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Membership Inference Attacks on Deep Learning Models

Abstract

Recently, deep learning models have been extensively adopted in numerous applications, from

health care to finance and entertainment industry. This wide-spread deployment of deep models

raised concern over the privacy of data used to train deep models. This is a huge concern particularly

for data-sensitive applications, such as health records, personal data, bio-metric data, etc. As a

result, a new direction of research focusing on possible attacks aiming to identify training data of

deep models emerged, called membership inference.

Membership inference (MI) attacks identify which samples have been used during training and

which samples have not. The first generation of membership inference attacks mainly used deep

models’ prediction confidence as a feature to identify training samples. The intuition is that deep

models are more confident on samples they have seen during training than non-training samples.

Despite their sound intuition and apparent successful reports, we, along a few other parallel

studies, showed that the first generation of membership inference attacks are ineffective in practice

for multiple reasons. First, they could not significantly outperform a naive baseline that labels

a sample as a member (training sample) if it is correctly classified by the deep model and as

a non-member (non-training sample) otherwise. Second, the confidence distribution of correctly

classified samples, which cover the majority of a dataset, are not distinguishable between train and

non-train samples. Only a small portion of mis-classified samples exhibit discrepant distribution.

Third, all these membership inference attacks report average-case success metric (e.g., accuracy

or ROC-AUC). However, privacy is not an average case-metric, and it should be treated similar

to other security and privacy related problems. Similar to other security problems, the attack is

reliable if it can identify a few training samples while almost on non-training samples are falsely

labeled as a training sample. In other words, a reliable membership inference attack should have a

decent true-positive rate (TPR) at low false-positive rates (FPR).

In this dissertation, we aim to move the membership inference research in a more practical

direction, either by showing the limitations of the current attacks or by proposing more reliable

attacks. As stated earlier, we first show that the current generation of membership inference
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attacks are not reliable in practice. Then, we propose several new membership inference attacks

that achieve more reliable performance in more realistic scenarios. The first attack focuses on

the model’s behavior in the entire sub-population, instead of a single sample in vacuum. More

specifically, we compare the model’s confidence on a target sample and other samples from the same

sub-population. If the confidence of a sample is significantly higher than the average confidence

on that sub-population, that is an indication of a training sample. We show that this attack can

achieve moderate true positive with very low false positive. Additionally, we propose a BiGAN

architecture to generate samples from the same sub-population, in case it is not available. The

second attack aims to focus on user-level MI attack instead of the record-level MI attack. In this

scenario, we identify if a user’s data has been used during training instead if identifying which

samples from the user have been used. Not only this attack is more realistic in privacy domain, but

we show that we can achieve the state-of-the-art accuracy if multiple samples from a user are used

to draw the membership inference. In another study, we show that MI attacks are generally more

successful when deep ensemble is used. We show that deep ensemble shifts the distribution of train

and non-train samples in a different way where they become significantly more distinguishable.

Finally, we show that are a few simple aggregation mechanisms instead of ensemble averaging that

can improve the accuracy and privacy of deep models in deep ensemble context.

Finally, we illustrate a fundamental issue with current MI attacks, including the state-of-the-

art attacks, that limits their applications in certain scenarios. We elaborate the issues with a

practical scenario where membership inference attacks are used by an auditor (investigator) to

prove to a judge/jury that the auditee unlawfully used sensitive data during training. Although the

current SOTA attacks can identify some training samples with low false positive ratio in a common

experimental setting extensively used for MI attacks, an auditee can generate unlimited number

of samples on which MI attacks catastrophically fail. This can be used in court to easily discredit

the allegation of the auditor and make the case dismissed. Interestingly, we show that auditee

does not need to know anything about the auditor’s membership inference attack to generate those

challenging samples. We called this problem, discredibility. Currently, there is no attack immune to

discredibility. We hope that our research sheds light on this newly-discovered issue and encourage

researchers to investigate it.
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CHAPTER 1

Introduction

With abundance of data and more accessible machine learning implementations, machine learn-

ing models and deep neural networks (DNN) are extensively adopted for various applications, from

health-care to finance. Moreover, the emergence of machine learning as service (MLaaS) platforms

facilitates the use of DNN models even for applications and businesses. With the widespread adap-

tation of deep neural networks (DNN), their security challenges have received significant attention

from both academia and industry, especially for mission critical applications, such as road sign

detection for autonomous vehicles, face recognition in authentication systems, and fraud detection

in financial systems.

Recently, various privacy and security aspects of DNNs have been studied leading to the expo-

sure of many vulnerabilities, including adversarial attacks [1,10,97,99,136,140,144], membership

inference attacks [41,44,71,92,110,137,141], model extraction/stealing attacks [5,21,57,118],

functionality stealing attack [93], model inversion attacks [26,27,78,79,142], property inference

attacks [2,28,79,94,124], poisoning attacks [13,48,53,86,109,145], hyper-parameter stealing

attacks [122], etc. In this dissertation, we focus on membership inference attacks where the goal

is to identify samples used during the training of a DNN model.

In this section, we briefly introduce a rudimentary knowledge regarding DNNs’ security and

privacy. Next, we introduce the three major categorize of attacks on DNNs. Lastly, we focus on

membership inference attacks, current state-of-the-art, and our contributions.

1.1. Background

In machine learning security, an attack has a threat model that defines the goal, capabilities (or

knowledge), and target model. The attacker’s goal can be categorized in terms of security violation:

1) violation of availability that aims to reduce the confidence of a model for normal inputs, 2)

violation of integrity that aims misclassification on certain inputs without affecting normal inputs,
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Figure 1.1. Typical attacks on machine learning: (a) Adversarial attack, (b) model
inversion attack, and (c) backdoor attack.

and 3) violation of privacy that aims to obtain confidential information about the model, training

or inference-time data and users, or even hyper-parameters used during training (hyper-parameter

stealing attack).

The life-cycle of a typical machine learning model with offline training data consists of training

and inference phases, which indicate attacker’s capabilities and knowledge. Training phase capa-

bilities are data injection, where the attacker injects new data points to the training dataset, data

poisoning, where the attacker modifies the existing data points in the training dataset, and logic

corruption, where the attacker interferes with the learning algorithm.

In the inference phase, the model is assumed to be fixed and the attacker cannot change the

model. However, the attacker can still craft data inputs that fool the model to provide incorrect

outputs. Hence, the attacker’s capability is defined based on how much information she has about

the model, ranging from white-box, where everything is possibly known including the entire model

and training data, to black-box attacks, where minimum knowledge about the model, training data

and algorithm is known. Any attack model that lays between while-box and black-box attack in

terms of available information about the model is called gray-box attack.
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1.2. Security Attacks on DNNs

In machine learning security, attacks are often categorized into three attack types based on the

threat model:

Evasion attack (adversarial attack): The goal of an evasion attack is to manipulate the

input data such that the model misclassifies. Although one can technically manipulate training data

using evasion attack methods during training phase (often for adversarial retraining as a defense

mechanism), evasion attack is an inference phase attack that violates the integrity. Figure 1.1(a)

illustrates the adversarial attack where the attacker add a small perturbation, imperceptible to

human eye, to the stop sign image to cause the model to misclassify.

Data poisoning: This is a training phase attack where the attacker inject or manipulate

training data to either create a backdoor to use at inference time (without compromising the

model performance on normal input data) or to corrupt the training process. Hence, it can violate

availability or integrity depending on the goal. A typical example is to create a backdoor for face

recognition task where the attacker injects a set of training samples with a specific object in a

target person’s training data. The aim is to force the model to associate the specific object with

the target class. Then, any face image with the object is classified as the target class even if it

belongs to another person. For instance, in Figure 1.1(c), the attacker inject faces of John with a

special hat during training. Then, at the inference phase, any face that has the hat is classified as

John by the model.

Exploratory attacks: The aim of the attack is to violate the privacy at inference phase. It

covers several types of attacks, includingmodel extraction, to extract model parameters, membership

inference attack, to examine whether a data point is used during the training phase, model inversion,

to infer something about input by observing the model output. In Figure 1.1(b), the attacker aims

to recover the input image of Mia by observing the output and the model. Although exploratory

attacks have been widely studied for classical machine learning algorithms, there are only a few

works on deep learning models. For example, it has been recently shown that sensitive and out-

of-distribution sentences, such as ”My social security is —-”, can be leaked from commercial text-

completion neural networks [8].
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Figure 1.2. Membership inference attacks often rely on model’s confidence to in-
ference the membership status.

1.3. Membership Inference Attacks on DNNs

Given a data sample and a model, membership inference (MI) attempts to determine if the

data sample had been used to train the model. Membership inference attacks have been proposed

in various applications and scenarios, including natural language processing models [9,41,49,84,

108], generative models [4,11,32,37,38,43,73], speech recognition [82,107,120], health/genomic

data [6,30,31,71,129,135,141], recommendation systems [17,125,137], graph neural networks

[34,54,92,127], etc. Although some attacks have been designed to work on a very specific scenario,

majority of membership inference attacks proposed in literature are general purpose attacks that

can be used on any deep neural network.

There is an extensive recent literature on membership inference (MI) attacks on deep learning

models that achieve high MI attack accuracy [71,75,76,105,110,114,119,134]. These MI attack

models often use confidence values of the target model to infer the membership of an input sample,

as shown in Fig 1.2. High MI attack accuracy is often justified by claiming that deep learning

models are more confident towards the training (member) samples than the samples they have

not seen during training. Consequently, MI attack accuracy is reported to be highly correlated to

model’s overfitting or generalization gap [105,110,114] because an overfitted model should perhaps

behave even more confident towards training samples.

The first membership inference attack on deep models is proposed by Shokri et al. in [110].

The key idea is to build a machine learning attack model that takes the target model’s output

(confidence values) to infer the membership of the target model’s input. To train the attack
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models, membership dataset containing (xconf , ymem) pairs is needed where xconf represents the

confidence values obtained by the target model for each sample and ymem is a binary variable

indicating whether the sample is used in target model’s training or not. To build the membership

dataset, a set of shadow models are trained for which the training and non-training samples are

known. The attack is possible under two assumptions [105]: (a) the shadow models share the same

structure as the target model, and (b) the training dataset used to train the shadow models share

the same distribution as the one used to train the target model. To mitigate these limitations,

Salem et al. [105] relax the second assumption by showing the attack is possible using different

datasets and the first assumption by proposing a threshold-based attack that does not require a

training procedure. To further relax these assumptions, several studies [71,75,76,114,119,134]

introduce better dataset generating procedures for shadow models, and extend the experiments to

various scenarios and datasets. Majority of studies share the same idea of using target model’s

output for membership inference. More recent state-of-the-art approaches [7,98,126] adopts some

forms of difficulty calibration (see Section 2), but they still rely on confidence values.

Unrelated to the membership inference, a large body of research focuses on understanding deci-

sion boundary of deep models [56,83], geometry and space of deep models [23,85], and properties

of loss surface [29, 58] to often improve training, to understand adversarial examples, or to im-

prove robustness. In [83], it is shown that the decision boundary gets closer to training samples as

training progress, and misclassified samples are closer to decision boundary than correctly classified

samples. In [23], experimental results corroborate the idea that the classification region of deep

models are connected, that is, deep models consist of several large regions, each of which contains

samples of one class. In [58], the effect of large batch versus small batch on the curvature of the

minimum of loss function and generalization gap is studied. Although none of these analyses has

been used for membership inference attack directly, it is worth investigating them. The only studies

that investigate features rather than confidence values are in [15,96]. In [15], the authors proposed

two attacks based on input transformation and distance to the boundary in a black-box setting.

Similarly, in [96], they propose the sampling attack that randomly perturbs an input to obtain

a set of random transformations of the input and uses the predicted labels to infer membership
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status. In this dissertation, we study distance to the decision boundary, a set of gradient norms

with respect to model’s input, and a set of gradient norms with respect to model’s weight.

1.4. Contributions

In this dissertation, we focus on practical membership inference attacks on deep neural networks.

We first study the practicality of the current membership inference attacks. We then propose a

few attacks and cases where more reliable membership inference is possible. Lastly, we introduce a

new concept, called discredibility, to warn the unreliability of even the SOTA membership inference

attacks for certain scenarios. The detailed contribution of the dissertation is as follows:

(1) We show that traditional classification performance metrics, such as accuracy, precision,

and recall are not enough to give us a clear picture of how MI attacks perform in practice,

particularly on negative (non-member) samples. A better comprehensive evaluation should

include false alarm rate (FAR) or true positive at low false positive rate as suggested

in [7]. Moreover, we study the performance of correctly classified samples and misclassified

samples separately. We show that membership inference of correctly classified samples,

to which the majority of training samples belong, is a very difficult task. we extensively

analyze and use other information available from the target model, including values from

intermediate layers, the gradient w.r.t input, gradient w.r.t to model weights, and distance

to the decision boundary. In some cases, these types of information slightly leak more

membership status than confidence values, but they are still not sufficient for a reliable

MI attack in practice.

(2) We propose a fundamentally different MI attack that achieves the same accuracy as SOTA

while significantly reducing the shadow training computational overhead. Here, instead of

comparing victim model’s confidence on the target sample versus the average confidence of

typical models, which requires training numerous shadow models, we compare the victim

model’s confidence on the target sample versus the victim model’s confidence on similar

samples from the same subpopulation as the target sample. Hence, we obviate the need

to train multiple shadow models. However, in practice, the attacker may not have access

to samples from the same subpopulation. To tackle this issue, we develop a BiGAN-like
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architecture to train a generator that craft samples from the subpopulation of a given

image. In other words, our attack only needs training a single generator model once and

then it can be used for even unseen samples.

(3) Moreover, we introduce a user-level MI attack against metric embedding learning using

properties of clusters in latent space. In user-level MI attack, the goal is to identify if any

sample (image) from a target user has been used in the training. Here, the attacker might

not have access to the exact training samples, but she can obtain other samples from the

same user. This attack is more relevant in tasks where a user’s identity is in danger of

leaking, such as person re-identification. To launch the attack, we use average distance to

the cluster’s center and average pair-wise distance as features. We show that our attack

achieves high accuracy even when the target model is probed with images of a training

user that have not been used in the training, and therefore, we make the user-level MI

attack viable.

(4) Furthermore, we perform a systematic empirical study of MI attacks on deep ensemble

models. We start with an in-depth analysis of the most common ensembling technique

and MI attack, and then we extend the results to various ensembling techniques and

MI attacks. First, we show that when deep ensembles improve accuracy, it also leads

to a more effective membership inference. We show that common defense mechanisms in

membership inference literature, including differential privacy, MemGuard, MMD+Mixup,

L1 and L2 regularization, as well as other ensemble training approaches, such as bagging

and partitioning, can be used to mitigate effectiveness of MI attacks but at the cost of

accuracy. We solve this trade-off issue by changing the fusing mechanism of deep ensembles

which improves the accuracy and privacy, simultaneously.

(5) Additionally, we introduce a useful potential application of MI attacks for the purpose of

auditing. Here, an auditor aims to prove to the judge/jury that private data has been

unlawfully used by the auditee under investigation. The auditor uses an MI attack, and re-

port the performance of the MI attack along the samples labeled as members to the judge.

We show that the auditee can provide an unlimited number of non-member samples to the

judge for which the MI attack model constantly fails, without knowing anything about the

7



MI attack or having query access to it. We call this process discredibility. Discredibility

allows auditee to seriously damage the credibility of MI attack model used by the auditor

and, consequently, get the case dismissed. We demonstrate that all contemporary mem-

bership inference attacks suffer from discredibility. We generalize our findings beyond this

auditing application and argue about the inaccuracy of current attacks for record-level

membership inference. Our findings suggest that current attacks may better suited for

subpopulation-based membership inference or user-level membership inference.
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CHAPTER 2

Related Work

Membership inference aims to identify samples used during the training of a target model,

referred to as a victim model. Samples that has been used during the training are referred to as

members or train samples, and other samples as non-members, non-train or test samples. We

categorize the membership inference attacks into two classes, similar to [126]: MI attacks without

sample difficulty calibration and MI attacks with sample difficulty calibration. Difficulty calibration

aim to adjust the membership score of the attack so that it takes the difficulty of the classification of

that particular sample into account. First generation of MI attacks do not use difficulty calibration

and it has been shown to perform poorly in practice. Most state of the art attacks adopted some

form of sample difficulty calibration. In this section, we introduce both classes of attacks.

2.1. MI Attacks without Difficulty Calibration

First generation of membership inference attacks were built upon the intuition that the con-

fidence output of a victim model exhibits different distribution between train and non-train sam-

ples [100]. Simply put, the victim model is more confident on train samples than on non-train

samples. Hence, the first membership inference attack on deep models was proposed in [110] using

this idea. They train a membership inference attack model that takes the confidence output of a

model as an input and predicts its membership status. The training dataset of the MI attack model

is constructed by training shadow models and taking their confidence output. Shadow models are

trained on the same task as the victim model, but with different dataset. Since the training set

of the shadow models is known to the attacker, the attacker can easily construct the labels for

the MI attack dataset. Many papers use the same idea with different variations of less restrictive

assumptions [69,71,75,76,100,105,114,119,134,146].

The effectiveness of the first generation of MI attack has been seriously challenged when it has

been shown that they can barely outperform a trivial baseline, called gap attack [15] or naive attack
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[66,100]. Gap attack labels a sample as member if it is correctly classified by the victim model, and

non-member otherwise. We show that the seemingly intuitive assumption that was the basis of these

attacks generally do not hold. In other words, the distribution of confidence output of member and

non-member samples are not significantly different, particularly when correctly classified samples

are looked upon separately which constitute the majority of samples. Furthermore, Carlini et al. [7]

argue that using average-case metric is not suitable for security-related applications and suggest

using the true positive rate at a low false positive rate.

2.2. MI Attacks with Difficulty Calibration

The main challenge for the first generation of membership inference attacks was distinguishing

between hard member samples (for which the confidence is low) from easy non-member samples (for

which the confidence is high). As suggested in [126], MI attacks should have an adaptable reference

point to which it compares the confidence of the target sample, called sample calibration. Most

SOTA MI attacks that can perform well in a low false positive rate solve this issue by calibrating

the confidence so that it takes the difficulty of the target sample into account [7,98,103,126].

In the Watson attack, the attacker excludes the target sample from the training set, and then

train multiple shadow models. As a result, the attacker can obtain the average confidence output

of a model in the absence of the target sample in the training data. By comparing the confidence

output of the victim model with the average confidence output of the shadow models, the attacker

can predict the membership status of the sample. In [7,103], a variation of this idea was used with

one main difference. These attacks include two set of shadow models: one where the training set

excludes the target sample and one where the training set includes the target sample. The main

limitation of these attacks is that it needs to train hundreds of models for each sample it wants to

investigate.

To tackle the huge training cost of these attack, we propose a slightly different and more efficient

kind of calibration where it does not require training shadow models. In this attack, the attacker

use a BiGAN architecture to craft samples from the same subpopulation as the target sample.

Then, the attacks compares the confidence output of the target sample versus the subpopulation.

If the target sample has higher confidence than its subpopulation, it is an indication of a member

10



sample. This attack achieves similar accuracy as other calibration-based attacks, while decreasing

the training computation cost of shadow models significantly.

2.3. Uncategorized MI Attacks

Majority of membership inference attacks in literature use confidence output of the victim model

as the main feature. There are, however, a few approaches that utilize other features [15,96,100].

Assuming a white-box access to the victim model, we [100] study a set of attacks using distance

to the decision boundary, gradient w.r.t model weight, and gradient w.r.t input. However, none of

the features significantly outperform the confidence output. A similar MI attack approach based

on distance to the decision boundary has also appeared in [15] in the black box setting. Another

MI attack approach is to compare the prediction of the target sample with the prediction label of

its transformed versions [15] or randomly perturbed versions [51,96]. The intuition is that deep

models are more robust to training samples. Hence, the transformed/perturbed sample is less likely

to be mislabeled by the victim model. Despite their moderate accuracy and black-box nature of

some of these novel MI attacks, they perform poorly in terms of achieving low false positive rates.

2.4. Membership Inference Defenses

Defense mechanisms against membership inference attacks can be summarized into two cate-

gories [96]:

Generalization-based: Shokri [110] was the first to correlate membership inference success

with overfitting. Since then, many standard regularization techniques have been used to alleviate

overfitting, such as L1 regularization [15], L2 regularization [15,52,89,110,119], differential pri-

vacy [15,96], dropout [52], and adversarial training [88]. Interestingly, ensemble learning has also

been proposed as a defense mechanism. In [105], they proposed a combination of partitioning and

stacking as a defense mechanism. The intuition is that training each model with different subset

of data makes the entire ensemble model less prone to overfitting.

Confidence-masking: These defense mechanisms aim to reduce the amount of information that

can be obtained from the output of a target model by perturbing [52,68] or limiting the dimen-

sionality of the output [15,110,119]. Most confidence-masking approaches manipulate confidence

values post-training. As a result, the output values of these models do not reliably represent the

11



”confidence” of the model. These approaches are built under the assumption that accurate pre-

diction of confidence is not needed. However, many applications require accurate estimation of

confidence. Moreover, if the accurate prediction of confidence is not required, then the trivial

MI defense would be to only output the class label and avoid these confidence-masking defenses

altogether.
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CHAPTER 3

On the Difficulty of Membership Inference Attacks

In this chapter, we show that the way the MI attack performance has been reported is often

misleading because they suffer from high false positive rate or false alarm rate (FAR) that has

not been reported. FAR shows how often the attack model mislabel non-training samples (non-

member) as training (member) ones. The high FAR makes MI attacks fundamentally impractical,

which is particularly more significant for tasks such as membership inference where the majority of

samples in reality belong to the negative (non-training) class. Moreover, we show that the current

MI attack models can only identify the membership of misclassified samples with mediocre accuracy

at best, which only constitute a very small portion of training samples.

We analyze several new features that have not been comprehensively explored for membership

inference before, including distance to the decision boundary and gradient norms, and conclude

that deep models’ responses are mostly similar among train and non-train samples. We conduct

several experiments on image classification tasks, including MNIST, CIFAR-10, CIFAR-100, and

ImageNet, using various model architecture, including LeNet, AlexNet, ResNet, etc. We show

that the current state-of-the-art MI attacks cannot achieve high accuracy and low FAR at the

same time, even when the attacker is given several advantages. The source code is available at

https://github.com/shrezaei/MI-Attack.

3.1. Introduction

There is an extensive recent literature on membership inference (MI) attacks on deep learning

models that achieve high MI attack accuracy [71,75,76,105,110,114,119,134]. These MI attack

models often use confidence values of the target model to infer the membership of an input sample.

High MI attack accuracy is often justified by claiming that deep learning models are more confident
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Table 3.1. Complete evaluation of CIFAR-100 with three different target models.
Almost all papers report the third section that includes accuracy, precision, recall,
and F1 score. The second section, including train and test accuracy of the tar-
get victim model, is missing in many papers in literature despite its usefulness in
evaluating the generalization gap (and degree of overfitting). The last section that
includes balanced accuracy and FAR has never been reported, but it is of paramount
importance for understanding the performance of attack models in practice.

Dataset Cifar-100 Cifar-100 Cifar-100
Model AlexNet ResNet DenseNet

Target Model Train Acc. 92.48% 95.80% 99.98%
Target Model Test Acc. 43.87% 74.14% 82.83%

Attack Acc. 82.62% 79.13% 87.74%
Attack Precision 91.90% 87.3% 86.97%
Attack Recall 86.92% 87.85% 98.29%
Attack F1 89.23% 87.45% 92.26%

Attack Bal. Acc. 74.02% 61.70% 66.65%
Attack FAR 38.89% 64.45% 65.00%

towards the training (member) samples than the samples they have not seen during training1.

Consequently, MI attack accuracy is reported to be highly correlated to model’s overfitting or

generalization gap [105,110,114] because an overfitted model should perhaps behave even more

confident towards training samples.

In this chapter, we show that the way the previous papers report the attack performance do

not reveal how exactly these attacks perform in practice and can be misleading. First, many

papers do not provide the train and test accuracy of the target victim models. Hence, it is not

clear whether the target model is well-trained. We only find a handful of papers that report such

metrics [50,52,75,89,110]. Even in these cases, one can clearly spot impractical target models

where generalization gap is sometimes larger than 35% [75,110], 50% [89], or 80% [50]. Clearly,

such extremely overfitted models have no practical use and the results on such models should not

be generalized to well-trained models. Second, all papers we have examined limit their reporting

to accuracy, precision, and recall. Such a reporting does not reveal the performance of attack

models on negative samples (non-member), especially how many negative samples are misclassified

as positive (false positive). For binary classification tasks, this is of crucial importance, especially

when the negative class can significantly outnumber the positive class (e.g., all possible images

1In this dissertation, we use training samples, member samples, and positive samples interchangeably. Likewise, we
also use non-training, test, non-member, and negative samples interchangeably.
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vs. the limited number of images used to train an image classification model). A good practice,

which is also common in other fields such as intrusion detection systems [128], is to report false

positive rate (FPR) or false alarm rate (FAR) alongside the other metrics. A good attack model

should have a low FAR.

