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Novel Genetic Variants Associated With Increased Vertebral 
Volumetric BMD, Reduced Vertebral Fracture Risk, and 
Increased Expression of SLC1A3 and EPHB2
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Abstract

Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral 

density (aBMD). We completed the first GWAS meta-analysis (n = 15,275) of lumbar spine 

volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for 

examination of the trabecular bone compartment. SNPs that were significantly associated with 

vBMD were also examined in two GWAS meta-analyses to determine associations with 

morphometric vertebral fracture (n = 21,701) and clinical vertebral fracture (n = 5893). Expression 

quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 

postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by 

proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations 

with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing 

TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also 

contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, 

rs2468531 (minor allele frequency [MAF] = 3%) was associated with higher vBMD (β = 0.22, p = 

1.9 × 10−8) and decreased risk of radiographic vertebral fracture (odds ratio [OR] = 0.75; false 

discovery rate [FDR] p = 0.01). In 1p36.12, rs12742784 (MAF = 21%) was associated with higher 

vBMD (β = 0.09, p = 1.2 × 10−10) and decreased risk of clinical vertebral fracture (OR = 0.82; 

FDR p = 7.4 × 10−4). Both SNPs are noncoding and were associated with increased mRNA 

expression levels in human bone biopsies: rs2468531 with SLC1A3 (β = 0.28, FDR p = 0.01, 

involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 

with EPHB2 (β = 0.12, FDR p = 1.7 × 10−3, functions in bone-related ephrin signaling). Both 

genes are expressed in murine osteoblasts. This is the first study to linkSLC1A3 and EPHB2 to 

clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral 

bone biology and novel approaches to reducing vertebral fracture incidence. © 2016 American 

Society for Bone and Mineral Research.
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Introduction

Vertebral osteoporosis and fracture are substantial sources of pain, height loss, and mobility 

limitation in older adults.(1) Not only has the burden of these conditions increased with the 

aging of populations, but the age-specific incidence of vertebral fracture has risen or 

remained steady even as the incidence of hip and other osteoporotic fractures has declined.

(2–4) Risk of fracture correlates with lower vertebral bone mineral density (BMD)(5) that 

declines with age, leaving the bone susceptible to compression and deformation even in the 

absence of traumatic force.

Both vertebral BMD and fracture are heritable,(6) and multiple genetic loci have been 

associated with BMD as determined by dual-energy X-ray absorptiometry (DXA) through 

large-scale genomewide association study (GWAS) meta-analyses.(7,8) Far fewer loci—

either from BMD candidate genes or from GWAS— have been linked to fracture risk, even 

in large samples.(9,10) This is likely due to several factors, including the multifactorial 

causation of fracture, heterogeneity of fracture risk by skeletal sites, and the inability of 

DXA BMD to completely define bone strength and fracture risk.

Vertebral bone is unique in that its source of strength comes to a large extent from the 

trabecular compartment, with relatively little cortical area compared to other load-bearing 

skeletal sites. Quantitative computed tomography (QCT) of the vertebrae allows for 

volumetric BMD (vBMD) measures of the trabecular compartment specifically, which are 

more strongly associated with vertebral fracture than areal BMD (aBMD) measures.(11) 

aBMD measured by DXA is confounded by bone size. In contrast with DXA, CT-based 

measurements of the spine allow for exclusion of vertebral elements and artifacts, including 

osteophytic or extraskeletal calcification that is common in older adults.(12,13) For these 

reasons, we undertook a GWAS meta-analysis of QCT-based vBMD in the lumbar spine in 

older men and women, and we evaluated the resulting associations in separate meta-analyses 

of vertebral fracture.

Subjects and Methods

Study design and participants

Cohort design and characteristics are described in Supplemental Table 1.

Discovery studies—Six cohorts of men and women of European descent with CT 

imaging of the L2or L3 spine were included in a discovery metaanalysis of trabecular vBMD 

(n = 12,287). Discovery cohorts included the Age Gene/Environment Susceptibility-

Reykjavik Study (AGES-Reykjavik)(14); Framingham Osteoporosis Study(6,15); Family 

Heart Study; Health Aging and Body Composition (Health ABC); Multi-Ethnic Study of 
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Atherosclerosis (MESA)(16);and Osteoporotic Fractures in Men (MrOS).(17) Except for 

Health ABC, the cohorts also had an integral vBMD (n = 11,080) phenotype at the same 

lumbar vertebra. All participants were adults, and the mean age in each cohort ranged from 

52 to 76 years (Supplemental Table 1).

