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Abstract

Emerging folklore in the cognitive sciences suggests that inter-
pretability techniques to reverse-engineer artificial neural net-
works (ANNs) could speed up discovery and theory-building.
For many researchers in psychology, linguistics, neuroscience,
and artificial intelligence (AI), the full observability and per-
turbability of ANNs trained on complex tasks affords a short-
cut to domain insights, cognitive theories, neurocognitive
models, application improvement, and user safety. Folklore
intuitions, however, are typically disconnected from other rel-
evant knowledge. Here we examine these intuitions formally
by drawing relevant connections to computational complexity
theory. We model interpretability queries computationally and
analyze their resource demands for biological/artificial high-
level cognition. We prove mathematically that, contrary to
folklore, basic circuit-finding queries in classic ANNs are al-
ready infeasibly demanding to answer even approximately. We
discuss how interdisciplinary integration can mitigate this dis-
connect and situate the broader implications for the cognitive
sciences, the philosophy of AI-fueled discovery, and AI ethics.

Keywords: meta-theory; high-level cognition;
reverse-engineering; interpretability; circuit finding;
computational modeling; artificial neural networks;
theoretical computer science; computational complexity;
artificial intelligence; neuroscience; psychology; philosophy.

The truth is in there, but so are falsities,
and it’s hard to tell them apart.

S.A. Dana Scully
(slightly rephrased; 1993)

Introduction
In both basic and applied science, the possibility of reverse-
engineering optimized neural networks represents a potential
methodological shortcut with invaluable consequences. Folk-
lore across disciplines frames it as a novel way to gain knowl-
edge: since trained artificial neural networks (ANNs) are
fully transparent, the insights they contain can be extracted
with interpretability techniques that hold potential to scale up
to larger systems solving complex real-world tasks.

There is a heightened sense of optimism in the cognitive
sciences. Researchers in psychology and linguistics hope
to leverage this methodology to discover domain theories of
cognition by analyzing the outputs (see Ivanova, 2023) or in-
ternals (see Pavlick, 2023) of large models trained on vast
quantities of text. Among neuroscientists, there is excitement
about the opportunities that the full perturbability and ob-
servability of ANNs might open up for reverse-engineering
candidate models. These properties would help circumvent

longstanding obstacles in producing mechanistic hypotheses
for neurocognitive function (see Lindsay & Bau, 2023; Lind-
say, 2024) and controlling neural activity (e.g., Tuckute et
al., 2023). Artifical Intelligence (AI) engineers are explor-
ing whether and how reverse-engineering might help diag-
nose problems with applications, improve architectures, deal
with safety issues, and potentially discover domain insights
where learned solutions exceed human capabilities (Raghu
& Schmidt, 2020; Räuker, Ho, Casper, & Hadfield-Menell,
2023; Adadi & Berrada, 2018). Some philosophers of sci-
ence believe this synergy amounts to a novel epistemic per-
spective (Crook & Kästner, 2023; Boge, 2022). Ostensibly, it
provides researchers and engineers with a vantage point from
where to pursue basic and applied goals with less friction.

However insightful, these folklore intuitions about the im-
pact of technology on the problems we care about are ar-
guably best construed as conjectures. Commonsense notions
of what makes scientific problems easier or harder are often
intuitively deceptive (e.g., Adolfi, Wareham, & van Rooij,
2023; Adolfi & van Rooij, 2023; van Rooij, Evans, Müller,
Gedge, & Wareham, 2008). This is because they are typically
disconnected from other, possibly well-established, knowl-
edge (see Green, 2019). Here we set out to draw relevant
connections between folklore on ANN reverse-engineering
and formal knowledge in Theoretical Computer Science by
assessing the real-world feasibility of these intuitions through
the lens of Computational Complexity Theory (see Garey &
Johnson, 1979; van Rooij, Blokpoel, Kwisthout, & Wareham,
2019). This paper1 initiates the study of the resource de-
mands of reverse-engineering the internals of ANNs for nat-
ural/artificial high-level cognition.