To evaluate the feasibility of MI attack, we tried to reproduce the results in [89] for CIFAR-100

dataset, presented in Table 3.12. Although the generalization gap of AlexNet is high (∼ 48%),

we keep the results for the sake of comparison. As it is shown, commonly used metrics, including

accuracy, precision, and recall, do not reveal how attack models really perform on non-member

samples. The high FAR of these attacks make them unreliable. Interestingly, even the attack on

an extremely overfitted model such as AlexNet still suffers from high FAR.

In this chapter, we first elaborate on why previous reporting practices are misleading in mem-

bership inference research. Second, we provide a comprehensive evaluation of membership inference

attacks on deep learning models. We give as much advantage as possible to an attacker and we show

that a reliable MI attack with high accuracy and low FAR is hard to achieve. We show that the

reason MI attacks often fail is not because attack models are trained poorly. The reason is that the

statistical properties of the features used in MI attacks are not clearly different and distinguishable

for training and non-training sample.

To provide an insight on why membership inference of some samples are possible, we separate

datasets into two parts: correctly classified samples (by the target victim model) and misclassified

samples. In general, we find that membership inference of correctly classified samples, indepen-

dent of what dataset or model is used, is a more difficult task than the membership inference of

misclassified samples. This is because deep learning models often behave similarly on train and

non-train samples when they are correctly classified. This observation sheds light on the difficulty

of membership inference on deep models.

Our contributions are summarized as follows:

• We show that attack accuracy, precision, and recall are not enough to show the perfor-

mance of MI attacks, particularly on negative (non-member) samples. Instead, we should

also report FAR (or other substitutes explained in Sec.3.2) and train/test accuracy of

2In literature, we have only found two papers with public source codes [105,114]. We run their implementation on
CIFAR-10 and observed the same problem. They both suffer from high FAR, which has not been reported before.
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Table 3.2. Performance evaluation of an MI attack model when balancedness of
the evaluation set is changed.

Balancedness Attack Model Positive (member) Class Negative (non-member) Class Balanced Accuracy FAR

- - Precision Recall Precision Recall - -

5:1 MI Attack 87.30% 87.85% 38.18% 35.55% 61.70% 64.45%

5:1 ZeroR 83.33% 100.0% 0.0% 0.0% 50.0% 100.0%

1:1 MI Attack 57.68% 87.42% 74.49% 35.42% 61.22% 64.82%
1:1 ZeroR 50.0% 100.0% 0.0% 0.0% 50.0% 100.0%

1:5 MI Attack 21.41% 87.82% 93.57% 35.73% 61.28% 64.42%

1:5 ZeroR 16.66% 100.0% 0.0% 0.0% 50.0% 100.0%

target models to better demonstrate the performance of MI attacks. Moreover, we study

the performance of correctly classified samples and misclassified samples separately. We

show that membership inference of correctly classified samples, to which the majority of

training samples belong, is a very difficult task.

• We perform MI attack on various image datasets (including MNIST, CIFAR-10, CIFAR-

100, and ImageNet), and models (LeNet, AlexNet, ResNet, DenseNet, InceptionV3, Xcep-

tion, etc), some of which are studied for the first time in the MI context. We conduct

experiments such that they give a lot more advantages to the attacker than in any previous

work. Even in this case, we show that a meaningful membership inference attack with

high accuracy and low FAR is often not achievable.

• In addition to confidence values of the target (victim) model, we extensively analyze and

use other information available from the target model, including values from intermediate

layers, the gradient w.r.t input, gradient w.r.t to model weights, and distance to the deci-

sion boundary. In some cases, these types of information slightly leak more membership

status than confidence values, but they are still not sufficient for a reliable MI attack in

practice. Surprisingly, all evidence suggests that deep models often behave similarly on

train and non-train samples across all these metrics. The only considerable difference

appears between correctly classified samples and misclassified samples, not between the

train and non-train samples.

In summary, our experiments, including the reproduction of results in the literature, suggest

membership inference of correctly classified samples, to which the majority of training samples
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Figure 3.1. Distribution of average confidence values for CIFAR 100 dataset
(ResNet) (class 0)

belong, is a difficult task. Clearly more research is needed and we are hesitant to generalize our

results to all scenarios, some of which are as follows:

• We mainly focus on vision tasks with high dimensional input. Membership inference for

other tasks with low dimensional input may culminate in a different result.

• We do not extend our conclusion to generative models. High capacity generative mod-

els can often memorize training samples, which can be retrieved at inference time, as

shown in [8]. However, there is no trivial method to retrieve memorized samples from a

discriminative model even if it memorizes training samples.

• We do not extend the conclusion to any attack that can be launched during the training

phase, such as data poisoning, model/training manipulation [111], etc. We only study

membership inference on naturally trained models and natural datasets. Deep models

may behave very differently if any unnatural manipulation appears during the training

phase.

• In each dataset, there often exists outliers. The MI attack maybe more successful on these

samples [76], whether they are classified correctly or not.

3.2. Better MI Attack Reporting

As discussed in Section I, the common approach of reporting accuracy, precision, and recall of

MI attacks does not truly reveal the performance of them on negative (non-member) samples. By

providing false alarm rate (FAR) in Table 3.1, we show that these attacks suffer from high false

positive ratio. The reason why high false positive ratio does not significantly affect the reported
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precision ( TP
TP+FP ) is due to the MI dataset imbalancedness. In a typical machine learning training,

majority of samples are used for training and, consequently, the holdout (test) set is considerably

smaller. For instance, the training:test (or member:non-member) ratio of CIFAR dataset is 5:1 and,

consequently, the MI dataset to train/evaluate the MI attack model has the same imbalancedness

ratio. As a result, the total number of FPs is small despite the high false positive ratio. This is

clearly illustrated in Table 3.2 where the member:non-member ratio varies from 5:1, 1:1, to 1:5 and

the precision on the positive class dropped from 87% to 21% for the same MI attack model. Note

the MI attack model is the same for all experiments which was trained on a balanced dataset. We

only change the balancedness of the evaluation set in Table 3.2.

We emphasize that reporting performance only on positive samples can be misleading. In Table

3.2, we report the precision and recall for both positive and negative classes. When the 5:1 ratio

of balancedness is kept, the MI attack shows high precision and recall on positive samples, but low

precision and recall on negative samples (which in general has not been reported). To stress this

message, we also report ZeroR as a baseline. ZeroR is a classifier that always predicts the positive

class (member). As shown in Table 3.2, ZeroR performance is high and close to the MI attack

when only the precision and recall of positive samples are considered. This clearly shows that one

should also report performance on negative samples as well.

The training:test ratio can significantly change the performance metrics of a same model, as

shown in Table 3.2. So what is the right way to treat this ratio? Previous MI papers often keep the

radio of 5:1, or in some cases 1:1 [89]. However, in practice, the ratio can reverse drastically: for

example, a random sample, chosen from the distribution of all natural images, has a significantly

higher probability of being a non-member sample than a member sample. However, there is no

practical way to estimate the true value of this ratio. Furthermore, even if the ratio is known, due

to the limited number of samples available for evaluation, it might not be practical to obtain more

non-member samples to achieve the true ratio. As a result, in this chapter, we keep the ratio as

5:1, as in most existing papers in the evaluation set. Instead, we report performance metrics that

are less sensitive to the balancedness ratio, i.e, balanced accuracy and FAR3.

3A more elaborated argument for why FAR is important in tasks where one class hugely outnumber the other class
is the base-rate fallcay [3].
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There is another way to show the ineffectiveness of current MI attacks using a rather simple

baseline. In [66], such a baseline is introduced, called naive attack. The idea is to predict a

sample as member if it is correctly labeled by the target model, and to predict it as non-member

if misclassified. Clearly, the FAR of naive attack is high because it classifies all correctly classified

samples as members. However, this impractical attack can also achieve high accuracy on positive

samples. Since this naive attack is obviously ineffective in practice, one can compare the accuracy

gap between the naive attack and a MI attack to conclude the effectiveness of an MI attack. This

approach has been used in [66]. We report the accuracy of this naive attack for completeness in

Table 3.3, but we rely on accuracy/FAR pair to evaluate an attack’s success.

Despite their low performance, MI attacks still outperform the random guess. To shed light on

why MI attacks are effective on some samples, we report the behavior of target models on correctly

classified and misclassified samples, separately. We show that deep learning models often behave

similarly when they correctly label a sample, whether it is a training (member) or test (non-

member) sample. In comparison, deep learning models demonstrate slightly different behavior

on misclassified samples, which can be exploited by MI attack models. Hence, we believe that

separating correctly classified and misclassified samples, and reporting the MI attack on them

separately provides a better insight on how MI attacks work.

In summary, the way MI attack has been reported in literature does not provide a complete

picture of their performance. Relying only on precision and recall of the positive class can present

a delusion of successful attack, particularly when the imbalancedness issue is ignored. Instead, we

should report performance on both positive and negative samples, i.e., adding FAR, or precision

and recall on negative samples. Furthermore, simple baselines, such as ZeroR and naive attack, can

be used for comparison. Last, separating correctly labeled and incorrectly labeled samples provide

a better insight on how these MI attacks work. Therefore, in this chapter, we report balanced

accuracy and FAR, and we also report the performance on correctly classified and misclassified

samples, separately, when possible.

19



3.3. Methodology

Threat model and assumptions. In this chapter, we give an attacker as much advantage as

possible to show that even in such cases membership inference cannot significantly outperform the

baseline. We assume a white-box access to the model and unlimited number of queries. Moreover,

we give the membership status of up to 80% of training samples and test samples to the attackers

and we only ask the attack model to predict the membership inference of the remaining samples.

Hence, the attack performance we report in this chapter is as good as or better than any proposed

attack based on shadow models [75,110] or transferred or synthesized data [71,105] 4. In addition

to confidence values of the target model, which have been used extensively for membership inference

attack in the past, we also study the output of intermediate layers, distance to the decision boundary

and a set of gradient norms to better understand if deep models behave differently on training and

test samples.

Confidence values. Confidence values, or the output of Softmax layer, have been widely used

for membership inference [71,75,76,105,110,114,119,134]. Figure 3.1 shows the distribution

of average confidence for correctly classified samples and misclassified samples of a ResNet model

trained on CIFAR-100. As it is shown, misclassified samples often show different distribution for

training samples and non-training samples. However, correctly classified samples often saturate

the true class confidence value and zero out other confidence values. We show in Section 3.4

that membership inference attack models are often fail to considerably outperform a coin toss for

correctly labeled samples.

Output of intermediate layers. In deep models, first layers often extract general and simple

features that are not specific to training samples. As suggested in [89], the last layer and layers

close to the last one contain more sample-specific information. Hence, we also examine the output

of the fully connected layers before the Softmax for membership inference attacks.

Distance to the decision boundary. Some research focuses on understanding decision boundary

of deep models [56, 83] or geometry and space of deep models [23, 85] to often understand the

nature of adversarial examples or to improve robustness. In this chapter, we investigate whether

4Note that the use of these methods are beneficial when the dataset is small for training a MI attack because one
can potentially multiply the MI training dataset by obtaining multiple shadow models. However, in our study, such
methods are not necessary since MNIST, CIFAR, and ImageNet datasets have abundant samples.
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Algorithm 1 FGM-based algorithm to find distance to the decision boundary

Require: S (maximum number of steps), x (input sample) and y (the sample ground-truth), fcls (an interface to the
target model which returns predicted class), fconf (an interface to the target model which returns the confidence
value of the predicted class), L (target model loss function), θ (confidence threshold indicating when the algorithm
stops optimizing):

1: procedure Distance To Boundary(x, f)
2: x0 = x
3: for t from 0 to S do
4: xt+1 = xt + ε ∇xL(xt,y)

||∇xL(xt,y)||2
5: if fcls(xt+1) ̸= fcls(xt) then
6: while |fconf (xt+1)− fconf (xt)| > θ do

7: xm =
xt+1+xt

2

8: if fcls(xm) = fcls(xt) then
9: xt = xm

10: else if fcls(xm) = fcls(xt+1) then
11: xt+1 = xm

12: else
13: return Error!
14: end if
15: end whilereturn ||x0 − xt||2
16: end if
17: end forreturn Optimization failed!
18: end procedure

the distance to boundary is a distinguishable feature for membership inference. To find the distance

to the decision boundary, we use FGM [20] optimization procedure to craft an image on the other

side of the decision boundary (Algorithm 1). Then, we perform a binary search to find an instance

for which the model’s confidence for two classes are almost equal, that is, the difference between

two confidences is smaller than a small threshold, similar to [56]. Finally, we obtain the L2 distance

between the original sample and the crafted samples as a measure of distance to the boundary.

Gradient norm. It has been shown that the gradient of loss with respect to model parameters,

∂L
∂w , is often smaller for training samples than non-training samples [89] and it can be used for

membership inference attack in federated learning scenario. In this chapter, we study the gradient

of loss with respect to model parameters, ∂L
∂w , and also the gradient of loss with respect to model

input, ∂L
∂x , in a non-federated learning setting. The large value for the former indicates that major

re-tuning of model parameters is needed for that sample, and hence, it can be an indication of a

non-member sample. The large value of the latter indicates that there are input samples with more

confident output in the vicinity of that sample, and hence, it can be an indication of a non-training

sample. Both ∂L
∂w and ∂L

∂x are extremely high dimensional. Thus, we adopt the seven norms used
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Table 3.3. Accuracy of various datasets, target models, and MI attack models

Dataset(Model) Train Test Attack Acc Naive Attack

MNIST (LeNet) 99.74% 99.05% 50.04% 50.07%

C-10 (AlexNet) 91.80% 77.22% 57.43% 57.87%
C-10 (ResNet) 99.43% 93.89% 54.11% 52.56%

C-10 (DenseNet) 100.00% 95.46% 56.05% 52.45%

C-100 (AlexNet) 92.48% 43.87% 74.02% 70.23%
C-100 (ResNet) 95.80% 74.14% 61.70% 65.68%

C-100 (DenseNet) 99.98% 82.83% 66.65% 71.97%

I (InceptionV3) 87.91% 79.98% 50.03% 54.12%
I (Xception) 87.77% 80.70% 51.18% 53.37%

Table 3.4. Membership attack results based on confidence values

Dataset(Model) - Attack Accuracy Attack FAR Train Confidence Test Confidence

All data 50.04% ± 0.11 50.01% ± 47.81 99.61 ± 4.57 98.90 ± 9.14

MNIST Correctly classified 49.98% ± 0.01 50.21% ± 48.38 99.81 ± 2.04 99.75 ± 2.51
Misclassified 62.30% ± 17.93 40.83% ± 35.44 77.61 ± 16.05 87.09 ± 15.93

All data 57.43% ± 2.59 71.4% ± 9.29 85.26 ± 23.08 72.56 ± 34.75

CIFAR-10 (AlexNet) Correctly classified 50.54% ± 0.82 91.89% ± 5.43 90.77 ± 13.96 89.57 ± 15.52
Misclassified 52.16% ± 2.57 5.45% ± 5.62 60.17 ± 16.68 66.89 ± 19.68

All data 54.11% ± 1.92 86.60% ± 6.49 98.66 ± 7.03 92.74 ± 22.02

CIFAR-10 (ResNet) Correctly classified 51.81% ± 0.84 91.63% ± 4.05 99.08 ± 4.33 97.98 ± 7.33
Misclassified 60.83% ± 19.74 0.0% ± 0.0 66.23 ± 15.66 79.71 ± 18.61

All data 56.05% ± 3.88 77.05% ± 26.5 99.97 ± 0.49 94.78 ± 19.33

CIFAR-10 (DenseNet) Correctly classified 54.0% ± 2.64 81.15% ± 27.45 99.97 ± 0.29 98.77 ± 5.64

Misclassified 100.0% ± 0.0 0.0% ± 0.0 - 82.83 ± 17.63

All data 74.02% ± 8.27 38.89% ± 16.69 84.59 ± 24.31 40.58 ± 42.09

CIFAR-100 (AlexNet) Correctly classified 55.13% ± 7.39 83.12% ± 14.94 89.9 ± 15.82 85.05 ± 19.95

Misclassified 55.11% ± 11.28 2.01% ± 4.33 50.29 ± 19.45 60.96 ± 23.81

All data 61.7% ± 6.55 64.45% ± 14.81 91.14 ± 18.44 70.19 ± 38.10
CIFAR-100 (ResNet) Correctly classified 53.96% ± 5.25 83.7% ± 11.01 94.15 ± 11.43 90.88 ± 15.74

Misclassified 54.37% ± 16.0 2.66% ± 8.08 57.82 ± 17.69 64.3 ± 21.71

All data 66.65% ± 8.36 65.0% ± 18.16 99.95 ± 1.07 79.99 ± 34.70
CIFAR-100 (DenseNet) Correctly classified 60.58% ± 5.98 77.17% ± 15.28 99.96 ± 0.5 94.67 ± 13.06

Misclassified 98.25% ± 9.2 0.0% ± 0.0 65.01% ± 11.52 67.25% ± 24.61

All data 50.03% ± 0.28 45.96% ± 44.27 76.03 ± 25.52 68.62 ± 29.43

ImageNet (InceptionV3) Correctly classified 50.03% ± 0.31 45.46% ± 47.86 83.99 ± 15.55 81.85 ± 16.3
Misclassified 51.5% ± 8.57 51.69% ± 44.69 13.57 ± 11.44 10.8 ± 9.38

All data 51.18% ± 3.56 50.81% ± 44.33 73.56 ± 25.56 66.92 ± 28.58

ImageNet (Xception) Correctly classified 50.72% ± 3.57 50.42% ± 48.80 81.24 ± 16.81 79.08 ± 17.18
Misclassified 51.95% ± 19.29 52.15% ± 44.08 13.48 ± 10.94 11.27 ± 8.94

in [91], originally used for analysis of deep model’s uncertainty, namely L1, L2, absolute minimum,

L∞, mean, Skewness, and Kurtosis.
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Figure 3.2. Distribution of the confidence of the true class for CIFAR-10 (AlexNet)
class #3. Although the distribution of all samples seems to be distinguishable, it
is only the manifestation of accuracy gap between train and test which is exploited
by naive and other attack. When correctly classified and misclassified samples are
depicted separately, sample difference of train and test sets is vividly less distin-
guishable.

3.4. Experimental Evidence

Target models and datasets. We launch MI attack on various CNN-based models on four image

classification tasks: MNIST, CIFAR-10 (C-10), CIFAR-100 (C-100), ImageNet (I). For MNIST,

we train a LeNet model. For CIFAR-10 and CIFAR-100, we use a set of trained models used

in [89]5, including AlexNet, ResNet [33], and DenseNet [46]. For ImageNet, we use pre-trained

InceptionV3 [116] and Xception [14] models without any re-training from Keras package6. We

deliberately choose to launch MI attacks on models trained by others for two reasons: 1) to make it

easier for readers to compare the attack with papers that use the same trained models, such as [89],

and 2) to avoid any intentional/unintentional model training practices that bias our results. To

the best of our knowledge, the models trained on CIFAR-10 and CIFAR-100, used in [89], has not

adopted the early stopping technique during the training phase. In supplementary material, we

train all models on CIFAR-10 and CIFAR-100 from scratch and we show that using early stopping

techniques can make MI attacks even harder.

MI attack models. In most cases, we fit three types of attack models: FC neural network (NN),

random forest (RF), and XGBoost. For the NN model, we train a model with 2 hidden layers of size

128 and 64. For RF and XGBoost, we perform a random search over a large set of hyper-parameters.

5https://github.com/bearpaw/pytorch-classification
6https://keras.io/api/applications/
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Table 3.5. MI attack performance based on the output of intermediate layers. C
and I represents CIFAR and ImageNet, respectively

Dataset (Model) Layer All Data Correctly Classified Misclassified

- - Accuracy FAR Accuracy FAR Accuracy FAR

MNIST -1 47.65% ± 2.6 59.55% ± 17.95 47.58% ± 2.6 59.69% ± 17.98 55.45% ± 20.49 43.33% ± 40.1

MNIST -2 47.96% ± 3.01 60.77% ± 11.33 47.99% ± 2.93 60.65% ± 11.28 47.42% ± 25.3 69.17% ± 41.51

C-10 (AlexNet) -1 55.38% ± 2.18 47.45% ± 9.55 51.34% ± 2.46 58.47% ± 12.79 55.47% ± 3.69 14.49% ± 9.95

C-10 (ResNet) -1 53.89% ± 2.62 45.1% ± 16.25 52.74% ± 2.2 47.63% ± 17.43 60.75% ± 20.8 5.51% ± 7.21

C-10 (DenseNet) -1 54.4% ± 3.63 48.7% ± 6.99 53.12% ± 3.03 51.28% ± 7.54 100.0% ± 0.0 0.0% ± 0.0

C-100 (AlexNet) -1 61.34% ± 7.91 38.95% ± 12.48 55.39% ± 10.45 52.46% ± 19.99 57.65% ± 12.98 29.32% ± 15.65

C-100 (ResNet) -1 53.81% ± 7.24 47.2% ± 16.65 51.46% ± 7.72 52.85% ± 18.99 52.39% ± 23.72 31.2% ± 27.8

C-100 (DenseNet) -1 64.76% ± 9.99 37.35% ± 14.67 61.7% ± 9.4 43.48% ± 14.99 92.02% ± 20.78 38.73% ± 31.23

I (InceptionV3) -1 58.37% ± 7.8 40.2% ± 15.68 57.83% ± 9.4 42.58% ± 19.0 55.86% ± 17.26 36.25% ± 35.4

I (Xception) -1 57.44% ± 8.59 42.3% ± 17.08 57.35% ± 9.36 43.92% ± 18.61 55.52% ± 18.65 40.38% ± 39.49

For ImageNet, we conduct experiments with only 100 classes out of 1000 classes due to the limited

computational and time budget. Moreover, we perform random under-sampling of member class

and oversampling of non-member class to balance the training dataset on separate experiments.

In this chapter, we only report the seemingly best MI attack accuracy we achieve over all attack

models and hyper-parameters. It is worth mentioning that by under-sampling or over-sampling

of training data, or by chainging the decision threshold of the MI attack, we could decrease FAR

at the cost of accuracy. In any case, we could not find a good MI attack model with relatively

high accuracy and low FAR. The input of attack models varies which is described in each following

subsection. The accuracy of target and MI attack models are shown in Table 3.3. Note that even

the best MI attack models can barely outperform the naive attack. In the following sections, we

show that separating correctly classified and misclassified samples, and reporting accuracy and

FAR gives more insight on the performance of MI attacks.

3.4.1. Confidence Values. Confidence values have been extensively used for MI attacks. As

shown in Table 3.4, the MI attacks are more successful on inferring membership of misclassified

samples, which often consist a small portion of training samples. Interestingly, the state-of-the-art

target models on ImageNet does not even leak membership status of misclassified samples. The

best attack performance on correctly classified samples is observed on DenseNet model trained on

CIFAR-100, which is 60.58% that still suffers from very high FAR (77.17%). Note that the MI

attacks on misclassified samples of DenseNet model may not be meaningful because there are no
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Table 3.6. Performance of attack models based on the distance to the decision
boundary.

Dataset (Model) Correctly Classified Misclassified

- MI Attack Average Distance MI Attack Average Distance

- Accuracy FAR Train Test Accuracy FAR Train Test

MNIST 49.86% ± 6.0 52.97% ± 8.2 1.372 ± 0.40 1.371 ± 0.45 49.81% ± 9.0 48.3% ± 24.0 .0103 ± .0016 .0108 ± .0024

C-10 (AlexNet) 52.36% ± 4.1 53.19% ± 17 51.59 ± 15.2 50.31 ± 14.7 52.42% ± 4.9 49.53% ± 7.1 48.84 ± 15.8 50.5 ± 16.0

C-10 (ResNet) 51.05% ± 5.5 49.57% ± 8.2 51.3 ± 15.2 50.3 ± 14.7 46.05% ± 4.8 60.49% ± 8.6 51.2 ± 15.2 50.5 ± 16.0

C-10 (DenseNet) 50.14% ± 5.9 50.17% ± 7.8 51.4 ± 15.3 50.2 ± 14.6 100.0% ± 0.0 0.0% ± 0.0 - 51.2 ± 16.4

C-100 (AlexNet) 50.45% ± 9.1 47.77% ± 6.3 53.6 ± 16.3 54.3 ± 15.1 53.78% ± 11.6 45.94% ± 17.7 48.2 ± 16.5 52.6 ± 16.6

C-100 (ResNet) 49.08% ± 6.4 49.28% ± 6.8 52.6 ± 16.4 53.3 ± 15.9 47.24% ± 12.4 52.05% ± 21.4 51.9 ± 16.6 51.6 ± 16.8

C-100 (DenseNet) 49.74% ± 6.41 48.57% ± 7.04 52.8 ± 16.3 53.3 ± 16.0 98.25% ± 9.2 0.0% ± 0.0 51.5 ± 10.4 56.8 ± 16.5

I (InceptionV3) 51.75% ± 8.2 50.43% ± 26.3 212.4 ± 64.8 218.6 ± 63.0 44.95% ± 11.9 46.31% ± 18.8 215.8 ± 67.0 215.1 ± 61.5

I (Xception) 53.01% ± 9.5 46.1% ± 23.7 214.5 ± 64.6 216.2 ± 61.9 49.29% ± 13.5 44.88% ± 17.1 212.4 ± 67.0 214.7 ± 64.0

misclassified samples in the training set of CIFAR-10 and there are only 10 misclassified samples

in the training set of CIFAR-100.