Replication studies—Replication of trabecular vBMD associations were done in silico in 

the Diabetes Heart Study (DHS, n = 967) and with de novo genotyping on selected SNPs in 

an additional sample from the AGES-Reykjavik cohort (n = 2020).

Fracture studies—Two of the discovery cohorts (Framingham and MrOS) and five 

additional cohorts (MrOS-Sweden, Rotterdam I-III, and Study of Osteoporotic Fractures 

[SOF]) contributed to the evaluation of trabecular vBMD-associated loci for their 

association with radiographic vertebral fracture (n = 21,701; 20% fracture cases).

Lumbar spine CT phenotypes

CT scans of the spine provided vBMD phenotypes at either L2 or L3 (Fig. 1). In cohorts with 

vBMD measured at adjacent levels, correlations were high (r = 0.89 to 0.93). CT scanners 

and software used in each cohort are listed in Supplemental Table 1. In MESA, CT data 

were analyzed using Image Analysis QCT 3D PLUS software (Image Analysis, Columbia, 

Kentucky), and the remaining cohorts were analyzed using software developed by one 

author (TL).(18) In order to ensure regions of interest were defined consistently across 

cohorts, two authors (TL and MB) evaluated phenotype definitions. The tissue density of the 

analyzed volume calibrated to units of equivalent concentration of hydroxyapatite in g/cm3 

yielded the BMD values. The following two BMD phenotypes were analyzed:

• Trabecular vBMD is the average density in g/cm3 of all the voxels contained 

within the boundary of the trabecular region. This measure was calculated from a 

single slice of the region encompassing most of the trabecular bone in the 

vertebral body (Fig. 1).

• Integral vBMD is the average density in g/cm3 of all the voxels contained within 

the periosteal edge of the vertebral body, excluding all of the posterior elements 

(Fig. 1).

Vertebral fracture phenotypes

Two separate fracture GWAS meta-analyses were conducted on non-overlapping population 

samples. Radiographic vertebral fracture is often asymptomatic and was evaluated by 

imaging in cohort studies of older men and women (described below in Radiographic 

vertebral fracture). On the other hand, clinical vertebral fracture was defined by signs and 

symptoms such as back pain, height loss, and kyphosis and was confirmed by imaging.

Radiographic vertebral fracture—These studies included prevalent and incident 

fracture evaluated from T4 to L4. Prevalent radiographic vertebral fracture was defined for 

each cohort as described in Supplemental Table 1. Prevalent vertebral fracture was defined 

by Genant's scale(19) or by using vertebral body height ratios >3 SD,(20,21) evaluated by 

visual semiquantitative readings or quantitative assessments with review by a radiologist. In 
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three cohorts (MrOS,(22) Rotterdam I and II), incident radiographic vertebral fracture was 

also included in the case definition. Between 15% and 22% of each cohort were cases.

Clinical vertebral fracture—Nine clinic-based or population-based case-control or 

cohort studies were included in the GWAS of this phenotype. All participants were 

postmenopausal women age 45 years or older from Europe or Australia. Cases were 

matched with controls from the same geographical region or same ethnic background.(23)

Genotyping and imputation

Genomewide genotyping was followed by imputation of up to 2.7 million non-genotyped 

SNPs using the HapMap II reference panels. Details of each cohort's genotyping and 

imputation methods are provided in Supplemental Table 2. Replication genotyping for 13 

SNPs in the AGES cohort was done using TaqMan at LGC Genomics (Hoddesdon, 

Hertfordshire, UK, www.lgcgroup.com/genomics).

Statistical analysis

Association analyses were performed in each study first and then meta-analyses were 

applied to combine results from each study. Within each study, a Z-score transformation of 

BMD phenotypes was applied. A general linear regression model with the additive genetic 

effect was applied to test for association between each BMD phenotype (Z-score) and each 

autosomal SNP. In the regression model, we adjusted for age, age2, weight (kg), and 

principal components for ancestral genetic background and study specific covariates (such as 

study site). In mixed-sex cohorts, sex was included as an adjustment variable in the 

regression model. Sex-stratified results were also provided. In the Framingham Osteoporosis 

Study and the Family Heart Study, a linear mixed effects model with within-family 

correlations as a random effect was used to account for relatedness among participants. In 

the Diabetes Heart Study, a random effects model was implemented using Sequential 

Oligogenic Linkage Analysis Routines (SOLAR) version 6.3.4 (Texas Biomedical Research 

Institute, San Antonio, TX, USA) as described.(24,25) The kinship coefficient matrix used 

was verified by the genotypic data via the software KING. The fixed-effect inverse-variance 

meta-analyses were performed by two authors (YH and CN) independently. Meta-analysis 

results were filtered by sample size (less than one-half of the total sample size), number of 

studies with available results (fewer than three cohort studies), overall MAF (<1%) and the 

heterogeneity test across studies (I2 ≥ 50 or p values for heterogeneity χ2 test < 5 × 10−5). 

