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Randomized trials offer a powerful strategy for estimating the effect of a treatment on an outcome. However,
interpretation of trial results can be complicated when study subjects do not take the treatment to which they were
assigned; this is referred to as nonadherence. Prior authors have described instrumental variable approaches
to analyze trial data with nonadherence; under their approaches, the initial assignment to treatment is used
as an instrument. However, their approaches require the assumption that initial assignment to treatment has
no direct effect on the outcome except via the actual treatment received (i.e., the exclusion restriction), which
may be implausible. We propose an approach to identification of a causal effect of treatment in a trial with 1-
sided nonadherence without assuming exclusion restriction. The proposed approach leverages the study subjects
initially assigned to control status as an unexposed reference population; we then employ a bespoke instrumental
variable analysis, where the key assumption is “partial exchangeability” of the association between a covariate and
an outcome in the treatment and control arms. We provide a formal description of the conditions for identification
of causal effects, illustrate the method using simulations, and provide an empirical application.

instrumental variables; nonadherence; noncompliance; randomized trials

Abbreviations: ATE, average treatment effect; BSIV, bespoke instrumental variable; CI, confidence interval; ITT, intention-to-
treat; IV, instrumental variable; LATE, local average treatment effect.

Randomized experiments are powerful tools for under-
standing the causal effect of a treatment. However, compli-
cations can arise when study participants do not take the
treatment assigned; this is referred to as nonadherence to (or
noncompliance with) the assigned treatment (1). Concern
arises when nonadherence is nonrandom, which it often is
because nonadherent behavior typically is self-selected (i.e.,
a participant opts not to take the treatment as assigned). Such
settings are common in randomized clinical trials, and con-
sequently nonadherence is an important potential challenge
to a causal interpretation of randomized trial results (2).

An intention-to-treat (ITT) analysis, in which we compare
the risk of the outcome among persons assigned to receive
treatment versus control participants, will entangle the effect
of the treatment with the effect of nonadherence (3). An ITT
analysis does yield a valid estimate of the effectiveness of the
randomized assignment; however, it does not yield a valid
estimate of the actual efficacy of the treatment, because the

study includes subjects who have not adhered to the assigned
treatment (4, 5).

An as-treated analysis, in which we compare persons
who received treatment with those who did not, typically
disregards the initial randomization. An as-treated analysis
may yield a biased estimate of efficacy of the treatment
because such an analysis is no longer afforded the expecta-
tion of unconfoundedness that is provided by randomization
to treatment, even conditional on assigned treatment. There-
fore, factors associated with receiving treatment may also
be associated with the outcome and confound an as-treated
analysis.

Prior authors have discussed approaches to analysis of
trial data with nonadherence (4, 6–8). Instrumental variable
(IV) approaches are among the most commonly used to
assess treatment effects in settings of trials with nonadher-
ence (9). For example, Robins (7) and Angrist et al. (10) have
described IV approaches in which the random assignment
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is used as an IV, unaffected by any unmeasured cause of
the outcome and typically strongly predictive of the actual
treatment received (7, 10). However, as in any IV setting,
a causal interpretation requires the condition of “exclusion
restriction,” whereby the initial assignment to treatment has
no effect on the outcome except through treatment (10, 11)—
an assumption that often may be implausible in trial settings.
Another widely used approach is based on fitting a structural
model—for example, by applying inverse probability of cen-
soring weights (12). A causal interpretation of the treatment
effect under such approaches requires that nonadherence be
ignorable conditional on the available measured covariates,
which may be implausible when important potential con-
founders are not measured.

Here, we propose an alternative approach to estimation of
causal effects in trial settings with nonadherence that does
not require the exclusion restriction condition. Importantly,
the conditions needed to identify a causal effect of treatment
differ from those required by a standard IV approach (7, 10).
Notably, our proposed approach requires neither a standard
“exclusion restriction” assumption nor the assumption that
nonadherence is ignorable conditional on measured covari-
ates. Access to different approaches that leverage different
identifying conditions may be useful for investigators who
wish to triangulate evidence and conduct informative sensi-
tivity analyses.

METHODS

Let R denote random assignment to control (R = 0) or
treatment (R = 1) status. Let A be a binary indicator of actual
treatment received, either “did not receive treatment” (A = 0)
or “received treatment” (A = 1). Let Y be an outcome of
interest measured at the end of the study, and let L denote
measured covariates on which data are collected prior to
treatment assignment (i.e., baseline characteristics). Adher-
ence occurs when R equals A, and nonadherence occurs
when R does not equal A. For simplicity, nonadherence is
defined here as a binary variable at a single time point.

One-sided nonadherence

We focus on trial settings in which there is 1-sided nonad-
herence, such as that which arises when the control group is
prohibited access to the treatment (i.e., if R = 0 then A = 0,
by design). For example, the control group is constrained to
receive the standard of care, while the treated group may (or
may not) comply with treatment (13).

Population average treatment effect

Suppose that each person in the target population has a
potential outcome variable Ya that would be observed if,
possibly contrary to fact, they were exposed to treatment
value a. We might be interested in quantifying the population
average treatment effect (ATE),

ATE = E
[
Ya=1 − Ya=0],

as a causal measure of the efficacy of the treatment.