To better understand why MI attacks fail, it is better to investigate the average confidence

value of target models, shown in the fifth and sixth columns of Table 3.4. As shown, the average

confidence values of train samples (members) are often close to the test samples (non-members). MI

attacks are only partially successful when average confidence values between train and test samples

are far apart and the standard deviation is low. As shown in Figure 3.2, by separating correctly

classified samples and misclassified sample, we can observe that sample distribution is very close,

particularly for correctly classifies samples.

3.4.2. Output of Intermediate Layers. The attack accuracy based on the output of inter-

mediate layers are shown in Table 3.5. We only launch an attack on the output of FC or flattened

layers. The layer column shows the number of layers we go back from the Softmax layer. Only the

MI attack on ImageNet is more successful in terms of both accuracy and FAR. Nevertheless, the

FAR is still high and accuracy is not considerably better than a random guess.

3.4.3. Distance to the Boundary. Since the distance to the decision boundary is one-

dimensional, we only fit a logistic regression to the samples. As shown in Table 3.6, all MI attacks

fail. By looking at the average distance and their standard deviation, it is evident that the distance

to boundary is not a distinguishable feature for membership inference. Note that finding the exact

distance to the boundary is a computationally heavy task for high dimensional data. What is clear
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Table 3.7. Performance of attack models based on gradient norms with respect to
input (x) and weights (w)

Dataset (Model) Correctly Classified Misclassified

- Grad w.r.t w Grad w.r.t x Grad w.r.t w Grad w.r.t x

- Accuracy FAR Accuracy FAR Accuracy FAR Accuracy FAR

MNIST 52.06% ± 3.7 42.75% ± 28.5 53.19% ± 3.5 34.5% ± 23.7 57.84% ± 26.8 38.48% ± 20.0 52.02% ± 22.2 41.79% ± 16.8

C-10 (AlexNet) 51.94% ± 4.1 41.38% ± 7.9 51.81% ± 4.4 39.38% ± 10.3 61.36% ± 6.6 39.27% ± 8.2 58.69% ± 5.4 35.92% ± 7.2

C-10 (ResNet) 52.75% ± 3.0 21.75% ± 12.2 49.88% ± 3.8 36.25% ± 13.9 50.85% ± 10.6 66.49% ± 26.8 50.26% ± 16.1 50.36% ± 31.3

C-10 (DenseNet) 54.88% ± 2.6 16.38% ± 5.4 54.37% ± 3.1 13.25% ± 8.3 100.0% ± 0.0 0.0% ± 0.0 100.0% ± 0.0 0.0% ± 0.0

C-100 (AlexNet) 57.71% ± 9.6 31.45% ± 14.6 56.65% ± 11.5 31.46% ± 9.9 67.32% ± 11.3 34.51% ± 19.9 59.12% ± 13.8 38.52% ± 23.5

C-100 (ResNet) 52.98% ± 6.2 37.72% ± 21.1 54.31% ± 6.9 29.71% ± 11.3 55.4% ± 17.9 54.87% ± 34.6 61.38% ± 17.3 36.58% ± 27.1

C-100 (DenseNet) 69.7% ± 7.8 8.03% ± 6.2 70.22% ± 7.4 6.12% ± 3.6 98.25% ± 9.2 0.0% ± 0.0 98.25% ± 9.2 0.0 ± 0.0

I (InceptionV3) 49.25% ± 11.7 42.5% ± 19.0 52.1% ± 9.6 48.91% ± 14.7 58.48% ± 15.3 30.8% ± 20.3 50.55% ± 16.5 42.75% ± 17.3

I (Xception) 53.48% ± 9.0 36.53% ± 19.3 53.26% ± 11.4 48.05% ± 14.2 47.89% ± 18.2 43.69% ± 17.7 49.65% ± 15.6 41.25% ± 17.4

in Table 3.6 is that the FGM-based approximation of distance to boundary does not provide a

distinguishable feature. A more accurate approach may reveal more membership information.

3.4.4. Gradient Norm. Table 3.7 shows the performance of MI attack models based on

gradient norms. For each case, we fit a logistic regression to the 7 norms introduced in Section

3.3. Except for ImageNet, all MI attacks on correctly classified samples achieve almost the same

accuracy while having a lower FAR, in comparison with MI attacks based on confidence values

(Table 3.4). Gradient information of misclassified samples leak less membership information than

confidence values.

3.4.5. Effect of Overfitting. In this section, we analyze the effect of overfitting on member-

ship inference. Note that extremely overfitted models have no practical use in reality. The goal of

this section is to show that the overfitted models may behave differently than well-trained models.

As a result, researchers should avoid using overfitted models for MI attack and generalize them

to well-trained practical models. To show the effect of overfitting, we train AlexNet, ResNet, and

DenseNet models for a fixed amount of epochs on CIFAR-10 and CIFAR-100. We use the same

training parameters as used by Wei Yang7. We launch MI attack based on confidence values on

various epochs during the training. The results are shown in Figure 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8.

As shown in Figure 3.3(a), the model starts overfitting around epoch 80, when the loss function

for the test set stops improving. It is clear that all MI attacks before the epoch 80 suffers from

low accuracy (almost similar to random guess) and high FAR, on both correctly classified samples

7https://github.com/bearpaw/pytorch-classification
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Figure 3.3. Training progress and MI attack on CIFAR-10 for AlexNet model
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Figure 3.4. Training progress and MI attack on CIFAR-10 for ResNet model

(Figure 3.3(b)) and misclassified samples (Figure 3.3(c)). On the other hand, as the target model

start overfitting, the performance of MI attacks increases over misclassified samples (Figure 3.3(c)).

This phenomenon is more evident on other models, such as ResNet (Figure 3.4(c)). However,

overfitting does not significantly improve MI attacks on correctly classified samples. Note than

one should consider the number of misclassified training (member) samples to evaluate if the high

performance MI attacks on misclassified samples have any real impact. The reason is that as

target models overfit, the number of misclassified training samples approaches zero. In most cases,

after epoch 160, there are only a handful of misclassified training samples. In other words, even

a successful MI attack on an overfitted model only reveals the membership status of a handful

of training samples. In any case, adopting a simple technique, such as early stopping, can even

eliminate such as possibility.

3.5. Conclusion

In this chapter, we show that commonly-used MI attacks based on confidence values of deep

models are not as reliable as it has been reported before. By reporting accuracy and FAR together,
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Figure 3.5. Training progress and MI attack on CIFAR-10 for DenseNet model
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Figure 3.6. Training progress and MI attack on CIFAR-100 for AlexNet model
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Figure 3.7. Training progress and MI attack on CIFAR-100 for ResNet model
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Figure 3.8. Training progress and MI attack on CIFAR-100 for DenseNet model

28



we show that MI attacks that achieve higher accuracy suffers from higher FAR. Previous MI attacks

extensively rely on confidence values of the target model for membership inference. We show that

such a membership inference in general is a difficult task because the distribution of confidence

values are similar for member and non-member samples. We report the attack accuracy on correctly

classified samples and misclassified samples separately to show that misclassified samples slightly

leak more information for membership inference. Additionally, we analyze several other features

of input samples, including the distance to the decision boundary and gradient norms, to further

illustrate the difficult nature of reliable membership inference attack on deep models. In summary,

we find that naturally trained deep models often behave similarly across training and test samples

and, hence, an accurate membership inference attack on all training samples in practice is a difficult

and inaccurate task under current attack models unless a new revolutionary approach is introduced.
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CHAPTER 4

An Efficient Subpopulation-based Membership Inference Attack

State-of-the-art membership inference attacks have shown to achieve good accuracy which poses

a great privacy threat. However, majority of SOTA attacks require training dozens to hundreds of

shadow models to accurately infer membership. This huge computation cost raises questions about

practicality of these attacks on deep models.

In this chapter, we propose a fundamentally different MI attack that achieves the same accuracy

as SOTA while significantly reducing the shadow training computational overhead. Here, instead

of comparing victim model’s confidence on the target sample versus the average confidence of

typical models, which requires training numerous shadow models, we compare the victim model’s

confidence on the target sample versus the victim model’s confidence on similar samples from the

same subpopulation as the target sample. Hence, we obviate the need to train multiple shadow

models. In other words, we calculate the expected value of subpopulation confidence rather than

the expected value of shadow models’ confidence. However, in practice, the attacker may not have

access to samples from the same subpopulation. To tackle this issue, we develop a BiGAN-like

architecture to train a generator that craft samples from the subpopulation of a given image. In

other words, our attack only needs training a single generator model once and then it can be used

for even unseen samples.

4.1. Background

Membership inference attacks aim to distinguish training samples from non-training samples.

Training samples are often called member samples and non-training samples are called nonmember

samples. Let x, y, Yv(.), and Ys(.) be the target sample, target label, victim model’s output, and

shadow model’s output, respectively. The list of symbols are presented in Table 4.1. Now, let

s(Y, (x, y)) denote the membership score, where a higher score indicates the higher probability of

a sample being member. MI attacks aim to introduce an accurate membership score function.

30



Table 4.1. List of symbols

Symbol Explanation
x Target (input) sample
Xsub Samples from the same subpopulation as x
y Target label
Yv(.) Victim model’s output
Ys(.) Shadow model’s output
Yv(.) Encoder part of the victim model (output of the layer before the softmax)
s(Y, (x, y)) A function returning membership score
D Shadow model training dataset
A(c) A Randomized training algorithm that samples from the distribution of trained

shadow models with a condition c
G(x) A function sampling from the distribution of samples that belong

to the same subpopulation as x

This can be the confidence output of the victim model, loss values, or output of an MI attack

model [126].

In the literature, there are two types of MI attacks: 1) with sample calibration, and 2) without

sample calibration. The calibration process modifies the membership score of an MI attack such

that it takes the target sample’s difficulty into account [126]. The former attacks do not take

the difficulty of the target sample into consideration. They essentially compare the victim model’s

response on the target sample versus an average response to infer membership (e.g. via shadow

models). The intuition is that models are often more confident on their training samples. For

example, [134] uses loss function and [110] uses confidence value as a score function. However,

it is shown that this leads to poor attack performance and high false positive mainly because

well-generalized models output high confidence on majority of nonmember samples as well [100].

The second category of attacks, achieving state-of-the-art MI performance, use some form of

sample calibration to distinguish between hard-to-predict member samples from easy-to-predict

nonmember samples [126]. For instance, [103] calibrates the score using the average score both

when the target sample is in training data and when it is not, as follows:

(4.1) sSab(Yv, (x, y)) = s(Yv, (x, y))−
EYs←A(x∈D)[s(Ys, (x, y))] + EYs←A(x/∈D)[s(Ys, (x, y))]

2
,
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where A(c) is a randomized training algorithm that samples from the distribution of trained

shadow models following a specified condition c. D is the shadow model training dataset. The

intuition is that if a sample is easy-to-predict, then the calibration term is also large. So, the total

membership score is small. However, training overhead of this attack is large particularly if all

target samples are not known during shadow training. In that case, each time a new sample is

targeted, EY←A(x∈D) should be calculated from scratch by training new shadow models. Watson

attack [126] tackles this issue by estimating the calibration only on shadow models trained without

the target sample. Simply put, their membership score is

(4.2) sWatson(Yv, (x, y)) = s(Yv, (x, y))− EYs←A(x/∈D)[s(Ys, (x, y))].

For the base membership score, s(.), they [126] explored confidence, loss, and gradient norm

and showed that loss is slightly outperform others.

Threat model: In this chapter, we assume that the attacker has a dataset with similar

distribution as of victim’s dataset. This assumption is needed for shadows-based attacks as well.

Moreover, our original attack needs white-box access to the victim model. However, we show that

our attack still performs well even when the attacker does not have a white-box access to the victim

model.

4.2. Our Subpopulation-based Attack Overview

All MI attacks discussed above require training numerous shadow models to accurately estimate

the expectation in the calibration term and thus are computationally heavy. In contrast, we propose

a fundamentally different approach by running the expectation over similar samples rather than

similar models. In other words, our attack estimates whether the victim model’s loss on the target

sample is significantly smaller than the victim models’ loss on samples from the same subpopulation

whose loss should be similar. We define subpopulation-based score as:

(4.3) sours(Yv, (x, y)) = s(Yv, (x, y))− Ex′←G(x)[s(Yv, (x
′, y))],
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Figure 4.1. Subpopulation-based membership inference attack overview.

where G(x) is a function sampling from the distribution of samples that belong to the same

subpopulation as x. The benefit of our subpopulation-based approach is that it obviates the need

to train numerous shadow models. However, obtaining images from the same subpopulation is not

trivial. How to define a subpopulation and to train G(x) is covered in the next section.

4.2.1. Crafting Subpopulations. Latent representation of deep learning models have been

extensively used as a means of semantic closeness in various applications [121,131,138]. We define

a subpopulation of x, Xsub, such that their samples are close to x in a latent space. Formally, a

subpopulation is defined as follows

(4.4) Xsub = {x′ : Dist(Ev(x
′), Ev(x)) < ϵ},

where Ev is the latent representation of the victim model, and Dist(.) is a distance metric.

Here, we consider the output of the last fully connected layer before the softmax as the latent

representation. When abundant samples are available to the attacker, she can easily use Xsub

to launch the subpopulation-based attack as explained in Section 4.2. The downside is that the

attacker needs to have multiple extra samples for each target sample.
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To solve this challenge, we propose a modified version of the BiGAN architecture [19] to train

a generator model, G. The generator learns the mapping from the latent space to the input space

which can be used to obtain Xsub for MI attacks. However, the original BiGAN architecture cannot

be used directly for two reasons: 1) the encoder in BiGAN is trainable while the encoder in our

case is the fixed victim model which we cannot change. 2) the original BiGAN forces the encoder

to map the input to a uniformly distributed latent space. However, here, the victim model is fixed

and there is no guarantee that the latent space follows a uniform or any known distribution.

Hence, to address these issues, we make the following changes:

• We replace the encoder with Ev and block the back-propagation from training Ev.

• Instead of sampling from a uniform distribution, we obtain the latent representation of

all samples in attacker’s dataset (̸= victim training dataset) from which we sample as an

input for the generator.

See Figure 4.1 for an overview illustration of our MI attack.

4.3. Experimental Setup

We conduct experiments on multiple image classification benchmarks: MNIST [64], FMNIST

[130], SVHN [90], and CIFAR10/CIFAR100 [61]. We divide the train set of these datasets into two

parts: victim training dataset and attacker training dataset. The test set is only used for attack

evaluation. For MNIST and FMNIST, we choose multi-layer perceptron (MLP) with 4 hidden

layers as the victim model. For SHVN, we choose LeNet. For CIFAR10/100 we choose both LeNet

and ResNet20. Details of the victim models, generators and discriminators are presented in 4.3.1.

We train all models using SGD with a learning rate of 0.1. We reduce the learning rate by a factor

of 10 at epoch 50 and 75. The performance of the victim models are shown in Table 4.2.

We compare our attack with multiple SOTA MI attacks. Unless specified, we follow the same

experimental settings to train attack models as suggested in their original paper. For Shokri attack

[110], we train 100 shadow models for all datasets. Yeom attack [134] requires the knowledge about

the average training loss to set the threshold which we assume it is known to the attacker for this

particular attack. For attack with calibration, including ours, Watson [126], and Sablayrolles [103],

we use the loss function as the base membership score before calibration. We train 30 shadow models
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(a) Original images (b) Crafted images from the corresponding sub-
poplation

Figure 4.2. Original images (left) and crafted images (right) using BiGAN gen-
erator. The datasets/models from top to bottom rows are as follows: CI-
FAR10/ResNet20, CIFAR100/ResNet20, SVHN/LeNet, MNIST/MLP, and FM-
NIST/MLP.

for these two attacks as suggested in [103]. We also compare our attack with Jayaraman [51]

because it is similar to our attack in an interesting way: if we define Xsub as target samples with

random noise, the two attacks would be essentially similar. However, we show that directly adding

random noise to input space leads to poor performance. For jayaraman attack [51], we first use

T = 100 and σ = 0.01 as suggested in the original paper. Due to the poor performance, we perform

random hyper-parameter tuning on σ, 10 times and we report the best result.

For our attack, we consider two scenarios: 1) when a large amount of samples is available to

find subpopulation, 2) when training a generator is needed. For the first scenario, we only consider

SVHN dataset because it is the only dataset with abundant extra data which is often ignored. We

use cosine similarity in latent space to find subpopulations. We find no significant difference when

using L2 distance. For the second scenario, we first train a generator in BiGAN-like architecture

the details of which is presented in 4.3.1. We get the latent representation of each sample using

EV . Then, we add small random Gaussian noise, ϵ, with zero mean and standard deviation σ

proportional to each activation value. In other words, for the latent representation of x, denoted

as L = EV (x), noisy latent representation is obtained by L′i = Li + |Li|ϵ. The purpose of the scale

factor is to make sure that activations with small values remain small, otherwise it may change the

subpopulation or even class of the image. We set σ = 0.05 for mnist and fmnist, and 0.5 for other

datasets. Finally, we feed the noisy latent representation to the generator to craft a subpopulation

for each sample. We craft 30 images per sample.
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Figure 4.2 illustrates some examples of the target images and their corresponding subpopulation

images crafted by our BiGAN generator. Generated images are often similar to the crafted versions

with small difference in color, orientation, pattern, background, and texture. Clearly, crafted

samples belong to the same subpopulation as the original images. Hence, a victim model output

confidence should not be significantly greater than images from the same subpopulation, otherwise

it is an indication that the target sample was used during training.

4.3.1. Model Architecture Details. The MLP model for MNIST and FMNIST consists

of 5 hidden layers of size 1024, 512, 256, 128, and 100 with LeakyReLU activation followed by a

softmax layer. The last layer before the softmax is used as a latent representation. As the result,

the generator has a reverse architecture, starting from an input of dimension 100 followed by 5

layers of size 128, 256, 512, 1024, and 784 (input image size). We use LeakyReLU in the generator

as well. For the discriminator, we use an architecture similar to the encoder with a few changes:

1) the input is the concatenation of the input image of size 784 and latent representation of size

100, and 2) the last softmax layer is replaced with a dense layer of 1 neuron as the task is binary

classification.

For SVHN, CIFAR10, and CIFAR100 datasets, we train a well-known LeNet model as the

victim/encoder model. Here, the internal representation is a vector of size 84. Hence, our generator

has input dimension of 84 followed by a dense layer of size 512. Then, the model reshapes it to

(1, 1, 512) followed by four convolutional blocks of size 512, 256, 128, and 64. Each convolutional

block consists of a 2D Convolutional Transpose layer (filter size of (2, 2) and strides of (2, 2)),

LeakyReLU, and 2D Convolutional (filter size of (3, 3)). The number of filters is specified by the

block size. However, the number of filters of 2D Convolutional of the last convolutional block is set

to 3 to make sure that the output size is (32, 32, 3).

In our experimental evaluations, a shallow discriminator based on LeNet architecture suffers

from mode collapse. So, we use a deeper convolutional model consists of four 2D convolutional layers

of size 128, 256, 512, and 1024 (filter size of (3, 3) and strides of (2, 2)) followed by LeakyReLU

activation after each 2D convolutional layer. Then, we use a flatten layer and concatenate the

latent representation here. We find that concatenating latent representation at the middle of the
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Table 4.2. Accuracy of victim models

Dataset MNIST FMNIST SVHN C-10 C-100 C-10 C-100
Model MLP MLP LeNet LeNet LeNet ResNet20 ResNet20
Victim train Acc 100% 100% 99.89% 95.13% 95.27% 98.51% 96.71%
Victim test Acc 97.43% 89.59% 87.82% 57.82% 22.37% 74.47% 33.03%

model achieves better convergence than at the beginning of the model. Finally, there is a dense

layer of size 64, followed by a LeakyReLU activation and the last dense layer of size 1.

For CIFAR10 and CIFAR100 datasets, we also use ResNet20 as victim/encoder model. How-

ever, we use the same generator and discriminator as we use in LeNet case. In our BiGAN training,

we find that when a Cosine similarity loss 1 is around 20% of the first epoch, the generated images

are good enough. For CIFAR10 and CIFAR100, we find that training a GAN model for a few

epochs and using the pre-trained generator in the BIGAN architecture prevents mode collapse in

BiGAN training. The overall training time is similar since the BiGAN converges faster with a

pre-trained generator.

4.4. Experimental Results

Table 4.2 illustrates the attack performance of all MI attacks. Sablayrolles attack [103] out-

performs all existing attacks in literature while our attack achieves similar or better performance.

Although Watson attack [126] is more efficient, its AUC is lower than Sablayrolles attack [103].

All previous MI attacks that do not consider sample difficulty (calibration) are substantially worst.

Our subpopulation-based MI attack is on a par with Sablayrolles attack while obviating the need

to train a large number of shadow models. A comparison of computational cost of training multiple

shadow model versus a generator model is reported in 4.4.2. Moreover, our attack achieves a good

performance when abundant data is available in which case no model training is needed. It shows

that for the membership inference purpose our proposed BiGAN-like architecture achieves the same

performance as natural images.

4.4.1. Black-box Setting. To get the subpopulation of a target sample, our attack needs

to know the latent representation to generate or find semantically similar samples. This is done

1The loss is defined in TensorFlow as tf.keras.losses.CosineSimilarity().
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Table 4.3. AUC of various datasets, target models, and MI attack models

Dataset MNIST FMNIST SVHN C-10 C-100 C-10 C-100
Model MLP MLP LeNet LeNet LeNet ResNet20 ResNet20
Yeom [134] 51.58% 54.84% 57.54% 77.56% 91.98% 70.62% 93.03%
Shokri [110] 51.98% 57.69% 58.07% 75.52% 84.72% 67.72% 87.75%
Jayaraman [51] 52.20% 55.78% 56.45% 75.01% 80.64% 68.58% 85.97%
Watson [126] 54.07% 60.52% 62.97% 80.37% 95.47% 72.78% 93.58%
Sablayrolles [103] 55.54% 62.55% 63.41% 81.56% 96.10% 74.84% 95.21%
Ours (BiGAN) 54.66% 62.88% 62.05% 81.94% 96.23% 75.05% 94.56%
Ours (BiGAN, black-box) 54.12% 62.07% 61.13% 81.24% 95.86% 74.23% 94.24%
Ours (natural samples) - - 61.61% - - - -

by using the last layer before the softmax of the victim model. However, in practice, the victim

model’s intermediate layers might not be available to the attacker. In this case, the attacker also

trains an encoder during the BiGAN training instead of using the victim model. As shown in Table

4.3, the black-box scenario barely changes the attack performance.

4.4.2. Training Cost Comparison. We use Python 3.6.12 and Tensorflow 2.3, and a server

with Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz and NVIDIA GeForce RTX 2080 Ti GPU

using Ubuntu 18.04. Table 4.4 shows the training time required for each attack on minutes using

a single GPU instance. Note that we group experiments that has similar training size and model

architecture because they essentially have similar training time. As shown in Table 4.4, our attack

significantly reduces the overall training time overhead. Although training a BiGAN is computa-

tionally more expensive than a single discriminator (shadow) model, previous MI attacks require

training more than one shadow model. Here, both [126] and [103] is trained using 30 shadow

models, as suggested in [103]. This leads to the overall larger training time.

Additionally, Sablayrolles attack [103] requires the average shadow model output of cases where

the shadow model is trained with the target sample. Hence, for each new sample to investigate,

the MI attack needs to compute EY←A(x∈D)[s(Y, (x, y))] from scratch, meaning training 15 new

shadow models. Our attack and Watson attack [126] do no require training new models for each

new target sample. Moreover, our attack is also more effective when the victim model is deeper,

such as in ResNet20. In this case, our generator and discriminator architecture is still the same as

the LeNet case. Although it might take longer for the generator model to converge and find the
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Table 4.4. Training time comparison of MI attacks in minutes.

Dataset (F)MNIST SVHN CIFAR CIFAR
Model MLP LeNet LeNet ResNet20

When all target samples are known before the attack
Watson [126] 46.37 86.72 56.42 281.60
Sablayrolles [103] 46.37 86.72 56.42 281.60
Ours 4.97 31.26 24.73 46.36
Ours wo. BiGAN 0 0 0 0

Training time per new sample
Watson [126] 0 0 0 0
Sablayrolles [103] 23.185 43.36 28.21 140.80
Ours 0 0 0 0
Ours wo. BiGAN 0 0 0 0

mapping from the latent representation to the input space, it is significantly more efficient than

training 30 ResNet20 models.

4.5. Conclusion

In this chapter, we propose a fundamentally different approach towards membership inference.

Instead of comparing the victims model output versus shadow models’ output, we essentially com-

pare the victim model’s output on the target sample versus victim model’s output on samples from

the same subpopulation. This new way of approaching membership inference obviate the need to

train dozens to hundreds of shadow models and makes MI attacks more computationally efficient.

Moreover, we show that when samples from the same subpopulation is not available, we can train

a single generator using BiGAN-like architecture to craft samples of subpopulations. Hence, in the

worst case, we only need to train a single generator. Our evaluation results demonstrate that our

attack can achieve the state-of-the-art MI attack accuracy with no shadow model training.
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CHAPTER 5

User-Level Membership Inference Attack against Metric

Embedding Learning

Membership inference (MI) determines if a sample was part of a victim model training set.