Genomewide significance (GWS) level was defined as p < 5 × 10−8, and suggestive 

significance level was defined as p < 5 × 10−6 after adjusting for genomic control λGC value 

within each cohort and after meta-analysis. Double genomic control was applied to the 

integral vBMD GWAS after observing an elevated λGC value. Q-Q and Manhattan plots 

were generated in R 3.2.2 (R Project for Statistical Computing; https://www.r-project.org/) 

using the plyrand qqman packages (Supplemental Figs. 1 and 2). For GWS and suggestive 

SNPs, effect sizes were evaluated for heterogeneity between sexes using fixed-effect inverse-

variance meta-analysis.

Conditional associations—To identify whether SNPs that were associated with 

trabecular vBMD or integral vBMD were independent from (not in linkage disequilibrium 
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[LD] with) SNPs that were reported to be associated with DXA BMD at the lumbar spine,

(8) we performed a conditional analysis using the Genomewide Complex Trait Analysis 

(GCTA) tool package.(26,27) For GWS and suggestive loci, we conditioned on reported 

BMD GWAS SNPs (associated with lumbar spine BMD measured by DXA). We selected 

SNPs for replication genotyping that were associated with CT BMD (trabecular vBMD or 

integral vBMD) independently from SNPs associated with DXA BMD based on conditional 

analyses. After genotype quality control, 13 SNPs were available for inclusion in meta-

analyses of discovery and replication.

Association with radiographic vertebral fracture—The most significant SNP at each 

GWS or suggestive trabecular vBMD locus (n = 12) was evaluated for its association with 

radiographic vertebral fracture using logistic regression, with results combined across 

cohorts using fixed-effect inverse-variance meta-analysis. In each cohort, adjustments for 

age, height, and weight were performed. In mixed-sex cohorts, sex adjustment was also 

included. In addition, results for each of the 12 SNPs were examined in an independent 

meta-analysis of clinical vertebral fracture (n = 5893(23)). False discovery rate (FDR) p 

values were calculated, and the direction of effect relative to that for trabecular vBMD was 

used to evaluate consistency across phenotypes (eg, an odds ratio [OR] >1 for fracture is 

consistent with a negative β for trabecular vBMD).

Expression quantitative trait locus analysis

We conducted cis-expression quantitative trait locus (cis-eQTL) analysis within a 2-Mb 

flanking region (1 Mb upstream and 1 Mb downstream) of each of the top SNPs to evaluate 

whether they influence transcript levels of genes in human pelvic crest bone biopsies(28) 

and human primary osteoblasts.(29) Expression experiments in human whole-bone biopsies 

and human primary osteoblasts were conducted in different study samples. For details of 

genotyping and microarray expression profiling, see Supplemental Methods. For eQTL 

analyses, a linear regression model with the additive genetic effect was used. We adjusted 

for age, weight, cigarette smoking, and genetic ancestry in the regression model. Locus-wide 

statistical significance was defined as FDR Q-values <0.05 in each locus.

Primary murine osteoblasts

Gene expression profiles of candidate genes near genomewide-associated SNPs were 

examined in primary mouse osteoblasts undergoing differentiation. These data have been 

described in detail(30) and are freely available from the Gene Expression Omnibus 

(GSE54461). For details, see Supplemental Methods.

In silico annotation and enrichment analyses

Because all GWS and suggestive SNPs were noncoding (either intronic and intergenic 

SNPs), as were all SNPs in high LD with them, we annotated potential regulatory functions 

of those SNPs based on experimental epigenetic evidence including chromatin states, 

DNAse hypersensitive sites, histone modifications, phylogenetic conservation, altered 

regulatory motifs for transcription factor binding sites in human tissues, primary cells, and 

cell lines from the ENCODE Project and the Roadmap Epigenomics Project.(31,32) This 

was done by searching the HaploReg4 web browser.(33) Position weight matrices (PWMs) 
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of a motif sequence were scored for instances that passed a threshold of p<4 × 10−7. Only 

instances in which a motif in the sequence passed the threshold of a PWM in either the 

reference or the alternate genomic sequence with variable nucleotide(s) (thus changing the 

PWM score) were considered. The enhancer and promoter states were obtained by 

ChromHMM(34) and were visualized using the WashU Epigenome Browser (Washington 

University, St. Louis, MO, USA; http://epigenomegateway.wustl.edu/).

