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This paper presents a novel Kalman filter (KF) for estimating

the attitude-quaternion as well as gyro random drifts from

vector measurements. Employing a special manipulation on the

measurement equation results in a linear pseudo-measurement

equation whose error is state-dependent. Because the quaternion

kinematics equation is linear, the combination of the two yields

a linear KF that eliminates the usual linearization procedure

and is less sensitive to initial estimation errors. General

accurate expressions for the covariance matrices of the system

state-dependent noises are developed. In addition, an analysis

shows how to compute these covariance matrices efficiently. An

adaptive version of the filter is also developed to handle modeling

errors of the dynamic system noise statistics. Monte-Carlo

simulations are carried out that demonstrate the efficiency of

both versions of the filter. In the particular case of high initial

estimation errors, a typical extended Kalman filter (EKF) fails to

converge whereas the proposed filter succeeds.
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INTRODUCTION

In the normal course of spacecraft operation,
the spacecraft attitude needs to be determined.
The task of attitude determination (AD) is that of
determining the orientation of the spacecraft relative
to some reference frame. This reference frame is
usually celestial or Earth-fixed. The mathematical
representation of attitude is very diverse [1, 2]. One
attitude representation that has proven very useful is
the attitude quaternion, which is a 4£ 1 unit-norm
vector in R4. A well-known attractive feature of this
representation is that the formulation of the attitude
dynamics in terms of the quaternion is linear and
nonsingular. Moreover, with only one redundant
parameter, the quaternion is the minimal nonsingular
attitude parameterization.
Estimating the attitude quaternion from spacecraft

on-board measurements has a long history. Optimal
algorithms have been developed over the last four
decades following two main approaches; namely,
the classical least-squares approach and the Kalman
filtering approach. The first approach was originally
introduced in 1967, in the so-called Wahba’s
problem [3], which is a constrained least-squares
minimization problem for finding the attitude matrix.
A basic assumption was that a batch of at least two
simultaneous vector measurements of the attitude
was available. Later, in 1971, Davenport formulated
and solved Wahba’s problem in terms of the attitude
quaternion [4]. The algorithm developed is known
in the literature as the q-method [1, pp. 426—428].
One advantage of the q-method is that it yields
a closed-form optimal estimate of the quaternion
while explicitly preserving the unit-norm property.
Numerous algorithms were developed in order to
provide the basic q-method with other features like
the ability of sequentially estimating time-varying
attitude [5, 6] and of estimating parameters other than
attitude [6, 7]. Furthermore, some works addressed the
issue of numerical accuracy [8], while others aimed
at providing a probabilistic meaning to the original
least-squares problem [6].
The Kalman filtering approach, on the other

hand, yields, by design, sequential quaternion
estimates that are minimum-variance, and allows
the estimation of parameters other than attitude in
a straightforward manner. The Kalman filter (KF),
however, is not designed to preserve constraints
imposed on the estimated state variables. The
difficulty of preserving the unit-norm property of
the quaternion estimate was overcome in various
ways. One way was to develop a measurement
update stage in an extended KF (EKF) where the
error between the true and estimated quaternion is
itself a quaternion and is multiplied (in the sense of
quaternion multiplication) with the a priori quaternion
estimate to yield the a posteriori estimate. This kind
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of EKF is called a multiplicative EKF [9]. Another
way was to normalize the a posteriori estimate after
a classic (additive) measurement update stage of
the EKF [10]. An alternative method to preserve
the quaternion unit-norm property was to derive
a fictitious quaternion measurement model from
the equation expressing the unit-norm property.
This model, called pseudo-measurement model was
implemented in an additive EKF [11].
In the works mentioned hitherto, the EKFs were

operating on a nonlinear quaternion measurement
model. In the case of vector observations [10] this
model is derived as follows. The vector measurement
equation is

b= bo+ ±b (1)

where
bo = A(q)r: (2)

The 3£1 vectors bo and r are the normalized
projections of a physical vector along the axes of the
body frame B and the reference frame R, respectively.
The vector b is, usually, the output of a body-fixed
sensor while r is known from an almanac or a model.
The vector ±b is an additive measurement noise. The
3£ 3 matrix A is the rotation matrix that brings the
axes of R onto the axes of B; that is, A is the attitude
matrix, and q is the quaternion that corresponds to
A. It is well known that the attitude matrix and the
attitude quaternion are related by [1, p. 414]

A(q) = (q2¡ eTe)I3 +2eeT¡ 2q[e£] (3)

where e and q are the vector and scalar part,
respectively, of the attitude-quaternion q and

qT = [eT q]: (4)

The 3£3 matrix [e£] denotes a skew-symmetric
matrix function of e. This matrix, usually
called cross-product matrix, is used to express
the cross-product of two vectors x and y in a
matrix-vector form as follows x£ y= [x£]y. Using (3)
in (1) and (2) leads to a measurement equation that is
quadratic with respect to q. This equation is linearized
and the linearized model is implemented in an EKF.
The linearization procedure induces undesirable
effects such as sensitivity to initial conditions, biases
in the estimation errors, and, sometimes, an increase
in the computation load, in particular when the
gradient matrices must be evaluated by numerical
methods.
The present work introduces a novel model for

quaternion vector measurements. This model avoids
the linearization procedure. Using this approach,
though, the measurement noise is quaternion
dependent. The dependence on the quaternion is
linear, and this dependence is typical to a wide class
of state-dependent noises. Exact general expressions
for the covariance matrices of such state-dependent

noises are developed here. An analysis shows how
their approximations in the filter design can be
efficiently computed. A nice feature of the present
quaternion model is that the quaternion-dependent
process noise has the same pattern as the measurement
noise. It should be mentioned that this pattern has
already been emphasized in previous works [9, 10].
An ordinary linear KF is designed here to operate

on the developed quaternion state-space model, where
the state-dependent coefficients are computed using
the best available state estimate. The dynamics model
is based on gyro measurements. A realistic model for
rate integrating gyros (RIG) is considered, and the
state vector is augmented to include random gyro
drifts. Nevertheless the state-dependence of the model
parameters induces modeling errors. Such errors can
be dealt with by means of on-line optimal adaptive
filtering. A simple process noise adaptive procedure is
proposed here. It is applied to two different cases. The
first case is that of a filter that uses a process noise
variance which is lower than the actual one. In the
second case, the gyro outputs are contaminated by an
additional and unmodeled drift.
The performance of this novel quaternion KF is

first checked under nominal simulated conditions of
noise and initial errors. Then we check, by extensive
Monte-Carlo simulations, the conjecture that this filter
is less sensitive to initial errors than a baseline EKF.
Finally we implement the two adaptive versions of the
filter.
In the following section we derive the state-space

truth model of the quaternion system. Then we
provide a detailed covariance analysis of the
state-dependent noises. Next we describe the design
model and present the corresponding quaternion KF.
An adaptive filter based on the design model is then
developed. As an introduction to the simulations
that follow, the subsequent section contains a brief
review of the ordinary linearized measurement update
model in an additive EKF. The simulation results for
the nominal nonadaptive filter, for the comparative
simulation, and for the adaptive filters are presented in
the section that follows. Finally, in the last section, we
present the conclusions derived from this work.

