	239	6	•0	• 2°	412	· 9	- 34	7	4.9	3	-1	0	204	5	14	= 6 [,]	38	· 5	-0
U	3.9	4	12	•1	51	5	• 6 • 6		He K 🕿	11,	· 6	1.	2.17	6	24	-5	115	3	9
1	22	2	- 8	U	100	4	14	-12	185	4	- D	2	162	4	1	- 4	100	3	U A T
2	1.3.5	3	2	2	200	5	18	-11	66	5	U	5	220	5	18	-3	335		1.5
3	233	0	11	3	2.2	2	14		95	2	-1	7	1.34	3	11.	-2	243	7	13
	1/3	4	1.7	4	307		20	•7	42	S	-4	0	137	 	U 	-1	212	2	14
7	317	0	40	2	09	3	7	- 0	240	D L	- 4 6		214	2		. 1	4 74	2	1
0	100	- 4	4	0	195	4	3	- 4	104	-	-15		1.71		- 4 3	2	131	3. 2	- 7
	34	3	U.		44	0	-1	-2		3	2	3	92	4 2	-12	5	4.00	7	-1
ä	36	- 4	- 4	10	103	4	-7		274	2	-0			- 461	, 2		470	5	-1
	4 6 4	3	- /	- 4 7	4.00	119	4 6		472	7	- 4 6	-17	104	- J - L	-3	7	£10 €4		-0
44	1 60	5 6	-7	-11	170	3	5	2	1/3	2	- T.0	-17	174	- 4	-0	, i	21	5	4.0
12	133 74	2	-3	-13	4 60	7	-0	5	24	2	-5	-10	450	7	-12		45	12.	. E
4 7	124	2	4	- 1 7	177	- 4		-	3U 27	7	-0	-17	720	3	- 12	-16	4 74	167	2
T.	154	44	. 2	-13	400	7		"	93 4. 2-		7	-11	407	5	47		222	5	-2
_ + a	100	- <u>+</u> + (, <u> </u>	-14	1 96	5		-7		- 1 1 1 7		-10	151	7	14	-12	87	2	- 2
- 17	2.20	2		-10	700	-	2		10	7	-	-10	455	7	29	-11	1 32	3	-1
- 15	111	3		-70	43 62	2	د د _ 2		E7	J 7				2	63	- 44 - 0	A UL	2	
- 15	100	3	- 2		76	2			217	، د	-7	-0	128	2	10		71	2	<u> </u>
- 47	281	د 7	10	-0	267	ے د	10	-3	551 51				186	5	31	-7	195	Ā	Ľ
- 12	132	7	1 6		471	2	۳. ۵	-1	145	7	-7		444	3			62	2	2
• 11	173	5	17	-0	322	7	29	•	- 	3	-1	10	75	3	-5	-5	244	6	-7
•10	115	3	- 5		174	, L	10	.	H.K.#	12.			HaKe	12.	. 3	-4	124	3	•1
	R.R.	2			71	2			177	1 	2	-12	172	 L	12	-7	36	ĸ	3
	161	د 4		-3	128	2	4 - 3	-10	203	Ē	ے 1	-17	37	~	45 a7	-3	6.8	3	-
•7	246	6	13	•1	241	6	17	-14	131	3	-1	-16	89	3	2	-1	212	5	- 4
-		-		_		-				-	-			-	_	-		-	-