We can readily obtain the ITT estimator,

ITT = E[Y|R = 1] − E[Y|R = 0] ,

by a regression model for the outcome Y as a function of R.
Under the optimal condition of full adherence with treat-
ment assignment, the ITT estimator provides an estimate of
the ATE,

ITT = E[Y|R = 1, A = 1] − E[Y|R = 0, A = 0]

= E[Y|R = 1] − E[Y|R = 0]

= E[Y|A = 1] − E[Y|A = 0] ,

where, assuming consistency, such that Y = Ya if A = a,
we identify the ATE. However, if there is nonadherence, we
need to distinguish between the effect of treatment assign-
ment (R) and the effect of treatment adherence (A).

Approach of Angrist et al. In their 1996 article, Angrist et
al. (10) described an IV approach to analysis of trial data
with nonadherence, noting that R, the random assignment
to treatment, may serve as an IV in an analysis that aims
to estimate the effect of the actual treatment received, A.
Their IV estimate may be obtained via a 2-stage regression
as follows:

i. Obtain the predicted value of A given R, Â(R) =
Ê (A|R). This is estimated via an ordinary least-
squares regression of A on R in the trial data, yielding
Â(R) for each study participant.

ii. Fit a regression of Y on Â(R) of the form E(Y|Â(R)) =
α0 + α1Â(R) to obtain the ordinary least-squares
estimator α̂1.

For this simple IV estimator to recover (i.e., be consistent
for) the average causal effect of A on Y , 3 instrumental
conditions are required:

1) instrument relevance (a nonnull association between R
and A);

2) exclusion restriction: Yr=1,a = Yr=0,a, for a = 0, 1;
and

3) marginal exchangeability: Yr,a⊥R for all a, r.

Under full adherence, the Angrist et al. (10) estimator of the
ATE equals the ITT estimator, because under full adherence,
Â(R) = 1 when R = 1, else 0. Given nonadherence, an addi-
tional condition (condition 4) must hold for causal identifi-
cation: Angrist et al. (10) make a monotonicity assumption
regarding absence of study participants who are defiers of
their treatment assignment (i.e., Ar = 1 ≥ Ar = 0, which is
true by design in a study with 1-sided nonadherence such
that Ar = 0 = 0, denoting by Ar the value of A that would be
observed if assigned to control or treatment value r).

Given monotonicity, the Angrist et al. (10) estimator, α̂1,
targets what is sometimes called the local average treatment
effect (LATE), E[Ya = 1 − Ya = 0|Ar = 1 = 1, Ar = 0 = 0];
this quantity is also known as the complier average causal
effect, using the term “complier” to refer to persons who
adhere to their initial assignment. Note that the approach of
Angrist et al. (10) and that of Robins (7) coincide in settings
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Figure 1. Relationship between treatment assignment (R),
received treatment (A), an outcome (Y), a measured confounder
(L), and an unmeasured confounder (U) in a setting of exclusion
restriction.

where there is 1-sided nonadherence, as does earlier work by
Sommer and Zeger (14); the control group is prohibited
access to the treatment, and therefore the LATE is equal
to the effect of treatment on the treated randomized to
treatment.

Figure 1 illustrates that although the A-Y association may
be confounded by measured (L) or unmeasured (U) causes
of nonadherence, R has the structural characteristics of an IV.
Crucially, any effect of assignment to treatment on outcome
Y operates only through its effect on A.

When the exclusion restriction does not hold. However,
there are many settings, such as a trial in which double-
blinding is not possible, where we may be concerned that
the assumption of exclusion restriction does not hold. In
Figure 2, random assignment to treatment (R) may directly
affect Y , as well as affect A. R no longer has the structural
characteristics of an IV; and an estimate of the effect of A
on Y may be confounded by measured (L) or unmeasured
(U) causes of nonadherence, as well as by R. We propose
an approach to estimation of causal effects in this setting
and show how to specifically distinguish between the effect
of treatment assignment (R) and the effect of treatment
adherence (A).

As a motivating example, consider a trial of the effect
of a 2-dose vaccine in which, at baseline, trial participants
receive either the first dose of vaccine or a placebo. We
may assume effective double-blinding and full adherence
to the first dose of vaccine or placebo (delivered at study
enrollment). Subsequently, study subjects should return for
a second dose of the vaccine or placebo. In this case, random
assignment to treatment includes a first dose of the vaccine
which may directly affect Y , beyond its effects through
receiving a second dose (A). However, an estimate of the
effect of the second dose of vaccine on Y may be confounded
by hidden causes of nonadherence; and R no longer has the
structural characteristics of an IV. Consequently, if we are
interested in an estimate of the effect of the vaccine beyond
just receiving a first dose (e.g., the effect of a second dose of
vaccine on Y), then we may be concerned about an exclusion
restriction violation (Figure 2). The vaccine trial example
can be considered a special case of time-varying nonadher-
ence, which is not necessarily problematic in the framework
of Robins (7) but requires imposing additional parametric
restrictions on the causal effects (which our approach does
not require).

Figure 2. Relationship between treatment assignment (R),
received treatment (A), an outcome (Y), a measured confounder (L),
and an unmeasured confounder (U) in a setting that violates the
exclusion restriction.