MATHEMATICAL MODEL

The Measurement Truth Model

We consider the pair of 3£ 1 unit column-matrices
bo and r obtained when resolving a physical vector,
at a given time, in the body frame B and in the
reference frame R, respectively. (The time subscripts
are omitted in the following development for clarity.)
We define the 4£ 1 quaternion vectors boq and rq as
follows:

boq
¢
=
·
bo

0

¸
, rq

¢
=
·
r

0

¸
: (5)
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It is well known that boq and rq are related by the
quaternion of rotation q as follows [12]:

boq = q
¡1~rq~q (6)

where ~ is the quaternion product and q¡1 is the
quaternion inverse [1, pp. 758, 759]. Let ¨ (¢) and Â(¢)
denote the linear mappings from R3 to R4£4 that are
defined as follows:

¨ (x)
¢
=
·¡[x£] x

¡xT 0

¸
and Â(x)

¢
=
·
[x£] x

¡xT 0

¸
8 x 2 R3 (7)

where [x£] denotes the cross-product matrix that
is associated with x. Then the definition of the
quaternion product yields the identities

q~boq =¨ (bo)q (8a)

rq~q= Â(r)q: (8b)

Premultiplying (6) by q and substituting (8) into the
resulting equation leads to the following 4£ 1 vector
equation

[¨ (bo)¡Â(r)]q=
·¡[(bo+ r)£] bo¡ r
¡(bo¡ r)T 0

¸
q= 0:

(9)

Defining the 4£ 1 vectors so, do, and the 4£ 4
skew-symmetric matrix Ho as follows

so
¢
= 1
2(b

o+ r) (10a)

do
¢
= 1
2(b

o¡ r) (10b)

Ho ¢=
·¡[so£] do

¡doT 0

¸
(10c)

and using (10) in (9) yields

Hoq= 0: (11)

This equation, which is linear with respect to the
quaternion, is the model equation of an error-free
quaternion measurement, where the observation
matrix Ho is a function of the data bo,r. Equation (11)
indicates that q belongs to the null space of the
matrix Ho.
In general the vector bk+1 is the output of a sensor

at time tk+1, e.g. magnetometer, Earth sensor, sun
sensor, etc. The rk+1 vector is known from tables,
almanac, or models and, thus, is relatively accurate.
The measurement noise, denoted by ±bk+1, is defined
by

±bk+1
¢
=bk+1¡bok+1 (12)

where bok+1 is the true value of the observation. From
(12) and (10), we obtain a modified (11) as follows:

Hoq=
·¡[ 12 (b¡ ±b+ r)£] 1

2 (b¡ ±b¡ r)
¡ 1
2 (b¡ ±b¡ r)T 0

¸
q

=
·¡[s£]¡ [¡ 1

2±b£] d¡ 1
2±b

¡dT¡ (¡ 1
2±b)

T 0

¸
q

=Hq¡ 1
2¨ (±b)q (13)

where the vectors s and d, and the matrix ¨ (±b) are
implicitly defined by the second and third equalities,
respectively. Using (11), we rewrite (13) as

0=Hq¡ 1
2¨ (±b)q: (14)

Using the identity (see [13, Appendix A])

¨ (x)y= ¥(y)x 8 (x,y) 2 R3£R4 (15)

where x= ±b, y= q, and

¥(q) =
·
[e£] + qI3
¡eT

¸
: (16)

Equation (14) can be written at time tk+1 as

0=Hk+1qk+1¡ 1
2¥k+1±bk+1: (17)

where ¥k+1 denotes ¥(qk+1). Equation (17) describes
the quaternion pseudo-measurement model at time
tk+1. The signal term Hk+1qk+1 is a linear function
of the quaternion. The noise term, ¡ 1

2¥k+1±bk+1, is
an additive 4£ 1 quaternion-dependent vector. It is
assumed that the 3£ 1 measurement noise vector
±bk+1 is a zero-mean white-noise process with a
covariance matrix Rk+1; that is

Ef±bk+1g= 0, Ef±bk+1±bTk+1g= Rk+1: (18)

The Process Truth Model

The quaternion continuous-time process truth
model has been developed in previous works [9, 10].
Here, we develop the discrete-time process equation.
We consider the following discrete-time process of the
attitude kinematics [1, pp. 511, 512]

qk+1 = ©
o
kqk, k = 0,1, : : : (19)

with the initial conditions q0. The vector qk is the
quaternion of the rotation from a given reference
frame R onto the body frame Bo at time tk. Using !ok ,
the angular velocity vector of Bo with respect to R
resolved in Bo, define

−ok
¢
=¨ (!ok ): (20)

Then, for relatively short time intervals, ¢t= tk+1¡ tk,
the 4£ 4 orthogonal transition matrix, ©ok , can be
expressed by [1, pp. 511, 512]

©ok = exp(
1
2−

o
k¢t): (21)
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Defining a 3£1 vector of integrated rates µok and the
corresponding matrix £ok as follows,

µok
¢
=!ok¢t (22a)

£ok
¢
=¨ (µok ): (22b)

Equation (19) is rewritten as

qk+1 = exp(
1
2£

o
k )qk: (23)

In practice the ideal angular increment, µok , is not
known. In this work, it is assumed that a triad of RIG
measures the incremental rotation over small time
intervals ¢t. The RIG output µk is modeled with an
additive error ±µk

µk = µ
o
k + ±µk: (24)

A “measured” transition matrix can be computed
using µk instead of µ

o
k in (22) and (23). This matrix,

denoted by ©k, differs from ©ok by ¢©k; that is,

©k =©
o
k +¢©k: (25)

The error matrix ¢©k can be expressed as a matrix
power series as follows:

¢©k =©k ¡©ok
= exp(12£k)¡ exp( 12£ok )
= [I4 +

1
2£k +

1
2(
1
2£k)

2 +HOT]

¡ [I4 + 1
2£

o
k +

1
2(
1
2£

o
k )
2 +HOT]

= 1
2 (£k ¡£ok )+ 1

8 (£
2
k ¡£ok 2)+HOT

= 1
2±£k +

1
8[£

2
k ¡ (£k ¡ ±£k)2] +HOT

= 1
2±£k +

1
8(£k±£k + ±£k£k ¡ ±£2k ) +HOT:

(26)

We recall here that the matrix £k is an incremental
matrix based on the incremental time ¢t; that is, £k is
of order ¢t. Therefore, the term HOT (which stands
for higher order terms) in the last line of (26) refers to
terms of order ±£3k , or ±£

2
k¢t, or ±£k¢t

2, and higher.
Assuming that the norm of the noise matrix ±£k is
small and that the time interval ¢t between two gyro
readouts is also small, the matrix ¢©k is approximated
by the first term on the right-hand side (RHS) of (26);
that is

¢©k ' 1
2±£k: (27)

The expression for the 4£4 matrix ±£k is obtained,
of course, by substituting ±µk into µ

o
k of (22b).