To evaluate whether top associated SNPs were enriched with regulatory elements in specific 

tissues (such as bone relevant tissues, including primary osteoblast, bone marrow-derived 

stem cell, or mesenchymal progenitor cells available in the ENCODE and the Roadmaps 

Epigenomics Project), a hyper-geometric test was performed and permutation was used to 

estimate enrichment p values. Because our imputation was based on the reference panel that 

is not generated by whole-genome sequencing (international HapMap Project Phase II 

reference panel), we expected that our top associated SNPs may predominantly serve only as 

surrogate markers that are in high LD with the un-genotyped and un-imputed functional 

SNPs that are responsible for GWAS signals. Therefore, we extended our in silico functional 

annotation and enrichment analysis to those common SNPs (MAF > 1% based on 1000 

Genomes Project Phase I version 3 CEU references) that are in high LD (r2 > 0.8 based on 

1000 Genomes Project Phase I version 3 CEU references) with the most significant SNP in 

each locus.

Results

BMD and fracture associations

Five loci had genome-wide significant (GWS, p < 5 ×10−8) associations with trabecular 

vBMD in the meta-analysis of discovery (six cohort studies) and replication cohorts (two 

cohort studies, combined n = 15,275). These included four loci marked by common SNPs 

(MAF ≥ 5%) located in 1p36.12 (near WNT4, ZBTB40), 1p43 (GREM2), 8q24 

(TNFRSF11B), and 13q14 (TNFSF11; Table 1). All except for GREM2 have been 

previously associated with lumbar spine aBMD. In addition, in the 5p13 locus, which has 

not previously been linked to lumbar spine BMD, the most significantly associated SNP 

with trabecular vBMD was rs2468531 (MAF = 3%). All GWS SNPs were intronic or 

intergenic (Supplemental Fig. 3). There was no significant heterogeneity of effect sizes 

between sexes for these SNPs (Supplemental Fig. 4). All GWS SNPs associated with 

trabecular vBMD were also strongly associated with integral vBMD and had similar effect 

sizes, although not all of the trabecular vBMD GWAS SNPs achieved genome-wide 

significance for integral vBMD, perhaps because of the smaller sample size with integral 

vBMD measurements (Supplemental Table 3). An additional six loci had common SNPs 

with suggestive-significant associations (5 × 10−8 < p < 5 × 10−6) with trabecular vBMD, 

and only one of these (6q25) reached a suggestive significance level for integral vBMD 

(Supplemental Table 3). An additional nine loci had SNPs that were suggestively associated 

with integral vBMD, though only two were suggestive after double GC adjustment 

(Supplemental Table 3). Among them, the most significantly associated SNP, rs3786178 

(MAF = 2%) near CTIF on 18q21.2, had a relatively strong association (standardized β = 

0.19, p = 1.86 × 10−6).
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Among SNPs associated with trabecular vBMD or integral vBMD (listed in Table 1) with p 
< 5 × 10−6, only rs2468531 (5p13, near SLC1A3) was found to be associated with 

radiographic vertebral fracture after correction for multiple testing (OR = 0.75 per minor 

allele, FDR p = 0.01, Table 2, Fig. 2A, B). The same SNP was nominally associated with 

clinical vertebral fracture (OR = 0.66, = 0.01; Alonso and colleagues, unpublished data; but 

FDR p = 0.07). Among SNPs associated with trabecular vBMD (listed in Table 1), the 

GWAS SNP rs12742784 near ZBTB40 was associated with clinical vertebral fracture (OR = 

0.82, FDR p = 7.4 × 10−4). Although SNPs at other loci (GREM2, C6orf97, ATP2B1) were 

nominally significantly associated with vertebral fracture, no other ORs were nearly as 

strong as for rs2468531 or rs12742784 (Table 2).

cis-eQTLs in human bone biopsies

The cis-eQTL results of the whole-bone biopsies are shown in Table 3. For GWS SNPs, we 

found two significant eQTLs after multiple testing correction. First, SNP rs12742784 in the 

1p36.12 locus was associated with increased expression of EPHB2, about 355 kb 

downstream (β = 0.12, FDR p = 1.72 × 10−3), but was only marginally associated (p = 0.08) 

with ZBTB40, the nearest gene in this GWAS locus (about 96 kb downstream). The other 

significant cis-eQTL finding was for SNP rs2468531 in the 5p13 locus, which was 

associated with increased expression of SLC1A3, 126kb downstream from the associated 

SNP (β = 0.28, FDR p = 0.01). A suggestive SNP, rs2941584, was associated with EML6 
expression in the 2p21 locus (FDR p = 0.04); and a suggestive SNP rs7301013 with WNT5B 
expression in the 12p13.3 locus (FDR p = 0.01). In most cases, the most significantly 

associated cis-eQTL gene in each locus was not the gene nearest to the top associated SNP, a 

phenomenon also observed in other studies.(35) CCDC91 was filtered out because of low 

signal values in the microarray.