35

• • • • •

PAGE11

	YTT	ER8:	CU M	BISC	CYCL	OPEN	TADI	ENYI	LCHI	LORI	DEC	DIMET	THYLI	PHOSI	PHC	IE THA			PA	GE 12
	L	F 08	SG	DEL	Ĺ	FOB	SG	DEL	L	F08	SG	DEL	L.	FOB	SG	DEL	L	F08	SG	DEL
	0	134	3	- 0	5	214	5	7	1	240	6	-7	1	199	€	- 1	-3	195	4.	-14
	1	266	7	-11	- 6	68	2	-8	2	99	2	-15	2	94	2	-2	-2	129	3	-7
	2	82	3	-12	7	29	. 4	ģ	3	85	2	-3	3	184	2	Ō	-1	113	3	•7
	3	67	2	-9	8	47	3	-2	5	103	3	- 9	5	103	2	5	ā	25	5	0
	5	60	3	-1	ġ.	158	4	-6	6	68	3	6	6	128	3	5	1	85	2	3
	6	35	5	-6	10	94	3	-1		H.K.	13.	. 5	7	173	4.	-2	2	86	3	-2
	Щ	l . Kæ	12.	Ē		HaKi	13.		-12	102	3	3	. 8	69	3	-3	3	178	<u> </u>	-11
•	•••	61	3	2	-15	AD	3	-1	-11	207	5	5	, T	i.Ka	14.	2	4	81	. 3	-11
	18.	201	5	6	-15	163	Å	2	-10	91	2	1	-15	93	3	1		HaKz	16.	5
	• Q	54	Ĺ	ă.	-14	92	3	1		199.	G.	-13	-15	130	3	-5	-18	58	3	ģ
	-) - 8:	114		-2	-13	226	5	· - 7	-8	37	3	-0	-14	27	5	-6	-9	125	3.	8
	- 4	173	<u>,</u>	-10	-12	115	3	·	-7	50	3	-4	-13	31	Ĺ.	-3	- A	1.04	3 "	ā.
	•3	28	Ľ	5	-11	129	3	. 13	- 6	33	<u> </u>	9	-12	98	3	-0	-7	175	ŭ	" - A
	.2	207	5	ก็	-10	54	. 2	1	5	100	3	ž	-11	199	5	-1	-6	102	3	2
	-1	32	<u> </u>	2	_ Q	4.58	. L	,	- 4	72	2	-4	-10	86	2	-1	-5	129	3	1
-	- -	77	2	6	- 9	1.63	L L	<u> </u>	• 3	20.8	Ē		-9	182	2	-10	-2	55	3	Ē.
	4	46	7	4	-7	268	ž	21	- 2	120		ĩ		01	2	- 10.1		1 51	ž	-1.1
	2	- 1 74	· J	-2	-,	240	7	-1		162	- 		= 0	2.8		-2	- T	123	3	~ .
	2	22	7				47.			476 68		_1	-5	182	L	40	4	107		-14
	- Jù		47.	- <u>-</u>	- • •	2%	. 109		. 2	. 74	2	-1		446	. 7) 7)	. 40 - E		4.7/ 4. % #	45.	
	••	467	L.J.9	10.00 	-10	240	7	- 4 2	. 2	160	. <u>E</u>	-0	- 7	240 276	י ט ב		-16	919-11- . 913		
	10	1 20	7	<u>۲</u>	-14	· 02	3 E	-12	3	103	- 49 · 7		-3	263	2	7	-10	205	3	-4.6
	4:1.	130	5 6	- 4 0	-13	47	2	• •	•	- 70-			-1	50	2	-3	-13	4.08	7	-1-
	1 9 ·	233	7	-10	-14	100	2	-4	- •	4.20	101) 0	- <u>T</u>	01 £7	2	-1	-12	700	3 E	-7
	10	320	7				3 7	2	-0	177	4	- 6	4	404	2	-1		260	2	-20
· •	- U	216	2	14	-10	313	7	-	-0	112		-0		704	2	-2	-0	6.36	U .	-20
	-6	240		29	- 9	20	37	2	- 4	90	3		2	37	4	- 17		120	3 ¢	
	-0-	507	11:	· 70	- 7	132	3 F	-3	÷ • 2	90	3	-0	3	442	2.	-13	-2	203	0 E	-15
•	- 4) s - 1	220		23		33	2	2	- 4 8	754	141) U	4 E	112	. J.	- 7	U a	- 2 2 7	· 5	-17
• • •	• 2 •	219	2	18	-0	• 41		. ••	-10	270			7	120	37	- 44	2	101		- J, 2
	2	370	. 0	31		720	ις. Έλληνας το ματά τ Έλληνα το ματά τ		-12	267	3			20	3	-11	44 1 6	30		- 7
	2	317		11		329	, 7	14	-10	203		-1.2	· · ·	70	10	27	. 0	143	3	
	0	204	0		- 3	40	3	2	- 0	105	4	9		7983	144	- J - L	-46		174	- 1 '
	о и	207	2	- 4	- 2	247	D L	- 5		370	0 E	27	-17	30	4		-17	449	. 2	
	4 0	404	1.39		U 2	20	. 4	-7	-2	224	2	7 1	-19	243	C E		-13	110	3	- 2
	47	1.0 2	. 3	-3	2	247	0 4:2	-7	L 2	31	73		-12	204	7	7	-14	406	0	- 2
	16	144	7	-17		282	- 12	- 1 /	- <u> </u>	-711		-7	-0	271	7	-0	-11	1 70		-2
	10		3	-13	-	232		-14		.230	2	-3		357	3 6	-7	-14	476	- 3 · 7	
	17 1 L	77	2	- 1	7	407	2	-1	0,	4 3 4	2.	7	-0	203	C. 7	-3	- 7	130	3.	-3
	17		3			10/	. J. 7.		•		3	-1	-7	20	37	-1		17	2	1.
	6C 4 4		C	3	•		3	-2	- 4 6		141		· • •		3	-0		40	- 3 ·	- 4 4
	11	101	4	4.2		TOKE	134)., 4 .	-10	407	3 E	- 7		104	-	7	· -7	100	· • • • •	-11
•	10	110	3 6	12	-17	127	- 3 · 	· č	-13	193	2	-3	U A	646	2	· · · ·		120	3.	- 20
	- 7	277	2	20	-14	123	3		-14	10,7	3		1	- 14	13	- 7	-3	221	7	-24
	-0	132	3		-13	204			-13	208	- D	- 4	2	182	4	-3	-2	00	2	- 3
•	- (20	4	13	-12	134	3	Č	-12	144	3		4		4	-2		22	10	-0-
	-0	71	3	9	-11	135	3		-11	40	3	-2	. D.	104	- 4		1	130	- J -	- /
•	- 7	200	2	22	• 9	35	2	2	• 9	70	2	2		7955	14,	4	2	100	5	-1
•	- 7	120	5	-10	- ð 	124	5	-8		150	5	-11	-12	17	5.	1	5	124	4	-0
		271	(33	- /	280	b	0	•7	293	<u>_</u>	1/	-11	214	2	8	4	10/	3	- 4 4
•	-2	218	5	15	• 5	89	2	− Z	• 6	216	5	5	-10	1/4	4	Ũ	5	70	2	-11
•	-1	83	2	22	-5	233	5	• - 2°	•5	>Z3Z	5	· 7	-9	180	4	-4	5	32	6	•0•
	Ū	21	5	-31		70	3	3	· • 4	73	Z	-5	-8	86	Z	•Z		NýKS V J – – –	154	Z
	1	68	2	· · <u>7</u>	- 3	43	3	-7	•3	71	2°	4	•7	38	7	-34	-15	155	1	1
	Z	103	2	7	-2	81	2	-3	· •2	40	3	0	-5	74	2	5	-14	118	3	-3
	3	242	5	10	-1	247	6	9	-1	270	6	11	-5	155	4	•1	-13	182	4	-3
	4	1 9 9	5	2	Ω	105	5	-3	n i	183	6		- 4	81	3	-5	-12	61	2	●Z