Inserting (27) in (25) and using the resulting equation
in the nominal discrete dynamics equation (23) yields

qk+1 ' ©kqk ¡ 1
2±£kqk: (28)

Then, using (15) where x= µok and y= qk we obtain

qk+1 ' ©kqk ¡ 1
2¥k±µk (29)

where ¥k denotes ¥(qk). Equation (29) is a
first-order approximation in ±µk of the exact process
equation (23). One can notice that (29) does not
preserve the unit-norm property of the quaternion.
However, simulations show that for sufficiently
small values of ±µk, e.g., k±µkk= 10¡4 rad, the
difference between (23) and (29) is negligible for all
practical purposes. Note that the value of 10¡4 rad is
conservative, and corresponds to low-grade gyros. For
missions with high attitude accuracy requirements,
using, e.g., star-trackers as attitude sensing devices,
such an error will probably not be reached, which
makes the proposed model even less sensitive to
modeling errors. The mathematical modeling of the
RIG noises chosen here follows the one presented
in [1, pp. 268—270]. The RIG noise ±µk is modeled
as being composed of electronic noise, float torque
noise, and float torque derivative noise. Electronic
noise n1,k and float torque noise n2,k are modeled here
as zero-mean white Gaussian sequences of standard
deviations ¾1 and ¾2

p
¢t, respectively, where ¢t

denotes the time interval between two consecutive
RIG readouts. The principal source of error is drift
rate instability. The gyro output drift rate ¹k is
modeled as a random walk driven by a zero-mean
white Gaussian sequence n3,k of standard deviation
¾3
p
¢t. The three sequences n1,k, n2,k, and n3,k, are

assumed to be uncorrelated with one another and
with the initial values of ¹k and qk. Consequently, the
resulting equations describing the RIG output model
are

µk = µ
o
k + ±µk (30a)

±µk = n1,k +n2,k +¹k¢t (30b)

¹k+1 = ¹k +n3,k: (30c)

Using (30b) in (29) yields

qk+1 = ©kqk ¡
¢t

2
¥k¹k ¡

1
2
¥kn1,k ¡

1
2
¥kn2,k: (31)

For this model we use the customary technique of
state vector augmentation (see e.g. [14, p. 52]) to
incorporate the drift variable ¹k in the state vector.
Define an augmented seven-dimensional state vector
xk as

xTk
¢
=[qTk ¹

T
k ]: (32)

Using (30c) and (31), the derivation of the process
equation of the augmented state-space model is
straightforward and is summarized in the following.

Summary of the Truth Model

The process and measurement equations of the
system are as follows

xk+1 =ªkxk +¡knk (33)

0= H̄k+1xk+1¡ 1
2¥k+1±bk+1 (34)
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where the 7£ 7 transition matrix ªk, the 7£ 9 process
noise input matrix ¡k, and the 9£ 1 augmented gyro
noise vector nk are

ªk =

"
©k ¡¢t

2
¥k

O I

#

¡k =
·¡ 1

2¥k ¡ 1
2¥k O

O O I

¸

nk =

264n1,kn2,k
n3,k

375
(35)

where ¥k is defined from (16), and O and I are the
null matrix and the identity matrix, respectively, of
appropriate dimensions. The matrix ©k is computed
from the measured angular displacement µk,

£k =¨ (µk) (36)

©k = exp(
1
2£k): (37)

The augmented observation matrix H̄k+1 is computed
from the vector observations at tk+1, (bk+1, rk+1),

sk+1 =
1
2 (bk+1 + rk+1) (38a)

dk+1 =
1
2 (bk+1¡ rk+1) (38b)

Hk+1 =
·¡[sk+1£] dk+1
¡dTk+1 0

¸
(38c)

H̄k+1 = [Hk+1 O]: (38d)

The 4£3 matrices ¥k and ¥k+1 denote ¥(qk) and
¥(qk+1), respectively, and the mapping ¥(¢) is
defined in (7). The augmented gyro noise nk is
a 9£ 1 zero-mean white Gaussian sequence with
covariance matrix Qk = diagf¾21I,¾22¢tI,¾23¢tIg.
The measurement noise ±bk+1 is a 3£ 1 zero-mean
white Gaussian noise sequence with covariance matrix
Rk+1. All noises are statistically independent from one
another and from the initial state.

NOISES STOCHASTIC MODELS

In this section, exact expressions for the covariance
matrices of the state-dependent system noises
are provided. The derivation of these expressions
takes advantage of the fact that the input matrices
of the process noises n1,k and n2,k (35), and of
the measurement noise ±bk (34) are linear matrix
functions of the state. The similarity between the
expressions for the state-dependent noises lends
itself to a general treatment, which is provided in
Appendix A. We apply these general results to our
particular model here. First, we treat the measurement
equation in detail, then, due to the similarity, the
process equation is handled in a similar manner but
more concisely. As shown in the following, an extra

term in the expressions for the covariance matrices of
the state-dependent noises yields an improvement over
the usual first-order approximation.

Covariance Matrix of the Novel Measurement

Let q̂k+1 denote the expected value of qk+1,
let yk+1 denote the measurement vector at time
tk+1 (which is 0 in the proposed model), and let
vk+1 denote the quaternion measurement error.
The measurement equation is rewritten here for
convenience

yk+1 =Hk+1qk+1 + vk+1 (39)

where
vk+1 =¡ 1

2¥(qk+1)±bk+1 (40)

and, for the sake of clarity, the explicit dependence
on qk+1 is expressed. Let P

q
k+1 and P

v
k+1 denote the

covariance matrices of qk+1 and vk+1, respectively.
Assuming that ±bk+1 and qk+1 are independent,
and that ±bk+1 is a zero-mean white sequence with
covariance matrix Rk+1, then the exact expression for
Pvk+1 is

Pvk+1 =
1
4¥(q̂k+1)Rk+1¥

T(q̂k+1)+
1
4 Ē(Rk+1−Pqk+1)ĒT

(41)

where q̂k+1 denotes the expected value of qk+1 and −
denotes the Kronecker product. The matrix Ē 2R4£12
in (41) is defined as follows:

Ē = [E1 E2 E3] (42)

where
Ei =¨ (ei), i= 1,2,3 (43)

The mapping ¨ (¢) is defined in (7), and the vectors
ei, i= 1,2,3, are the standard basis vectors in R3.
The derivation of (41) is a direct application of the
proposition presented in Appendix A.

REMARK 1 One notices that the first term on the
RHS of (41) constitutes the usual approximation to
the covariance matrix of a state-dependent noise; that
is, the true state is simply replaced by its expected
value. The second term on the RHS of (41) is due
to the incorporation of the error qk+1¡ q̂k+1 into
the developments. That term involves expectations
of products of the components of ±bk+1 with the
components of the error qk+1¡ q̂k+1. As shown in
Appendix A, the development of (41) exploits the
linearity of the state-dependent noise with respect to
qk+1. Note that the second term on the RHS of (41) is
beneficial in that it renders Pvk+1 nonsingular ( notice
that the rank of the first term on the RHS of (41) is
at most three. In practical implementation of the filter,
the vector q̂k+1 and the matrix P

q
k+1 are replaced by

their best available estimates; that is, q̂k+1=k and Pk+1=k,
respectively.
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REMARK 2 No particular assumptions concerning
the structure of the matrix Rk+1 have been made
up to now. Thus (41) allows to use any type of
covariance matrix for ±bk. On the other hand, the
high dimensions of the matrix Ē and the use of the
Kronecker product for computing the extra term
increase the computational burden of the model.
Moreover, since this correction is only of second
order, the real value in its computation might be
questionable. Fortunately, however, the type of the
matrix Rk+1 that is usually considered in attitude
determination problems from vector measurements
will allow us to obtain fairly simple expressions
for Pvk .