Expression in mouse osteoblasts

Ten of the 11 genes located near a trabecular vBMD locus or implicated through eQTL 

analysis were expressed during murine osteoblastogenesis, and each presented with a unique 

level and/or pattern of expression. EphB2 maintained a consistent level of expression over 

time, whereas Slc1a3 expression rose rapidly through the period of rapid cell proliferation 

and reached a plateau coincident with a phase associated with increased expression of 

extracellular matrix genes (∼day 8 to day 10; Supplemental Fig. 5). Of the two genes near 

1q43, Grem2 expression was extremely high during the period of cell culture associated with 

rapid growth and cell division. Expression of this gene decreased and entered a steady-state 

plateau at about day 8 postdifferentiation. Like Grem2, Fmn2 showed a pattern of decreasing 

expression during osteoblastogenesis; however, expression of this gene was very low at all 

points examined. Both Akap11 and Zbtb40 showed constant expression during osteoblast 

maturation (Supplemental Fig. 5).

In silico annotation of noncoding SNPs and of SNPs in LD with the top associated SNPs

Evaluation of whether the top associated SNPs (from Table 1) were enriched with regulatory 

elements in specific tissues showed the most significant enrichment for the cortex-derived 

primary cultured neurospheres (E053) with enrichment p value = 9.56 × 10−3. We observed 

three SNPs (out of 12) overlapping with regulatory elements in the cortex neurospheres 
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(ENCODE, Supplemental Tables 4 and 5), compared to the 0.5 expected SNPs overlapping 

with regulatory elements in the same cell type if we randomly select 12 SNPs with the same 

MAF and LD pattern across the whole genome. After multiple testing corrections by FDR, 

the enrichment in the cortex neurospheres became nonsignificant.

Two common nonsynonymous SNPs were found to be in LD with the top associated SNPs. 

SNP rs2073618 (N3K) (discovery p value = 1.41 × 10−6) in TNFRSF11B is in high LD (r2 = 

0.88) with rs1485303, and SNP rs35737760 (D859E) in CACNA1E is in high LD with SNP 

rs7301013 that was suggestive for integral vBMD. However, both variants were predicted 

not to affect protein function due to the corresponding amino acid substitution based on the 

conservation-based SIFT (Sorting Intolerant From Tolerant) package (http://sift.jcvi.org/) 

and were predicted to be benign by the PolyPhen-2 (Polymorphism Phenotyping v2) 

package (http://genetics.bwh.harvard.edu/pph2/). All common SNPs in high LD with top 

associated SNPs in all other loci were either intronic or intergenic. Twelve of the 21 loci 

with GWS or suggestive trabecular vBMD or integral vBMD associations had SNPs in LD 

that were located in either predicted enhancer or promoter regions in one of the three bone-

relevant cell types: osteoblast primary cells, mesenchymal stem cell-derived chondrocyte-

cultured cells, and bone marrow-derived mesenchymal cultured cells (E129, E049 and E026, 

Supplemental Table 5). These included intronic or intergenic SNPs in the GWS trabecular 

vBMD loci near GREM2, TNFRSF11B, and TNFSF11, as well as the 5p13 locus. Of note, 

the GREM2 locus (1q43) has quiescent annotations across an abundance of cell types except 

for two SNPs, rs1414660 (r2 for LD with top vBMD SNP = 0.87; discovery p value = 2.01 × 

10−10) and rs9659023 (not analyzed), which are both located in an enhancer region that is 

specifically active in bone marrow-derived mesenchymal cells, osteoblasts, and other 

mesenchymal cells, suggesting a cell-type-specific gene regulation in those bone-relevant 

cells. The rs1414660 regulatory sequence is under evolutionary constraint, as estimated by 

GERP (Genomic Evolutionary Rate Profiling) and SiPhy (SIte-specific PHYlogenetic 

analysis) (http://www.broadinstitute.org/mammals/haploreg/detail_v4.1.php?

query=&id=rs1414660). Furthermore, the rs1414660 intronic single nucleotide change was 

predicted to perturb conserved regulatory motifs for bone-relevant transcription factors, such 

as CEBPa, CEBPb and others (Supplemental Table 6). The 5p13 locus is quiescent except 

for a region surrounding the indel rs148073475 (http://www.broadinstitute.org/mammals/

haploreg/detail_v4.1.php?query=&id=rs148073475). To evaluate whether these 12 SNPs in 

LD with variants are specifically located in enhancer regulatory regions for three bone-

relevant cells, we tested for enrichment in regulatory regions in tissues other than bone-

relevant tissues. We performed hypergeometric tests in 127 cell types and tissues from the 

Roadmap Epigenomics Project but did not find significant enrichment, suggesting that these 

selected SNPs are enriched only in bone-specific gene regulatory regions.