However, the exact training samples might not be accessible to the attacker. In this chapter, we

develop a user-level MI attack where the goal is to find if any sample from the target user has been

used during training even when no exact training sample is available to the attacker. We focus on

metric embedding learning due to its dominance in person re-identification, where user-level MI

attack is more sensible. We conduct an extensive evaluation on several datasets and show that our

approach achieves high accuracy on user-level MI task.

5.1. Introduction

Membership inference (MI) attacks aim to identify whether a sample has been used during

the training of a victim model or not. The existing research literature has primarily focused on

record-level MI attack on classifiers and defense mechanisms against them. Record-level MI attack

has a major limitation: it assumes that the exact training samples are available at the inference

time to conduct membership inference. For example, a privacy auditor may want to investigate if a

user’s images have been unlawfully used to train a model connected to a video surveillance camera

by using MI attacks. The camera that records people’s movements may constantly capture pictures

and retrain a vision model. However, if a privacy auditor (using the technique of MI attacks) wants

to identify the identity of people whose data is used to train the model (against their will), there

is no practical way to retrieve those exact training images. To address this limitation, we focus

on user-level membership inference, where the goal is to identify users whose images were used to

train a model, given that the exact training images are not available.
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Specifically, we investigate a scenario that differs from traditional record-level MI attacks in two

key aspects: 1) We focus on a user-level MI attack where the goal is to identify if any image from

a target person (user) has been used for training the victim model or not. The primary example

of tasks for which the user-level MI attack is more sensible are person re-identification or face

recognition. Here, we want to know if any image of a target person was a part of a training dataset,

not just one specific image. 2) We focus on metric embedding learning rather than classifiers

because they are widely used for person re-identification and face recognition.

These two differences result in two new challenges. First, in most existing work, the user-level

setting is either undefined or ignored. For example, in CIFAR dataset, where the task is to classify

objects or animals, the notion of a user or an entity beyond a record is not well-defined. Second, in

metric embedding learning, the model output does not contain confidence values or labels based on

which the majority of existing MI attacks are built. To address these two challenges, we propose a

new user-level MI attack against metric embedding based on an intuitive empirical observation:

users whose data has been used during training form more compact clusters in the latent space.

As shown in Figure 5.1, this observation holds both for training samples (green color) and other

images of the same person that have not been used during training (yellow color), which solves

the first challenge. Moreover, we focus on cluster properties in the latent space rather than on

confidence output to address the second challenge.

In this chapter, we introduce a user-level MI attack against metric embedding learning using

properties of clusters in latent space. More specifically, we use average distance to the cluster’s

center and average pair-wise distance as features. We show that our attack achieves high accuracy

even when the target model is probed with images of a training user that have not been used in

the training, and therefore, we make the user-level MI attack viable.

5.2. Background

5.2.1. User-Level Membership Inference. The goal of record-level membership inference

is to identify whether a sample was part of a victim training model or not. Most existing membership

inference attacks, such as [106,110], are record-level MI attack on classification tasks. The main
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Figure 5.1. Green: training members, yellow: non-training members, and red:
non-member. The distances are computed based on the latent space embedding of
a LuNet model.

intuition behind these MI attacks is that classification models are more confident on training samples

than test samples, and hence the confidence values can be used to infer membership [100].

In this chapter, we focus on the user-level MI attack, where the goal is to identify if any sample

(images) from a target user has been used in the training. Here, the attacker might not have

access to the exact training samples, but she can obtain other samples from the same user. This

attack is more relevant in tasks where a user’s identity is in danger of leaking, such as person

re-identification. In the literature, there are only a few studies on user-level MI attacks. In [81],

the authors investigate MI attacks on speech recognition task to infer if any users’ data (voice

samples) have been used during training. In [112], the authors propose a user-level MI attack

on text generative models. None of the existing user-level MI attacks can be directly adopted for

metric embedding learning scenario as discussed in detail in Sec. 5.4.

5.2.2. Metric Embedding Learning. The goal of metric embedding learning is to learn

a mapping from a high-dimensional input space into a lower-dimensional latent space in which

semantically similar inputs are closer [36]. This includes variations of contrastive loss and triplet

loss. In contrastive loss, two samples are taken as the input to a model, and the loss term aims

to decrease (increase) the distance of the embeddings of these samples if they belong to similar

(different) class(es). Here, samples from similar classes are called positive samples, and samples

from different classes are called negative samples. The triplet loss takes three samples as input:

an anchor, a positive sample w.r.t the anchor, and a negative sample w.r.t the anchor. It aims to
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push anchor and positive samples together while pulling the anchor and negative samples away.

None of the existing MI attacks can be directly adopted for metric embedding learning because the

outputs of metric embeddings are not confidence values. To the best of our knowledge, the only MI

attack on metric embeddings is EncoderMI [72]. Simply put, it computes the closeness of a target

image with its augmented versions in latent space as attack feature. However, it is a record-level

MI attack, and we show that its extension to a user-level scenario leads to poor performance.

5.3. Attack Overview

5.3.1. Threat Model. Victim Model: In this chapter, we mainly use the LuNet model

with soft-margin batch hard loss [36], a variant of triplet loss, as a victim model due to its high

accuracy and popularity. LuNet loss modifies the original triplet loss to efficiently choose the

hardest positive and hardest negative samples for each anchor sample to improve the training.

Note that our approach can be trivially extended to any other metric embedding learning because

it uses the embedding as a black-box function.

User-level Membership Inference: In contrast to record-level membership inference, where

samples are categorized into members and non-members, in user-level membership inference we have

three groups of samples: 1) training members (Dt
m) are the samples from users that have been used

during the training, 2) non-training members (Dnt
m ) are samples that have not been used during the

training, but the identity of the corresponding users have been used via training member samples,

and 3) non-members (Dnm) are samples from users whose data has never been used during the

training. Here, the goal is to identify non-training members as members without accessing training

members, which is in general not available in record-level MI attacks.

Attacker knowledge: We assume that the attacker has access to a set of non-training member

samples and a set of non-members. However, the attacker does not know which sample belong to

which set. The attacker does not necessarily need training members which is a more realistic

assumption in comparison with record-level MI attacks where the exact training samples should be

available to the attacker to identify members. Additionally, we assume that the attacker can query

the black-box encoder to obtain the latent representation of samples.
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5.3.2. Feature Extraction. Key intuition: The key observation that allows an attacker to

launch an MI attack against metric embeddings is that the images of the user whose data has been

used during the training form a more compact cluster in the latent space of the victim model, as

shown in Figure 5.1. This includes both training members (Dt
m) and non-training members (Dnt

m ).

Attack features: To use the key observation stated above, we need to measure the com-

pactness of user’s samples in latent space. To achieve this goal, we define two metrics: 1) average

center-based distance (Cu), and 2) average pair-wise distance (Pu). Let’s denote Ev(.) as the victim

model that outputs the latent representation. We use xiu to denote the ith sample of a user, u.

Given mu samples from the user u, average center-based distance is defined as follows:

(5.1) Cu =
1

mu

mu∑
i=1

d(xiu, x̄u),

where x̄u = 1
mu

∑mu
i=1 x

i
u, called the center of cluster, and d(.) is a distance measure. We use

the L2 norm as the distance measure throughout this chapter. Similarly, we define the average

pair-wise distance as follows:

(5.2) Pu =
1

mu − 1

mu−1∑
i=1

∑mu
j=i+1 d(x

i
u, x

j
u)

mu − (i+ 1)
,

which obtains the average latent distance across all possible pairs of images of user u. Note

that in contrast to existing record-level MI attacks, we cannot infer the membership of a user using

only a single sample. To measure the compactness of a cluster, our attack requires multiple samples

from the user.

5.3.3. Attack Model Training. Using the two attack features (Cu, Pu) described above as

input to the attack model, we train an attack model to output the membership status of a target

user. We adopt shadow model training strategy widely used in record-level MI attack proposed

in [110]. Simply put, we train multiple (shadow) models on the same task as the victim model, but

with different data samples. Since the ground truth of members and non-members of the shadow
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models are known to the attacker, she can use the ground truth to train the attack model. The

details of the shadow models and their dataset is explained in Section 5.4.

5.4. Experimental Setup

Dataset: We use Market-1501 [143] and PRID-2011 [40]. Market-1501 is a benchmark fre-

quently used to evaluate person re-identification models. After excluding duplicates, distractors

and junks, we have 26051 labeled images of 1501 users. PRID-2011 consists of images extracted

from multiple person trajectories. After excluding duplicates, we have 71657 labeled images of 934

users.

Victim model: We choose LuNet with soft-margin batch hard loss by [36] as our victim model,

which is trained on Dt
m. For Market-1501 and PRID-2011, we randomly select Dt

m, Dnt
m , and Dnm

from the dataset. Dt
m and Dnt

m includes non-overlapping images from the same 150 memebrs. Dnm

includes images of 150 non-members, who do not overlap with the members. The remaining images

are used as the shadow dataset, Ds.

Shadow models: For each shadow model, we randomly select shadow training members,

shadow non-training members, and shadow non-members from the shadow dataset, Ds. We train

shadow models on shadow training member set. Here, shadow model architecture is the same as

the victim model architecture, both in our attack and [72] with which we compare our attack. We

train 10 and 100 shadow models for PRID-2011 and Market-1501 datasets, respectively.

Attack model: Our attack model is a shallow neural network with 3 fully connected layers.

The input features are the average center-based distance (Cu) and average pair-wise distance (Pu)

as described in Section 5.3.2. Throughout our evaluation, we always use the same number of images

to obtain these two features. We train the attack model with the shadow dataset. We repeat each

experiment 5 times and report the average and standard deviation.

Baselines: To the best of our knowledge, there is no user-level MI attack on metric embedding

learning. The two user-level MI attacks in literature [81,112] require generative models where the

victim model’s output is a word. Hence, there is no trivial way to adopt them for metric embedding

scenario. Moreover, the majority of record-level MI attacks on classifiers rely on confidence values

which is not available when using metric embedding. Hence, there is no trivial way to adopt
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Table 5.1. Performance comparison of user-level MI attacks on metric embeddings.

MIA method Accuracy Precision Recall
Market PRID Market PRID Market PRID

Our user-level MIA 66.87 ± 1.87 74.27 ± 0.83 75.25 ± 0.54 69.80 ± 1.35 50.27 ± 5.51 85.73 ± 2.94
EncoderMI (unknown augmentations) 52.00 ± 1.56 52.67 ± 2.14 54.28 ± 3.32 51.06 ± 3.02 46.67 ± 30.94 63.33 ± 32.49
EncoderMI (full knowledge) 66.00 ± 1.21 69.60 ± 3.12 63.62 ± 3.55 65.20 ± 3.96 77.60 ± 10.55 86.27 ± 6.02

them here. However, we can adopt record-level MI attacks on metric embedding to the user-level

scenario with a minor adjustment. There is only one attack that satisfy this condition, called

EncoderMI [72]. To adopt for the user-level MI scenario, we launch their record-level MI attack

on all samples of a user and then we perform majority voting.

5.5. Experimental Results

Table 5.1 shows the performance comparison between our attack and EncoderMI. Here, we only

use non-training members and non-members for the evaluation purpose. EncoderMI computes the

closeness of the target sample with its augmented variants as features. When the exact data

augmentations used by the victim model are not known to the attacker, it chooses a fixed set of

augmentations following the original setting of EncoderMI paper. In this case, the EncoderMI

performs close to random guess (the second row). However, when all data augmentations during

victim model training are known to the attacker, EncoderMI performs better (the third row).

Despite such an unrealistic advantage to the EncoderMI, it still cannot outperform our approach.

5.5.1. Access to some training images. In the previous section, we assumed that only the

non-training member samples are available to the user-level MIA. In cases where some training

member samples are available, we expect to achieve even better performance. As shown in Table

5.2, by increasing the number of training members available to the attacker, we can significantly

improve the user-level MI accuracy.

5.5.2. Effect of number of training samples versus MI attack. Intuitively, as the num-

ber of training samples for a user increases, we expect the metric embedding process to push those

images more towards each other. In other words, as the number of training samples for a user

increases, it presents a more compact cluster in the latent space. Table 5.3 shows our user-level

MIA recall on different group of users with different number of training samples. Clearly, our MI
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Table 5.2. User-level MIA performance when some portion of the training samples
are available to the attacker.

% of training Accuracy Precision Recall
Market PRID Market PRID Market PRID

0% 66.87 ± 1.87 74.27 ± 0.83 75.25 ± 0.54 69.80 ± 1.35 50.27 ± 5.51 85.73 ± 2.94
25% 74.60 ± 0.25 76.33 ± 0.30 79.96 ± 1.18 70.78 ± 1.20 65.73 ± 2.33 89.87 ± 3.08
50% 81.87 ± 0.69 78.53 ± 0.54 82.97 ± 1.05 71.76 ± 1.36 80.27 ± 3.00 94.27 ± 2.25
75% 90.00 ± 0.52 78.40 ± 0.65 85.41 ± 1.26 71.70 ± 1.40 96.53 ± 0.98 94.00 ± 2.11
100% 91.73 ± 0.93 78.07 ± 1.00 85.83 ± 1.35 71.56 ± 1.52 100.0 ± 0.00 93.33 ± 1.89

attack is more successful on users with larger number of training samples. This is somehow in

contrast with record-level MIA on classifiers where more training data is often construed as less

memorization and, hence, less privacy leakage.

Table 5.3. User-level MIA’s recall on groups with different number of training
images per person.

Group Market PRID
Number of Images Recall Number of Images Recall

1 22 ≤ n ≤ 63 69.33 ± 5.73 123 ≤ n ≤ 445 96.77 ± 2.04
2 17 ≤ n ≤ 21 60.00 ± 7.43 102 ≤ n ≤ 112 85.81 ± 5.62
3 14 ≤ n ≤ 16 40.83 ± 4.86 88 ≤ n ≤ 101 84.14 ± 1.69
4 11 ≤ n ≤ 13 36.47 ± 5.76 78 ≤ n ≤ 87 85.33 ± 1.63
5 8 ≤ n ≤ 10 45.45 ± 5.07 66 ≤ n ≤ 77 75.86 ± 4.88

5.5.3. Ablation Analysis. Table 5.4 illustrates the effect of each attack feature on user-level

MIA. Although the highest accuracy is achieved when both features are used, the difference is not

significant. Hence, the attacker can also use a single feature to reduce the computation overhead.

5.6. Conclusion

In this chapter, we propose a user-level MI attack on metric embedding learning. Our attack

differs from most existing MI attacks in two aspects: First, we focus on the user-level MI attack

which is more practical in tasks where the exact training data samples used in training are not avail-

able. Second, we focus on metric embedding learning scenario where the existing confidence-based

MI attacks do not work. In contrast with existing MI attacks, we use a measure of compactness of

clusters in embedding space to identify membership, and consequently, obviate the need to access
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Table 5.4. User-level MIA performance evaluation using different set of features.

Input Features Accuracy Precision Recall
Market PRID Market PRID Market PRID

(Cu) 65.80 ± 3.39 73.13 ± 0.45 75.67 ± 1.29 68.17 ± 0.27 46.93 ± 11.23 86.80 ± 2.12
(Pu) 66.67 ± 2.32 73.53 ± 0.83 74.40 ± 1.23 69.20 ± 1.53 51.07 ± 8.42 85.07 ± 3.34
(Cu,Pu) 66.87 ± 1.87 74.27 ± 0.83 75.25 ± 0.54 69.80 ± 1.35 50.27 ± 5.51 85.73 ± 2.94

confidence values. Our attack achieves the state-of-the-art performance in several datasets, where

user-level MI attack is of paramount importance.
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CHAPTER 6

Accuracy-Privacy Trade-off in Deep Ensemble: A Membership

Inference Perspective

Deep ensemble learning has been shown to improve accuracy by training multiple neural net-

works and averaging their outputs. Ensemble learning has also been suggested to defend against

membership inference attacks that undermine privacy. In this paper, we empirically demonstrate

a trade-off between these two goals, namely accuracy and privacy (in terms of membership in-

ference attacks), in deep ensembles. Using a wide range of datasets and model architectures, we

show that the effectiveness of membership inference attacks increases when ensembling improves

accuracy. We analyze the impact of various factors in deep ensembles and demonstrate the root

cause of the trade-off. Then, we evaluate common defenses against membership inference attacks

based on regularization and differential privacy. We show that while these defenses can mitigate

the effectiveness of membership inference attacks, they simultaneously degrade ensemble accuracy.

We illustrate similar trade-off in more advanced and state-of-the-art ensembling techniques, such

as snapshot ensembles and diversified ensemble networks. Finally, we propose a simple yet effective

defense for deep ensembles to break the trade-off and, consequently, improve the accuracy and

privacy, simultaneously.

6.1. Introduction

Ensemble learning has been shown to improve classification accuracy of neural networks in

particular, and machine learning classifiers in general [60, 62, 104]. The most commonly used

approach for deep models involves averaging the output of multiple neural networks (NN) that

are independently trained on the same dataset with different random initialization, called deep

ensemble [74]. Such a simple approach has been extensively used in practice to improve accuracy

[65,123]. Notably, a majority of the top performers in machine learning benchmarks, such as the
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ImageNet Large Scale Visual Recognition Challenge [102], have adopted some form of ensemble

learning [33,65,115].

Interestingly, a few recent papers argue using ensemble learning to achieve a different goal rather

than improving accuracy, that is, to defend against membership inference attack [47,68,96,133].

In membership inference attack, the goal of an attacker is to infer whether a sample has been

used to train a model–i.e., whether the sample belongs to the train set. In literature, several

forms of ensemble learning (different from deep ensembles), such as partitioning, has been used to

defend against privacy-harming membership inference (MI) attacks. Membership inference attacks

generally use the prediction confidence of NN models to infer membership status of a sample

[105, 110, 119, 134] by leveraging the insight that trained models may output higher prediction

confidence on train samples than non-train samples [15]. The intuition behind using ensemble

learning approaches, like partitioning, to defend against MI attacks is that training each model

on a different subset of data makes the ensemble less prone to overfitting [105]. While the idea

is discussed in [47,68,96,133], none of these papers theoretically or empirically demonstrate the

usefulness of deep ensembles, in particular, as a defense mechanism.

In this chapter, we show that these two goals of ensemble learning, namely improving accuracy

and defending against MI attack, do not trivially sum up in a unified solution in deep ensembles.

Figure 6.1 illustrates accuracy and privacy trade-off by plotting accuracy and membership inference

attack effectiveness for ensembles comprising of varying number of base models (1, 2, 5, and 10)

that are trained for different numbers of epochs (5, 45, 74 and 81). The training epoch is chosen

such that the accuracy of a single model best aligns with the accuracy of an ensemble. We make

two key observations here. First, there is an increase in both accuracy and MI attack effectiveness

as we go from a single model to ensembles comprising of an increasing number of base models.

The trade-off is more noticeable for more accurate models trained for a larger number of epochs.

Second, we can adapt the design of ensembles to suitably navigate the trade-off between accuracy

and privacy. Starting with a single well-trained model (indicated by the the pink circle) achieving

around 70% test accuracy as a baseline (for non-ensemble case), ensembling can be adopted to: (1)
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Figure 6.1. Trade-off between accuracy and privacy on an AlexNet model trained
on CIFAR10. Each curve contains four points corresponding to ensembles compris-
ing of 1, 2, 5, and 10 base models (from left to right). Using the single model trained
for 81 epochs as a baseline, there are two choices: (1) making an ensemble of these
models to achieve the highest accuracy possible but worse privacy (purple arrow),
or (2) making an ensemble of less overfitted models (epoch #5) to achieve slightly
lower accuracy of a single model but better privacy (brown arrow).

improve accuracy by using an ensemble of highly accurate models but at the cost of worse privacy1

(purple arrow); and (2) improve privacy by intentionally using an ensemble of under-fitted models

instead of a single model but at the cost of accuracy (brown arrow). However, these two objectives

are not achieved simultaneously in deep ensembles.

To better study this phenomenon, we start with the most widely-used form of ensembling in

deep models, that is, deep ensembles, and the most common type of membership inference attack

based on confidence outputs. To understand the root cause of this trade-off, we show that using

deep ensembles to improve accuracy exacerbates its susceptibility to membership inference attacks

by making train and non-train samples more distinguishable. By analyzing the confidence averaging

mechanism of deep ensembles, we investigate potential factors that enable membership inference.

We show that the most influential factor is the level of correct agreement among models. Simply

put, the number of models that correctly classify a train sample is often greater than the ones that

1Note that for complicated tasks, such as image classification, the common practice is to train deep models for a large
number of epochs and avoid under-fitted models. That is because memorizing samples from long-tailed subpopulations
are shown to be necessary to achieve close-to-optimal generalization error [24].
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correctly classify a test sample. This results in a wider confidence gap between train and non-

train samples, when confidence values are averaged, enabling more effective membership inference

attacks.

We further show that the difference in the level of correct agreement between train and non-train

samples is correlated with models’ generalization gap. Hence, a natural question to ask is ”can deep

ensembles that use less overfitted models mitigate privacy issues while achieving high accuracy?”.

To answer this question, we study several regularization techniques, common membership inference

defenses, and a few other ensembling approaches. We again observe a privacy-accuracy trade-off

pattern similar to that shown in Figure 6.1.

Finally, using the insights obtained in the above analysis, we derive yet effective modification

on deep ensembles that not only mitigate the privacy leakage issue in deep ensembles, but also

improve privacy significantly. Instead of averaging confidence values, our approach outputs the

confidence of the most confident model among the models that predict the same label as the entire

ensemble. We show that this approach has several benefits: 1) It mitigates the effectiveness of the

membership inference attacks to the point where the attack often performs similar to a random

guess. 2) It can still achieve similar accuracy as of deep ensembles (averaging confidence values).

3) It does not require any change to the training process of base models. In other words, this can

be easily adopted even for the systems whose base models have already been trained.

Summary of contributions: In this chapter, we perform a systematic empirical study of MI at-

tacks on deep ensemble models. We start with an in-depth analysis of the most common ensembling

technique and membership inference attack, and then we extend the results to various ensembling

techniques and membership inference attacks. First, we show that when deep ensembles improve

accuracy, it also leads to a different distribution shift in the prediction confidence of train and test

samples, which in turn enables more effective membership inference. Second, we analyze various

factors that potentially cause the prediction confidence of train and non-train samples to diverge.

Among potential factors, we show that the most dominant factor is the level of correct agreement

among models which indicates that more models in an ensemble agree on their prediction when

a sample is a training sample. Hence, the aggregation of their prediction yields higher confidence
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output in comparison with non-train samples. We show that common defense mechanisms in mem-

bership inference literature, including differential privacy, MemGuard, MMD+Mixup, L1 and L2

regularization, as well as other ensemble training approaches, such as bagging, partitioning, can be

used to mitigate effectiveness of MI attacks but at the cost of accuracy. We solve this trade-off is-

sue by changing the fusing mechanism of deep ensembles which improves the accuracy and privacy,

simultaneously. Although the main focus of this chapter is on deep ensembles, we also cover bag-

ging, partitioning, weighted averaging (Section 6.5.6), as well as more advanced and state-of-the-art

ensembling techniques, such as snapshot ensembles [45] and diversified ensemble networks [139]

(Section 6.5.5). We observe similar trade-off.

6.2. Background

6.2.1. Ensemble Learning. In literature, ensemble learning refers to various approaches that

combine multiple models to make a prediction. Models used to construct an ensemble are often

called base learners. There are two main factors to construct an ensemble [104]: 1) how base

learners are trained to ensure diversity, such as random initialization, bagging, partitioning, etc.,

and 2) how the output of base learners are fused to obtain the final output, including majority

voting, confidence averaging, stacking, etc.

The most common forms of ensemble learning in classical machine learning algorithms are

bagging, partitioning, boosting, and stacking. In bagging, several models are trained with different

bootstrap samples of the training dataset. In other words, each model is trained on a randomly

selected under-sampled version of the entire dataset. As a results, the diversity is ensured by

varying training set of each model. The model outputs are often fused using majority voting or

averaging. Random forest is a widely-used example of bagging of decision trees. In partitioning,

similar to bagging, base models are trained on different subset of the entire dataset and fused with

majority voting or averaging. However, unlike bagging, the training datasets are non-overlapping.

Boosting is an ensemble learning technique that focuses on samples that were misclassified by

previous trained models. In other words, the models are trained sequentially such that the second

model aim to correct the prediction of the first model, the third model aims to correct the prediction

of the second model, and so on. This is often done by changing the weight of each sample during the
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training. The most common boosting algorithms are AdaBoost, gradient boosting and XGBoost.

Stacking is a meta-learning ensembling approach where a meta-learner is trained on top of the

base models. Meta-learner is often a simple regression or a shallow neural network. The complexity

is often shifted to base models. There are hundreds of variations of these methods in literature

that are less common and the study of them is out of the scope of this dissertation.

Unlike classical machine learning domain where several popular ensemble methods exist and are

equally used for different scenarios, there is only one heavily-used method for deep learning models,

called deep ensemble [60]. In this method, 1) base models are initialized with random weights

and trained on the same training dataset, and 2) their prediction confidence are fused through

averaging to construct the final output. Unlike ensemble of traditional machine learning algorithms,

in deep ensembles, the main source of diversity often comes only from random initialization of base

learners [25]. In fact, other sources of diversity, such as bagging, have been shown to considerably

degrade the overall accuracy of a deep ensemble [63,65]. Although some classical ensemble learning

approaches, including bagging, partitioning, and stacking, can be easily adopted for deep learning

models, they are rarely used due to the low accuracy in comparison with deep ensembles.