Special Cases for the Covariance Matrix of the
State-Dependent Measurement Noise: We consider
the following three cases for Rk+1 and show how to
simplify the expression for the covariance matrix of
the state-dependent noise.
Case 1 Rk+1 = ½k+1I3. We first use a known

property of the matrix ¥(¢); namely ¥(q̂k)¥T(q̂k) =
I4¡ q̂kq̂Tk , where it is assumed that q̂k is of unit-norm,
to obtain

¥(q̂k+1)Rk+1¥
T(q̂k+1) = ½k+1(I4¡ q̂k+1q̂Tk+1): (44)

Then, substituting Rk+1 = ½k+1I3 in the correction term
of (41) yields (see [13, Appendix C])

Ē(Rk+1−Pqk+1)ĒT = ½k+1[tr(Pqk+1)I4¡Pqk+1]: (45)

Using (44) and (45) in (41) yields

Pvk+1 =
1
4½k+1f[1+ tr(Pqk+1)]I4¡ (q̂k+1q̂Tk+1 +Pqk+1)g

= 1
4½k+1[tr(Mk+1)I4¡Mk+1] (46)

where
Mk+1 = q̂k+1q̂

T
k+1 +P

q
k+1: (47)

Let ¤= [tr(Mk+1)I4¡Mk+1]. If Pqk+1 is positive definite,
then ¤ is also positive definite as shown next. Let
¸1 ¸ ¸2 ¸ ¸3 ¸ ¸4 > 0 denote the four positive
eigenvalues of Pqk+1, then the spectrum of ¤ can
be easily shown to be f1+¸1 +¸2 +¸3,1+¸1 +
¸2 +¸4,1+¸1 +¸3 +¸4,¸2 +¸3 +¸4g where all the
eigenvalues are positive. Therefore, the measurement
noise covariance matrix is positive definite, as it
should be.
Case 2 Rk+1 = ½k+1(I3¡bk+1bTk+1). This is

a fairly accurate approximation for the covariance
matrix of a unit-vector measurement [15]. Consider
the expression

¥(q̂)bbT¥(q̂)+ Ē(bbT−Pq)ĒT (48)

which is the part of the covariance that corresponds to
bk+1b

T
k+1, and where the time indices were omitted for

the sake of notational simplicity. Let B 2 R4£4 denote
the skew-symmetric matrix ¨ (b), then, according to
(15)

¥(q̂)bbT¥T(q̂) = Bq̂q̂TBT: (49)

It can be shown (see [13, Appendix D]) that

Ē(bbT−Pq)ĒT = BPqBT: (50)

Subtracting (49) and (50) from (46) yields

Pvk+1 =
1
4½k+1[tr(Mk+1)I4¡Mk+1¡Bk+1Mk+1BTk+1]

(51)

where Mk+1 is defined in (47).
Case 3 Rk+1 =

P3
i=1 ºiuiu

T
i . Let Ui 2 R3£3 denote

¨ (ui), i= 1,2,3, then P
v
k+1 is expressed as (see [13,

Appendix E])

Pvk+1 =
1
4

3X
i=1

ºiUiMk+1U
T
i (52)

where Mk+1 is defined in (47).

Covariance Matrix of the State-Dependent Process
Noise

Similar developments to those of the previous
section lead us to an exact and a simplified expression
for the covariance matrix of the state-dependent
process noise in (33). Since we assume that both
gyro noises n1,k and n2,k have covariance matrices of
the form ¾2I3, we can directly implement the result
of Case 1 of the previous subsection. We obtain the
following expression for the covariance matrix of
wk = ¡knk in (33) as

Pwk
¢
=covf¡knkg

=
· (¾21 +¾22¢t) 14 [tr(Mk)I4¡Mk] O

O ¾23¢tI3

¸
(53)

with
Mk = q̂kq̂

T
k +P

q
k (54)

where q̂k and P
q
k denote, respectively, the expectation

and the covariance matrix of the state qk. The
expression for Pwk in (53) will serve as a basis for
designing the covariance in the prediction stage of
the KF.

QUATERNION KALMAN FILTER

The issue of state-dependence of the model
parameters must be addressed in order to implement a
KF. We adopt here the common approach of replacing
every unknown variable in the model parameters by
its best available estimate. First, the true quaternion
qk is replaced by its a posteriori estimate q̂k=k when
computing the transition matrix ªk (35). Next, the
state-dependent process noise covariance matrix is
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computed as follows (see (53) and (54))

Pwk =

"
(¾21 +¾

2
2¢t)

1
4 [tr(M̂k=k)I4¡ M̂k=k] O

O ¾23¢tI3

#
(55)

where
M̂k=k = q̂k=kq̂

T
k=k +P

q
k=k (56)

and Pqk=k is the computed a posteriori quaternion
estimation error covariance matrix. It is assumed
that the measurement vectors bk+1 are unitized,
as is commonly done when using line-of-sight
measurements. In this case, the suitable model for
the matrix Rk+1 is [15]: Rk+1 = ½k+1(I3¡bk+1bTk+1),
which corresponds to Case 2 of the previous section,
and where ½k+1 is a given scalar variance parameter.
The adequate expression for the state-dependent noise
covariance matrix is thus provided in (51) and (47).
Accordingly, the measurement noise covariance matrix
used by the filter is

Pvk+1 =
1
4½k+1[tr(M̂k+1=k)I4¡ M̂k+1=k ¡Bk+1M̂k+1=kBTk+1]

(57)

where
M̂k+1=k = q̂k+1=kq̂

T
k+1=k +P

q
k+1=k (58)

q̂k+1=k is the a priori quaternion estimate, P
q
k+1=k is the

a priori quaternion estimation error covariance matrix,
and Bk+1 =¨ (bk+1).
The KF is not designed to preserve any particular

relationship among the components of the estimate
vector. It is known however that, in order for a
quaternion to represent a rotation, its length has to
be equal to one. Moreover, some of the previous
developments on the state-dependent noise covariance
matrices relied on the unity-assumption of q̂k=k. There
are several ways of introducing constraints in a KF.
Adding a pseudo-measurement[11] would increase the
filter computational burden. Truncating or reducing
the state-space model[9] would prevent us from using
the proposed linear measurement model equation (see
(39)). Therefore we opt for the simple quaternion
normalization; namely,

q¤k+1=k+1 =
q̂k+1=k+1
kq̂k+1=k+1k

(59)

which was efficiently incorporated in a previous
quaternion KF [10], and is also used one way or
another in the multiplicative EKF [9].

Summary of the Algorithm

Using the previous developments, the novel
quaternion KF is summarized as follows.

Filter Initialization: Choose the appropriate values
for ¾1, ¾2, ¾3 and ½k+1, and choose an approximate
value for the initial estimate of the state vector and for
the initial estimation error covariance matrix P0=0. In
the absence of such initial estimate, choose the zero
attitude quaternion; that is, q̂T0=0 = [0,0,0,1], and zero
initial drift estimates, ¹̂T0=0 = [0,0,0], to form

x̂T0=0 = [q̂
T
0=0, ¹̂

T
0=0]: (60)

Time Propagation: Given x̂Tk=k = [q
¤
k=k

T, ¹̂Tk=k] and a
RIG readout µk,

µ̂k=k = µk ¡ ¹̂k=k¢t (61a)

£̂k=k =¨ (µ̂k=k) (61b)

©̂k=k = exp(
1
2£̂k=k) (61c)

x̂k+1=k =
·
©̂k=k O

O I

¸
x̂k=k (61d)

£k =¨ (µk) (61e)

©k = exp(
1
2£k) (61f)

¥̂k=k = ¥(q̂k=k) (61g)

ªk =

"
©k ¡¢t

2
¥̂k=k

O I

#
(61h)

Extract Pqk=k from Pk=k, then

M̂k=k = q̂k=kq̂
T
k=k +P

q
k=k (61i)

Pwk =

"
(¾21 +¾

2
2¢t)

1
4 [tr(M̂k=k)I4¡ M̂k=k] O

O ¾23¢tI3

#
(61j)

Pk+1=k =ªkPk=kª
T
k +P

w
k : (61k)