Discussion

Through these meta-analyses of vertebral trabecular vBMD and fracture, we identified two 

loci associated with lumbar spine BMD, vertebral fracture, and human bone expression of 

genes that were also expressed in mouse osteoblasts. One is a novel BMD locus, at 5p13, 

and the minor alleles of the most significantly associated SNPs had a lower frequency (3%), 

stronger positive associations with trabecular vBMD (β = 0.22), and lower risk of fracture 

Nielson et al. Page 8

J Bone Miner Res. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://www.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs1414660
http://www.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs1414660
http://www.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs148073475
http://www.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs148073475


(OR = 0.75) than did other variants associated with BMD or fracture in this study. Cis-eQTL 

analyses in human bone and mouse osteoblast expression studies suggest that the SLC1A3 
gene, which is ∼126kb upstream of SNP rs2468531, may be the gene in this locus involved 

in bone modeling/remodeling. Common variants in another locus, 1p36.12, were 

significantly associated with trabecular vBMD, fracture (clinical vertebral OR: 0.82, FDR p 
= 7.4×10−4) and expression of EPHB2, providing an explanation for the associations with 

BMD phenotypes consistently reported in this region.(8,36–38) This is the first study to link 

EPHB2 expression to vertebral phenotypes in humans. The finding that these loci are 

associated with both vertebral trabecular BMD and vertebral fracture reinforces their clinical 

importance. Our expression studies suggest a regulatory function for the causal variants 

underlying these SNP associations.

SLC1A3

Studies have reported that the SLC1A3 gene is involved in glutamate signaling necessary for 

osteogenic response to mechanical loading.(39) SLC1A3 (aka GLAST or EAAT1) is a 

glutamate transporter expressed in human as well as rat and mouse osteoblasts and 

osteocytes, discovered through its downregulation in osteocytes in response to osteogenic 

mechanical loading.(40) SLC1A3 has been found to be expressed in most human tissues/

cells, especially in brain and neurons. Although a Slc1a3 mouse knockout showed no 

differences in multiple femoral bone phenotypes through age 6 months,(41) there has been 

no examination of either vertebral bone phenotypes or of aged mice in such a knockout. 

These are important distinctions, because Slc1a3 knockout effects on another phenotype 

have been shown to depend on advanced age,(42) and axial and appendicular skeletal 

regions are known to have distinct patterns of development and regulation over the course of 

development (eg, Courtland and colleagues,(43) Sabsovich and colleagues,(44) and Zanotti 

and Canalis(45)).

SLC1A3 associations have not been reported to be genome-wide significantly associated 

with aBMD in any previous study. In the most recent lumbar spine aBMD GWAS meta-

analysis, the most significant SNP in this locus was rs2468531 (MAF = 4.8%, β = 0.077, p 
= 7.4 × 10−3).(30) That aBMD GWAS meta-analysis had much larger sample size and 

included many of the participating studies in our CT GWAS meta-analysis. It is unclear 

whether the difference in phenotype or underlying population differences contributed to this 

discrepancy. Previously reported cell and animal model evidence for SLC1A3 suggests its 

biological function in bone physiology may interact with mechanical loading and aging; 

therefore, it may be fruitful to evaluate such interactions with potentially causative SLC1A3 
SNPs in future studies.

EPHB2

Our findings suggest that regulation of the Ephb2 gene contributes to the previously reported 

associations with BMD and fracture at the 1p36.12 locus. ZBTB40 has been consistently 

linked to both spine and hip BMD as well as fracture risk,(8,36–38) but has an unknown role 

in bone development or maintenance. ZBTB40 was expressed in osteoblasts in our study, but 

the associated (intergenic) SNP was unrelated to any regulatory element in ENCODE. This 

gene is often reported concurrently with WNT4 associations with BMD; however, LD 
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patterns and conditional analyses support the existence of two separate signals in this region 

of chromosome 1p36.12.(8) In addition, cis-eQTL analysis did not find significant 

associations between GWAS SNPs and ZBTB40 and WNT4 gene expression in whole bone. 

On the other hand, a cis-eQTL in this locus was found for the EPHB2 gene. The EPHB2 
gene encodes a member of the Eph receptor family of receptor tyrosine kinase 

transmembrane glycoproteins. Several in vitro and animal studies have found that Ephb2 is 

involved in bone development,(46) homeostasis,(47) and fracture repair,(48) as well as 

skeletal response to PTH(49) and IGF.(50) This is the first study to link genetic variation in 

humans to EPHB2 expression and clinically important vertebral phenotypes.