Recently, a few promising ensemble methods for deep models have been proposed. In snapshot

ensemble [45], only one deep model is trained. Here, base models are snapshots of that single

model at different epoch during the training. Specifically, every time the model is converged, an

snapshot is taken and the training process continues by using a large learning rate to find a new local

optimum. This process significantly reduces the training time of ensemble which is an important

obstacle for training deep models on large dataset. In diversified ensemble network [139], the

output of base models are aggregated in a shared layer (similar to stacking) and are trained jointly.

The main novelty is that it uses an additional loss term that ensures each model is optimized in

different directions of diversity. Interestingly, unlike deep ensembles, they show that there is an

optimum number of base models over which the diversified ensemble network’s accuracy starts to

degrade. To the best of our knowledge, there is no ensembling approach in literature for deep

models that considerably outperforms deep ensembles.

6.2.2. Membership Inference Defenses. Defense mechanisms against membership infer-

ence attacks can be summarized into two categories [96]:
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Generalization-based: Shokri [110] was the first to correlate membership inference success

with overfitting. Since then, many standard regularization techniques have been used to alleviate

overfitting, such as L1 regularization [15], L2 regularization [15,52,89,110,119], differential pri-

vacy [15,96], dropout [52], and adversarial training [88]. Interestingly, ensemble learning has also

been proposed as a defense mechanism. In [105], they proposed a combination of partitioning and

stacking as a defense mechanism. The intuition is that training each model with different subset of

data makes the entire ensemble model less prone to overfitting. Note that these defense mechanisms

often degrade the accuracy of the target model (see Section 6.5.1) [15].

Confidence-masking: These defense mechanisms aim to reduce the amount of information that

can be obtained from the output of a target model by perturbing [52] or limiting the dimensionality

of the output [15, 110, 119]. Most confidence-masking approaches manipulate confidence values

post-training. As a result, the output values of these models do not reliably represent the ”confi-

dence” of the model. These approaches are built under the assumption that accurate prediction of

confidence is not needed. However, many applications require accurate estimation of confidence.

Moreover, if the accurate prediction of confidence is not required, then the trivial MI defense would

be to only output the class label and avoid these confidence-masking defenses altogether. In this

chapter, we cover MemGuard-random defense as it has already shown to outperforms the other

confidence-masking mechanisms [68].

6.3. Threat Model

Our threat model works under the scenario of machine-learning-as-a-service (MLaaS) where an

ML prediction API is provided by an MLaaS provider. The API is accessible to users who can query

the API with an input and obtain the prediction output. In this scenario, a malicious user, referred

to as an attacker, can query the API to obtain unintended information beyond the prediction

output. Specifically, the attacker aims to launch a membership inference attack to identify training

samples used to train the MLaaS API’s model. In this chapter, we refer to the MLaaS provider as

the defender or victim.

6.3.1. Defender. The assumptions and objectives of the defenders are as follow:
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Assumptions: Here, we assume that the defender uses deep ensembles to improve the accuracy

of the prediction model. The defender uses the training dataset, Dtr, to train multiple base models.

The defender may or may not use all available training samples to train each model. As long

as a training sample is used to train at least one base model, we label the sample as a member.

Moreover, the defender provides an API access and returns prediction confidence values. In a multi-

class classification task, the output is a vector of probabilities corresponding to each class, referred

to as confidence values. The defender can train base models from scratch and, as a result, apply

regularization techniques or membership inference defense mechanisms that requires modification

of the training process. The defender can also use any fusing technique rather than confidence

averaging which is used in deep ensembles.

Objectives: The main objective of the defender is to mitigate the membership inference

attack while benefiting from the ensemble learning’s improved accuracy. Preferably, the solution

should impose minimal computational cost at both training and inference time. We study several

MI defense mechanisms, including MMD+Mixup [68], L1 and L2 regularization, and DP-SGD.

Moreover, we investigate several ensembling approaches that suggested in literature as a defense

mechanism, including bagging, and partitioning. Finally, we propose a simple solution that achieve

both objectives of improving accuracy and privacy, simultaneously.

6.3.2. Attacker. The objectives, knowledge, and capabilities of the attackers are as follow:

Objectives: The attacker aims to launch a membership inference attack to identify samples

of the defender’s training dataset, Dtr.

Knowledge: We make the following assumptions about the attacker’s knowledge:

1) The attacker has the full knowledge of the classification task. Given that the purpose of the

API is to provide a service to users, it is reasonable to assume that the task for which the API is

developed is known to all users, including the attacker. This includes the number of classes, class

labels, and the input shape.

2) We assume that the attacker has only black-box access to the defender’s model. Although it

is possible in some scenarios to approximate model parameters through model extraction methods

[118], it is of the model owner’s interest to keep the model proprietary as otherwise it defies the

whole point of MLaaS as a business model.
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3) The attacker may know the model architecture, training algorithms, the type of ensemble

method, and other training information. These information may sometimes be available via the

API’s documentation. Specifically, when the attacker needs to train shadow models, he uses the

same architecture and training parameters as the defender’s model. But, as it is shown in [105],

the lack of this information barely changes the MI attack effectiveness, at least when original

shadow-based MI attack of Shokri [110] is used.

Capabilities: The attacker has the following capabilities:

1) The attacker can collect a dataset, Ds, that has the similar distribution as the Dtr to train

shadow models on the same task if needed.

2) The attacker has computational resources to train an attack model, which takes some features

from a target sample and outputs the membership status. In the simplest form, it can be a threshold

on the output of the defender’s confidence output [134], or an ML model [110].

6.4. How Does Ensembling Increase Membership Inference Effectiveness?

In this section, we thoroughly investigate the most widely-used deep models ensembling tech-

nique and membership inference attack, that is, deep ensembles and confidence-based attack. We

mainly focus on distributions of confidence values when a deep ensemble is used and how it can lead

to more distinguishable distributions. How an actual MI attack can use this feature is studied in

Section 6.5. Furthermore, other forms of ensembling techniques and membership inference attacks

are shown in Section 6.5.

6.4.1. Confidence Distribution Shift. Ensemble learning is only helpful when base learners

disagree on some samples [62,104]. Otherwise, ensembling does not improve accuracy. Further-

more, when deep ensemble is used, the confidence values of multiple models are averaged to obtain

the final prediction. Consequently, when ensembling improves accuracy, it averages the prediction

confidence of highly confident predictions (mostly from models which correctly classified the sam-

ple) and less confident predictions (mostly from models which misclassified the sample). As a result,

confidence distribution shift is inevitable for both train and test samples. This phenomenon can be

observed as the distribution of Figure 6.2(a) shifts to that of 6.2(d). This can be better observed by
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separating correctly classified samples which have significantly higher prediction confidence (Fig-

ure 6.2(e)) and misclassified samples which have lower prediction confidence (Figure 6.2(f)). One

can clearly observe that both distributions shift more towards the center from Figure 6.2(b) and

(c) to Figure 6.2(e) and (f). However, the change in the distribution of train and test samples does

not necessarily cause a more effective membership inference if the change has a similar effect on the

confidence distribution of both train and test samples. In the next subsection, we analyze the po-

tential factors that affect the distribution change and how they can change confidence distribution

of member and non-member sets differently.

6.4.2. Effect of Ensembling on Individual Samples. We use yi to denote the confidence

value of the ith model in an ensemble of n models. Hence, for a given sample x, the output of the

ensemble is:

(6.1) yel(x) =

∑n yi(x)

n
=

∑c yci (x) +
∑m ymi (x)

n
.

Given a single sample, we can further divide models in the ensemble into two groups: 1) models

that correctly classified the sample denoted by yci and 2) models that misclassified the sample by

ymi . For a given sample x, c models correctly classify it and m models misclassify, where c+m = n.

Note that the value of c and m depends on the sample2.

Based on the Eq. (6.1), three major factors affect the final confidence value (yel) of a sample:

yc, ym, and c. As a result, if these values are different for train and test samples, the ensembling

causes different shift in the distributions, and consequently, membership inference attack will be

more effective. These factors are as follows:

(1) Confidence value of correctly classifying models (yc): Since the majority of samples are

supposed to be correctly classified by a practical model, any distinguishable confidence

difference between train and test samples can lead to a very effective membership inference

attack. However, as shown in Figure 6.2(b), we can observe that there is no significant

difference between train and test samples.

2By an abuse of notation, we use c (m) to refer to (in)correctly classifying models and also as a superscript for the
model output of (in)correctly classifying models, that is, yc

i (ym
i ).
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Figure 6.2. ResNet20 on CIFAR10 (Class #3): Confidence (i.e. maximum of
the softmax output) distribution of a single model (top row), an ensemble of 10
models using ensemble averaging (the second row), an ensemble of 10 models using
first agreed confidence approach (the third row), and an ensemble of 10 models using
maximum agreed confidence approach (the fourth row). Jensen–Shannon divergence
of the two distributions are as follows: a) .2276, b) .1484, c) .2515, d) .3037, e) .1682,
f) .3408, g) .2940, h) .1432, i) .3076, j) .2595, k) .0846, and l) .2753.
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(2) Confidence value of misclassifying models (ym): Unlike correctly classified samples, there

is a marginal difference between confidence distribution of train and test samples of mis-

classified samples (see Figure 6.2(c)). This may be exploited by membership inference

attack to partially distinguish between train and test samples.

(3) Level of correct agreement (c) among models: As shown in Figure 6.3(a), the number of

models that correctly classify a sample (c) is greater for train samples than test samples.

Since prediction confidence of correctly classified samples are higher than misclassified

samples on average, i.e., yc > ym, and c is smaller for test samples, the ensemble confidence

of test samples (yel) becomes lower than train samples. As a result, this factor can largely

contribute to the effectiveness of membership inference attacks on deep ensembles.

We note that the first two factors are not unique to ensembles and can be exploited by an

attacker in a single model scenario as well. As a result, these two factors have been extensively

studied in [100] in a single model scenario across various image datasets and well-trained models.

They have shown that for deep models the first factor (yc) is almost indistinguishable between train

and test set and only the second factor (ym) is marginally distinguishable. However, this marginal

difference does not have a considerable impact on the different distribution shift in train and test

sets.

On the other hand, the level of agreement has a big impact on different distribution shifts of

train and non-train samples. To better demonstrate this, we can analyze the distribution difference

in each level of agreement separately. As shown in Figure 6.3(b), the average confidence of train and

test samples are very close and indistinguishable when each level of agreement is drawn separately.

If the effect of the first two factors were considerable, the two confidence values for each level

of agreement would have been more distinguishable. Note that the average confidence between

train and test sets is more distinguishable for the first two points in x-axis (where the majority

of models misclassify a sample). However, these distributions only constitute a tiny portion of

the training dataset, as shown with the first two blue bins in Figure 6.3(a). However, when all

samples are combined, we can vividly observe that the average confidence gap between train and

test sets considerably widens, as shown in the last point in x-axis in Figure 6.3(b). This clearly

60



demonstrates that the major factor in different distribution shift between train and test sets is the

level of agreement (c).

Note that, unlike the first two factors, the third factor (c) only improves the effectiveness of

membership inference attacks in ensemble scenarios because it does not exist in a single model. In

other words, if a defence strategy eliminates the effect of the average level of correct agreement (i.e.,

it ensures that c is close between train and test samples), the membership inference attack is still

possible on the ensemble, but only to the degree that it is possible on a single model3. As shown

in Figure 6.3(c), as the gap between yc of train and test sets (red lines) and the gap between ym of

train and test sets (brown lines) increases, the attack on both single model (non-ensemble) and also

the ensemble (EL-10) increases. However, only when the average level of correct agreement gap

between train and test (blue lines) widens, the membership inference attack on ensembles becomes

more effective than on non-ensembles.

Another important observation from Figure 6.3(c) is that the minimum level of agreement gap

between train and test occurs when models are relatively underfitted (i.e., the blue lines in first

few epochs). This phenomena has also been partially observed in [25] (Figure 2(c)). The main

reason is that underfitted models often only learn the most common and generalizable features and,

thus, they often agree on the features and predictions. As they move from underfitted region to

overfitted region, their generalization gaps widen (blue lines in Figure 6.3(c)). As a result, they

tend to correctly classify train samples more often than test samples. Consequently, they agree on

train samples more than test samples and, hence, average gap of correct agreement between train

and test set widens. Hence, the wider generalization gap of base learners is, the more effective

membership inference attack would be on deep ensembles.

6.4.3. Fusion Approaches to Avoid Diverging Distribution Shifts. As shown in the

Section 6.4.2, the main factor for the large diverging distribution shifts of train and test samples

in deep ensembles is the level of agreement. This is an inherent consequence of averaging the

confidence of multiple base models. There are several ways to avoid outputting the average of

base models. Confidence masking approaches can achieve this goal by manipulating the confidence

3Although this can be understood by analyzing the Eq. (6.1), it is difficult to demonstrate empirically. The reason is
that these three factors are not independent, and, hence, our attempts to significantly change the third factor without
changing the other two factors have been unsuccessful.
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Figure 6.3. AlexNet model trained on CIFAR10. Left: The distribution of the
number of times a sample is correctly classified by 10 models used in the ensemble.
The models often make less classification mistake on train samples than test samples.
Center: By separating samples based on how many times they have been correctly
classified, we can observe that the confidence output of these samples are negligible
between train and test sets. Only when all samples are compared the distribution
difference is significant and that is the direct effect of the third factor, namely the
level of correct agreement. Right: The effect of the three factors on the MI attack.
The values of yc and ym are confidence values in percentage. c/10 is the percentage
of models that correctly classify a sample. As the gap between the level of correct
agreement of train and test widens (the blue lines), the MI attack on ensembles
becomes more effective than a single model (green lines).

values. The simplest form is to only output the class label (or the top k classes) [110], or to add

a random noise to the confidence value [52]. The drawback of these approaches is that they make

the confidence values unreliable which is critical for applications where confidence estimation is

necessary.

To address this issue, we propose three methods to mitigate diverging distribution shift and

output a valid confidence value. One simple approach is to output the confidence values of a

single model among base models. However, if the model is chosen randomly, this approach does

not provide the accuracy improvement of ensembling. To avoid this problem, we first use ensemble

averaging over confidence outputs of base models, similar to deep ensembles, to obtain the ensemble

predicted label. Then we output the confidence values of the first model that predicts the label as

the ensemble predicted label. We call this approach first agreed confidence. Because the predicted

label of the ensemble is essentially the same as deep ensembles, the accuracy of the first agreed label

is exactly the same as deep ensembles. As shown in the third row of Figure 6.2, the distribution

of the confidence output is similar to a single model (the first row of Figure 6.2), as expected.
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Therefore, this approach can easily mitigate the privacy cost of deep ensembles and achieve the

same accuracy.

Interestingly, there are simple approaches that not only output a valid confidence values and

achieve similar accuracy, but also significantly improve the privacy. Instead of outputting the confi-

dence value of the first model that predicts the ensemble predicted label, we output the confidence

values of the most confident model among base models that predicts the ensemble predicted label.

We call this approach maximum agreed confidence. Similarly, this approach also achieves the same

accuracy as deep ensembles because the prediction label is the same. Maximum agreed confidence

approach has multiple advantages: 1) it omits the effect of the level of agreement on the output,

2) it outputs a confidence value that reflects one of the base models and hence it is still reliable

for the purpose confidence estimation, and 3) it shifts the confidence values of both member and

non-member to the extreme ends (either 0 or 1) and, hence, the distributions of member and non-

members become even less distinguishable. The last advantage is clearly shown in the last row

of Figure 6.2. In Section 6.5.1, we demonstrate that this approach improves both accuracy and

privacy at the same time.

Another similar approach is to output the confidence of the most confident model among all

models, instead of the model that predicts the ensemble predicted label. We call this approach

maximum confidence. The accuracy of maximum confidence might be slightly lower than deep

ensembles because the most confident model may occasionally be the one that misclassifies the

input sample although the majority of base models do not. However, as we show in Section

6.5.1, this approach mitigates membership inference attacks slightly better than maximum agreed

confidence because it outputs high confidence for some incorrectly classified samples, which mostly

belong to the nonmember samples [100].

Each of the three approaches is advantageous in different scenarios. The first agreed confidence

approach outputs a confidence of a single model and, as shown in Figure 6.2, it is similar to

a single model scenario. Hence, it is beneficial for scenarios where the confidence estimation is

needed to be similar to a single model. The maximum confidence and maximum agreed confidence

approaches change the overall confidence distribution. Although the confidence values still come

from the output of one of the base models, it is not known if it is as useful as a single model

63



scenario when confidence estimation is concerned. This requires further investigation. Regardless

of confidence estimation, the maximum agreed confidence achieves the highest accuracy, as of deep

ensembles, while improving privacy. The maximum confidence, however, achieves highest privacy

while improving accuracy. Therefore, depending on whether the objective is to maximize accuracy

or to maximize privacy, one can use maximum agreed confidence or maximum confidence.

6.4.4. Why Does it Outperform Gap Attack Significantly? Recently, several studies

report a simple baseline attack called gap attack [15], also known as naive attack [66,100] that

achieves similar performance as the confidence-based attacks in most scenarios. The gap attack

predicts a sample as member if it is correctly classified by the target model, and as non-member

otherwise. In other words, gap attack essentially reflects the generalization gap [100]. In [100],

authors extensively analyzed this phenomena in deep models and argued current MI attacks that

barely outperform gap attacks are ineffective in practice because they only reflect the generalization

gap and cannot infer the membership status of each individual sample accurately.

Figure 6.4 shows that the effectiveness of membership inference attacks increases and outper-

forms the gap attack as deep ensembles are deployed. This raises significant privacy concern since

the gap attack is often suggested as a baseline that is also hard to outperform in non-ensemble

setting [15,66,100]. Note that gap attack can be viewed as a metric directly reflecting the gener-

alization gap rather than a reliable membership inference. As suggested in [100], we can separate

correctly classified samples and misclassified samples to understand why membership inference at-

tacks can barely outperform gap attack. As shown in Figure 6.2(b) and (c), the distributions of

train and test samples are similar when separated into correctly classified and misclassified sets.

The reason why the distribution of all samples (Figure 6.2(a)) looks more distinguishable when

correctly classified samples and misclassified samples are combined is that there are often more

misclassified samples in the test set than the train set. This is the information that gap attack

exploits which essentially reflects the generalization gap. In order for a membership inference at-

tack to considerably outperform the gap attack, the distribution of correctly classified samples and

misclassified samples should leak membership status information, which is not often the case as it

is shown in Figure 6.2(b) and (c), and [100].
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Figure 6.4. Membership inference attack results across all datasets/models. Each
curve indicates an ensemble of 1 (non-EL), 2, 5, and 10 models from left to right.
Green curves indicate original deep ensembles where confidence values are averaged.
Yellow curves indicate an ensemble of same models using maximum agreed confi-
dence. Note that train and test accuracy of both approaches are the same. MI
sampling and Gap attack is conducted on original deep ensembles.

When ensembling is used, the distribution of confidence values changes dramatically, as ex-

plained in Section 6.4.1. By comparing the confidence distribution of correctly classified samples in

an ensemble (Figure 6.2(e)) with a non-ensemble scenario (Figure 6.2(b)), the distribution is clearly

more distinguishable in ensemble case. This is of significant privacy concern because, as discussed

in [100], majority of samples in practice belong to the correctly classified set. Similar trend is also

observable in misclassified samples (Figure 6.2(f)). Hence, the confidence values, that barely leak

more information than generalization gap itself in a single model scenario, now considerably leak

more membership information than just the generalization gap. That is the reason why member-

ship inference attacks are significantly more effective in deep ensembles in comparison to the gap

attack.
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6.5. Experiments Results

6.5.1. Experimental Setup. We explore a wide range of datasets that are often used in deep

ensemble literature or membership inference literature: Adult4, Texas, Purchase [110], MNIST [64],

FMNIST [130], SVHN [90], CIFAR10 [61], CIFAR100 [61], and ImageNet [102]. For non-image

datasets (Adult, Purchase, and Texas), we use a fully connected neural network consisting of a

hidden layer of size 128 and a Softmax layer. All other training parameters for these datasets are

set as suggested in [110]. For image datasets, we use a wide range of convolutional neural networks

depending on the input dimension and the difficulty of the task. We use the model implementations

adopted in [89,100]5. We train 10 models for each dataset with random initialization and construct

an ensemble of 2, 5 and 10 models, respectively.

Attack models for Shokri and Watson attacks are NNs with three hidden layers of size 128,

128, and 64, respectively. In this section, we consider a scenario that is most advantageous to the

attacker where 80% of the training dataset is given to the attacker and the goal is to infer the

membership of the remaining samples, similar to [100]. This can be construed as an upper-bound

for the confidence-based attacks that does not use difficulty calibration. We explore Shokri and

Watson attacks in the next sections. For sampling attack, we perturb each sample 50 times and

count the number of time the prediction label has changes, as in [96]. For ImageNet, we attack a

set of samples including 50 member and nonmember images per class. We explore a random set

of ten hyper-parameters, including the one proposed in [96], for the noise perturbation and report

the highest attack performance. Here, we only report AUC of membership inference attacks. In

practice, the attacker needs to train shadow models to estimate the best threshold value which

may result in less accurate attack. All other training parameters are set as suggested in [100]. See

Section 6.5.4 for more results. The results of the weighted averaging, and snapshot ensembles and

diversified ensemble networks are shown in Section 6.5.6, and Section 6.5.5, respectively.

Figure 6.4 shows the results on all datasets. For some datasets, such as Adult, Texas, and

MNIST, deep ensemble approach barely changes the accuracy or privacy. That is because the

disagreement across models is insignificant in these datasets. For all other datasets, deep ensemble

4http://archive.ics.uci.edu/ml/datasets/Adult
5https://github.com/bearpaw/pytorch-classification
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approach improves the accuracy (blue/red curves) as well as the effectiveness of confidence-based

membership inference attacks (green curves). As mentioned in Section 6.4.2, the most salient

factor in membership inference effectiveness on deep ensembles is the accuracy gap between train

and test set. Figure 6.4 clearly shows that whenever this generalization gap is large for non-

ensemble case, the attack improvement is significant using ensembling. It is worth noting that

the ensembling can often reduce the generalization gap and the effectiveness of the gap attack

(e.g., CIFAR10-DenseNet-100, CIFAR100-AlexNet, or CIFAR100-ResNet20). However, due to the

reasons explained in Section 6.4.4, the membership inference effectiveness still increases.

Interestingly, the effectiveness of sampling attack, unlike confidence-based attacks, often de-

creases on deep ensembles (brown curves). The main reason is that deeps ensembles are more

robust than a single model, as shown in [70,132]. Therefore, perturbing target samples to obtain

information about its membership status is less effective in deep ensembles. Another observa-

tion is that maximum agreed confidence ensembling (yellow curves) can considerably mitigate the

effectiveness of confidence-based membership inference.

Figure 6.5 demonstrates the improvement of accuracy and MI attack over various training

epochs. For datasets that ensembling outperforms a single model, using an ensemble of underfitted

models is less prone to MI attack. However, it leads to lower accuracy. Due to the computational

cost of running sampling attack, we only perform the sampling attack on certain epochs in Figure

6.4.

As discussed in previous sections, the less the generalization gap of base models are, the less

effective the membership inference would be on the deep ensemble. Therefore, any standard reg-

ularization technique can potentially work as a defense mechanism. In this chapter, we study L1

and L2 regularization, DP-SGD6 (ϵ ≈ [3, 5] and δ = 10−5), and MMD+Mixup [68]. For defense

mechanisms, we use L1 and L2 regularization with 0.01 and 0.1 as a weight of the loss function,

respectively. With only a single mode, we achieve 42% and 60% accuracy using DP-SGD. The

reason model accuracy is slightly lower than the literature [117] is due to the fact that we train

victim models with half of the training data and we use AlexNet model 7. The other half is reserved

6We use Opacus implementation: https://github.com/pytorch/opacus.
7We observe patterns similar to Figure 6.11 using CNN implementation of [117] and other models. More results are
available in Section 6.5.4.
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(c) MNIST (LeNet)
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(e) SVHN (AlexNet)
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(f) SVHN (ResNet20)
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(g) CIFAR10 (AlexNet)
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(h) CIFAR10 (ResNet20)
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(j) CIFAR10 (WResNet16-2)
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(k) CIFAR100 (AlexNet)
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(l) CIFAR100 (ResNet20)
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(m) CIFAR100 (DenseNet100)
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(n) CIFAR100 (WResNet16-2)
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Figure 6.5. Target models’ accuracy and MI attacks’ AUC across all datasets and
models.
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(b) CIFAR10-AlexNet
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(c) CIFAR10-AlexNet
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(d) CIFAR100-AlexNet
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(e) CIFAR100-AlexNet
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Figure 6.6. Effect of defense mechanisms on an AlexNet model trained on CI-
FAR10 and CIFAR100. The size of each point indicates the relative value of its
parameter. The horizontal pink line indicates the performance of gap attack on a
deep ensemble of 10 models. The first, second, and third columns represent Shokri,
Watson, and sampling attacks, respectively.

for MI attacks. Furthermore, one can simply terminate training early to keep the model’s weights

in less overfitted region. Moreover, some ensembling techniques, such as bagging, and partitioning,

limits the access of models to all training samples, which can potentially reduce membership infer-

ence effectiveness on deep ensembles. Moreover, see Section 6.5.6 for weighted averaging ensembles.