Notice that the estimate transition matrix in (61d) does
not contain off-diagonal terms, whereas the transition
matrix in (61h) does. The former transition matrix
is due to the nonlinear propagation model equations,
as given in (19) and (30c). The correction in the
quaternion estimate due to the drift estimate is made
via the correction of the incremental rotation, µ̂k=k,
in (61a). Thus, the propagation stage preserves the
unit-norm property of the quaternion estimate. The
transition matrix ªk, on the other hand, stems from
the process model equation as given in (33) and (35),
and is used for the covariance propagation. The
off-diagonal term is necessary for the convergence
of the filter. In the absence of that term, and because
of the structure of the augmented measurement
matrix [see (62d)], the system would not be
completely observable, and the drifts would not
be estimated.
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Measurement Update: Given x̂k+1=k =
[q̂Tk+1=k, ¹̂

T
k+1=k] and the new pair (bk+1,rk+1),

sk+1 =
1
2 (bk+1 + rk+1) (62a)

dk+1 =
1
2 (bk+1¡ rk+1) (62b)

Hk+1 =
·¡[sk+1£] dk+1
¡dTk+1 0

¸
(62c)

H̄k+1 = [Hk+1 O] (62d)

Extract Pqk+1=k from Pk+1=k, then

M̂k+1=k = q̂k+1=kq̂
T
k+1=k +P

q
k+1=k (62e)

Bk+1 =¨ (bk+1) (62f)

Pvk+1 =
1
4½k+1[tr(M̂k+1=k)I4¡ M̂k+1=k ¡Bk+1M̂k+1=kBTk+1]

(62g)

Sk+1=k =Hk+1P
q
k+1=kH

T
k+1 +P

v
k+1 (62h)

Kk+1 = Pk+1=kH̄
T
k+1S

¡1
k+1=k (62i)

q̂k+1=k+1 = (I4¡Kk+1H̄k+1)q̂k+1=k (62j)

Pk+1=k+1 = (I4¡Kk+1H̄k+1)Pk+1=k(I4¡Kk+1H̄k+1)T

+Kk+1P
v
k+1K

T
k+1 (62k)

q¤k+1=k+1 =
q̂k+1=k+1
kq̂k+1=k+1k

: (62l)

ADAPTIVE FILTER

Motivation

It is well known that the KF is an unbiased
minimum-variance state estimator under the
assumptions that the system truth model is linear
and the design model is identical to the truth model.
However, the KF becomes suboptimal and sensitive
to initial conditions if there are errors in the design
model. This is the case of the current model because,
due to the difference between the physical and the
mathematical models, the system equations, (33)
and (34), contain modeling errors, and because the
state-dependent noise covariance matrices, Pwk and
Pvk+1 in (55) and (57), are approximated in the filter
by estimate-dependent expressions as given in (61j)
and (62g), respectively. An adequate approach to on
line enhancement of the filter performance is adaptive
filtering [16, pp. 311—318]. In this section we present
an adaptive filter that processes the measurement
residuals in order to optimally compensate for
modeling errors according to some performance index.
The technique of process noise adaptive estimation
is employed; that is, the filter process noise level
is changed adaptively in order to compensate for
modeling errors. The adaptive filter is applied to two

types of modeling errors: 1) errors in the values of the
gyro noise levels, ¾1,¾2, and ¾3, and 2) unmodeled
biases in the random walk model of the gyro drifts
(30c).

Approach

The approach presented herein is inspired by
Jazwinski [16, p. 311], who considered the case of
a scalar Gaussian measurement noise with a single
predicted residual processed by an adaptive filter. In
this work, however, we consider vector measurements
and propose an ad-hoc extension of Jazwinski’s
technique. Assume that a measurement was acquired
at time tk+1. In our case of zero measurement (see
(17)), ºk+1=k, the measurement residuals process at
tk+1, is given by

ºk+1=k =¡Hk+1q̂k+1=k: (63)

Furthermore, the covariance matrix Qk of the
augmented gyro noise vector is modeled by

Qk = diagf´1I3,´2¢tI3,´3¢tI3g (64)

where ´1, ´2, and ´3 are positive parameters to

be estimated. Defining ´
¢
=[´1,´2,´3]

T 2R3, and
recalling that Sk+1=k, the covariance matrix of ºk+1=k,
is computed in the filter and is a function of the value
of ´ assumed in the filter, we propose to solve the
following minimization problem:

min
´¸0
fJ(´) = kºk+1=kºTk+1=k ¡ Sk+1=k(´)k2g (65)

where the norm kAk is the Frobenius norm; that
is kAk2 ¢=tr(AAT), and the inequality ´ ¸ 0 is
component-wise. The value of ´ that is computed
from (65) represents the optimal estimate of the
process noise levels.
The rationale for the cost function (65) is

explained as follows. The matrix ºk+1=kº
T
k+1=k is the

residual sample covariance matrix, whereas Sk+1=k is
the covariance matrix of ºk+1=k, computed using the
filter design model parameters. In particular, Sk+1=k is
a function of the a priori value of ´. Hence, a good
value of ´ is one that brings consistency between
the sample covariance matrix ºk+1=kº

T
k+1=k and its

predicted value Sk+1=k. This consistency condition
is satisfied through the minimization described
in (65).

Solution

Recall that Sk+1=k is computed according to (62h),

rewritten here using the augmented matrices H̄k+1 and
Pk+1=k,

Sk+1=k = H̄k+1Pk+1=kH̄
T
k+1 +P

v
k+1: (66)
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Using (61k) in (66), yields

Sk+1=k = H̄k+1(ªkPk=kª
T
k +P

w
k )H̄

T
k+1 +P

v
k+1

= H̄k+1P
w
k H̄

T
k+1 + H̄k+1ªkPk=kª

T
k H̄

T
k+1 +P

v
k+1:

(67)

Next we evaluate the first term on the RHS of (67)
using (62d) and (61j),

H̄k+1P
w
k H̄

T
k+1

= [Hk+1 O]

·
(´1 + ´2¢t)

1
4 [tr(M̂k=k)I4¡ M̂k=k) O

O ´3¢tI3

¸
£ [Hk+1 O]T

= (´1 + ´2¢t)
1
4Hk+1[tr(M̂k=k)I4¡ M̂k=k]HT

k+1

= ´L1 (68)

where ´
¢
=´1 + ´2¢t, and L1 is the matrix part in the

second equality of (68). Defining N1 as

N1
¢
=H̄k+1ªkPk=kª

T
k H̄

T
k+1 +P

v
k+1 (69)

and using (68) and (69) in (67) yields

Sk+1=k(´) = ´L1 +N1: (70)

It appears that ´1 and ´2 cannot be evaluated
separately; only the combination ´ can be computed
for the adaptation purposes. Moreover, the parameter
´3 does not play any role since it does not participate
in the computation of the covariance matrix Sk+1=k.
This stems directly from the fact that one measures
only the quaternion and not the drift. The zero
components in the augmented matrix H̄k+1 cancel the
drift-related gyro noise variance ´3. Then, performing
the minimization

min
´¸0
fJ(´) = kºk+1=kºTk+1=k ¡ Sk+1=k(´)k2g (71)

yields the following minimizing ´

´¤ =
tr[(ºk+1=kº

T
k+1=k ¡N1)LT1 ]

tr(L1L
T
1 )

: (72)

The derivation of (72) is provided in Appendix B,
in which A= ºk+1=kº

T
k+1=k, B = Sk+1=k, C =N1, and

D = L1. If ´
¤ is positive, the previous value of ´ is

replaced by ´¤ and the latter value is used to update
the covariance matrix Pwk in (61j). If ´¤ is negative,
the value of ´ in Pwk is set to 0. The reason for which
´¤ can be negative is as follows. We can interpret
the matrix N1 in (72) as the residual covariance
matrix that is predicted by the filter as if there were
no process noise in the system. On the other hand,
the matrix ºk+1=kº

T
k+1=k is an approximate value

for the residual covariance as computed from the
actual measurements. If N1 happens to be greater

than ºk+1=kº
T
k+1=k, this means that the filter is too

conservative and should lower its level of process
noise in order to fit the actual residual level. Since it
can do this only by regulating the value of ´, it would
choose a negative value. However, we rule out such
a value in order to ensure that the time propagation
stage only increases the estimation error covariance, as
should be the case in a well tuned KF.