Our proposed approach. Although we propose an IV-type
approach, under our proposed method randomization, R, is
not used as an instrument. Rather, randomization is used to
define a reference population that cannot access treatment
at a later time postbaseline. Observations in the control
arm of the trial provide information on covariate-outcome
associations in a setting where the treatment is set to 0;
we use that information to repurpose a measured covariate
as a “bespoke instrumental variable” (BSIV), yielding a
consistent estimator of the treatment effect in the treatment
arm (15). Our proposed estimand may be obtained via a 3-
step procedure as follows.

Step 1. Control arm of the study. We first focus on the
study subjects initially assigned to the control arm of the
study. Note that treatment exclusion is imposed, by design,
in the control arm (R = 0) of a randomized trial with 1-
sided nonadherence. The control arm serves as a reference
population with no possible access to treatment (i.e., A is
set to 0 for participants in the control arm). Using just
the subjects in the control arm of the trial, we estimate
the association between a measured covariate, L, that will
subsequently serve as a BSIV, and the outcome, Y:

i. Obtain the predicted value of Y given L in the control
arm of the trial, F̂(L) = Ê (Y|L, R = 0). This is esti-
mated by a regression of Y on L in the control arm
(R = 0).

Step 2. Treated arm of the study. Next, we focus on the
study subjects initially assigned to the treatment arm of the
study (R = 1). The treatment arm of the trial serves as a study
sample in which we propose to estimate the association
between the covariate, L, and adherence. Using just the treat-
ment arm of the trial, we estimate the association between a
measured covariate, L, and the treatment received, A:

ii. Obtain the predicted value of A given L in the treat-
ment arm of the trial, Â(L) = Ê (A|L, R = 1). This is
estimated by a regression of A on L in the treatment
arm (R = 1); we then evaluate Â(L) for each study
participant.

Step 3. Estimate the controlled direct effect of treatment
assignment (R), if one were to set treatment, A, to its control
value, among treated individuals assigned to treatment. Upon
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evaluating F̂(L) and Â(L) for all subjects initially assigned
to the treatment arm, we can obtain our proposed estimates
as follows:

iii. Fit a regression of Y on Â(L) including F̂(L) as an
offset,

E
(
Y|Â(L), F̂(L), R = 1

) = β0 + β1Â(L) + F̂(L).

We recommend estimation using the generalized method of
moments (16). Web Appendix 1 (available at https://doi.
org/10.1093/aje/kwad141) provides a brief description of
such an approach to estimation of the parameters of interest
by a method of moments under an additive structural mean
model (11, 17) and describes how to derive a bootstrap
confidence interval (CI) for the estimate.

Sufficient conditions for identification of causal effects

Suppose that L = (L1, L2) and that rather than taking all
of L as candidate BSIVs, we take L1 only as a BSIV and L2
are additional covariates that we adjust for. Below we estab-
lish identification of the semiparametric structural nested
model E

[
Ya − Ya=0|a, l2, R = 1

] = β (l2) a leveraging the
instrument-like properties of L1.

Under the linear structural nested mean model defined
above, given a trial in which subjects were randomized to R,
with 1-sided nonadherence, we require the following condi-
tions.

1. Consistency, such that Ya = Y if A = a and R = 1.
2. Bespoke instrument relevance, a nonnull association

between L1 and A, such that, given l1 �= 0, E
[
A|l1, l2,

R =1
] − E [A|l1 = 0, l2, R = 1] �= 0 for each observed l2.

3. Partial population exchangeability, such that

m (L1, L2) = E
[
Ya=0|R = 0, L1, L2

]

− E
[
Ya=0|R = 0, L1 = 0, L2

]

= E
[
Ya=0|R = 1, L1, L2

]

− E
[
Ya=0|R = 1, L1 = 0, L2

]
.

4. Partial additive causal effect homogeneity (i.e., no
modification of the effect of A on Y by L1 on the scale of
interest) in causing the outcome, such that

E[Ya − Ya=0|A = a, l1, l2, R = 1]

= E[Ya − Ya=0|A = a, l1 = 0, l2, R = 1]

for all l1. Condition 1 is a standard consistency assumption.
Condition 2 simply requires that the “bespoke” instrument,
L1, predicts treatment A; this can be empirically assessed,
and the investigator is free to select among measured
covariates to identify which variable(s) best satisfy this
condition. Condition 3 essentially requires that the L1-Y
additive association (conditional on L2) in the control arm of
the trial equals the L1-Ya=0 additive association (conditional

on L2) in the treatment arm. An alternative interpretation
of the assumption can be obtained given randomization of
R, as E

[
Ya=0,r=1 − Ya=0,r=0|L1 = 1, L2

] = E
[
Ya=0,r=1 −

Ya=0,r=0|L1 = 0, L2
]
, which states that the additive effect

of being randomized to the treatment arm versus the control
arm (i.e., any violation of the exclusion restriction), fixing
subsequent treatment at A = 0, is constant across levels
of L1 conditional on L2. Condition 4 is a homogeneity
assumption which is not required but is sufficient for
identification. Condition 4 clearly holds under the null
hypothesis of no conditional effect of treatment in the
treated, and therefore the proposed approach is guaranteed
to produce a valid test of the null hypothesis of no additive
treatment effect provided that the remaining conditions hold.
We can exchange condition 4 for alternative assumptions—
for example, by incorporating additional instruments in the
model, thereby allowing additional degrees of freedom for
identification of potential modification of the effect of A on
Y by L1.