Overview. In [§1] Inner Interpretability and its Folklore,
we introduce the subfield tasked with reverse-engineering
the internals of trained ANNs and survey intuitions about
its promises across the cognitive sciences: (I) the benefits
of full observability and perturbability for neurocognitive
modeling, (II) the potential for extracting domain insights
from trained networks, and (III) the feasibility of scaling up
reverse-engineering to large networks solving complex tasks.
We contribute a [§2] Conceptualization and Formalization
of basic interpretability queries as computational problems:
given a trained ANN, find a subcircuit responsible for cer-

1See also Appendix: osf.io/fs4ym/?view only=dbe3ec16033b43cfb8715ba967eaf6c5
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tain behaviors. Then we explain how our [§3] Computa-
tional Complexity Analyses pin down folklore intuitions
to assess them against the intrinsic difficulty of these inter-
pretability queries. We present mathematical proofs of [§4]
Complexity-Theoretic Results: contrary to the prevailing
folklore, basic circuit finding queries in classic, fully ob-
servable and perturbable neural networks are already infea-
sibly demanding to solve not only optimally but even ap-
proximately. Finally, we offer a [§5] Discussion where we
situate our findings in current debates on the impact of AI
interpretability for the problems of interest to psychologists,
linguists, neuroscientists, and computer scientists, and draw
out their broader implications for the philosophy of AI-fueled
discovery, and AI engineering, safety and ethics.

§1 Inner Interpretability and its Folklore
AI is increasingly concerned with understanding how the in-
ternals of a learned system support particular aspects of ma-
chine behavior (e.g., Meng, Bau, Andonian, & Belinkov,
2022; Geva, Caciularu, Wang, & Goldberg, 2022; Vilas,
Schaumlöffel, & Roig, 2023). Inner interpretability is an
emerging subfield tasked with reverse-engineering trained
ANNs (Räuker et al., 2023; Gilpin et al., 2019) and enabling
“a kind of anatomy of neural networks” (Voss, Goh, et al.,
2021, see Figure 1). In this section we survey folklore about
its promises that is shared across the cognitive sciences. We
will later investigate whether these commonsense intuitions
align with formal analyses.

Figure 1: Schematic of the problem of reverse-engineering neural
networks (bottom) trained in a domain of interest (left), the inter-
pretability task of circuit finding (top), and its intended application
in various disciplines (right).

I. Exploiting full observability and perturbability. The
see-through nature of ANNs, in contrast to most com-
plex systems of scientific interest, intuitively suggests that
reverse-engineering goals should be less challenging to at-
tain. “[E]xperiments can be carried out on ANNs easier”,
more “thoroughly and quickly [...], than on real brains [...] be-
cause ANNs are fully observable and perturbable” (Lindsay
& Bau, 2023). “Proving causality [...] is much easier [...]
due to the ease with which [they] can be perturbed and le-
sioned” (Lindsay, 2024). “[N]euroscientists might give a
great deal to have the access to weights that those of us study-
ing [ANNs] get for free” (Voss, Cammarata, et al., 2021).
“[T]he field of interpretable AI [has] identified several meth-
ods that can find the neural features responsible for network
outputs” (Lindsay, 2024). These methods are thought to
present computational and cognitive (neuro)scientists with
transformative means to construct candidate neurocognitive
models and theories (e.g., Pavlick, 2023).

II. Extracting latent insights. The synergy of ANN op-
timization and post-hoc inner interpretability is thought to
“offer the potential to discover emergent computations and
mechanisms not directly built into them” (Lindsay, 2024),
and to extract “domain insights by thoroughly interpreting
high-performing AI systems” (Räuker et al., 2023). Some
cognitive scientists believe that ANNs with human-like per-
formance (cf. van Rooij et al., 2023) hold a latent “theory
[that is] certainly in there” (e.g., Piantadosi, 2023). In a cri-
tique of this position, Kodner, Payne, and Heinz (2023) ask
“[b]ut what does it mean for a theory to be hidden in a black
box?” On one account, an explanation is a cognitive artifact
that is ‘efficiently queriable’; for instance, models are often
referred to as “a way of making an explanation tractable”
(Cao & Yamins, 2023). This means that extracting these sup-
posed insights from ANNs via inner interpretability, if at all
realistic, should be feasible with real-world resources.