Algorithm

Assume that the a posteriori estimation error Pk=k
and the a priori estimate q̂k+1=k were computed. Then
the adaptive process noise algorithm is as follows

ºk+1=k =¡Hk+1q̂k+1=k (73a)

L1 =
1
4Hk+1[tr(M̂k=k)I4¡ M̂k=k]HT

k+1 (73b)

N1 = H̄k+1ªkPk=kª
T
k H̄

T
k+1 +P

v
k+1 (73c)

´¤ =
tr[(ºk+1=kº

T
k+1=k ¡N1)LT1 ]

tr(L1L
T
1 )

(73d)

Pwk =
·
´¤ 14 [tr(M̂k=k)I4¡ M̂k=k] O

O ´3¢tI3

¸
:

(73e)

Equations (73) describe the adaptive part of the
quaternion KF. The result of this algorithm, that is
the value of Pwk , is substituted into (61j) in the general
algorithm.
Simplified Computation of ´¤: The denominator in

(73d), tr(L1L
T
1 ), can be approximated to second-order

in the measurement and estimation errors by the
value of 18 . The above approximation is justified as

follows. First, in the evaluation of M̂k=k in (61i), we
neglect the covariance matrix Pqk=k with respect to the

matrix q̂k=kq̂
T
k=k, so that M̂k=k ' q̂k=kq̂Tk=k, and therefore,

tr(M̂k=k)' 1. This yields

L1 ' 1
4 [Hk+1H

T
k+1¡ (Hk+1q̂k=k)(Hk+1q̂k=k)T]: (74)

Then, in (74), we neglect the second matrix in the
brackets with respect to Hk+1H

T
k+1. This is justified

by the fact that qk=k is close to the null-space of
Hk+1 provided that the filter converged and that ¢t
is small. The previous argument yields the following
approximation for L1L

T
1 to second order in the

measurement and the estimation errors,

L1 ' 1
4Hk+1H

T
k+1: (75)

Finally we use the property that the matrix Hk+1
is skew-symmetric with eigenvalues f0,0,j,¡jg
(provided that bk+1 and rk+1 are unitized), which
yields

tr(L1L
T
1 )'

tr(H4
k+1)
16

=
1
8
: (76)
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TABLE I
Noise Standard Deviations

¾1 arcs ¾2 arcs/s
1=2 ¾3 arcs/s

3=2 ¾b

Case A system 0.5 6 7:10¡3 1 deg
QKF 0.5 6 10¡2 0.2 deg

Case B system 0.5 6 7:10¡3 100 arcs
QKF 0.5 6 10¡2 100 arcs
AEKF 0.5 6 7:10¡3 100 arcs

Case C system 0.5 60 7:10¡3 100 arcs
QKF 0.05 6 7:10¡3 100 arcs

Case D system 0.5 6 7:10¡3 100 arcs
QKF 0.5 6 7:10¡3 100 arcs

This analysis was supported by simulations where the
error in the approximation remained at the order of
1% for reasonable levels of noises (see Table I).

BRIEF REVIEW OF THE QUATERNION ADDITIVE
EXTENDED KALMAN FILTER

One purpose of the simulation is to show the
advantage of the new algorithm over the quaternion
additive extended Kalman filter (AEKF) [10]. To
investigate the effect of the novel measurement model,
we note that the AEKF and the novel quaternion
KF differ only in their measurement update stage,
because that is where linearization is being used in
the AEKF. The goal of this section is to briefly review
the typical measurement update stage of the AEKF.
For convenience we rewrite the nonlinear vector
measurement equation (2)

bk+1 = A(qk+1)rk+1 +±bk+1 (77)

where A is a known function of qk+1 (see (3)).
Denoting by v(qk+1) the nonlinear measurement
function A(qk+1)rk+1, the 3£ 4 linearized measurement
matrix, when evaluated at q̂k+1=k, is expressed as
follows

Ĥk+1 =rqv(q̂k+1=k)

= 2[eTrI3 + er
T¡ reT+2q[r£],qr+[r£]e]jq=q̂k+1=k

(78)

where e and q are the vector and scalar part of q,
respectively, and where the time indices are omitted
for the sake of notational simplicity. The measurement
update stage in the AEKF is then formulated as
follows

Sk+1=k = Ĥk+1P
q
k+1=kĤ

T
k+1 +Rk+1 (79a)

¯̂
Hk+1 = [Ĥk+1 O] (79b)

Kk+1 = Pk+1=k
¯̂
H
T

k+1S
¡1
k+1=k (79c)

q̂k+1=k+1 = q̂k+1=k +Kk+1[bk+1¡A(q̂k+1=k)rk+1]
(79d)

Pk+1=k+1 = (I4¡Kk+1
¯̂
Hk+1)Pk+1=k(I4¡Kk+1

¯̂
Hk+1)

T

+Kk+1Rk+1K
T
k+1 (79e)

where Rk+1, the measurement error covariance matrix,
is equal to ½k+1(I3¡bk+1bTk+1). In the implementation
of the AEKF, (79) replace (62a) to (62k) of the novel
quaternion KF. Notice that the estimation errors,
which are present in the matrix Ĥk+1, contaminate
more terms of the covariance computation than in the
case of the novel quaternion KF. Moreover, the effect
of these errors is weakened in the novel quaternion
KF due to the multiplication by the small noise
variance parameters [(¾21 +¾

2
2¢t) in (61j), and ½k+1 in

(62g)]. It is anticipated, thus, that the novel quaternion
KF will be less sensitive to large initial estimation
errors than the AEKF. These heuristic statements will
be verified through simulations.

SIMULATION STUDY

Extensive Monte-Carlo simulations were
performed in order to test the nonadaptive quaternion
KF, the adaptive quaternion KF, and to compare the
performance of the nonadaptive quaternion KF to that
of the AEKF.

Simulations Outline

In all simulations the reference coordinate system
R was assumed to be inertial. The body coordinate
system B was rotating with an angular velocity vector
given by

!(t) =

26411
1

375sin(2¼t=150)deg
s

(80)

in B. The initial state of the system was systematically
taken as

q0 = [0:3780 ¡ 0:3780 0:7560 0:3780]T

¹0 = [1 ¡ 1 0:5]T deg
hr

(81)

The time interval between two consecutive RIG
readouts was ¢t= 250 ms. This conservative value
(gyros may have much higher sampling rates)
was chosen in order to test the estimators under
unfavorable conditions. The time interval between
two consecutive vector measurements was 5 s. In
the sequel, the standard deviation of the vector
measurement error will be denoted by ¾b; that is, ¾b =p
½
k+1. The sequence of unitized vector measurements

bk+1 was generated as follows. First we generated a
random sequence of unitized rk+1. Next we solved
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Fig. 1. Case A. Monte-Carlo mean (solid line) and §1 ¾
envelope (dashed lines) of angular estimation error ±Á of

nonadaptive filter over 100 runs.