Result: Under conditions 1–4, we have that β (L2) is
identified by

E
[
Ya=1 − Ya=0|a = 1, L2, R = 1

] = β (L2)

=
E
[
Y − m (L1, L2) |L, R = 1

]
− E

[
Y − m (L1, L2) |L1 = 0, L2, R = 1

]
E
[
A|L, R = 1

] − E
[
A|L1 = 0, L2, R = 1

] ,

and the controlled direct causal effect of the randomized
intervention if one were to set treatment, A, to its control
value, is identified by

E
[
Ya=0,r=1 − Ya=0,r=0|L] = E

[
Y|R = 1, L

]

− E
[
Y|R = 0, L

] − β (L2) Pr (A = 1|L, R = 1) .

A proof of the first part of the result can be obtained as
a special case of the BSIV general identification result of
Richardson and Tchetgen Tchetgen (15), in the special case
where the mechanism of selection into what they define as
target (R = 1) and reference (R = 0) populations is known by
design (i.e., by randomization). Richardson and Tchetgen
Tchetgen (15) also provide justification for a 2-stage least-
squares estimator of β (L2), under linear models without
interactions—that is, assuming that E

[
Ya=1 − Ya=0|a =

1, L2, R = 1
] = β (L2) = β1 and E

[
Ya=0|L2 = l2

] =
β0 + β2 l2. A proof for the second part of the result is novel
and is provided in Web Appendix 1.

Interpretation of the model

The estimated parameter β̂1 describes the effect of receiv-
ing treatment among persons who were assigned to treat-
ment and took it, E

[
Ya=1 − Ya=0|R = 1, A = 1, l

]
.

In our motivating example, β̂1would describe the effect of
receiving 2 doses of vaccine versus 1 dose, in the vac-
cine arm of the trial. Note that under the BSIV identifying
conditions 1–4, β̂1 is not confounded by measured (L) or
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unmeasured (U) factors. If the exclusion restriction holds,
β̂1 can be interpreted as the LATE targeted by Angrist et al.
(10), or as the effect of treatment on the treated assigned to
treatment; if the exclusion restriction does not hold, β̂1 might
be expected to differ from the estimand proposed by Angrist
et al. (10), but it can still, under our identifying conditions, be
interpreted as the effect of treatment on the treated assigned
to treatment.

Furthermore, the estimated parameter β̂0 describes,
under our conditions, the effect of assignment to treatment
versus control (if subsequent treatment were fixed at 0),
E

[
Yr=1,a=0|L = 0

] − E
[
Yr=0,a=0|L = 0

]
. Therefore, β̂0

describes the direct effect (if one were to set treatment, A, to
its control value) of assignment to treatment, R, rather than
the total effect of R. In our motivating example, β̂0 would
describe the effect of receiving 1 dose of vaccine versus
nothing. If the exclusion restriction holds, then β̂0 equals 0;
there is no direct effect of the assignment mechanism on the
outcome.

As shown in Web Appendix 1, under our identification
conditions, we can relate β̂0 and β̂1 to an estimate that one
would obtain in an ITT analysis given full adherence, as
follows:

ITT = E [Y|R = 1, l] − E [Y|R = 0, l]

= E
[
Yar=1=0,r=1 − Yr=0|l]

+ E
[
Ya−Ya=0|A = a, R = 1, l

]×Pr (A = 1|l, r =1)

= β0 + β1 × Pr (A = 1|l, r = 1) .

Therefore, when Pr (A=1|l, r=1)=1, implying full adher-
ence, ÎTT = β̂0 + β̂1 = ÂTE, as expected.

Simulation example. Data were simulated for 1,000 studies,
with 5,000 people in each study. Each person was randomly
assigned a covariate value L1 by sampling from a uniform
distribution, L1 ∼ Uniform (−1, 1), a covariate value L2 by
sampling from a Bernoulli distribution, L2 ∼ Bern(0.5), and
treatment assignment value R by sampling from a Bernoulli
distribution, R ∼ Bern(0.5). We allowed for 1-sided nonad-
herence by assigning A as a binary variable that took a value
of 1 with probability 0.25 + 0.25L1 + 0.25L2 for persons
in the treatment arm (R = 1); in the control arm (R = 0), A
was set to 0. Two outcome scenarios were explored. The
first conformed to the “exclusion restriction” assumption,
where the outcome variable, Y , was a continuous variable
that took a value of 1 + 1 × L1 + 1 × L2 + 1 × A + ε,
where ε ∼ N(0, 1). The second violated the “exclusion
restriction” assumption, where the outcome variable, Y , was
a continuous variable that took a value of 1 + 1 × L1 +
1 × L2 + 1 × A + 1 × R + ε.