III. Scaling up interpretability. ANN applications (e.g.,
natural language processing) have “consistently progressed
by consuming more and more data [...] and a steady in-
crease in model size” (Kodner et al., 2023). Performance-
wise, “[l]arge hidden representation size [is often] consis-
tently better” and especially important for domain-general
models (Rogers, Kovaleva, & Rumshisky, 2020). For the
cognitive sciences, the “benefit of the ANN approach is that
it can face [i.e., scale up to] the complexity of real-world
stimuli and behavior” (Lindsay & Bau, 2023). Accordingly,
“[i]nterpretability techniques should scale to large models”
(Räuker et al., 2023), “which often contain hundreds of layers
and billions or trillions of parameters” (Olsson et al., 2022).
“This trend raises concerns about computational complexity”
(Rogers et al., 2020) and environmental impact (Luccioni,
Jernite, & Strubell, 2023). There is a preoccupation with the
obstacle of “dimensionality and scale” (Voss, Cammarata, et
al., 2021) in the presence of exponential search spaces. “Even
when all parameter values are available [...], it is not straight-
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forward to map these to model behavior, and this problem
is only exacerbated as model size increases” (Kodner et al.,
2023). Yet, “[s]mall networks and simple tasks [...] are of-
ten used for testing” (Räuker et al., 2023). This mix of opti-
mism and preoccupation with scale has not been matched by
efforts to understand complexity-theoretic properties of inter-
pretability problems (i.e., whether and how scaling up might
be feasible). We address this gap in the following sections.

§2 Conceptualization and Formalization
By modeling reverse-engineering tasks at the computational
level (see Marr & Poggio, 1976), we ensure that our re-
sults yield properties intrinsic to the research queries (see van
Rooij et al., 2019) and hence generalize across all possible
(and relevant) interpretability methods and all their possible
implementations involving humans and/or machines.

§2.1 Neural network architecture
We begin by defining the architecture that the interpretabil-
ity queries studied here are relative to, and the notion of
(sub)circuit therein.

Definition 1 (Multi-layer perceptron). [Adapted
from Barceló, Monet, Pérez, & Subercaseaux, 2020].
A multi-layer perceptron (MLP) is a neural network
model M , with L̂ layers, defined by sequences of
weight matrices (W1,W2, . . . ,WL̂), Wi ∈Qdi−1×di ,
bias vectors (b1,b2, . . . ,bL̂), bi ∈ Qdi , and
(element-wise) ReLU functions

( f1, f2, . . . , fL̂−1), relu(x) := max(0,x).
The final function fL̂ is, w.l.o.g., the binary step func-
tion step(x) := 1 if x ≥ 0,otherwise 0. The computa-
tion rules for M are given by

hi := fi(hi−1W+bi), h0 := x
where x is the input. The output of M on x is de-
fined as M (x) := hL̂. The graph GM = (V,E) of M
has a vertex for each component of each hi. All ver-
tices in layer i are connected by edges to all vertices
of layer i+1, with no intra-layer connections. Edges
carry weights according to Wi, and vertices carry the
components of bi as biases. The size of M is defined
as |M | := |V |. (See Figure 1, bottom).

MLPs can be found in most major ANN architectures cur-
rently in use (e.g., transformers, albeit activation functions
may vary; see Strobl, 2023) for all input modalities.

Definition 2 (Circuit). A circuit C of a multi-layer
perceptron M is defined by a subset of vertices V ′ ⊆
V ∈ GM . The circuit includes all connections in GM
for all v ∈ V ′, and its size is defined as |C | := |V ′|.
Figure 1 (top) shows a schematic.

§2.2 Interpretability queries
We formalize inner interpretability tasks as computational
problems. We focus on and formalize circuit finding queries:
the problem facing a researcher searching for a sufficient cir-
cuit responsible for a type of model behaviour in response to

inputs in a domain of interest (see Figure 1). “We may be
trying to comprehensively study a model, [or we might try]
to study neurons we’ve determined related to some narrower
aspect of model behavior” (Voss, Cammarata, et al., 2021).

Circuit finding. Mechanistic investigative strategies typi-
cally involve decomposition and localization (see Ross, 2021)
and follow these initial steps: “(i) describing a behavior
whose neural circuit mechanisms we seek to understand, (ii)
identifying which neurons are involved...” (Olsen & Wil-
son, 2008). Furthermore, “[a] more compact description of
[trained ANNs] is a goal for both machine learning and neu-
roscience” (Lindsay, 2021). “[N]etworks can often be pruned
[heavily] with little to no loss in performance [...], to increase
interpretability” (Räuker et al., 2023; see Voita, Talbot, Moi-
seev, Sennrich, & Titov, 2019). This conceptualization (Fig-
ure 1) leads to the following formalizations2.