We also evaluate two state-of-the-art deep ensembling approaches, namely snapshot ensemble and

diversified ensemble network, in Section 6.5.5.

In the section, we show the effectiveness of Shokri, Watson, and sampling attacks on all defense

mechanisms. We divide the training set of each dataset into two disjoint sets: victim’s training data,

Dtr, and attacker’s (shadow) training data, Ds. We use Dtr to train base models for the victim’s

ensemble and Ds to train 10 shadow models for Shokri and Watson attacks. For the Shokri attack,

we train 10 shadow models with the same architecture and training hyper-parameters as victim

models. Note that it has shown that Shokri attack’s accuracy barely changes even if the architecture

and training hyper-parameters of shadow models do not match the victim model [105]. For the

Watson attack, we use the Shokri’s attack output as the base membership inference score and we
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calibrate it using 10 other shadow models trained on Ds, as explained in [126]. The sampling attack

configuration is similar to Section 6.5.1. Due to the lack of space, we only show the accuracy/privacy

trade-off of AlexNet model trained on CIFAR10 and CIFAR100. See Section 6.5.4 for more results.

Confidence-based attacks: Figure 6.6 shows the effect of defense mechanisms on ensemble

learning. The pink dashed line indicates the performance of gap attack on a deep ensemble of

10 models with no regularization. Hence, any point below this line means privacy leakage greater

than a trivial baseline (Gap attack). Although Watson attack is generally more effective due

to its difficulty calibration, both Shokri and Watson attacks change similarly when used against

deep ensembles. We can observe a consistent trade-off between ensemble accuracy and privacy

that resembles Pareto optimal points. The only exceptions are our proposed approaches, namely

maximum agreed confidence, maximum confidence, and first agreed confidence. The difference

between maximum agreed confidence and maximum confidence is marginal. The former achieves

slightly better accuracy, while the latter achieves slightly better privacy.

Interestingly, none of the approaches that applies modification during the training of the base

models could break the trade-off, including bagging, partitioning, L1/L2 regularizations, DP-SGD,

and MMD+Mixup. Note that privacy degradation rate for these approaches is clearly not constant.

An ensemble of heavily regularized models or under-fitted models barely causes more privacy leak-

age (e.g., L2 regularization at epoch 60). On the other hand, an ensemble of overfitted models (e.g.,

non-regularized models trained for 90 epochs) results in large privacy leakage. It is worth mention-

ing that some approaches are sometimes outperform the original deep ensemble both in terms of

accuracy and privacy despite being bounded to the trade-off. For instance, an ensemble of n deep

models with L2 regularization (red curves) can often outperform the deep ensemble of n models

(blue curves) both in terms of accuracy and privacy. However, it still manifests the trade-off in a

sense that increasing the number of L2 regularized models in an ensemble increases the accuracy

while decreasing the privacy (in terms of confidence-based MI attack).

Sampling attack: The sampling attack is different from confidence-based membership infer-

ence attacks because it does not follow the accuracy-privacy trade-off, as shown in the last row of

Figure 6.6. In fact, the effectiveness of the sampling attack decreases in most ensemble learning

approaches as more base models are added to the ensemble. As shown in [96], the most effective
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Table 6.1. Comparison of different defence mechanisms with respect to true posi-
tive in low false positive regime and average per-sample distortion to the confidence
output. This table only includes Watson attack.

Dataset - TPR @ 0.001 @ FPR TPR @ 0.1 @ FPR Avg per-sample conf. distortion

- Ensemble size: 1 2 5 10 1 2 5 10 1 2 5 10

None (deep ensemble) 0.08% 0.08% 1.16% 2.20% 0.78% 2.42% 4.88% 6.56% 0.0 0.0 0.0 0.0
Bagging 0.08% 0.19% 0.48% 0.52% 0.78% 0.71% 1.34% 1.72% 0.0 0.18 0.16 0.15
Partitioning 0.08% 0.09% 1.09% 2.21% 0.78% 1.65% 3.51% 6.77% 0.0 0.07 0.05 0.03
L1 (0.01) 0.00% 0.00% 0.00% 0.00% 0.21% 0.50% 2.24% 3.02% 0.15 0.13 0.11 0.10
L2 (0.1) 0.00% 0.21% 0.70% 0.70% 0.55% 1.50% 2.15% 3.10% 0.09 0.07 0.05 0.04

CIFAR10 MMD+Mixup 0.00% 0.56% 0.44% 1.30% 1.90% 3.04% 3.36% 3.15% 0.19 0.18 0.16 0.15
DP-SGD 0.00% 0.00% 0.00% 0.00% 0.05% 0.04% 0.04% 0.09% 0.49 0.48 0.46 0.46
MemGuard 0.00% 0.00% 0.00% 0.00% 0.00% 0.0% 0.00% 0.00% 0.37 0.38 0.37 0.37
Max conf. 0.08% 0.10% 0.0% 0.0% 0.78% 0.32% 0.24% 0.18% 0.0 0.04 0.06 0.07
Max agreed conf. 0.08% 0.10% 0.00% 0.00% 0.78% 0.32% 0.22% 0.19% 0.0 0.04 0.06 0.06
First agreed conf. 0.08% 0.08% 0.00% 0.00% 0.78% 0.58% 0.58% 0.29% 0.0 0.04 0.05 0.06

None (deep ensemble) 0.10% 0.14% 0.21% 0.21% 0.54% 1.52% 3.67% 5.10% 0.0 0.0 0.0 0.0
Bagging 0.10% 0.12% 0.06% 0.04% 0.54% 1.04% 2.02% 4.52% 0.0 0.38 0.33 0.31
Partitioning 0.10% 0.08% 0.20% 0.20% 0.54% 1.21% 5.76% 5.84% 0.0 0.17 0.13 0.10
L1 (0.01) 0.00% 0.00% 0.00% 0.00% 0.08% 0.08% 0.08% 0.08% 0.95 0.95 0.93 0.93
L2 (0.1) 0.04% 0.04% 0.54% 0.52% 0.43% 1.43% 2.64% 4.47% 0.23 0.21 0.17 0.15

CIFAR100 MMD+Mixup 0.13% 0.10% 0.10% 0.09% 2.21% 4.47% 7.02% 6.97% 0.28 0.26 0.23 0.21
DP-SGD 0.00% 0.00% 0.00% 0.00% 0.10% 0.08% 0.15% 0.12% 0.87 0.85 0.83 0.82
MemGuard 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.40 0.39 0.38 0.38
Max conf. 0.10% 0.02% 0.00% 0.00% 0.54% 0.23% 0.15% 0.09% 0.0 0.10 0.15 0.17
Max agreed conf. 0.10% 0.02% 0.00% 0.03% 0.54% 0.23% 0.15% 0.13% 0.0 0.10 0.15 0.16
First agreed conf. 0.10% 0.01% 0.00% 0.01% 0.54% 0.25% 0.11% 0.20% 0.0 0.10 0.13 0.14

defense for sampling attack is DP-SGD. However, as the number of base models increases, the

performance of sampling attack degrades to a point where it is often worse than the trivial gap

attack. Hence, a deep ensemble with maximum confidence can effectively improve both accuracy

and privacy.

Although AUC has been overwhelmingly used to report the performance of MI attacks, [7] first

argued that a more reliable metric is true positive at low false positive rate. In Table 6.1 we present

this metric for Watson attack. We do not report Shokri and sampling attacks here because their

true positive was almost zero for low false positive rate, as also shown in [7].

As mentioned earlier, confidence-masking defenses heavily distort the confidence output of

models causing an issue for applications that rely on real confidence values, such as uncertainty

estimation. In Table 6.1, we present how much distortion each defence mechanism imposes to the

original confidence values. Here, for each data sample, we compute the L1 distance between the

original deep ensemble confidence values and the defence mechanism’s confidence output. Then,

we normalize the values to be between 0 and 1 and then take the average. As shown in Table 6.1,
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MMD+Mixup, DP-SGD, and MemGuard are heavily distorting the confidence outputs while our

proposed approaches impose smaller distortion.

6.5.2. Level of Correct Agreement. As discussed in section 6.4.2, overfitted models tend

to disagree more on test samples than train samples. In other word, the distribution of agreement

for train and test sets becomes more distinguishable as models overfit. This distinction is more clear

for datasets, such as CIFAR10 and CIFAR100, which shows most improvement when ensembling

is used, as shown in Figure 6.7. Furthermore, the level of agreement can reveal if an ensemble can

actually improve prediction. If all models correctly classify a sample or all models misclassify a

sample, ensembling fails to outperform a single model. Due to the lack of space, we omit the results

of other datasets/models.

In this section, we average logits (the output of a model before Softmax) of NN models instead

of the confidences. We can still observe that ensembling leaks more membership status than non-

ensemble scenario. However, the MI attacks with average confidence (Figure 6.5), in general, are

slightly more effective than MI attacks with average logits (Figure 6.8). The reason is that that

confidence values are normalized and, hence, when aggregated all models have the same contribution

to the overall confidence output of the ensemble. However, when logit is used, the confidence

output of the ensemble is more influenced by highly activated neurons. These highly activated

neurons, which often belong to the correctly classifying models, has significantly more influence on

the confidence output of ensemble in comparison with lightly activated neurons of misclassifying

models. Hence, the confidence output is heavily influenced by only a portion of models in ensemble

that have high activation neurons. In other words, it can be seen as an ensemble of only a portion of

models, not all models in the ensemble. Since ensembling with fewer models leaks less membership

status, logit averaging of n models leak membership status than confidence averaging of the same

number of models. Note that logit averaging is still prone with the same degree to membership

leakage in a white-box attack since a white-box attacker has access to all confidence values. Note

that the consequence of using logit in certain applications, such as confidence estimation, that

requires reliable confidence estimation is out of the scope of this paper. Moreover, one major

drawback of using logit is that it can be arbitrary scaled [123]. However, in scenarios where only
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Figure 6.7. The first column contains correct agreement distribution. The second
column shows the average and standard deviation of distribution of samples based
on the level of correct agreement. The third column shows the effect of the three
factors on the MI attack.
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Figure 6.8. Target models’ accuracy and MI attacks’ AUC across all datasets
and models. Here, MI attack model uses aggregated logits instead of aggregated
confidences.

accuracy is concerned and white-box access is unavailable to the attacker, averaging logits seems

to have a better privacy protection of training data than averaging confidences.
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Figure 6.9. label only attack on CIFAR10-AlexNet model.
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Figure 6.10. label only attack on CIFAR100-AlexNet model.

6.5.3. Label Only Attack. In this section, we analyze the effect of label-only MI attack pro-

posed in [16]. The idea is to use an adversarial example generator to find the distance to the deci-

sion boundary as membership inference metric. They use “HopSkipJump” [12] from Cleverhans8

to craft adversarial examples. We use the same algorithm, implementation and hyper-parameters.

The results are shown in Figure 6.9 and 6.10. We have not seen significant difference in terms of

MI attack AUC when ensembling is used. However, we observe that by increasing the number of

models in an ensemble, the HopSkipJump used in label only attack becomes less effective in finding

adversarial samples in the specified number of iterations. Due to the limited time and computa-

tional budget, we have not explored stronger approaches. Using more iterations and a stronger

adversarial attack may leads to a different result.

8https://github.com/cleverhans-lab/cleverhans
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(d) CIFAR100-ResNet20
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(e) CIFAR100-ResNet20
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(f) CIFAR100-ResNet20
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(g) SVHN-AlexNet
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(h) SVHN-AlexNet
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(i) SVHN-AlexNet
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(j) SVHN-ResNet20
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(k) SVHN-ResNet20
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Figure 6.11. Effect of defense mechanisms. The first, second, and third columns
represent Shokri, Watson, and sampling attack, respectively.

6.5.4. Defense Mechanism. The effect of all defense mechanisms are shown in Figure 6.11.

Most defense mechanisms become less effective when deep ensemble is used. As shown Section 6.5,

maximum agreed confidence and maximum confidence achieve the best accuracy and privacy.
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(b) CIFAR10 (ResNet20)
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(c) CIFAR10 (DenseNet100)
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(d) CIFAR10 (WResNet16-2)
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(e) CIFAR100 (AlexNet)
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(f) CIFAR100 (ResNet20)
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(g) CIFAR100 (DenseNet100)
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(h) CIFAR100 (WResNet16-2)
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Figure 6.12. Target models’ accuracy and MI attacks’ AUC across all datasets
and models using snapshot ensemble [45].

6.5.5. More Advanced Ensembling Approaches. In this section, we evaluate two state-of-

the-art ensembling approaches, namely snapshot ensembles [45] and diversified ensemble networks

[139]. For snapshot ensemble, we train several models on several datasets for 500 epochs and

restart the cycle every 50 epochs, similar to the original paper [45]. Note that the goal of our

evaluation is show the accuracy-privacy trade-off, not to achieve the highest accuracy possible.

Due to this reason and limited time we had, we did not perform an exhaustive hyper-parameter

tuning. Nevertheless, similar trade-off can be observed in Figure 6.12.

We also conduct the same experiment with diversified ensemble networks [139]. The original

paper used pre-trained VGG and ResNet models. We did not use pre-trained models for two reasons:

1) It make comparison with other approaches unfair, and 2) It may interfere with the membership
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(b) CIFAR10 (ResNet20)
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(c) CIFAR100 (AlexNet)
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(d) CIFAR100 (ResNet20)

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70

 (
%

)

Training epoch

Train accuracy

12
5

10

Test accuracy
MI attack AUC (Avg conf.)

Gap attack AUC

(e) SVHN (AlexNet)

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

 (
%

)

Training epoch

Train accuracy

12 5

Test accuracy
MI attack AUC (Avg conf.)

Gap attack AUC

(f) SVHN (ResNet20)

Figure 6.13. Target models’ accuracy and MI attacks’ AUC across all datasets
and models using diversified ensemble networks [139].

inference analysis. We find that by using randomly initialized models to start training, Ld varies

significantly and prevents the optimization to converge. Therefore, we add a weight to the Ld term

to reduce its effect on the entire loss. We use 0.01 for CIFAR10 and SVHN and 0.001 for CIFAR100.

For the shared layer, we use a fully-connected layer of size 128 followed by batch normalization

and ReLU activation. We use SGD to train models for 60 epochs while dropping the learning

at each 20 epochs by 0.1. We could not achieve the exact same results as reported in the paper

for two main reasons: 1) we did not use pre-trained models in the ensemble, and 2) many hyper-

parameters and implementation details are not reported in the original paper. We could not find a

set of hyper-parameters and conditions to consistently achieve higher accuracy when increasing the

number of models. This was also reported in the original paper where they found that more models

in the diversified ensemble do not always improve accuracy. One penitential reason is that training

base models in diversified neural networks are not independent. This means when the number of

models in the diversified neural network is increased, there are significantly more parameters to

train, but the number of epochs is constant. So, it is expected that diversified neural network with

less models can sometimes outperform diversified neural network with more models if the number
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(b) CIFAR10 (ResNet20)

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90  100

 (
%

)

Training epoch

Train accuracy

1

2

5
10

Test accuracy
MI attack AUC (Avg conf.)

Gap attack AUC

(c) CIFAR100 (AlexNet)

 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30

 (
%

)

Training epoch

Train accuracy

1

2
5

10

Test accuracy
MI attack AUC (Avg conf.)

Gap attack AUC

(d) CIFAR100 (ResNet20)
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Figure 6.14. Target models’ accuracy and MI attacks’ AUC across all datasets
and models using weighted averaging ensemble networks.

of training epoch is fixed. Nevertheless, as shown in Figure 6.13, in cases where accuracy increases,

the membership inference attack effectiveness also increases.

6.5.6. Weighted Averaging. In this section, we evaluate weighted averaging of deep models.

We focused on image CIFAR10, CIFAR100, and SVHN datasets. We trained each model with

random initialization and all hyper-parameters similar to Section 6.5.1. Here, we use stochastic

gradient descent (SGD) using the entire training set to learn the weight associated with each model.

As shown in Figure 6.14, we observed similar accuracy-privacy trade-off.

6.6. Discussion

We note some limitations of our empirical analysis and opportunities for future work. First,

privacy is a multi-faceted concept and can be defined or quantified in several ways. In this work,

we quantified privacy leakage in terms of the effectiveness of membership inference attacks. One

can quantify privacy in terms of other relevant attacks such as model inversion [26,35], property

inference [2, 28], and model stealing attack [118] as well as formally-provable measures such as

differential privacy [22].

79



Second, ensemble learning is an umbrella term covering a wide variety of methods to combine

multiple base learners. Although the ensemble learning is the most widely-used approach in deep

learning, an arbitrary method of training and combining base learners can still be construed as

ensemble learning while improving privacy. We mainly focused to deep ensembles because of its

prevalent use for ensembling deep models. Moreover, we conduct experiment over several other

ensembling approaches and the conclusion remain the same. A more exhaustive experimental

evaluation may discover new results which is out of scope of this dissertation.

Third, this chapter focuses on black-box attack scenario and our solution to accuracy-privacy

trade-off in deep ensembles relies on changing the fusing part of ensemble learning. In other words,

base models in the ensemble are intact. Consequently, if all base models are publicly available

in a white-box setting, an attacker can still average the outputs and bypass the maximum agree

confidence mechanism. One solution can focus on training models sequentially (boosting) and

applying some non-trivial criteria during training of each model to force the distribution of correct

agreement to be close for train and non-train samples. How to achieve this is not trivial and needs

further research.

6.7. Conclusion

In this chapter, we investigate membership inference attacks in deep ensemble learning and

demonstrate that there exists a trade-off between accuracy and privacy. We show that the most

influential factor that causes more effective membership inferences attack against deep ensembles

is the level of agreement between base models. We illustrate the effect of several classical regular-

ization techniques, including L1/L2 regularization and DP-SGD, to mitigate membership inference

attacks and conclude that none of them can break the trade-off and improve the accuracy and pri-

vacy, simultaneously. Finally, we propose a simple yet highly effective solution that only changes

ensemble’s fusion post-training.
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CHAPTER 7

On the Discredibility of Membership Inference Attacks

Although the first generation of MI attacks (MI attacks without difficulty calibration) has been

proven to be ineffective in practice, a few recent studies proposed practical MI attacks that achieve

reasonable true positive rate at low false positive rate. The question is whether these attacks

can be reliably used in practice. We showcase a practical application of membership inference

attacks where it is used by an auditor (investigator) to prove to a judge/jury that an auditee

unlawfully used sensitive data during training. Then, we show that the auditee can provide a

dataset (with potentially unlimited number of samples) to a judge where MI attacks catastrophically

fail. Hence, the auditee challenges the credibility of the auditor and can get the case dismissed.

More importantly, we show that the auditee does not need to know anything about the MI attack

neither a query access to it. In other words, all currently SOTA MI attacks in literature suffer from

the same issue. Through comprehensive experimental evaluation, we show that our algorithms can

increase the false positive rate from ten to thousands times larger than what auditor claim to the

judge. Lastly, we argue that the implication of our algorithms is beyond discredibility: Current

membership inference attacks can identify the memorized subpopulations, but they cannot reliably

identify which exact sample in the subpopulation was used during training.

7.1. Introduction

The wide-spread deployment of machine learning in various applications that sometimes deal

with sensitive data, such as health records and personal information, has raised concerns about the

leakage of sensitive training data post-deployment. Recently, a few studies suggest that machine

learning models memorize the training data [134] and, consequently, various attacks, called mem-

bership inference (MI), have been proposed to identify the training samples [7,51,67,71,75,76,

98,101,103,105,110,114,119]. Due to its simplicity, membership inference attacks have become

a standard way to evaluate the privacy risk of machine learning models [7,87].
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Recent studies have shown that the evaluation of such models using average-case success metrics

is misleading [100]. Specifically, a trivial random guess adjusted using the generalization gap,

called gap attack [15] or naive attack [66,100], has shown to achieve similar performance as many

membership inference attacks. Moreover, as argued in [7] and [77], privacy is not an average case

metric and a pragmatic approach should avoid relying on such metrics. To better demonstrate

the privacy risk of a model, true positive rate at low false positive rate is suggested in [7] as used

in various area of computer security [42, 55, 59, 80]. Using the true positive rate at low false

positive rate has revealed that many de facto membership inference attacks, such as [51,110,134],

catastrophically fail. Only the state-of-the-art MI attacks that use some form of sample difficulty

calibration [126], such as [7,98,103,126], can identify some training samples at low false positive

rates.

Contributions. In this chapter, we aim to answer the following question: Can member-

ship inference attacks be reliably used in practice? To answer this question, we first introduce a

useful potential application of MI attacks for the purpose of auditing. We demonstrate that all

contemporary membership inference attacks suffer from discredibility. Then, we generalize our

findings beyond this auditing application and argue about the inaccuracy of current attacks for

record-level membership inference. Our findings suggest that current attacks may better suited for

subpopulation-based membership inference.

Specifically, in the auditing application we propose in this chapter, MI attacks are used as an

auditing tool to investigate unlawful use of sensitive training data by a model trainer. Here, an

auditor aims to prove to the judge/jury that private data has been unlawfully used by the auditee

under investigation. The auditor uses a membership inference attack, and report the performance

of the MI attack model along the samples labeled as members (at low false positive rate) to the

judge. We show that the auditee can provide an unlimited number of non-member samples to

the judge for which the MI attack model constantly fail, without knowing anything about the MI

attack or having query access to it. We call this process discredibility. Discredibility allows auditee

to seriously damage the credibility of MI attack model used by the auditor and, consequently, get

the case dismissed.
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The intuition for our discredibility approach is that samples semantically close to member sam-

ples, with respect to the latent representation, are likely to be identified as members by membership

inference attacks. We provide an explanation about how such intuition arises by looking at ReLU

neural networks as deterministic functions with locally linear property. Based on the intuition, we

propose three algorithms to create a discrediting dataset, a dataset for which the false positive of

MI attacks are significantly large: 1) searching through a public dataset, 2) crafting semantically

similar samples to the target sample using a generative model, and 3) adversarially perturbing a

non-member sample to embody the semantic representation of a member sample.

We systematically evaluate our discrediting algorithms over multiple datasets and models. We

demonstrate that our approach can increase the false positive rate up to several thousand times

more than the claimed low rate for SOTA algorithms. Our algorithms can even increase the false

positive rates of older approaches, such as [110,134]. Nevertheless, the results are less significant

because they cannot achieve low false positive rate in the first place to start with.

New Insights. We analyze the two hypotheses implicitly used as building blocks of our dis-

crediting algorithms. The two hypotheses establish a positive correlation between the membership

score of a member sample and its neighboring samples, and also a positive correlation between the

semantic closeness of two neighbors and their membership scores. Although we start with a poten-

tial application of MI attacks in the auditing scenario, these two hypotheses are valid regardless of

the application scenario. These two findings suggest that the current MI attacks are more reliable

in identifying memorized subpopulations than individual samples. To simply put, MI attacks are

prone to incorrectly classifying nonmember samples in the neighborhood of member samples as

members.

Implications. The new insight, that current MI attacks are identifying memorized subpop-

ulations, undermines the reliability of using MI in real applications. Hence, a new generation of

attacks are needed to achieve record-level membership inference. However, this insight implies a

new potential direction for MI attacks. It suggests that current ”record-level” MI attacks are in

fact better at ”subpopulation-level” membership inference. For example, in face recognition where
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each subpopulation likely represents a user, current MI attacks may achieve better user-level mem-

bership inference than record-level membership inference. This new adoption of MI attacks needs

further investigation.

7.2. Threat Model

To better manifest the potential application of membership inference in practice, we showcase a

scenario in a trial, where MI is used as an auditing tool to demonstrate the unlawful use of private

data. Our threat model consists of three actors: an auditor, or attacker in the MI literature, an

auditee, or MI defender whose model is under MI attack, and a judge (or juries), who examines if

the auditor’s claim is credible enough. Unlike previous defense papers in literature where the goal

is to reduce MI effectiveness, either by confidence masking or more private training, we focus on

a case where the auditee (defender) can discredit the auditor’s (attacker) claim post-attack. This

threat model is fundamentally different from the literature and makes known MI attacks ineffective

even against already trained or public models.

7.2.1. Auditor (MI Attacker or Investigator). The objectives and assumptions of the

auditor are as follow:

Objectives: The goal of the auditor is to use membership inference attacks on the auditee’s

model to find potential training samples that are private. To do this reliably, we assume that MI

attacks are set to perform in the low false positive regime. The auditor then reports the potential

members to the judge. We call these samples claimed member list. As a proof of low false positive

rate, the auditor needs to privately disclose its own training/validation data to the judge such that

it can be confirmed. This data is not available to the auditee or any other actor.

Assumptions: The auditor in our threat model has the highest advantage it could have. It

has white-box access to the auditee’s model with unlimited query. It has the capability to train

multiple models if needed. It has access to a dataset coming from the same distribution as the

auditee’s dataset. It has access to a set of data points some of which have been potentially used as

auditee’s training data. To identify the member samples, auditor uses MI attacks.