For each simulated data set, first we fitted an ITT model
as a linear regression model for Y as a function of R. Second,
we fitted the IV model approach of Angrist et al. (10);
treatment assignment, R, was used as an IV in a 2-stage
regression model for Y conditional on the expected value of
A given R. Third, we estimated the proposed BSIV estimator
using the approach described in the text (and the SAS code

outlined in Web Appendix 2); we took L1 as a BSIV. We
summarized results from the simulated studies by computing
the mean values of the estimated associations, the estimated
standard deviations of the estimates (the empirical standard
error), and the square root of the average squared differences
between estimated associations and the specified true causal
effects (the root mean squared error). Additional simulations
were conducted that violated the assumption of additive
effects (Web Appendix 3).

Empirical example. To illustrate the proposed method, we
used data (March 2003–December 2005) from the Obstet-
rics and Periodontal Therapy Study, a randomized, blinded,
controlled trial of nonsurgical periodontal treatment during
pregnancy (18). Pregnant women aged 16 years or more who
were at 13–16 weeks’ gestation were recruited at Hennepin
County Medical Center (Minneapolis, Minnesota), the Uni-
versity of Kentucky (Lexington, Kentucky), the University
of Mississippi Medical Center (Jackson, Mississippi), and
Harlem Hospital (New York, New York). Women were
randomly assigned to receive either periodontal treatment or
no intervention; women in the control arm were offered peri-
odontal treatment after the end of the study. The treatment
included: instruction in oral hygiene; scaling and root plan-
ing; and monthly tooth polishing (i.e., at 17–20, 21–24, 25–
28, and 29–32 weeks’ gestation). Persons in the control arm
received only a brief oral examination. Group was a binary
variable indicating whether the study participant was ran-
domly assigned to the treatment or control arm. Compliance
was a binary variable that took a value of 1 if treatment plans
were completed by participants in the treatment group, else
0. The outcome of interest in our analysis, assessed at 29–32
weeks’ gestation, was the fraction of gingival sites bleeding
on probing at 29–32 weeks’ gestation (V5%BOP), where
higher values indicate more severe inflammation. Baseline
covariates measured included a serum measure of fibrinogen
level at baseline (OFIBRIN1) and serum endotoxin level at
baseline (ETXU_CAT1); for the purposes of this illustrative
example, a complete-case analysis was conducted restricted
to those subjects with nonmissing values for the covariates
and the outcome.

First, we fitted an ITT model as a linear regression model
for V5%BOP as a function of group. Second, we fitted
the IV model approach of Angrist et al. (10); treatment
assignment, Group, was used as an IV in a 2-stage regression
model for V5%BOP conditional on the expected value of
Compliance given Group. Third, we estimated the proposed
BSIV estimator using the approach described in the text; we
utilized OFIBRIN1 and ETXU_CAT1 as BSIVs and used
the SAS code shown in Web Appendix 2.

RESULTS

Simulation results

Under the first scenario, where the exclusion restriction
holds, an ITT analysis yielded an average estimate of the
effect of assignment to treatment, A, of 0.37 (Table 1); note
that under the simulation setup, the probability of adherence
conditional on assignment to treatment was 0.375. The IV
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Table 1. Results From Simulations of the Association Between Treatment Assignment, Received Treatment, an
Outcome, a Measured Confounder, and an Unmeasured Confoundera

Scenario and Model Estimate ESE (ASE) RMSE

Scenario 1 (exclusion restriction holds)

ITT 0.37 0.04 (0.04) 0.630

IV (LATE) 1.00 0.10 (0.10) 0.077

Proposed BSIV method

β̂0
b 0.00 0.07 (0.06) 0.062

β̂1
c 1.00 0.20 (0.14) 0.158

β̂0 + β̂1
d 1.00 0.12 (0.09) 0.102

Scenario 2 (exclusion restriction violated)

ITT 1.37 0.04 (0.04) 0.373

IV (LATE) 3.66 0.11 (0.10) 2.663

Proposed BSIV method

β̂0
b 1.00 0.08 (0.06) 0.063

β̂1
c 1.00 0.20 (0.14) 0.159

β̂0 + β̂1
d 2.00 0.13 (0.09) 0.103

Abbreviations: ASE, average standard error; BSIV, bespoke instrumental variable; ESE, empirical standard error;
ITT, intention to treat; IV, instrumental variable; LATE, local average treatment effect; RMSE, root mean squared
error.

a 1,000 simulated cohorts with 5,000 observations in each cohort.
b Effect of treatment assignment.
c Effect of receiving treatment.
d The joint average treatment effect of being assigned to treatment and taking the treatment versus being

assigned to the control arm (and therefore not having access to the treatment).

estimate based on the approach of Angrist et al. (10) was
1.00, conforming to the simulation setup (Table 1). Our
proposed BSIV model yielded an average estimate of the
effect of assignment to treatment versus placebo (β̂0) of
0.00, consistent with the simulation setup of the exclusion
restriction; our proposed BSIV model yielded an average
estimate of the effect of treatment A given assignment to
treatment (β̂1) of 1.00, consistent with the simulation setup
(Table 1); and our proposed BSIV model estimate of the
average treatment effect, β̂0 + β̂1 = 1.00, also conformed to
the simulation setup, albeit with a larger root mean squared
error than the estimate based on the approach of Angrist
et al. (10) or that of Robins (7).