36

STRUCTURE FACTORS CONTINUED FOR

.

STRUCTURE FACTORS CONTINUED FOR YTTERBIUM BISCYCLOPENTADIENWL CHLORIDE DIMETHYLPHOSFHCMETHA PA

L	F 08	SG	DEL	L (<u>F0</u> B	SG	DEL
- 11	62	3	8	- 6:	127	3	0
-10	97	2	3	-5	1.47	3	2
-9	154	4.	- 4	-3	68	2	-7
-8	90	2	-3	-2	48	2	3
-7	262	6	-4	-1	215	5	-16
=6.	1.47	4	-4	0	92	3	-7
-5	125	3	-7	1	146	3	-7
-4	32	4.	-1	2	64	2	5
-3	58	3	3	н	•;K=:	16,	2
-2	91.	2	3	-12	114	3	1
-1	178	4.	-7	-11	1.91.	· 4.	\$
٩.	129	3	-5	-10	96	3.	8
1.	176	- 4	-7	= 9	173	4	3
2.	2.5	5	+2#	= 6	15	1.3	-10*
3	1.7	1.8	-8	-5	193	5	-2
5	148	3	4	-4 .	1:47	3	-5
- 1 - F	┨ [╻] ┓╕Ҟ═╝	15	, 3	-3	1.63	4	-0
-13	30	5	4	-2	77	2	-3
-12	175	4.	4	-1	54	2	4
- 10	260	6	- 3	1	1.1.0	3	-15
-8	101	2	- 5	2	122	3	-3
-6	132	3	6	H	₩ K 	16,	3
-5:	- 41	3	1	-1.0.	45	7	-3
-4	218	5	=1 .	-9	36	4	8
-3	22	6	- 5*	- 8	215	5	-4
-2	162	4	-7	-7	32	10	9*
0	27	6	+2*	-6	177	4	-6
2.	1.63	4	-1.5	- 5	40	6	8.
4:	220	5	-3	- 4 ,	31	6	3:4:
•	1. ₀.K:=:	15	y 4	-2	131	3	-11
-11	73	3	-2	0.	198	5	-4
•9	126	. 3	-6	H	• K=	17,	g
• . 5.	113	3	-0 -0	-10	86	3	J
-7	1,90	4	-12	-8	1.85	4 .	-6
-6	101	3	9	-6	1.73	4.	1
- 5	116	3	-11	- 4-	5.8	<u> </u>	1.4
-3	30	4	2	-2	1.30	5	-12
-2	28	5	-2		238	5	
-1	1.39		•4	H		1/,	L
U A	133	3	-0	-10	104	3	2
1.	1/3	4) 4 E	-7	- 9	144	3 E	0
- 12	79K= 206	101		-0	20	2	
- 10	477	. 7	-1	-0	7U 4 55	- 4 - 7	-
-10	470		-1	-7	177	3) E
	130	3	-2	7	100	3 L	47
	247	۲ ۲	J _4	-3	70		* 2 m † 3
	4 8 9	2	-1	-2	50	7	----
-2	107	77	- 0	- T	73 - 24	47	¥ 2
U 2	10	3	-0		4 6 4	111	2
		3	3	-0	104	3	۲
	172		. 4	~ 7	770	E	- 2
	152 1,K=	16	, 1	•7	220	5	-2
-13 -12	152 1,K= 188 75	16	, 1	-7 -6	220 91	537	-2 3
-13 -12	152 1,K= 188 75	16	, 1 1 -1	-7 -6 -5	220 91 64	533	-2 3 -3
-13 -12 -9	152 1,K= 188 75 127	16 4 4 3 7	1 1 -1 -4	-7 -6 -5 -4	220 91 64 59 77	5 3 3 4	-2 3 -3 6

37

L FOB SG DEL

L FOB SG DEL

PAGE13

L FOB SG DEL

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720