Problem 1. (decision version)
MINIMUMLOCALLYSUFFICIENTCIRCUIT (MLSC)
Input: A multi-layer perceptron M , an input x, and

an integer u ≤ |M |.
Output: <YES> if there is a circuit C in M of size

|C | ≤ u that produces the same output on x
as M . Otherwise, <NO>.

Problem 2. (decision version)
MINIMUMGLOBALLYSUFFICIENTCIRCUIT (MGSC)
Input: A multi-layer perceptron M and an integer

u ≤ |M |.
Output: <YES> if there is a circuit C in M of size

|C | ≤ u that produces the same output on ev-
ery possible input as M . Otherwise, <NO>.

§3 Computational Complexity Analyses
Our proofs of hardness and inapproximability build on con-
cepts and techniques from classical (Garey & Johnson, 1979)
and parameterized (Downey & Fellows, 2013) computational
complexity theory. Our modeling choices ensure that these
analyses yield lower-bounds on the complexity of real-world
interpretability queries. Here we give definitions that form
the basis of the proof techniques deployed later.

Definition 3 (Polynomial-time tractability). An al-
gorithm is said to run in polynomial-time if the num-
ber of steps it performs is O(nc), where n is a measure
of the input size and c is some constant. A problem
Π is said to be tractable if it has a polynomial-time
algorithm. P denotes the class of such problems.

Parameterized complexity. Consider a more fine-grained
look at the sources of complexity of problems. The following
is a relaxation of the notion of tractability, where unreason-

2We focus on decision (yes/no output) rather than solution (sub-
circuit output) versions of the circuit finding problems because pro-
cedures to solve the latter can be used to solve the former, thus al-
lowing any hardness results for the former to propagate to the latter.
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able resource demands are allowed as long as they are con-
strained to a set of problem parameters.

Definition 4 (Fixed-parameter tractability). Let P be
a set of problem parameters. A problem P -Π is fixed-
parameter tractable relative to P if there exists an al-
gorithm that computes solutions to instances of P -Π
of any size n in time f (P ) · nc, where c is a constant
and f (·) some computable function. FPT denotes the
class of such problems and includes all problems in P.

In Table 1 we describe the problem parameters we study later.

Parameter description Notation
Model (given) Circuit (requested)

Number of layers L̂ l̂
Maximum layer width L̂w l̂w
Total number of units Û = |M | ≤ L̂ · L̂w |C |= û
Number of input units ÛI ûI
Number of output units ÛO ûO
Maximum weight Ŵ ŵ
Maximum bias B̂ b̂

Table 1: Problem parameters. Note the colored parameters can ar-
tificially bound the input size if bounded. We avoid this in analyses.

Hardness and reductions. Most proof techniques in this
work involve reductions between computational problems.

Definition 5 (Reducibility). A problem Π1 is
polynomial-time reducible to Π2 if there exists a
polynomial-time algorithm (reduction) that trans-
forms instances of Π1 into instances of Π2 such that
solutions for Π2 can be transformed in polynomial-
time into solutions for Π1. This implies that if a
tractable algorithm for Π2 exists, it can be used to
solve Π1 tractably. Fpt-reductions transform an in-
stance (x,k) of some problem parameterized by k
into an instance (x′,k′) of another problem, with
k′ ≤ g(k), in time f (k) · p(|x|) where p is a polyno-
mial. These reductions analogously transfer fixed-
parameter tractability results between problems.

The results in the next sections are conditional on two con-
jectures with extensive theoretical and empirical support. In-
tractability statements build on these as follows.

Conjecture 1. P ̸= NP.

Definition 6 (Polynomial-time intractability). The
class NP contains all problems in P and more. As-
suming Conjecture 1, NP-hard problems lie outside
P. These problems are considered intractable because
they cannot be solved in polynomial-time (unless
Conjecture 1 is false; see Fortnow, 2009).

Conjecture 2. FPT ̸= W[1].

Definition 7 (Fixed-parameter intractability). The
class W[1] contains all problems in the class FPT and
more. Assuming Conjecture 2, W[1]-hard param-
eterized problems lie outside FPT. These problems
are considered fixed-parameter intractable, relative

to a given parameter set, because no fixed-parameter
tractable algorithm can exist to solve them (unless
Conjecture 2 is false; see Downey & Fellows, 2013).