Under the second scenario, where the exclusion restriction
does not hold, an ITT analysis yielded an average estimate
of the effect of assignment to treatment, A, of 1.37 (Table 1).
The IV estimate based on the approach of Angrist et al.
(10) was 3.66, not conforming to the simulation setup. Our
proposed BSIV model yielded an average estimate of the
effect of assignment to treatment versus placebo (β̂0) of 1.00,
consistent with the simulation setup (Table 1); the proposed
BSIV model yielded an average estimate of the effect of
treatment A given assignment to treatment (β̂1) of 1.00,
consistent with the simulation setup; and our proposed BSIV
model estimate, β̂0 + β̂1 = 2.00, equaled the estimate one

would obtain under an ITT analysis given full adherence
under this simulation setup.

Web Appendix 3 shows additional simulations that violated
the condition of “partial additive causal effect homogeneity”
(condition 4). We first report simulations that conformed
to the “exclusion restriction” assumption. An ITT analysis
yielded an average estimate of the effect of assignment to
treatment, A, of 0.46 (Web Table 1). The IV estimate based
on the approach of Angrist et al. (10) was 1.22 (Web Table 1).
The proposed BSIV model yielded biased estimates of
the effect of assignment to treatment versus placebo and
the effect of treatment when we (improperly) assumed
effect homogeneity. Web Appendix 3 also shows additional
simulations that violated both the conditions of “partial addi-
tive causal effect homogeneity” and “exclusion restriction.”
An ITT analysis yielded an average estimate of the effect
of assignment to treatment, A, of 1.46. The IV estimate
based on the approach of Angrist et al. (10) was 3.89.
The proposed BSIV model yielded biased estimates of
the effect of assignment to treatment versus placebo and
the effect of treatment when we (improperly) assumed
effect homogeneity. Web Appendix 3 also shows additional
simulations in which the effect of A on Y varied with R. The
IV estimate based on the approach of Angrist et al. (10) was
1.00, consistent with the effect of among the treated (Web
Table 1). Our proposed BSIV model yielded an average
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estimate of the effect of assignment to treatment versus
placebo (β̂0) of 0.00, consistent with the simulation setup,
and yielded an average estimate of the effect of treatment A
given assignment to treatment (β̂1) of 1.00, consistent with
the simulation setup (Web Table 1). The effect of treatment
among persons not assigned to treatment is not identified in
a study with 1-sided noncompliance.

Empirical results

The Obstetrics and Periodontal Therapy Study trial in-
cluded 640 participants with nonmissing values for the
covariates and outcome, of whom 314 were assigned to
the treatment arm and 326 to the control arm. Of those in
the treatment arm, 50% were nonadherent to the treatment.
The ITT analysis yielded an estimated change in the percent
fraction of gingival sites bleeding on probing of −0.24
(95% CI: −0.27, −0.21) among participants assigned to
nonsurgical periodontal treatment (Table 2). The Angrist et
al. (10) IV approach yielded an estimate of the effect of
nonsurgical periodontal treatment on bleeding on probing
of LATE = –0.48 (95% CI: −0.55, −0.42). The proposed
BSIV approach yielded an average estimate of the effect
of assignment to nonsurgical periodontal treatment versus
control (β̂0) of −0.34 (95% CI: −0.44, −0.26), sugges-
tive of violation of the “exclusion restriction” assumption
(Table 2). The proposed BSIV model yielded an average
estimate of the effect of nonsurgical periodontal treatment
given assignment to treatment (β̂1) of 0.19 (95% CI: 0.05,
0.36); and the proposed BSIV model estimate of the joint
average treatment effect of being assigned to treatment and
taking the treatment versus being assigned to the control
arm (and therefore not having access to the treatment) was
β̂0 + β̂1 = − 0.14 (95% CI: −0.22, −0.07), smaller in mag-
nitude than the estimate obtained using the Angrist et al. (10)
IV approach and somewhat less precise.

DISCUSSION

We propose a generalized IV approach to analysis of a
randomized trial that suffers from 1-sided nonadherence.
Using this approach, we can estimate the effect of the
received treatment in comparison with persons who only
experienced the effect of treatment assignment; and we also
can estimate the joint average treatment effect of being
assigned to treatment and taking the treatment versus being
assigned to the control arm (and therefore not having access
to the treatment).

Prior authors have described a variety of approaches to
analysis of trial data with nonadherence. Some investigators
advocate for simply reporting results of an ITT analysis in
trials that suffer from nonadherence to treatment assignment
(4). They argue that the ITT result provides a real-world
estimate of the effect of prescribing a treatment protocol with
which some patients will not comply. Robins (7) and Angrist
et al. (10) described an IV approach that provides a simple
powerful analysis of data, although requiring the strong
assumption of exclusion restriction (10). Other approaches

Table 2. Estimated Difference in the Fraction of Tooth Sites That
Bled on Probing With Nonsurgical Periodontal Treatment, Obstetrics
and Periodontal Therapy Study, March 2003–December 2005

Model Estimate 95% CI

ITT −0.24 −0.27, −0.21

IV −0.48 −0.55, −0.42

Proposed BSIV method

β̂0
a −0.34 −0.44, −0.26

β̂1
b 0.19 0.05, 0.36

β̂0 + β̂1
c −0.14 −0.22, −0.07

Abbreviations: BSIV, bespoke instrumental variable; CI, confi-
dence interval; ITT, intention to treat; IV, instrumental variable.