Fig. 2. Case A. Monte-Carlo means of RIG drift rates estimation
errors of nonadaptive filter over 100 runs.

(23) using the given !(t) vector. This produced the
true quaternion. Then rk+1 was rotated using the
known direction cosine matrix expression which was
based on the quaternion (see (3)). A low-intensity
white Gaussian noise was added to the true value
of bk+1, and the resulting vector was normalized.
The above-mentioned quantities were common to
all subsequent simulations. In each simulation the
Monte-Carlo average was computed over an ensemble
of 100 runs.

Case A. Nonadaptive Quaternion Kalman Filter

This section presents the performance of the
nonadaptive quaternion KF, which was presented
previously. The levels of the process and measurement

Fig. 3. Case A. Monte-Carlo standard deviations and single-run
filter standard deviations in quaternion estimation errors of

nonadaptive filter.

Fig. 4. Case A. Monte-Carlo standard deviations and single-run
filter standard deviations in RIG drift rates estimation errors of

nonadaptive filter.

noises in the system are summarized in Table I.
The angular standard deviation ¾b = 1 deg is typical
to magnetometer measurements. The filter needed
some tuning for ¾3 and ¾b (See Table I for the actual
values.) The filter initialization was done using the
following values for the initial estimate and the initial
estimation error covariance matrix

q̂0=0 = [0 0 0 1]
T, ¹̂0=0 = [0 0 0]

T, P0=0 = 5I7:

(82)
Each Monte-Carlo run lasted 15000 s, which is
typically the duration of three revolutions of a
low-Earth-orbit satellite.
The results for the nonadaptive quaternion KF

are summarized in Figs. 1—4. Fig. 1 shows the
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Fig. 5. Case B. Monte-Carlo means of angular estimation error
±Á of QKF and AEKF over 100 runs.

Monte-Carlo mean and the Monte-Carlo §1¾ envelope
of the angular estimation error ±Á. The angle ±Á
is defined as the angle of the small rotation that
brings the estimated body frame B̂ onto the true body
frame B. This angle is obtained as follows. First,
the quaternion of the rotation from B̂ to B, denoted
by ±q, is evaluated, then the rotation angle ±Á is
computed from ±q, the scalar component of ±q, using
the known relation [1, p. 414] ±Á= 2arccos(±q). After
a transient of approximately 2500 s, the Monte-Carlo
mean and the Monte-Carlo standard deviation of ±Á
settle on steady-state values of 0.2 deg and 80 mdeg,
respectively. Fig. 2 depicts the Monte-Carlo means
of the gyro drift estimation error ±¹̂k=k. The three
components show a fast transient phase of about
1000 s followed by a slow convergence phase; their
final values are equal to or below 10 mdeg/hr. Two
types of standard deviations are plotted in Fig. 3
for each of the four components of the quaternion
estimation error. The solid lines represent the standard
deviation computed in the filter; that is, the square
roots of the diagonal elements of Pqk=k. The dashed
lines represent the Monte-Carlo standard deviations
of the estimation errors computed over 100 runs.
The two different standard deviations are plotted in
order to check the consistency of the quaternion KF
under normal operational conditions. It is concluded
that the filter predicts correctly the values of the
estimation error variances when the level of the noises
is well known. The filter variables, however, appear
to be much more oscillatory than the Monte-Carlo
variables. This was expected since the filter covariance
computation is estimate dependent, therefore the
dynamics become more visible in the estimation
error variances. Fig. 4 shows the Monte-Carlo

Fig. 6. Case B. Monte-Carlo means of RIG drift rates estimation
errors of QKF and AEKF over 100 runs.

standard deviations and the filter standard deviations
corresponding to the three components of the gyro
drift estimation error. After a transient of 2500 s all
standard deviations settle on a steady-state value of
approximately 0.4 deg/hr. As seen in Fig. 4 there is a
good agreement between the Monte-Carlo results and
the filter computation.

Case B. Quaternion KF versus the Additive Extended
Kalman Filter

In this case, the system has the same
characteristics as in the previous case except for ¾b
(see Table I) and for the initial estimation errors. We
choose here ¾b = 100 arcs, which is a reasonable
value considering the use of a star-tracker. Compared
with Case A, the level of vector measurement noise
was lowered in order for the effect of the initial
estimation errors on the estimator performance to
surface. High initial estimation errors were assumed in
the filters both in attitude and in the gyro drift rates.
Of course, for the sake of comparison between the
quaternion KF and the AEKF, the characteristics of
both filters are identical except for the measurement
update formulation, as was pointed out previously.
Each one of the 100 Monte-Carlo runs lasted 3600 s.
The estimation error and its covariance matrix were
chosen as follows

±q̂0=0 = [0:0985 0:9853 ¡ 0:0985 0:0985]T

±¹̂0=0 = 200[1 1 1]
T deg
hr
, P0=0 = 5I7:

(83)

The comparison results between the quaternion
KF and the AEKF are summarized in Figs. 5—6.
Essentially, these figures emphasize the fact that the
AEKF fails to converge due to high initial estimation
errors, whereas the quaternion KF converges. Fig. 5
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Fig. 7. Case C. Monte-Carlo mean of angular estimation error ±Á
of adaptive filter over 100 runs.

depicts the Monte-Carlo means of the angular
estimation errors, ±ÁQuaternionKF and ±ÁAEKF, of the
quaternion KF and AEKF, respectively. It clearly
shows that the Monte-Carlo mean of ±ÁQuaternionKF
converges, whereas that of ±ÁAEKF oscillates around
the value of 90 deg. The latter stems from the fact that
almost all the realizations (97 out of 100) of ±ÁAEKF
diverge and oscillate between 10 deg and 180 deg.
The divergence of the Monte-Carlo means of the gyro
drifts estimation errors in the AEKF is presented in
Fig. 6. The means reach steady-state values of the
order of 105 deg/hr. Divergence of all variables in
the AEKF occurs just after the first measurement
update.

Case C. Adaptive Quaternion KF for Mismodeled
Gyro Noise Levels

The noise levels of the system and of the filter
are summarized in Table I. Notice that the filter
assumes for ¾1 and ¾2 values which are 10 times
lower than in the system. The filter was initialized
with small estimation errors in order for the effect of
the adaptation procedure to surface

±¹̂0=0 = [5 5 5]
T deg
hr
, P0=0 = 5I7: (84)

Each Monte-Carlo run lasted 2000 s. In each run the
adaptive algorithm was activated at time t= 1000 s.
The results of the adaptive estimation are summarized
in Fig. 7. Fig. 7 shows the Monte-Carlo mean of
±Á for the adaptive filter ±Áa (dashed line), and the
Monte-Carlo mean of ±Á for the nonadaptive filter
with the correct noise levels ±Ána (solid line). Before
the adaptation starts, ±Áa settles on approximately
0.13 deg, which is higher than ±Ána (approximately
0.07 deg). As soon as the adaptation procedure

Fig. 8. Case D. Monte-Carlo mean (solid line) and §1 ¾
envelope (dashed lines) of angular estimation error ±Á of adaptive

filter over 100 runs.

is activated, ±Áa drops to the level of ±Ána. This
result proves the efficiency of the adaptive filter; it
recovers the performance of the ideal case that was
lost because of modeling errors.