7.2.2. Judge. The objectives of the judge are as follow:
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Objectives: The goal of the judge is to examine if auditor’s claims are reasonable, i.e. high

true positive at low false positive on the auditor dataset. If so, the judge will give the auditee a

chance to challenge the auditor’s claim. Here, if the auditee can successfully discredit the auditor’s

method (i.e., the MI attack), the judge will dismiss the case.

7.2.3. Auditee (Defender). The objectives and assumptions of the auditee are as follow:

Objectives: The goal of the auditee is to discredit the MI method used by the auditor. To

do so, the auditee aims to find a procedure by which it can craft/find unlimited number of non-

member samples which the auditor’s MI method likely mislabel as members. We call these samples

discrediting samples and the corresponding dataset discrediting dataset. In other words, the auditee

tries to discredit the auditor by showing that his/her low false positive claim was in fact fallacious,

and, thereby, every statement using this MI method is unreliable. Note that the non-membership

status of discrediting samples should be agreed by all actors beyond reasonable doubt. Otherwise

it cannot be used to discredit the auditor’s MI attack. To fulfil this criterion, the samples can

come from the sources became available only after the model is trained, can be randomly generated

on-the-fly in the court, or can be crafted by adding small perturbation to samples that have already

been labeled by the auditor as non-member.

Assumptions: The auditee has no information about the MI method deployed by the auditor,

the auditor’s dataset, or his/her capabilities. In other words, from the perspective of the auditee,

the auditor’s MI model is a black-box with no online query access to. The only information the

auditor has is the claimed member list that the auditor claims to be a part of auditee’s training set,

which is then given to the auditee by the judge. These are the samples with highest membership

score according to the MI attack used by the auditor.

7.2.4. Discredibility Pipeline. Given that the auditee’s model is trained and publicly avail-

able, the trial’s pipeline is as follows:

(1) Using an MI attack, the auditor provides the claimed member list, a list of samples with

highest membership score, to the judge stating that they are unlawfully used during train-

ing. To demonstrate the reliability of the MI attack, the auditor privately disclose the

attack information and the training/validation dataset to prove the low false positive rate.
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(2) The judge examines the claim. If the low false positive rate satisfies the low false positive

threshold required, the judge gives the claimed member list to the auditee and asks if

he/she challenges the claim.

(3) The auditee uses a procedure to find/generate a large number of nonmember samples

(discrediting samples), using methods in Section 7.3, that are likely to be mislabeled by

the auditor’s MI model as members. The auditee, then, gives these discrediting samples

to the judge and asks the judge to evaluate the performance of the MI method on.

(4) If the false positive rate of the auditor’s MI attack on discrediting samples are significantly

larger than what is claimed earlier by the auditor, the judge dismisses the case and consider

the auditor’s MI attack unreliable.

7.3. Discredibility Mechanisms

7.3.1. Problem Statement. As stated earlier, the goal of the auditee is to find a set of non-

member samples which the auditor’s MI attack model is likely to mislabel as members. Let Y (·)

and E(·) be the auditee’s model under investigation, and the encoder part of the auditee’s model,

respectively. Similar to [98], encoder here refers to the output of the last fully connected layer

before the softmax, also known as the latent representation. Let’s denote the last layer operation

of the auditee model by l(·). In other words, Y (x) = l(E(x)). We denote the auditor’s MI attack

model by M(·). Moreover, let Dc, Dp, and Dd be the claimed member list provided by the auditor,

public dataset agreed by all parties to be non-member, and the discrediting dataset, respectively.

Formally speaking, the goal is to find a non-trivial mapping from Dc to a subset in Dp to be

mislabeled as member by M with high probability. The challenge to find such a mapping is that

the MI attack is a complete black-box and it is not even allowed to be queried. Hence, the only

information the auditee has about the MI attack is the samples identified as members (Dc) with

high membership score. In this section, we will show three algorithms to generate/find nonmember

samples on which the MI attack catastrophically fails.

7.3.2. Mapping and Intuition. To simply put, the mapping consists of finding/generating

samples that has similar latent representation as the samples in Dc. Auditee uses the encoder,

E(·), to find the latent representation to which he/she has white-box access. For a member sample
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x marked by auditor with a high membership score, auditee’s discredibility algorithm aims to find

a non-member samples x′, where E(x) ≈ E(x′). The intuition as of why this causes the current MI

attacks to misclassify can be analyzed by considering neural networks as deterministic functions

with certain properties.

As a deterministic function, a single layer ReLU network has shown to be locally linear. In fact,

the entire multi-layer ReLU network is a piece-wise linear function [95]. Because l(·) is a single-

layer ReLU function, if E(x) ≈ E(x′), then l(E(x)) ≈ l(E(x′)) or Y (x) ≈ Y (x′). Therefore, any MI

attack that only takes the output of Y (·) as a feature fails to distinguish between x and x′. This is

particularly an issue for older generation of MI attacks, such as Shokri [134] and Yeom [134].

The contemporary MI attacks often use the output of a set of extra models on a target sample,

such as [7, 103, 126]. There are two challenges when it comes to applying the same argument

here. First, the extra models the MI attackers use may be different when probing x versus x′. For

example, in [7], half of the extra models include the target sample in the training set and the other

half excludes the target sample from the training set. As a result, when probing x and x′, the extra

models are not necessarily the same. However, we argue that since both samples belong to the

same subpopulation, including or excluding either of them results in a similar behaviour from the

final model’s perspective on that subpopulation.

The second challenge is that even if we assume the extra models are the same when probing two

different samples, the encoder part of them are not the same as the encoder of the auditee’s model,

E(·). Let’s denote the encoder part of an extra model by Ee(·). It has been empirically shown

in [98] that the dist(E(x), E(x′)) ≈ dist(Ee(x), Ee(x
′)) despite E(x) not necessarily being close to

Ee(x). This suggests that membership inference score of x and x′ is likely to be similar even with

respect to the new generation of MI attacks. We show the correlation between the closeness of two

samples and their membership scores in Section 7.6 to provide an empirical evidence.

7.3.3. Discredibility Methods. As discussed in Section 7.3.2, discredibility is performed

by sampling from Dp provided that the samples belong to the same subpopulation as samples in

Dc. Here, we use the latent representation of the auditee’s model, E(·), to find subpopulations.

Formally, we consider two samples, x and x′, from the same subpopulation if dist(E(x), E(x′)) ≤ ϵ.

For the distance measure, the two prominent choices are Cosine distance (Cosine loss) and L2 norm
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Algorithm 2 Finding Discrediting Samples by Search

Require: Encoder E(·); Claimed member list Dc; Non-member public dataset Dp; the number of
neighbors to pull from Dp per sample in Dc, denoted by nn; a sample and the associated label
(x, y); the number of samples from Dc with highest membership score to find neighbors for,
denoted by nc

1: Initialize discrediting dataset Dd = {}
2: Dc ← Sort by membership score(Dc)
3: Dc ← Dc[−nc :]
4: for each (x, y) ∈ Dc do
5: for each (x′, y′) ∈ Dp do
6: if y = y′ then
7: d[x, x′]← dist(E(x), E(x′))
8: end if
9: end for

10: ds ← argsort(d[x, :])
11: Dd ← Dd ∪ ds[: nn]
12: end for
13: return Dd

(MSE loss). As shown in [98], there is not much difference between these to metrics when it comes

to measuring sample similarities. Hence, we mainly use Cosine loss in this chapter.

Algorithm 3 Finding Discrediting Samples by Sample Generation

Require: Auditee’s model Y (·); Encoder E(·); Claimed member list Dc; Generator of the Rezaei’s
BiGAN architecture G(·); the number of samples to pull from Dp per sample in Dc, denoted by
nn; a Gaussian random noise generator N (µ, σ2); the number of samples from Dc with highest
membership score to craft samples from, denoted by nc

1: Initialize discrediting dataset Dd = {}
2: Dc ← Sort by membership score(Dc)
3: Dc ← Dc[−nc :]
4: for each (x, y) ∈ Dc do
5: for i = 0 to nn do
6: ϵ ∼ N (µ, σ2)
7: x′ ← G(E(x) + ϵ)
8: if y = Y (x′) then
9: Dd ← Dd ∪ {x′}

10: end if
11: end for
12: end for
13: return Dd

In this chapter, we propose three methods to find/generate samples from the same subpopula-

tion:
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1. Using a Large Public Dataset: If a large dataset, disjoint from the train set, is available

to sample from, auditee can use it to create discrediting dataset, Dd. The procedure is straightfor-

ward, as shown in Algorithm 2. Note that there is no guarantee that a sample with subpopulation

constrain, i.e. dist(E(x), E(x′)) ≤ ϵ, exists in Dp. For simplicity, we discard this condition and we

add the closest nn samples to discrediting dataset although they may not necessarily be from the

same subpopulation. The only criterion is that their class labels should match (line 6). Otherwise,

they obviously do not belong to the same subpopulation. The empirical results in Section 7.5.1

shows that the discrediting samples are good enough for the purpose of discrediting the auditor.

Hence, the challenge of defining ϵ is not crucial for the discrediting purpose and, hence, it is ignored

in this chapter.

2. Using Generative Model: We can use generative models to craft new samples. However,

unconditional sample generation is an extremely inefficient exercise as it may take millions of queries

for the model to generate a sample from the same subpopulation. In this chapter, we use the BiGAN

architecture proposed in [98] to craft new samples. The generator in their architecture take the

latent representation as an input and generate a sample accordingly. As shown in Algorithm 3, we

add a small random noise to the latent representation of a target sample and use it to generate a

new sample from the BiGAN.

3. Using Adversarial Perturbation: In this method, we take a non-member sample that

belongs to the same class as the target sample does, and we add a small adversarial perturbation to

such that the latent representation of the two samples approaches the same value. The algorithm

is shown in Algorithm 4. Here, x and x′ should belong to the same class, otherwise the auditor

can easily tell the adversarial nature of it because it will be misclassified by the model. Although

we can start the adversarial perturbation on any non-member sample (x′), we use a function (S(·))

to find the closest neighbor with the same class label to increase the chance of reaching the same

latent representation.

7.4. Experimental Setup

7.4.1. Evaluation Metrics. As suggested in [7], it is more practical to use membership

inference attack at a low false positive rate. Hence, in this chapter, we mainly focus on true
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Algorithm 4 Finding Discrediting Samples by Adversarial Perturbation

Require: Encoder E(·); Claimed member list Dc; the number of adversarial samples per sample
in Dc, denoted by nn; a targeted adversarial attack adv attack(x, x′, F (·), dist(·)) that perturbs
x′ such that dist(F (x), F (x′)) ≈ 0; the number of steps to run the adversarial attack, denoted
by nadv; the number of samples from Dc with highest membership score to find adversarially
perturbed neighbors for, denoted by nc; a function returning a non-member neighbor sample
with the same class label as the input S(·)

1: Initialize discrediting dataset Dd = {}
2: Dc ← Sort by membership score(Dc)
3: Dc ← Dc[−nc :]
4: for each (x, y) ∈ Dc do
5: for i = 0 to nn do
6: (x′, y)← S(x, y)
7: for j = 0 to nadv do
8: x′ ← adv attack(x, x′, E(·),MSE(·))
9: end for

10: Dd ← Dd ∪ {x′}
11: end for
12: end for
13: return Dd

positive at a low false positive rate. For the sake of completeness, we also report the AUC of all

MI attacks.

The second evaluation metric that we use in this chapter is false positive to false positive plot or

ratio. This measures the false positive of an MI attack on an auditor’s dataset in comparison with

the discrediting dataset, proposed by the auditee. Here, we disregard the true positive rate because

positive samples include all training member samples on both cases. Thus, this set is assumed to

be fixed in both auditor dataset and the discrediting dataset. The goal of the auditee is to come

up with a samples generation/look-up scheme that outputs negative (non-member) samples that

are labeled as positive with a much larger false positive rate than acceptable. As a result, we only

measure the false positive difference between these two datasets. In other words, the true positive

is the same regardless of the evaluating dataset.

7.4.2. Experimental Setup. We conduct experiments on a number of image classification

benchmarks traditionally used for membership inference attack evaluation, including MNIST [64],

FMNIST [130], SVHN [90], and CIFAR-10/CIFAR-100 [61]. For Algorithm 2 to work, we need a

large public dataset to search. For CIFAR-10, we use the CINIC dataset [18] as a public dataset,
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Table 7.1. Accuracy of the auditee’s models

Dataset Model Train accuracy Test accuracy
MNIST MLP 100% 97.71%
FMNIST MLP 100% 88.62%
SVHN LeNet 99.99% 87.72%
Cifar10 LeNet 97.13% 58.22%
Cifar10 ResNet20 98.48% 74.58%
Cifar100 LeNet 98.27% 22.61%
Cifar100 ResNet20 100.00% 33.30%

Table 7.2. Comparison of AUC of prior membership inference attacks. S, Y, W,
C, and R stands for Shokri, Yeom, Watson, Carlini, and Rezaei attacks, respectively.

Dataset/Model S [110] Y [134] W [126] C [7] R [98]

MNIST/MLP 52.43% 50.95% 53.53% 56.17% 51.11%
FMNIST/MLP 59.62% 56.38% 57.54% 58.55% 54.87%
SVHN/LeNet 57.60% 57.88% 60.24% 69.94% 58.64%
C-10/LeNet 72.62% 78.15% 73.77% 79.55% 76.12%
C-10/ResNet20 74.52% 70.75% 65.06% 72.19% 68.74%
C-100/LeNet 82.03% 91.96% 90.19% 94.30% 93.83%
C-100/ResNet20 91.17% 92.81% 81.27% 93.39% 91.98%

Table 7.3. Comparison of prior membership inference attacks at low false positive
rate. S, Y, W, C, and R stands for Shokri, Yeom, Watson, Carlini, and Rezaei
attacks, respectively. Since the exact false positive is not always possible to achieve,
we choose the lowest false positive between the stated ranges of (0.01%, 0.03%) and
(1.0%, 3.0%).

Dataset Model TPR @ (0.01%, 0.03%) FPR TPR @ (1.0%, 3.0%) FPR

- - S [110] Y [134] W [126] C [7] R [98] S [110] Y [134] W [126] C [7] R [98]

MNIST MLP 0.00% 0.00% 0.10% 0.00% 0.01% 0.00% 0.00% 2.40% 2.47% 0.47%
FMNIST MLP 0.00% 0.00% 0.39% 3.26% 0.08% 2.67% 0.00% 3.25% 5.39% 1.06%
SVHN LeNet 0.00% 0.00% 0.63% 0.00% 0.11% 0.00% 0.00% 5.20% 6.52% 2.61%
Cifar10 LeNet 0.00% 0.00% 0.52% 0.00% 0.28% 2.57% 0.00% 7.71% 10.37% 4.76%
Cifar10 ResNet20 0.00% 0.00% 0.54% 0.57% 0.06% 3.55% 0.00% 5.80% 10.97% 5.10%
Cifar100 LeNet 0.06% 0.00% 1.68% 0.01% 0.17% 3.44% 0.00% 18.66% 18.71% 19.73%
Cifar100 ResNet20 0.00% 0.00% 1.76% 16.26% 1.46% 4.64% 4.56% 14.20% 37.12% 26.71%

and for SVHN, we use the extra portion of the dataset as a public dataset. For other datasets, we

could not find a large public dataset to search through, and, hence, we only perform the second

and third algorithms on them.

We divide the train set of these datasets into two parts: auditor training dataset and auditee

training dataset. Similar to [98], we choose multi-layer perceptron (MLP) with 4 hidden layers for
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Table 7.4. Lowest false positive value on the auditor dataset. The numbers in
parenthesis show the ratio of the false positive on discrediting dataset over the false
positive on auditor dataset when Algorithm 2 is used for discrediting.

Dataset Model Shokri [110] Yeom [134] Watson [126] Carlini [7] Rezeai [98]

SVHN LeNet 3.449% (×25.6 ↑) 67.730% (×1.3 ↑) 0.142% (×88.0 ↑) 1.283% (×3.1 ↑) 0.013% (×326.4 ↑)
CIFAR-10 LeNet 0.791% (×56.5 ↑) 28.631% (×2.1 ↑) 0.003% (×1842.1 ↑) 0.034% (×32.4 ↑) 0.020% (×384.6 ↑)
CIFAR-10 ResNet20 0.049% (×363.3 ↑) 17.469% (×4.3 ↑) 0.029% (×116.7 ↑) 0.011% (×102.9 ↑) 0.009% (×364.6 ↑)

MNIST and FMNIST classification. For SHVN, we choose LeNet. For CIFAR-10 and CIFAR-100

we use both LeNet and ResNet20. We use SGD with a learning rate of 0.1 to train all models. We

decrease the learning rate by a factor of 10 at epoch 50 and 75. The performance of the auditee

models is shown in Table 7.1.

We evaluate our discredibility methods on five state-of-the-art membership inference attacks,

namely Shokri [110], Yeom [134], Watson [126], Carlini [7], and Rezaei [98]. Unless specified,

we follow the same hyper-parameters to train MI attack models as suggested in their original

paper. For Shokri attack [110], we train 50 shadow models for all datasets. For Watson [126] and

Rezaei [98] attacks, we use the loss function as the base membership score before calibration. We

use the same BiGAN architecture proposed in [98] for both Rezaei’s attack and Algorithm 3.

Table 7.2 shows the AUC of membership inference attacks. In Table 7.3, the true positive rates

of the SOTA MI attacks at 0.01% and 1.0% false positive is presented. As also previously shown

in [7], Shokri [110] and Yeom [134] attacks does not work well in the low false positive regime.

We omit other membership inference attacks in this study, such as Jayaraman [51] and Song [113],

because it has been shown to perform poorly at low false positive rate [7].

7.5. Experimental Results

7.5.1. Natural Subpopulation. Our first method to produce discrediting samples rely on

searching samples in a large public dataset. The details of the algorithm is shown in Algorithm 2.

The only datasets for which we can find a large public dataset with similar classes are CIFAR-10

and SVHN. Figure 7.1, 7.3 and 7.4 show a few examples of member samples and their closest

neighbors using Algorithm 2. It is worth mentioning that not all neighboring samples belong to

the same class and, interestingly, the membership score of the neighboring samples with different

class label are often significantly lower and should be discarded. It is clear from this figure that
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Figure 7.1. The first columns shows member samples from CIFAR-10 dataset.
The next four columns show the closest samples from the CINIC dataset to the
sample in the first column. The value on top of each image shows the normalized
Watson attack membership score. The neighboring samples that have the same
label as the original sample is indicated by the green boarder. The boarder is red
otherwise. Membership score of non-member neighboring samples of the member
samples that belong to the same class often have high membership score.

the neighboring samples are not close pixel-wise to their corresponding member sample. Hence, a

credible membership inference attack should differentiate the membership status of them.

The false positive to false positive plot of MI attacks for a LeNet model trained on CIFAR-10

is shown in Figure 7.2. Here the x-axis shows the false positive on auditor’s dataset for a given

threshold and the y-axis shows the false positive on the discrediting dataset. Any region over the

baseline indicates that the auditee successfully presents a dataset with larger false positive. For a

practical membership inference attack, the false positive should be small. Hence, we mostly focus

on the log plot (Figure 7.2 (b)) where we can better study the behavior on low false positive rates.
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Figure 7.2. CIFAR-10/LeNet model. Discrediting algorithm 2 using CINIC
dataset.
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Figure 7.3. Cifar10/ResNet20 model. Discrediting algorithm 2 using CINIC
dataset.

It is clear that the false positive is over hundreds to thousands times larger on discrediting dataset

for Watson, Carlini, and Rezaei attacks. In addition, the lowest false positive for Shokri and Yoem

attacks are too large for any practical usage. Nevertheless, our discredibility method still increases

the false positive even further.

In Figure 7.2, Dp represents the number of neighboring samples from the same class we used

to construct the discrediting dataset. As expected, Dp = 1 slightly outperforms Dp = 5 case

potentially because the further away the samples is from the target sample, the less likely it is
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Figure 7.4. SVHN/LeNet model. Discrediting algorithm 2 using SVHN (extra).
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Figure 7.5. Cifar10/LeNet model. Discrediting algorithm 3.
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Figure 7.6. Cifar10/ResNet20 model. On crafted samples using BiGAN
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Figure 7.7. Cifar100/LeNet model. On crafted samples using BiGAN
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Figure 7.8. Cifar100/ResNet20 model. On crafted samples using BiGAN
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Figure 7.9. SVHN/LeNet model. On crafted samples using BiGAN

labeled the same way as the target sample, with respect to membership inference. In Section 7.6,

we analyze the correlation between distance and membership score in more depth.
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Figure 7.10. MNIST/MLP model. On crafted samples using BiGAN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
P

R
 o

n
 a

u
d
it
e
e
’s

 d
is

c
re

d
it
in

g
 d

a
ta

s
e
t

FPR on auditor’s dataset

Baseline
Shokri et al. (AUC=0.96)
Yeom et al. (AUC=0.60)

Watson et al. (AUC=0.98)
Carlini et al. (AUC=0.95)

Rezaei et al. (AUC=0.61)

(a) FPR/FPR plot

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
P

R
 o

n
 a

u
d
it
e
e
’s

 d
is

c
re

d
it
in

g
 d

a
ta

s
e
t

FPR on auditor’s dataset

Baseline
Shokri et al. (AUC=0.96)
Yeom et al. (AUC=0.60)

Watson et al. (AUC=0.98)
Carlini et al. (AUC=0.95)

Rezaei et al. (AUC=0.61)

(b) FPR/FPR logscale plot

Figure 7.11. FMNIST/MLP model. On crafted samples using BiGAN

Table 7.5. Lowest false positive value on the auditor dataset. The numbers in
parenthesis show the ratio of the false positive on discrediting dataset over the false
positive on auditor dataset when Algorithm 3 is used for discrediting.

Dataset Model Shokri [110] Yeom [134] Watson [126] Carlini [7] Rezeai [98]

MNIST MLP 4.750% (×14.3 ↑) 77.400% (×1.0 ↑) 0.010% (×97.9 ↑) 2.740% (×2.9 ↑) 0.003% (×37.5 ↑)
FMNIST MLP 2.350% (×32.2 ↑) 65.910% (×1.3 ↑) 0.010% (×366.4 ↑) 0.780% (×15.3 ↑) 4.755% (×0.0 ↑)
SVHN LeNet 3.449% (×17.5 ↑) 67.730% (×1.2 ↑) 0.002% (×5952.8 ↑) 0.798% (×1.0 ↑) 0.005% (×151.4 ↑)
Cifar10 LeNet 0.791% (×31.9 ↑) 28.631% (×1.7 ↑) 0.003% (×379.1 ↑) 0.003% (×3668.3 ↑) 0.017% (×31.7 ↑)
Cifar10 ResNet20 0.049% (×17.5 ↑) 17.469% (×1.2 ↑) 0.003% (×101.7 ↑) 0.063% (×1.5 ↑) 0.002% (-)
Cifar100 LeNet 0.020% (×8.5 ↑) 6.110% (×1.1 ↑) 0.020% (×17.5 ↑) 0.010% (×1.0 ↑) 0.002% (-)
Cifar100 ResNet20 0.630% (×6.7 ↑) 0.890% (×2.9 ↑) 0.010% (×45.0 ↑) 0.020% (×2.5 ↑) 0.002% (-)

Table 7.4 shows the lowest possible false positive a membership inference can achieve on the

auditor’s dataset and the ratio of the false positive on discrediting dataset over the false positive

on auditor dataset. This significant increase clearly shows that the discrediting Algorithm 2 can

be used when a large non-member dataset is available to search samples from.
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7.5.2. Crafted Subpopulation. In this section, we evaluate the effectiveness of Algorithm 3

to craft discrediting samples. This method assumes that a generator model is available that takes

a latent representation and crafts samples corresponding to the representation. We use the same

BiGAN architecture proposed in [98] to train such a generator. Since the generator is trained by

the auditee, we directly use the auditee’s model under investigation in the BiGAN architecture.

All training hyper-parameters and details are adopted from the [98].

The false positive to false positive plot for a LeNet model trained on the CIFAR-10 is shown in

Figure 7.5. In comparison with using real samples by Algorithm 2, the effectiveness of this method

varies accross different attacks/models/datasets. Nevertheless, it still increases the false positive

rate more than 10 times for most MI attacks. Interestingly, Rezaei attack [98] seems to be more

immune to discrediting based on the BiGAN approach. The reason lays on how this attack works.

Rezaei attack uses the same BiGAN architecture to craft similar samples to the target sample.

Then, it uses the difference between the target sample’s loss and the loss of average samples from

the same subpopulation as the membership score. We find that the average loss difference between

two crafted samples are often smaller than a natural sample and a crafted sample. Consequently, the

membership scores of auditor samples (which are natural) are on average larger than the discrediting

samples (which are crafted). In other words, the Rezaei attack [98] is immune to this discrediting

method because it can distinguish between crafted and natural samples, and not because it can

identify member samples versus non-member samples. This occurs mainly because the BiGAN

architecture is not good enough to generate indistinguishable natural samples. In Section 7.6, we

analyze this method in more depth. Nevertheless, the auditee can still use the other two methods

to safely discredit the auditor if he/she uses Rezaei’s MI attack.

Table 7.5 shows the full results of all membership inference attacks for the lowest false positive.