a Effect of treatment assignment.
b Effect of receiving treatment.
c The joint average treatment effect of being assigned to treat-

ment and taking the treatment versus being assigned to the control
arm (and therefore not having access to the treatment).

have been described as well, although they are less com-
monly used than ITT analysis and IVs (6–8, 19, 20). Imbens
and Rubin (21) have proposed a Bayesian approach to impu-
tation of compliance status, and Nagelkerke et al. (2) have
proposed a regression model approach to adjustment for
an indicator of the treatment received and the residuals
from a regression of the treatment received on the treatment
assigned. In the context of Mendelian randomization studies,
an approach that is robust to violations of the exclusion
restriction has been proposed, termed MR-GENIUS (22).
The MR-GENIUS approach has different identifying con-
ditions than our BSIV approach; notably, MR-GENIUS
requires: 1) that candidate IVs (i.e., genetic variants) sub-
stantially affect the variance of the exposure under study;
2) that instruments do not interact on the additive scale
with an unmeasured confounder in a regression model of
the exposure on the instruments; and 3) that there is no
interaction in the outcome structural model involving the
exposure, the unmeasured confounder, and an instrument.

Our proposed approach not only does not require that
we assume exclusion restriction, we estimate it and thereby
provide a test of exclusion restriction under our identifying
conditions. The availability of alternative approaches that
can yield identification of causal effects under different
identifying conditions can help investigators to triangulate
evidence as well as conduct sensitivity analyses. We were
motivated by consideration of a randomized trial of the effect
of a vaccine in which, at baseline, study subjects receive
either the first dose of vaccine or a placebo. Subsequently,
the study subjects should return for a second dose of the
vaccine or placebo, but some people do not return to receive
the second dose. Nonadherence could pose a substantial
challenge, and the exclusion restriction could require the
implausible assumption that a first dose had no effect on the
outcome except via the second dose of vaccine. In such a
setting, under our proposed model, β̂0 corresponds to the
effect of assignment to the treatment arm and receipt of a
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single dose of vaccine versus being assigned to the control
arm (and therefore not having access to the vaccine), and β̂1
corresponds to the effect of receiving both doses of vaccine
versus a single dose. Under our identifying conditions, the
sum, β̂0 + β̂1, corresponds to the joint average treatment
effect of being assigned to treatment and taking the treatment
versus being assigned to the control arm (and therefore not
having access to the treatment); that estimate corresponds
to the ITT result expected under full adherence. Although
the structural nested modeling framework of Robins (7) can
allow for general time-varying nonadherence if one wishes
to infer the joint effects of time-varying treatments (7), this
comes at the expense of additional parametric assumptions
(e.g., that the effect of each treatment is the same). We
have focused on estimation under an additive structural mean
model. Future work may consider a multiplicative structural
mean model, which may be preferable when the outcome
mean can only take positive values.

Of course, if one assumes that the exclusion restriction
holds and that a true IV is available, one can anchor study
results at a standard IV estimate (7). Subsequently, one
can leverage our proposed BSIV approach to validate the
standard IV assumption of exclusion restriction. In fact,
using our proposed approach, one can quantify the exclusion
restriction assumption and assess whether the associated
parameter, β̂0, is close to or equal to 0. Our proposed method
also can help avoid problems of imprecision and bias that
may arise in a standard IV analysis given a weak instrument
(23) by allowing an investigator to leverage both the standard
(true) IV and a strong “bespoke” instrument (or instruments)
from among a set of measured covariates, Z (i.e., include
the standard IV among the set L of covariates predicting
treatment for our proposed approach).

In settings of partial adherence, as in our motivating
example of a 2-arm blinded placebo-controlled trial of the
efficacy of a 2-dose vaccine, one can estimate the effect
of receiving the second dose of vaccine as compared with
receiving only the first dose; and one also can estimate the
total effect of being assigned to the treatment protocol and
subsequently receiving both doses of vaccine (as compared
with being assigned to placebo). We are not restricted to
settings of partial adherence that involve just 2 time points.
For example, under a 3-dose vaccine protocol, one could
extend the approach (although it would require an additional
BSIV). More generally, in settings of protracted treatments,
nonadherence could be assessed at multiple time points, and
our proposed method could be extended to such settings by
additional BSIVs.

Nonadherence is a routine concern in randomized tri-
als. We propose a novel approach to assessment of causal
effects in trials with nonadherence. Rather than taking ran-
domization to treatment as our IV and assuming that the
exclusion restriction holds for this instrument, we leverage
random assignment to a control arm as a means of gener-
ating a reference population in which treatment was set, by
design, to 0. Using a novel BSIV approach, we exchange
the standard exclusion restriction assumption for different
identifying assumptions (that may be useful and plausible in
many settings). The proposed approach offers a novel way

to estimate efficacy and effectiveness of treatment effects in
such settings.