GREM2

One additional locus associated with trabecular vBMD, an intronic SNP, rs9661787, in 

FMN2 and near GREM2, has not previously been reported for lumbar spine BMD by DXA. 

It has, however, been linked to trabecular BMD of the distal tibia, as measured by peripheral 

quantitative CT (pQCT), and was demonstrated to affect trabecular number and thickness as 

evaluated by HRpQCT.(51) In the current analyses, the FMN2/ GREM2 SNP was also 

associated with integral vBMD with a similar effect size, perhaps because of the sizeable 

contribution of trabecular vBMD in the overall measure of integral vBMD by CT of the 

lumbar spine. The homologous region in mice (174.8 Mb on chromosome 1) has 

consistently been associated with BMD phenotypes, including vertebral BMD.(52) In 

addition, our GWAS SNP rs9661787 in the FMN2/GREM2 locus is in high LD (r2 = 0.88) 

with a GWAS SNP (rs9287237) identified previously for a pQCT GWAS.(51) SNP 

rs9287237 had similar effect sizes to our top SNP for trabecular vBMD and integral vBMD 

in this study.

SNP rs9287237 was robustly associated with GREM2 expression in human osteoblasts.(51) 

Each additional T allele of rs9287237 was associated with decreased expression of GREM2 
in human osteoblasts, increased trabecular BMD, and decreased fracture risk.(51) In our 

eQTL analysis, we also found SNP rs9287237 was associated with lower GREM2 
expression in human whole-bone biopsies, though the association was not statistically 

significant. GREM2 (aka PRDC and Gremlin2) is an extracellular antagonist of bone 

morphogenetic proteins (BMPs), and loss of this factor allows for an increase in osteoblastic 

differentiation.(53–55) We observed a marked decrease in expression of Grem2 as these 

cells transitioned from a committed but immature cell to a fully mature osteoblast in mouse. 

This suggests that Grem2 is an inhibitor of osteoblast maturation and/or function and that 

expression of this gene must be reduced to allow this process to occur. Our observation that 

GWAS SNP rs9661787 was associated with lower GREM2 expression (Table 3)and 

associated with higher trabecular vBMD (Table 1, G allele of rs9661787) supports previous 

findings that Grem2 inhibited osteoblast maturation and/or function. Available data suggest 

that this gene is not expressed or is only marginally expressed in mouse osteoclasts 

(BioGPS; Scripps Research Institute [TSRI], La Jolla, CA, USA; http://biogps.org). Unlike 

for Grem2, expression of Fmn2 was barely detectable in osteoblasts. This low/lack of 

expression of this gene in bone has been corroborated in other studies wherein whole-bone, 

osteoblasts, osteoclast, and osteoblast-like cell lines were examined (http://biogps.org). 

Together these data suggest that GREM2 is the more likely candidate at this locus.
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Four other loci had common SNPs that were genome-wide significantly associated with 

trabecular vBMD (near WNT4, ZBTB40, TNFRSF11B, and TNFSF11), although effect 

sizes were much smaller than for the 5p13 locus. These loci have been consistently reported 

to be associated with lumbar spine BMD by DXA(8,29,30) and fracture.(10) The roles of 

WNT4, TNFRSF11B, and TNFSF11 are well described in WNT-signaling and RANK/ 

RANKL/osteoprotegerin (OPG) pathways, which are central to bone metabolism.(56) Of 

particular relevance to our phenotype of spine BMD in older age, Wnt4 has been 

demonstrated to prevent bone loss and one of its common causes, inflammation, by 

inhibiting NF-κB in macrophages and osteoclast precursors.(57) The SNP, however, is 

predicted not to be constrained by SIFT and is benign by PolyPhen-2.

Phenotypic considerations

vBMD measured by CT has advantages over DXA BMD for evaluating genetic regulation 

specific to three-dimensional (3D) structure and mineral density. CT measures allow for the 

removal of bone size from the phenotype, whereas DXA BMD is a two-dimensional (2D)-

measured combination of size and density. Furthermore, DXA BMD of the lumbar spine 

includes the vertebral body and posterior elements, as well as other regions that are 

predisposed to degenerative changes. vBMD measures, including trabecular and integral 

BMD, were more strongly associated with prevalent vertebral fracture than was spine aBMD 

in a case-control study nested in the Framingham Osteoporosis Study.(11) Therefore, vBMD 

may be a more relevant phenotype for vertebral fracture risk. Although candidate gene 

analyses have discovered distinct associations with, eg, vBMD and vertebral cross-sectional 

area,(58) ours is the first GWAS of volumetric phenotypes in a multicohort meta-analysis 

and the first to link vBMD SNP associations to fracture and gene expression.