Computational problems of known complexity. We will
construct reductions from the following two intractable prob-
lems (see Garey & Johnson, 1979).

Problem 3. CLIQUE (CQ)
Input: An undirected graph G = (V,E) and a posi-

tive integer k.
Output: <YES> if G has a clique of size at least k; that

is, a subset V ′ ⊆V , |V ′| ≥ k, such that for all
pairs v,v′ ∈V ′, (v,v′) ∈ E. Otherwise, <NO>.

Problem 4. VERTEXCOVER (VC)
Input: An undirected graph G = (V,E) and a posi-

tive integer k.
Output: <YES> if G contains a vertex cover of size at

most k; that is, a subset V ′ ⊆V , |V ′| ≤ k, such
that for all (u,v) ∈ E, at least one of u or v is
in V ′. Otherwise, <NO>.

§4 Complexity-Theoretic Results
In this section we present our findings on the resource de-
mands of general and parameterized circuit finding queries,
for optimal and approximate problem versions. (Here we
present proof sketches; see Online Appendix for full proofs).

§4.1 Intractability of optimal solutions
The first result is that the queries studied here are intrinsically
infeasible in general, in that they demand more resources (i.e.,
space or time) than possible in the real world.

Theorem 1. MLSC is NP-hard.

Theorem 2. MGSC is NP-hard.
Each of these theorems can be proven using two different re-
ductions (given in proof sketches A and B). Both these reduc-
tions are used to prove different problem properties later.

Proof A (sketch). Given an instance ⟨G = (V,E),k⟩ of
CLIQUE, we construct an MLP (Definition 1) with |V |+ |E|+
2 neurons spread across four layers, as shown in Figure 2.
Weights and biases are set such that there is a sufficient cir-
cuit of size k(k−1)/2+ k+2 in the latter if and only if there
is a clique of size k in the former. ■

Figure 2: Schematic of the reduction from CLIQUE (left).4
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Proof B (sketch). Given an instance ⟨G = (V,E),k⟩ of VER-
TEXCOVER, construct an MLP (Definition 1) using the ReLU
logic gates described in Barceló et al., 2020 (Lemma 13), with
|V |+2|E|+2 neurons spread across five layers, as shown in
Figure 3. Weights and biases are set such that there is a suf-
ficient circuit of size 2|E|+ k+ 2 in the latter if and only if
there is a vertex cover of size k in the former. ■

Figure 3: Schematic of the reduction from VERTEXCOVER (left).

§4.2 Parameterized intractability
The preceding theorems establish the intractability of the gen-
eral problems but leave open the possibility that these un-
reasonable resource demands might be contained within cer-
tain problem parameters (see Table 1). However, the follow-
ing theorems establish the fixed-parameter intractability of
MLSC and MGSC relative to any combination of parame-
ters in the set P = {L̂w,ÛI ,ÛO,Ŵ , B̂, l̂, l̂w, û, ûI , ûO, ŵ, b̂}.

Theorem 3. P -MLSC is W[1]-hard.

Theorem 4. P -MGSC is W[1]-hard.

Proof (sketch). In the instances of MLSC and MGSC con-
structed in proofs sketch A of Theorem 1 and Theorem 2 (Fig-
ure 2), all p ∈ P are constants or functions of k in the given
instance of CLIQUE. The result then follows from the fact that
{k}-CLIQUE is W[1]-hard (Downey & Fellows, 2013). ■

§4.3 Intractability of approximate solutions
Although we proved that computing optimal solutions is in-
tractable, it is still conceivable that we could devise tractable
procedures to obtain approximate solutions that are useful in
practice. Consider two natural notions of approximation.

Multiplicative approximation. For a minimization prob-
lem Π, let OPTΠ(I) be an optimal solution for Π, AΠ(I) be a
solution for Π returned by an algorithm A, and m(OPTΠ(I))
and m(AΠ(I)) be the values of these solutions.

Definition 8 (Multiplicative approximation algo-
rithm). [Ausiello et al., 1999, Def. 3.5]. Given a
minimization problem Π, an algorithm A is a mul-
tiplicative ε-approximation algorithm for Π if for
each instance I of Π, m(AΠ(I))−m(OPTΠ(I)) ≤ ε×
m(OPTΠ(I)).