ACKNOWLEDGMENTS

Author affiliations: Department of Environmental and
Occupational Health, Susan & Henry Samueli College of
Health Sciences, University of California, Irvine, Irvine,
California, United States (David B. Richardson);
Department of Applied Mathematics, Computer Science
and Statistics, Faculty of Sciences, Ghent University,
Ghent, Belgium (Oliver Dukes); and Department of
Statistics and Data Science, The Wharton School,
University of Pennsylvania, Philadelphia, Pennsylvania,
United States (Eric J. Tchetgen Tchetgen).

D.B.R. was supported by grant R01 OH011409 from the
National Institute for Occupational Safety and Health.
E.J.T.T. was supported by grant R01 AG065276 from the
National Institute on Aging.

The data used in the example are publicly available via
the Teaching of Statistics in the Health Sciences Resources
Portal (https://www.causeweb.org/tshs/category/dataset/).

We thank Dr. Stephen R. Cole for his helpful comments
on a draft of the manuscript.

Conflict of interest: none declared.

REFERENCES

1. Robins JM. Correction for non-compliance in equivalence
trials. Stat Med. 1998;17(3):269–302.

2. Nagelkerke N, Fidler V, Bernsen R, et al. Estimating
treatment effects in randomized clinical trials in the presence
of non-compliance. Stat Med. 2000;19(14):1849–1864.

3. Lewis JA, Machin D. Intention to treat—who should use
ITT? Br J Cancer. 1993;68(4):647–650.

4. Little RJ, Long Q, Lin X. A comparison of methods for
estimating the causal effect of a treatment in randomized
clinical trials subject to noncompliance. Biometrics. 2009;
65(2):640–649.

5. Detry MA, Lewis RJ. The intention-to-treat principle: how to
assess the true effect of choosing a medical treatment. JAMA.
2014;312(1):85–86.

6. Permutt T, Hebel JR. Simultaneous-equation estimation in a
clinical trial of the effect of smoking on birth weight.
Biometrics. 1989;45(2):619–622.

7. Robins J. Correcting for non-compliance in randomized trials
using structural nested mean models. Commun Stat. 1994;
23(8):2379–2412.

8. Baker SG, Lindeman KS. The paired availability design:
a proposal for evaluating epidural analgesia during labor.
Stat Med. 1994;13(21):2269–2278.

9. Dodd M, Fielding K, Carpenter JR, et al. Statistical methods
for non-adherence in non-inferiority trials: useful and used?
A systematic review. BMJ Open. 2022;12(1):e052656.

10. Angrist JD, Imbens GW, Rubin DB. Identification of causal
effects using instrumental variables. J Am Stat Assoc. 1996;
91(434):444–455.

Am J Epidemiol. 2023;192(10):1772–1780

https://www.causeweb.org/tshs/category/dataset/


1780 Richardson et al.

11. Hernan MA, Robins JM. Instruments for causal inference: an
epidemiologist’s dream? Epidemiology. 2006;17(4):
360–372.

12. Robins JM, Finkelstein DM. Correcting for noncompliance
and dependent censoring in an AIDS clinical trial with
inverse probability of censoring weighted (IPCW) log-rank
tests. Biometrics. 2000;56(3):779–788.

13. Imbens GW, Rubin DB. Causal Inference for Statistics,
Social, and Biomedical Sciences: An Introduction. New York,
NY: Cambridge University Press; 2015.

14. Sommer A, Zeger SL. On estimating efficacy from clinical
trials. Stat Med. 1991;10(1):45–52.

15. Richardson DB, Tchetgen Tchetgen EJ. Bespoke instruments:
a new tool for addressing unmeasured confounders. Am J
Epidemiol. 2022;191(5):939–947.

16. Clarke PD, Palmer TM, Windmeijer F. Estimating structural
mean models with multiple instrumental variables using the
generalised method of moments. Stat Sci. 2015;30(1):
96–117.

17. Tchetgen Tchetgen E, Vansteelandt S. Alternative
Identification and Inference for the Effect of Treatment on the
Treated With an Instrumental Variable. (Biostatistics

Working Paper Series, working paper 166). Boston, MA:
Harvard University; 2013.

18. Michalowicz BS, Hodges JS, DiAngelis AJ, et al. Treatment
of periodontal disease and the risk of preterm birth. N Engl J
Med. 2006;355(18):1885–1894.

19. Balke A, Pearl J. Bounds on treatment effects from studies
with imperfect compliance. J Am Stat Assoc. 1997;92(439):
1171–1176.

20. Heckman JJ, Vytlacil EJ. Local instrumental variables and
latent variable models for identifying and bounding
treatment effects. Proc Natl Acad Sci U S A. 1999;96(8):
4730–4734.

21. Imbens GW, Rubin DB. Bayesian inference for causal effects
in randomized experiments with noncompliance. Ann Statist.
1997;25(1):305–327.

22. Tchetgen Tchetgen E, Sun B, Walter SD. The GENIUS
approach to robust Mendelian randomization inference. Stat
Sci. 2021;36(3):443–464.

23. Uddin MJ, Groenwold RH, Belitser SV, et al. Instrumental
variable analysis in epidemiologic studies: an overview
of the estimation methods. Pharm Anal Acta. 2015;6(4):
353.

Am J Epidemiol. 2023;192(10):1772–1780


	 Estimating the Effect of a Treatment When There Is Nonadherence in a Trial
	METHODS
	RESULTS
	DISCUSSION