Clearly, the BiGAN approach of crafting discrediting samples does not work as effective on harder

classification tasks, such as CIFAR-10 and CIFAR-100. This probably stems from the difficulty

in training a high quality BiGAN to craft natural samples for these datasets. Further research is

needed to see if this problem can be solved by using stronger generator trained on larger datasets.

7.5.3. Adversarially Tuned Subpopulation. In this section, we evaluate Algorithm 4 ef-

fectiveness in producing discrediting samples. This method requires an adversarial attack algorithm
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(a) Original images (b) Adversarially tuned images
(ϵ = 0.01)

(c) Adversarially tuned images
(ϵ = 0.05)

Figure 7.12. Natural samples versus the corresponding adversarially perturbed
versions.
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(b) FPR/FPR logscale plot

Figure 7.13. Cifar10/LeNet model. Discrediting algorithm 4.
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Figure 7.14. Cifar10/ResNet20 model. On adversarially tuned samples.
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Figure 7.15. Cifar100/LeNet model. On adversarially tuned samples.
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Figure 7.16. Cifar100/ResNet20 model. On adversarially tuned samples.
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Figure 7.17. SVHN/LeNet model. On adversarially tuned samples.

to perturb the input such that its latent representation of the sample converges to the latent rep-

resentation of the target sample. We use projected gradient descent1 (PGD) algorithm with step

1We use the public implementation by Cleverhans lab at https://github.com/cleverhans-lab/cleverhans
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(b) FPR/FPR logscale plot

Figure 7.18. MNIST/MLP model. On adversarially tuned samples.
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Figure 7.19. fMNIST/MLP model. On adversarially tuned samples.

Table 7.6. Lowest false positive value on the auditor dataset. The numbers in
parenthesis show the ratio of the false positive on discrediting dataset over the false
positive on auditor dataset when Algorithm 4 (ϵ = 0.05) is used for discrediting.

Dataset Model Shokri [110] Yeom [134] Watson [126] Carlini [7] Rezeai [98]

MNIST MLP 4.750% (×21.1 ↑) 77.400% (×1.3 ↑) 0.010% (×138.9 ↑) 0.050% (×20.0 ↑) 0.062% (×18.4 ↑)
FMNIST MLP 2.350% (×41.2 ↑) 65.910% (×1.5 ↑) 0.020% (×113.6 ↑) 0.060% (×17.7 ↑) 0.003% (×615.4 ↑)
SVHN LeNet 3.449% (×27.7 ↑) 67.730% (×1.4 ↑) 0.252% (×49.6 ↑) 0.238% (×8.4 ↑) 0.003% (×1305.4 ↑)
Cifar10 LeNet 0.791% (×94.1 ↑) 28.631% (×2.7 ↑) 0.003% (×1842.1 ↑) 0.034% (×97.2 ↑) 0.271% (×28.3 ↑)
Cifar10 ResNet20 0.049% (×302.8 ↑) 17.469% (×5.3 ↑) 0.003% (×1166.7 ↑) 0.046% (×25.7 ↑) 0.011% (×273.4 ↑)
Cifar100 LeNet 0.030% (×1333.3 ↑) 6.110% (×13.2 ↑) 0.020% (×1363.6 ↑) 0.430% (×11.6 ↑) 0.009% (×972.2 ↑)
Cifar100 ResNet20 0.630% (×79.4 ↑) 0.890% (×39.2 ↑) 0.010% (×2222.2 ↑) 0.030% (×370.4 ↑) 0.003% (×5833.3 ↑)

size 0.001 for 100 iterations. We try ϵ = 0.01 and ϵ = 0.05 to assess different perturbation budget.

Figure 7.12 shows several natural samples from CIFAR-10 and the corresponding adversarially per-

turbed versions. Samples with perturbation of ϵ = 0.01 are imperceptible to human eyes from the
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Figure 7.20. CIFAR-10/LeNet model. The effect of distribution shift. Here, in-
stead of using discrediting algorithms, we use entire CINIC dataset as the discred-
iting dataset without filtering out any sample.

natural samples. Perturbation of ϵ = 0.05, however, leaves visible footprint on otherwise natural

samples.

Figure 7.13 demonstrates the false positive to false positive plot for a LeNet model trained

CIFAR-10 dataset. In comparison with both Algorithm 2 (Figure 7.2) and Algorithm 3 (Figure

7.5), using adversarial perturbation is a more effective on average. Even the perturbation of ϵ = 0.01

which does not produce perceptible artifacts is highly effective. It is worth emphasizing that the way

the adversarial perturbation is used in this context is different from adversarial attack literature.

In adversarial attack literature, the attacker has either white-box or black-box access to the model

it tries to mislead, which would have been the MI attack in this case. However, in our scenario,

the auditee who uses the adversarial attack does not even know the type of membership inference

attack, let alone a query access or white-box access to it. The auditee, in this case, tries to perturb

a sample so that it mimics the latent representation of another sample to which the MI attack has

already assigned a high membership score.

Table 7.6 represents the results of the method on all datasets/models. Interestingly, in a few

cases, the false positive is more than thousand times larger on discrediting samples. Given the

simplicity of this approach in comparison with Algorithm 3 and the lack of the need for a large

public dataset in comparison with 2, the effectiveness of this approach as a discrediting tool is

significant.
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Figure 7.21. CIFAR-10/ResNet model. Here, the discrediting dataset is the entire
CINIC dataset.
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Figure 7.22. SVHN/LeNet model. Here, the discrediting dataset is the entire
extra portion of the SVHN dataset.

7.5.4. Could it be a Repercussion of Domain Shift? A natural question upon the success

of the three algorithms to significantly increase the false positive rate is if a domain shift across

datasets are the real culprit. In other words, one may suspect that using the entire CINIC dataset

as a discrediting dataset may achieve the same goal as the proposed algorithms because the MI

attacks are vulnerable to domain shift.

To refute the hypothesis, we illustrate the false positive to false positive plot in Figure 7.20

for a LeNet model trained on CIFAR-10. The results for other datasets/models are presented in

Figure 7.21 and 7.22. Here, the auditor dataset is the test portion of the CIFAR-10 dataset. The

MI attack models that require dataset for training use the unused portion of the training set of the

CIFAR-10 dataset. The auditee’s discrediting dataset is the entire CINIC dataset. Due to the huge
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(a) Random samples
from CINIC
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(b) Closest sample
from CINIC (Algo-
rithm 2)
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(c) Crafted samples
using Algorithm 3
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(d) Adversarial sam-
ples using Algorithm 4

Figure 7.23. Correlation of (Watson attack) membership score between CIFAR-10
member samples (x-axis) and nonmember samples (y-axis). The criterion to select
nonmember samples are specified by the title of each sub-figure.

computational complexity of training individual models containing each sample in CINIC dataset

separately, here, we use the offline version of the Carlini attack [7].

Interestingly, it is clear that the domain shift works in favor of the auditor by slightly decreasing

the false positive. The reason is that the auditee’s model trained on CIFAR-10 is naturally less

confident on samples from another distribution. Unless carefully picked by an algorithm, such as

Algorithm 2, the confidence output of the model is lower on average and, hence, less likely to be

incorrectly labeled as member (positive). Therefore, discrediting process cannot be simply reduced

to finding a dataset with different distributions.

7.6. Key Hypotheses and Validation

In this section, we investigate two hypotheses implicitly used as a cornerstone of the three

discrediting algorithms. Here, the notion of closeness and neighborhood are all in the latent repre-

sentation space, not the pixel space, unless specified otherwise. For more efficient visualization, we

only show a small random set of samples in scatter plots. The average and standard error, however,

is computed over all samples.

Hypothesis 1. There is a correlation between the membership score of a member sample and

its neighboring nonmember samples.

This is the key assumptions used in all three discrediting algorithms. By sorting the Dc dataset

with respect to the membership score and finding/crafting samples based on them, we implicitly

incorporating this assumption in all algorithms. To investigate this assumption, for each mem-

ber sample in CIFAR-10 dataset, we use algorithm 2 (using CINIC dataset) and 3 to find/craft
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Figure 7.24. Distribution of Watson attack’s membership score for member sam-
ples, non-member samples, and same-class neighbors, and different-class neighbors
from CINIC dataset (Algorithm 2)

neighboring samples. Here, we use Watson attack [126] to compute the normalized membership

score. Additionally, for each member sample, we randomly select a nonmember sample without

any particular constraint to illustrate a case where no discrediting algorithm is used.

Figure 7.23 (a) presents a case where no discrediting algorithm is used. X-axis shows the

membership score of member samples, and the y-axis shows the score of a random sample from

the nonmember set. As shown, the membership score of member samples are between 0.5 and 1.

The membership score of nonmember samples, however, can be any value between 0 and 1. Figure

7.23 (b-d) demonstrates the case where our discrediting Algorithms are used. It is clear that what

discrediting algorithms do is eliminating majority of samples with low membership score. The

output of discrediting algorithms are a set nonmember samples whose membership score is between

0.5 and 1, similar to member samples.

Figure 7.23 (b-d) also illustrates the potential correlation between membership score of a mem-

ber sample and its neighboring nonmember sample. It seems that there is no correlation when

searching neighboring samples in CINIC dataset. The correlation analysis for this case is inconclu-

sive and we speculate that if a much larger public dataset covering the entire portion of input space

was available the results would have been different. The correlation can be better investigated
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(a) Closest sample from CINIC
(Algorithm 2)
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(c) Adversarial samples using
Algorithm 4

Figure 7.25. Correlation between the distance and the membership score differ-
ence of a member sample and its neighboring nonmember sample.

with the generator model that allows us to generate arbitrary nonmember samples with different

distance to the member samples. In this case, as shows in Figure 7.23 (c), there is a clear posi-

tive correlation between membership score of a member sample and its neighboring sample. The

positive correlation is also clearly depicted in Figure 7.23 (d) for adversarially perturbed samples.

The effectiveness of using neighboring samples become more clear by looking at the distribution

of membership scores of member, nonmember, and same-class neighbors from Algorithm 2, as shown

in Figure 7.24. Here, same-class neighbors are closest samples whose class labels are the same as

their neighbor member samples (corresponding to the if statement at line 6 in Algorithm 2) but

are not members themselves. Different-class neighbors are closest samples whose class labels are

different from their member neighbors. We filter out different-class neighbors in Algorithm 2 and

3 for the following reason: The distance in latent space does not have a fixed scale and it is only

meaningful locally. In other words, two samples ϵ away from each other in one region of the latent

space might be semantically very similar and two other samples ϵ away from each other in another

region of the latent space might be semantically very different. To filter out the samples that are

likely to be semantically different, we match the class label as a rudimentary criterion. Perhaps,

more research is needed to find the proper scale for semantic similarity in each region of latent

space. As shown in Figure 7.24, the distribution of same-class neighbors are much closer to the

member samples and the distribution of different-class neighbors are closer to nonmember samples.

That is the reason why MI attacks cannot avoid large false positive on discrediting samples.
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Figure 7.26. nc in Algorithm 2 versus false positive rate of the discrediting dataset.
As more samples from Dc set is involved in the process, the discrediting capability
of the algorithm diminishes.

Interestingly, the observation from Figure 7.23 (b) that the membership scores of nonmember

neighbors do not have clear positive correlation may lead to the perception that any member sample

can be used as a part of Dc to create discrediting dataset. There is a fundamental limitation

in the experiment related to Figure 7.23 (b): When searching for the closest neighbor for each

member sample in CINIC dataset, many duplicate samples are picked. In other words, many

member samples share the same closest sample in CINIC dataset. Consequently, although member

samples in x-axis of Figure 7.23 (b) are all unique, the corresponding neighbor samples in y-axis are

not necessarily unique. This is important because the discrediting dataset provided to the judge

should not have duplicate samples, otherwise the discrediting process was trivial. That is why such

experiment is inconclusive for algorithm 2 in Figure 7.23 (b).

To investigate the correlation between the membership score of a member sample and the

quality of corresponding discrediting dataset, we conduct an extra experiment. Instead of using

all member samples, we use algorithm 2 with different nc. The larger the nc is, the more samples

with lower membership score are involved in the process. Here, we set the threshold such that the

false positive rate is 0.01% on the test dataset. Then, we use that threshold to compute the false

positive on the discrediting dataset. As shown in Figure 7.26, it is clear that including samples
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Figure 7.27. nn in Algorithm 2 versus false positive rate of the discrediting dataset.
As more samples from Dc set is involved in the process, the discrediting capability
of the algorithm diminishes.

with smaller membership score degrades the discredibility quality. Hence, it implies a positive

correlation between the membership score of a member sample and the membership score of the

corresponding nonmember neighbor.

Hypothesis 2. The closer the neighboring nonmember sample is to the member sample, the

more similar their membership score would be.

In Algorithm 2 we sort all neighbors with respect to their distance and explicitly prioritize the

closest samples. The natural question is if there is a correlation between distance and the mem-

bership score. Figure 7.25 demonstrates the correlation between the distance of a member sample

to its nonmember neighbor and the absolute membership score difference. Similar to the previous

experiment, there is a clear positive correlation in the case of crafted samples using Algorithm 3 and

apparent lack of correlation in the case of natural samples. As discussed earlier, an experiment with

a larger set of natural samples is needed to investigate the correlation for Algorithm 2 conclusively.

It is also interesting to see the correlation of the index of the neighbors and their membership

score. In Figure 7.27, as we include second, third, and n-th closest sample in the discrediting

dataset, the false positive rate diminishes. It conveys that the further away from a sample we go, the

membership score decreases. Although the previous experiment in Figure 7.25 (a) is inconclusive
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about the correlation between the distance and the membership score, this experiment implies

otherwise.

7.7. Discussion

Implication of Discredibility: The implications of the discredibility is beyond the example

of auditing we discuss in this dissertation. What we have shown is that the membership score

distribution of member samples are similar to their nonmember neighbors. Using the loose definition

of subpopulation, referring to samples close in the latent space, we argue that current membership

inference attacks identify the memorized subpopulations, not the memorized samples. In other

words, MI attacks can identify that a sample from a subpopulation is a member, but they cannot

reliably identify which exact sample in that subpopulation is in the train set and which is not.

The notion of memorized subpopulations might be interesting by itself in certain applications as

discussed next. However, it certainly is not what membership inference attacks promise to deliver.

Experimental vs Practical Setting: As argued in [7], MI attack reports should include the

true positive rate at low false positive rate like various area of computer security [42,55,59,80].

Despite the similarities, there is an inherent difference between MI and other computer security

applications. In membership inference, the ratio of positive samples are very small in comparison

with all natural samples, similar to other computer security applications. However, the number

of positive samples are fixed, unlike other applications. Now, let’s assume the common practice in

MI literature where the entire fixed positive (member) samples are included in the performance

evaluation. Now, if we randomly collect billions of samples and add to the evaluation dataset,

we only increase the number of negative samples because all positive samples had already been

included. This means that the ratio of the number of true positive (TP) to the number of false

positive (FP) depends on the size of the evaluating dataset because FP can infinitely grow in

practice while TP is fixed. That is why the low false positive ratio in the evaluation setting does

not necessarily indicate small false positives in practice. The existence of regions of high false

positive rate, as shown in this chapter, means that in practice when a large number of negative

samples exists in wild, the false positive samples dramatically outnumber the true positive samples.

This limits the application of MI attacks in practice.
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Membership Inference Application: The ability to identify memorized subpopulations is

useful in certain applications. For example, if a notion of subpopulation in latent space indicates

individual users, it can be used for user-level membership inference, similar to [67]. A prominent

example is face recognition where MI attacker (auditor) aims to know if a person’s images have

been unlawfully used or not. Interestingly, what we have shown in this chapter suggests that

the attacker does not need to know the exact training images to perform user-level membership

inference. Hence, the MI attack in this case may be more practical than previously thought.

Auditing as An MI Application: While many MI attacks have been proposed in the lit-

erature, not much discussion exist on how MI attacks can be used in real world scenarios. The

auditing example we propose is a first attempt to address this limitation, by providing a potential

real-world application of MI. While our work demonstrates the limitation of existing MI attack

techniques, it does not imply that MI attacks cannot be useful/practical. Especially, considering

the above-mentioned user-level MI attack, we hope that the potential usage of MI methodologies

as a privacy auditing tool can inspire new research directions on MI and its practical applications.

Limitations: Our analysis lacks comprehensiveness in two areas. First, we do not have much

larger dataset than CINIC to make sure that the majority of input space is covered. It might not

be even remotely possible. Although we indirectly shows the evidence of such a positive correlation

in Section 7.6, better experimental setting/dataset is needed for Algorithm 2. Second, the BiGAN

architecture proposed in [98] to train a generator is far from perfect. Since we use the BiGAN in

both Algorithm 3 and Rezaei’s MI attack [98], it affects the performance of both of them. Hence,

a better generator model may dramatically change the results of these two methods. It remains

unclear whether a better generator helps the MI attack more or helps the discrediting algorithm

more.

7.8. Conclusion

In this chapter, we show that there exist numerous regions of input space where membership

inference attacks frequently label non-member samples as members and, thus, exhibit high false

positive rate. These regions are of paramount importance because the victim (auditee) can find

them without any information about the membership inference attack or query access to the attack.
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Then, we showcase a practical scenario where the membership inference attacks are used in a trail

by an auditor (investigator or MI attacker) to prove to the judge that the auditee (MI victim)

unlawfully used private data. Then, we show that the auditee can provide unlimited samples from

the aforementioned regions and seriously challenge the credibility of the auditor (MI attack).

To achieve this goal, we propose three algorithms. The goal of all these algorithms is to

search/craft samples whose latent representation is similar to a member sample or a sample to

which the MI attack has already assigned high membership score. Using these algorithms allows

the auditee to provide a dataset to the judge where MI attacks perform catastrophically poorly. We

show that false positive rate of SOTA algorithm can jump from 0.01% to hundreds or thousands time

larger when evaluated on auditee’s dataset in comparison with the auditor’s dataset. Therefore, we

demonstrate that the discredibility issue is a serious concern when MI attacks are used in practice.

In future, we investigate the possibility of new types of membership inference attacks immune to

discredibility.
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CHAPTER 8

Future Directions and Conclusion

8.1. Conclusion

In this dissertation, we aim to study membership inference attacks in a more practical settings

and also to propose membership inference attacks that are more reliable in real world scenarios. Our

first study, dated back to 2019 focused on the first generation of the membership inference attacks

which were the state-of-the-art MI attack of the time. Through comprehensive evaluations, we

show that the common practice of reporting accuracy/precision/recall is misleading for membership

inference attacks. We show that FAR can provide a better picture of the state of a MI attack under

investigation. We, along a few other studies [15, 66], simultaneously propose a simple baseline,

with which the random guess should be substitute, called Gap/Naive attack. We show that none

of the contemporary attacks were able to consistently outperform such baseline and, hence, they

are not reliable in practice.

Our observation about the ineffectiveness of the first generation of membership inference attacks

have been corroborated multiple times [7,39,66,126]. In particular, Carlini at al. [7] suggest using

true positive at low false positive often used in security domain to reliably report and compare

effective membership inference attacks. Our work and the aforementioned studies triggered a new

generation of membership inference attacks that adopted difficulty calibration strategy that allows

them to achieve moderate true positive in very low false positive ratio.

In this dissertation, we propose a new membership inference attack with calibration that reduces

the computation costs of the state-of-the-art MI attacks significantly. SOTA MI attacks with

difficulty calibration need a dozens or hundreds of models to be trained per sample [7,126]. This

limitation makes these MI attacks impractical for large complex models which take days to train.

The simplified versions of these attacks are proposed to tackle this issue but they cannot achieve

the same performance as the original ones and they still need a dozen to hundreds of models to
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be trained per target model. We propose a subpopulation-based MI attack which fundamentally

change the calibration process such that it does not need shadow models to calibrate the membership

score. Instead, it calibrates the membership score based on semantically similar samples. In other

words, our attack essentially compares the victim model’s output on the target sample versus victim

model’s output on samples from the same subpopulation, instead of comparing the victim’s model

output versus shadow models’ output.

This new way of approaching membership inference obviates the need to train dozens to hun-

dreds of shadow models and makes MI attacks more computationally efficient. Moreover, we show

that when samples from the same subpopulation are not available, we can train a single generator

using BiGAN-like architecture to craft samples from subpopulations. Hence, in the worst case,

we only need to train a single generator. Our evaluation results demonstrate that our attack can

achieve the state-of-the-art MI attack accuracy with no shadow model training.

Furthermore, we propose a user-level MI attack on metric embedding learning. This attack

differs from most existing MI attacks in two aspects: First, we focus on the user-level MI attack

which is more practical in tasks where the exact training data samples used in training are not

available. For instance, if a live video of a user is captured and used during the training, the same

video might not be available to the user itself, let alone an MI attacker. However, the user can

capture numerous new samples with his/her cell phone’s camera and use it to launch user-level

MI attack. That is why our user-level MI attack is more practical. Second, the attack focuses on

metric embedding learning scenario where the existing confidence-based MI attacks do not work.

In contrast with existing MI attacks, we use a measure of compactness of clusters in embedding

space to identify membership, and consequently, obviate the need to access confidence values. Our

attack achieves the state-of-the-art performance in several datasets, where user-level MI attack is

of paramount importance.

Additionally, we study whether there are machine learning methodologies that have negative

impact in terms of privacy. In particular, we discover that there is a trade-off between accuracy

and privacy (in terms of membership inference) when deep ensembles are used. More precisely,

when deep ensembles improve the overall accuracy of the classification, it also allows more effective

membership inference on the deep ensemble model in comparison with a single model. Conversely,
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one can construct a deep ensemble using a set of under-fitted models and achieve the same accuracy

as a single well-trained model, while decreasing the effectiveness of membership inference on the

deep ensemble. In other words, the widely-used deep ensemble approach can be used to improve

accuracy or privacy, but not both at the same time.

We show that similar accuracy-privacy trade-off appears in most membership inference at-

tacks. We comprehensively evaluate several membership inference defense mechanisms to break

the trade-off and allow the deep ensemble to perform better with respect to both accuracy and

privacy. However, none of the common defense mechanisms could achieve that. We investigate the

root cause of the issue and we find that deep ensembles cause distribution shift of the confidence

values in a way that makes the train and test set more distinguishable. After revealing the root

cause of the issue, we suggest a simple, yet effective, approach to prevent the distribution shift

to favor membership inference attack. We suggest replacing the ensemble averaging mechanism of

deep ensembles with maximum confidence or first-correct confidence value. By doing so, we avoid

confidence averaging over several models which essentially cause the issue. We show our maximum

confidence approach can improve both accuracy and privacy at the same time by distorting the con-

fidence signal from the output. We compare the confidence distortion caused by our approach and

other confidence-masking approach and illustrate that our approach imposes the least distortion

to the confidence values. This is crucial for applications that need accurate confidence estimation.

The main advantage of our approach is that it can be easily adopted for the already-deployed deep

ensemble models with minimum disruption/cost/time while it improves its robustness against MI

attack with no cost.

Finally, we examine a practical use of membership inference attacks where it may be used by

users to identify if their data has been unlawfully used to train a model. We introduce a legal

scenario where an auditor uses MI attacks to identify unlawful use of user’s data by an auditee.

Then, the auditor needs to convince juries/judge that the MI attack is reliable with near zero false

positive. In this dissertation, we show that the auditor can produce/find a large number of data

samples for which the MI attack catastrophically fails without any knowledge about the MI attack

itself. We call this phenomenon discredibililty because it can be used by the auditee to challenge

the credibility of the auditee and, hence, dismisses the case.
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For the auditee to be able to challenge the auditor, we propose three discredibililty algorithms.

The goal of these algorithms is to search/craft samples whose latent representation is similar to a

member sample or a sample to which the MI attack has already assigned high membership score.

Using these algorithms allows the auditee to provide a dataset to the judge where MI attacks

perform poorly. We show that false positive rate of SOTA algorithm can jump from 0.01% to

hundreds or thousands time larger when evaluated on auditee’s dataset in comparison with the

auditor’s dataset. Therefore, we demonstrate that the discredibility issue is a serious concern when

MI attacks are used in practice.

8.2. Future Work

Despite numerous studies on membership inference attacks, we show that they do not perform

well in practice. First, the metrics used to report the performance and the experimental settings

was not good enough for the purpose of reliable membership inference attack. Second, we show that

there are unlimited number of non-member samples that even SOTA MI attacks falsely mislabel

as member samples. These issues limit the application of MI attacks in practice.

The future studies should focus on specific use cases or application where MI attacks may

actually perform well. Currently, majority of MI attacks are general-purpose attacks which claim

to work regardless of the target model/task/dataset. This might be a wrong way to do membership

inference. It is possible that general-purpose MI attack might not be possible. It is better to focus

on a specific model/task/dataset, similar to [9] where they focus on GPT-2 language models and

they were able to recover exact training samples. Similar approaches specific to a model/task/data

needs to be investigate in computer vision, speech recognition, etc.

One possible scenario where current SOTA membership inference attack may work well with-

out the discredibility issue is probably the user-level or subpopulation-level membership inference,

instead of record-level membership inference. The capability of such attack needs further investiga-

tion and comprehensive evaluation. Nevertheless, our results in Section 6 indicates that such attack

scenarios are more suitable for current SOTA membership inference attacks. More importantly,

there are many applications where user-level or subpopulation-level membership inference makes

more sense to begin with, such as models trained on faces, voices, medical images, etc.
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