It would be ideal if one could obtain approximate solutions
for a problem Π that are arbitrarily close to optimal if one is
willing to allow extra algorithm runtime.

Definition 9 (Multiplicative approximation scheme).
[Adapted from Ausiello et al., 1999, Def. 3.10].
Given a minimization problem Π, a polynomial-time
approximation scheme (PTAS) for Π is a set A of al-
gorithms such that for each integer k > 0, there is a
1
k -approximation algorithm Ak

Π
∈ A that runs in time

polynomial in |I|.
Unfortunately, the following results establish the intractabil-
ity of arbitrarily-precise multiplicative approximation.

Theorem 5. MLSC cannot have a PTAS.

Theorem 6. MGSC cannot have a PTAS.

Proof (sketch). The result is obtained by showing that the re-
duction from VERTEXCOVER used in proof sketch B (Fig-
ure 3) of Theorem 1 and Theorem 2 is also an L-reduction,
following Arora, Lund, Motwani, Sudan, & Szegedy, 1998
(Theorem 1.2.2). ■

Additive approximation. It would be useful to have guar-
antees that an approximation algorithm for our problems re-
turns solutions at most a fixed distance away from optimal.

Definition 10 (Additive approximation algorithm).
[Adapted from Ausiello et al., 1999, Def. 3.3]. An
algorithm AΠ for a problem Π is a d-additive ap-
proximation algorithm (d-AAA) if there exists a con-
stant d such that for all instances x of Π the error be-
tween the value m(·) of an optimal solution optsol(x)
and the output AΠ(x) is such that | m(optsol(x))−
m(AΠ(x)) | ≤ d.

This would ensure errors cannot get impractically large. Alas,
the following theorems rule out this possibility.

Theorem 7. MLSC cannot have a tractable d-AAA.

Theorem 8. MGSC cannot have a tractable d-AAA.

Proof (sketch). We combine ideas in Proof A (reduction from
CLIQUE) of Theorems 1-2 with a padding technique in Garey
& Johnson, 1979. Given an MLP constructed as in Figure 2,
we build a larger instance by creating d + 1 part copies and
connecting them such that obtaining an approximate solution
for the larger instance would imply obtaining an optimal solu-
tion for the smaller one, from which a solution to the CLIQUE
instance can be extracted (Figure 4). Since the existence of a
tractable additive approximation algorithm would contradict
the hardness of CLIQUE, no such algorithm is possible. ■

Figure 4: Schematic of the padding strategy to prove Theorems 7-8.5
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Approximation alternatives. Finally, let us consider three
other types of polynomial-time approximability that may be
acceptable in situations where always getting the correct out-
put for an input is not required: (1) algorithms that always
run in polynomial time and produce the correct output for a
given input in all but a small number of cases (Hemaspaandra
& Williams, 2012); (2) algorithms that always run in poly-
nomial time and produce the correct output for a given input
with high probability (Motwani & Raghavan, 1995); and (3)
algorithms that run in polynomial time with high probability
but are always correct (Gill, 1977).

Theorem 9. Neither MLSC nor MGSC are
tractably approximable in senses (1–3).

Proof (sketch). The result holds conditional on strongly-
believed or established complexity-class conjectures due to
the proven NP-hardness of MLSC and MGSC (Theorems 1-
2) and the reasoning in Wareham, 2022 (Result E). ■

§5 Discussion
Imagine, implausibly, if just about anything of interest could
be learned efficiently from data using ANN architectures (cf.
van Rooij et al., 2023), and there were no limits on the amount
of quality data we could obtain (cf. Birhane, Prabhu, Han,
& Boddeti, 2023) and no environmental cost of training (cf.
Luccioni & Hernandez-Garcia, 2023). The following recipe
is tempting: train ANNs to solve interesting real-world prob-
lems, and then exploit their transparency to reverse-engineer
their inner workings and extract domain insights. Could we
ease and speed up discovery and theory-building in this way?