Case D. Adaptive Quaternion KF for Unmodeled Gyro
Drift Rates

The noise standard deviations in the system and in
the filter are summarized in Table I. In addition, the
system process noise n3,k had a constant bias n̄3; that
is,

n3,k »N (n̄3,¾23¢tI3), n̄3 = [2 2 2]
T deg
hr
:

(85)

The filter was designed without taking the constant
bias n̄3 into consideration. As is shown next, the
adaptation technique copes with that unmodeled
bias, too. Each one of the Monte-Carlo simulation
runs lasted 2000 s. The adaptive algorithm was
activated at t= 1000 s in each run. The results are
summarized in Fig. 8, which depicts the Monte-Carlo
mean and the §1¾ envelope of the angular estimation
error ±Á. At first, the Monte-Carlo mean of ±Á
increases almost linearly with time up to a value of
approximately 0.35 deg. Then, at 1000 s, when the
adaptive filter is activated, it drops to a steady-state
value around 0.1 deg. This value is higher than that
obtained by a nonadaptive filter without modeling
errors (see the solid line in Fig. 7). Nevertheless, the
divergence is avoided, and the Monte-Carlo mean
and standard deviation of the estimation error remain
on an acceptable level. We thus see that in spite of
its simple formulation, the proposed adaptive filter
can compensate for severe modeling errors such as
unknown constant drifts in the RIG outputs.
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SUMMARY AND CONCLUSION

A novel KF for estimating the quaternion of
rotation using vector measurements was presented
in this work. The special feature of the algorithm
was its measurement model. This model was
obtained by a certain manipulation of the 3£1
vector measurement equation which resulted in an
augmented pseudo-measurement equation with a
signal term that is linear in the quaternion. Thanks
to this favorable property, the usual linearization
procedure and, thus, its associated approximation
errors, was avoided. The inherent nonlinearity of
the quaternion vector measurement was, however,
present in the quaternion-dependent noise but with
no effect on the filter performance. The process
equation (quaternion propagation) was based on
gyro measurements. The case of gyro outputs
contaminated by random walk drifts and white noises
was considered. The gyro drifts were estimated as
part of the state vector. The process noise and the
measurement noises exhibited the same kind of
linear state-dependence. That property was used to
develop exact expressions for the respective noise
covariance matrices, thus leading to meaningful
approximations in the filter implementation. A main
benefit of these new expressions was to address
in a non ad-hoc way the issue of singularity in the
measurement noise covariance matrix. This was done,
however, at the expense of the filter computational
simplicity. Exploiting the covariance matrix structures,
computationally efficient expressions were developed.
It was shown, by means of extensive Monte-Carlo
simulations, that the filter behaved well under nominal
conditions. The proposed filter was tested against the
AEKF in the case of high initial estimation errors.
The new filter behaved satisfactorily while the AEKF
failed to converge. It was suggested to apply adaptive
filtering to compensate for modeling errors, which
were partly induced by the state-dependence of
the noises. A simple procedure for process noise
adaptive estimation was developed. As demonstrated
through the results of Monte-Carlo simulations, it was
successfully applied to the case of a “fine tuning”
of the process noise level, and to the harder case
of unmodeled constant biases in the gyro outputs.
The comparison of the proposed filter with the
multiplicative EKF of [9] merits investigation and will
be the subject of future work.

APPENDIX A. COVARIANCE MATRIX OF vk =
g(xk)uk

The proposition formulated in the following is
inspired by an approximate result presented in [16,
pp. 90—91], where the case of a scalar stochastic
sequence with a nonlinear function G(x) was
considered. We consider here the case of a vector

sequence and provide exact results thanks to the
linear-in-x property of G(x).

PROPOSITION Let fxkg 2Rn denote a random
sequence with mean x̂k = Efxkg and covariance matrix
Pxk , and let fukg 2Rm denote a zero-mean white
random sequence with covariance matrix Puk . Assume
that fxkg and fukg are statistically independent. Let
fvkg 2Rp be defined as

vk =G(xk)uk (86)

where G(¢) :Rn!Rp£m is a linear matrix function
of its argument. Then the exact expression for the
covariance matrix of vk, denoted by P

v
k , is given as

follows

Pvk =G(x̂k)P
u
k G

T(x̂k) +¡ (P
u
k −Pxk )¡T (87)

where − denotes the Kronecker product, ¡ 2 Rp£mn is
defined as

¡
¢
=[Gc1 Gc2 ¢ ¢ ¢Gcm] (88)

and each matrix Gci 2 Rp£n, i= 1,2, : : : ,m is defined
according to the identity

Gcix=G(x)ei: (89)

The column-vectors ei in (89) are the standard unit
vectors in Rm with 1 at position i and 0 elsewhere;
that is, Gci is mapping x 2Rn to the ith column of the
matrix G(x) 2 Rp£m. Note that Gci can be expressed
as a linear mapping of the components of ei, for i=
1,2, : : : ,m.

PROOF See [13, Appendix B].

REMARK 1 The result presented above applies to a
large class of sequences. This is the case, in particular,
for sequences described by the following equation
yk = (A+¢A)xk, where the matrix ¢A denotes an
additive zero-mean white-noise error related to the
matrix A. In this case, the error ¢Axk has the form
assumed in (86), so that under the assumption of
independence between ¢A and xk, the result of the
proposition holds.

REMARK 2 The first term in (87) corresponds to the
usual first-order approximation which is made in the
framework of extended Kalman filtering. The second
term in (87) thus yields an exact expression for the
covariance matrix of the modeled sequence.

APPENDIX B. DERIVATION OF (72)

Let A, C, D, with D 6= 0 (not all the elements of
D are zero) denote three square matrices of the same
dimension, and let B(´) denote the matrix function of
the real scalar ´ defined by B(´) = C+ ´D. Consider
the following unconstrained minimization problem:

min
´
fJ(´) = kA¡B(´)k2g (90)
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where kMk denotes the Frobenius norm of the
matrix M; that is kMk2 = tr(MMT). We show that the
solution of this problem, described in (90), is

ˆ́ =
tr[(A¡C)DT]
tr(DDT)

: (91)

We start by writing

J(´) = kA¡C¡ ´Dk2

= tr[(A¡C¡ ´D)(A¡C¡ ´D)T]
= ´2tr(DDT)¡ ´tr[(A¡C)DT+D(A¡C)T]
+ tr[(A¡C)(A¡C)T]

= ´2tr(DDT)¡ 2´ tr[(A¡C)DT]
+ tr[(A¡C)(A¡C)T]:

The first derivative of the cost function J(´) is then

dJ

d´
= 2tr(DDT)´¡ 2tr[(A¡C)DT]: (92)

The necessary condition for ˆ́ to yield a minimum of
J is dJ=d´ = 0. This gives

ˆ́ =
tr[(A¡C)DT]
tr(DDT)

: (93)

Note that D 6= 0 implies that tr(DDT) 6= 0, and, thus,
(93) always has a solution. The second derivative of
J(´) is

d2J

d´2
= 2tr(DDT): (94)

It is well known that for any square matrix D the
matrix DDT is positive semi-definite, therefore its
trace is nonnegative. Since the matrix D 6= 0 then
DDT 6= 0, so that its trace is positive. Therefore, the
sufficient condition for ˆ́ to identify a minimum of the
function J( ˆ́) is satisfied.
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