Limitations

Limitations of the study include a relatively small number (15,275) of participants with 

vBMD phenotypes available. As a polygenic and complex trait, BMD requires very large 

sample sizes to detect the effect sizes often observed for common SNPs. Of 49 loci 

associated with lumbar spine BMD in previous large GWAS meta-analyses,(8,30) we 

identified only nine in our spine vBMD traits. Whether this lack of confirmation of 

previously identified spine BMD associations is due to true phenotypic differences in 

association or simply lower sample size in the current study is unknown. However, four of 

six trabecular vBMD GWAS loci found in the current study have been reported by previous 

BMD GWAS meta-analysis; and four of six trabecular vBMD-suggestive GWAS loci have 

also been reported by a previous DXA-derived BMD GWAS meta-analysis, suggesting 

limited statistical power with relatively smaller sample size may play a major role in this 

lack of confirmation. Further investigation of the involvement of those GWAS loci unique to 

vBMD will improve our understanding of the molecular regulation of bone.

Moderate effect size for most of the common SNPs may also contribute to the limited 

statistical power of the current study. The majority of common variants previously reported 

are closer to zero (|standardized β| ≤ 0.03) than the range of effect sizes we observed for 

GWS associations with vBMD (0.057 ≤ |standardized β| ≤ 0.098), implying lack of power in 

this study to identify common SNPs with smaller effect sizes. Similarly, the study was not 
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designed to detect less common (1% < MAF < 5%) or rare variants (MAF < 1%), and only 

two variants with 2%< MAF < 5% (SLC1A3 and CTIF) were found to be associated with 

trabecular vBMD or integral vBMD. These had effect sizes approximately three times as 

large as the more common variants and were similar in effect size to that reported for a low-

frequency variant in EN1 for vertebral BMD,(30) again underscoring the value of studying 

less common variants for skeletal phenotypes. There are undoubtedly other genetic 

contributors to BMD that will require studies powered to detect moderate effect sizes in low-

frequency or rare variants.

Limitations regarding heterogeneous radiographic vertebral fracture definitions have been 

described(9) and may have limited our power for observing fracture associations among the 

vertebral-BMD-associated loci. However, we observed similar prevalence of fracture across 

the cohorts that were included (15% to 22%), indicating that differences in case definitions 

may result in ascertainment of similar cases in these studies. Three trabecular vBMD loci 

(near ZBTB40, FMN2/GREM2, and SLC1A3) were associated more strongly with clinical 

vertebral fracture than with radiographic vertebral fracture, indicating a potential for clinical 

fracture to give a stronger association signal than radiographic fracture for these variants.

Several additional limitations of this study include limited statistical powerto detect SNPs 

with moderate eQTL; imputation based on HapMap II reference panel rather than whole-

genome sequencing–based 1000G reference panel, providing limited coverage of genetic 

variants across genomes; and limited bone-relevant tissues in existing databases for the in 

silico annotations of associated loci. In addition, pinpointing causal variants and functionally 

validating them in cellular or animal models remains to be done.

Despite these limitations, we identified novel vertebral BMD and fracture associations 

related to SLC1A3 and EPHB2 expression. We also confirmed the importance of GREM2 
and several genes involved in WNT-signaling for trabecular BMD and vertebral fracture in 

large cohorts of older adults. Our study reinforces the benefit of large-scale GWAS of more 

refined and clinically relevant skeletal phenotypes and the need for continued evaluation of 

noncoding genomic variants with potential regulatory function.
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Fig. 1. 
Cross-sectional view of the trabecular region of interest in the lumbar spine. Trabecular 

vBMD included this region only, whereas integral vBMD also included the cortical 

compartment. Both exclude the posterior elements that DXA measures of BMD incorporate, 

thus allowing CT measures to more precisely capture BMD of the vertebral body itself. 

Reprinted with permission from Elsevier from: Engelke K, Mastmeyer A, Bousson V, Fuerst 

T, Laredo J-D, Kalender WA. Reanalysis precision of 3D quantitative computed tomography 

(QCT) of the spine. Bone, 2009:44(4):566–72.
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Fig. 2. 
Beta coefficients and 95% CI for the additive effect of rs2468531 (SLC1A3) on trabecular 

vBMD (A) and ORs and 95% CI for the association with morphometric vertebral fracture 

(B). Detailed study-specific results are provided in Supplemental Table 7.
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