Folklore in the cognitive sciences suggests the insights
must surely be ‘in there’ (viz. in trained ANNs) and they
can be extracted with inner interpretability techniques. Yet
our findings suggest even separating basic things like relevant
circuits from other stuff also ‘in there’ seems to be infeasible
to do reliably for increasingly larger networks. In what sense
then can ANN reverse-engineering represent a shortcut? We
have some understanding that finding theories ‘out here’ —
bottom-up experimentation on biological brains (Adolfi &
van Rooij, 2023) and top-down theorizing (Rich, de Haan,
Wareham, & van Rooij, 2021) — face similar barriers. Com-
pare this with the ANN-interpretability promises described in
the introductory sections. On the forward-engineering side,
we know that scaling up the training of ANNs to perform
ever more complex human-like or -level tasks runs up against
intractability barriers (van Rooij et al., 2023). On the reverse-
engineering side, the hardness and inapproximability theo-
rems proven here provide preliminary evidence that inner in-
terpretability queries, even very basic ones, are no exception.

Contrary to folklore intuitions, full perturbability and full
observability do not appear to translate directly into efficient
queriability or controllability. That these research activities
are rendered possible in ANNs does not mean that the scien-
tific problems get easier or the expected knowledge gains are
brought about (see Adolfi, 2023, for a generalizing frame-

work). In this narrow sense, the value of perturbability and
observability might be overstated and/or a distraction.

Our findings hence temper notions of ANN reverse-
engineering as a shortcut to build neurocognitive models (see
e.g., Lindsay, 2024; Lindsay & Bau, 2023) or to extract
psychological/linguistic theories (see e.g., Piantadosi, 2023,
and Kodner et al., 2023 for critique) and application domain
insights (Adadi & Berrada, 2018), or as an overall novel
and more efficient epistemic perspective (Crook & Kästner,
2023). We echo calls in other fields to question the idea that
there are shortcuts to theory (Devezer, 2023). If our results
hold more generally, they would indicate a sobering conclu-
sion: there exist no such shortcuts ‘in there’; theoretical in-
sights in there — if there are any (there might be no there
there) — could be just as hard to discover as those out here.

The disconnect we observe here between knowledge in
adjacent disciplines and folklore intuitions among cognitive
scientists is not uncommon. We stress the importance of
disciplinary diversity and interdisciplinary integration (Green
& Andersen, 2019; Bender, Beller, & Nersessian, 2015) to
recover the relevant connections. The field of Inner Inter-
pretability can leverage existing knowledge in older fields
(Vilas, Adolfi, Poeppel, & Roig, 2024). The risk of over-
looking relevant disciplinary links is that unexamined folk-
lore intuitions about what makes problems easier, or inves-
tigative strategies feasible, can end up driving research pro-
grams dominated by a technology lottery (see Hooker, 2020).

Interpretability efforts currently rely on poorly understood
heuristics to solve poorly understood computational problems
(see Krishnan, 2020; Vilas et al., 2024). When the latter are
intrinsically intractable (e.g., our results, those in Barceló et
al., 2020), the landscape of empirical results can get messy.
This is due, in part, to compounding errors which our inap-
proximability results suggest cannot be kept small. Indeed,
“many popular interpretability methods produce estimates
[...] that are not better than a random designation...” (Hooker,
Erhan, Kindermans, & Kim, 2019). While our work is pre-
liminary regarding the broader scope and limits of ANN inter-
pretability, it suggests that tractable methods must be sought
relative to additional knowledge about the structure of the
problems and/or further restrictions on the architectures. Fu-
ture work could exploit knowledge of how constraints (e.g.,
to the input domain, architecture, parameter space) affect the
intrinsic complexity of interpretability queries to design algo-
rithms capable of answering them efficiently.

Turning to AI ethics, post-hoc reverse-engineering meth-
ods could be useful to tackle issues of user safety and envi-
ronmental efficiency (see Räuker et al., 2023; and Krishnan,
2020 for critique). Still, we caution against framing this path
as a shortcut to making systems safe or efficient. Relying
on interpretability techniques to defer these issues until after
training would not seem to render them more feasibly solv-
able. Grappling head-on with issues of training dataset cura-
tion (Birhane et al., 2023), energy demands and carbon emis-
sions (Luccioni et al., 2023) are plausible alternatives.
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Vilas, M. G., Schaumlöffel, T., & Roig, G. (2023). Analyzing
vision transformers for image classification in class embed-
ding space. In Advances in neural information processing
systems (Vol. 36, pp. 40030–40041).

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., & Titov,
I. (2019). Analyzing Multi-Head Self-Attention: Spe-
cialized Heads Do the Heavy Lifting, the Rest Can Be
Pruned. In A. Korhonen, D. Traum, & L. Màrquez (Eds.),
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