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Abstract

When tested on surprise or preferential looking tasks, young
infants show an understanding that objects continue to exist
even though they are no longer directly perceivable. Only later
do infants show a similar level of competence when tested on
retrieval tasks. Hence, a developmental lag is apparent
between infants’ knowledge as measured by passive response
tasks, and their ability to demonstrate that knowledge in an
active retrieval task. We present a connectionist model which
learns to track and initiate a motor response towards objects.
The model exhibits a capacity to maintain a representation of
the object even when it is no longer directly perceptible, and
acquires implicit tracking competence before the ability to ini-
tiate a manual response to a hidden object. A study with
infants confirms the model’s prediction concerning improved
tracking performance at higher object velocities. It is sug-
gested that the developmental lag is a direct consequence of
the need to co-ordinate representations which themselves
emerge through learning.

Introduction

This paper presents a connectionist model of the develop-
ment of object permanence on a task involving visual pur-
suit. Object permanence is the understanding that objects
continue to exist independently of direct perception. It is a
central theme in the study of infant cognitive development.
Piaget’s (e.g., 1952) now classic studies relied on the active
search for and manual retrieval of hidden objects to gauge
the infant’s understanding of object permanence. If a baby
reached for a visible object but failed to reach for the object
when an occluding screen was lowered in front of the object,
Piaget concluded that the infant did not understand that the
object continued to exist behind the occluding screen. It was
not until 7.5 to 9 months of age that infants succeed at this
task.

While Piaget’s findings are highly replicable, a different
experimental poradigm suggests far more precocious abili-
ties in infants. Studies using preferential looking or surprise
as the dependent measures, instead of active manual search,
suggest that infants as young as 3.5 months understand that
object” continue to exist when hidden (e.g., Baillargeon,
1993; Spelke, 1994). These infants will respond differen-
tially when some property (such as solidity) of a hidden
object is violated as compared to when no violation occurs.
Hence, a developmental lag is evident between infants’
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understanding of object permanence as measured by pas-
sive response tasks and their ability to demonstrate that
knowledge in active retrieval tasks. The lag cannot simply
be due to a motor control problem since infants can
retrieve a visible object by 4 months (von Hofsten, 1989).
Furthermore, preferential looking studies suggest that 5.5
month olds are able to differentiate possible from impossi-
ble actions for retrieving a hidden object under some cir-
cumstances (Baillargeon, 1993).

The origins of the developmental lag, and what it
reflects about the underlying mental representations
required for completing both tasks is a key question for
current infant research. A number of hypotheses have been
advanced to address this question. One suggestion is that
the nature of the representations which underlie perception
and action in these tasks are radically different (Spelke,
Katz, Purcell, Ehrlich & Breinlinger, 1994) and that these
develop at different rates. A related suggestion is that the
underlying representations for the two tasks are the same,
but that the perception and action knowledge domains are
encapsulated: there is no transfer of leamning from one
domain to another (Spelke, 1994). According to this view,
the developmental lag simply reflects that fact that infants
begin practice with manual retrieval at a later age. Finally,
a third suggestion is that the underlying representation of
an object develops along a continuum such that the repre-
sentation required to elicit a perceptual response is simply
an early state of the representation required to elicit a
retrieval response (Fischer & Bidell, 1991; Munakata,
McClelland, Johnson, Siegler, 1994).

We propose that there are 2 distinct factors which con-
tribute to the pattern of results outlined above. First, that
hidden objects fail to elicit the same level of response in
infants as visible objects is due to the need for stronger,
more consolidated representations of objects in the former
case than the latter. Hence, we subscribe to the view that
the underlying representation of an object develops along
a continuum. Second, we assume that the manual retrieval
of an object typically involves an integrated response
requiring the coordination of information about an
object’s identity and position. In contrast, the predictive
visual pursuit of an object need not involve information
about an object’s identity, only its position (Day & Burn-
ham, 1981). Hence, we subscribe to the view that the task
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demands imposed by manual retrieval involve exploiting and
coordinating distinct representational components while pre-
dictive visual pursuit need only refer to the representation of
an object’s position.

We explain the developmental lag between predictive pur-
suit of hidden objects and manual retrieval of hidden objects
as a consequence of the differential task demands for the two
behaviours. Manual retrieval requires the coordination of
representations while predictive visual pursuit does not. We
suppose that the coordination of representations itself needs
to be learnt. Hence tasks requiring the coordination of repre-
sentations will be developmentally delayed in relation to
tasks that do not require this extra level of representational
integration. Note that the manual retrieval of displaced hid-
den objects constitutes the most difficult case for the child
from this perspective. Not only must the child coordinate
representations of the object’s identity and position, but they
do so in the absence of direct perceptual cues. In contrast,
predictive visual pursuit of a visible object constitutes the
easiest case for the child—no coordination of distinct repre-
sentations is required and direct perceptual input is available
to support predictions about the object’s trajectory. The pre-
dictive visual pursuit of hidden objects and the manual
retrieval of visible objects constitute tasks of intermediate
difficulty on this perspective. In particular, the manual
retrieval of visible objects should be easier than that of hid-
den objects because the latter require the representations that
coordinate object position and identity to become more
strongly established.

This paper describes a working model of the development
of object permanence in the domain of visible and occluded
visual pursuit tasks (cf. Bremner, 1985 for a review). We
implement a computational model that learns to establish the
identity of an object in terms of its distinguishable features,
that learns to predict the future position of an object on the
basis of its recent trajectory and that learns to initiate a man-
ual retrieval response based on a composite representation of
an object’s position and identity. The mechanisms brought to
bear on the computation of the object’s position and identity
are quite separate. However, they are exposed to the same
input stimulus throughout training and thus have the same
opportunity to learn about the relevant characteristics of the
environment. The architecture of the model is constrained in
such a way that predicting the position of an object takes no
account of the object’s identity. In contrast, the inititation of
a manual retrieval response requires a sensitivity to both
position and identity. These architectural constraints are
motivated by the findings cited above suggesting the inde-
pendent representation of spatial and featural information by
infants. Our purpose in building the model is to explore the
viability of the view that the relatively late emergence of the
ability to retrieve displaced hidden objects is due to the com-
bined requirements to develop strong intemal object repre-
sentations and 1o coordinate those representations. The
model is continuously tested on its ability to predict the next
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position of visible and hidden objects (predictive visual
pursuit) and on its potential to retrieve visible and hidden
objects (manual retrieval). We can, therefore, establish a
developmental profile of the mastery of these skills in the
model and compare this profile to that observed in infants.
Furthermore, we can manipulate systematically various
features of the model in order to determine their effect on
performance. The facility to manipulate characteristics of
the model permits us to determine the essential properties
that govern its performance and to generate novel behav-
iours that can be evaluated against the experimental litera-
ture or inspire new experiments with infants.

The Model

Figure 1 shows a schematic outline of the model. It con-
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Figure 1: Schematic of modular network architecture.

sists of a modular architecture. Each functional module is
enclosed by a dashed line. Note that some units are shared
by two modules and serve as a gateway for information
between the modules. In accordance with recent neurolog-
ical evidence (Ungerlieder & Mishkin, 1982) spatio-tem-
poral information about objects in the world is processed
independently of featural information. Information enters
the network through a 2-dimensional retina homogene-
ously covered by feature detectors. It is then funnelled
down one pathway which processes the temporal history
of the object and another which develops a spatially invar-
iant feature representation of the object (Foldiak, 1991).

The retina consists of a 4x25 cell grid. Each cell con-
tains four feature detectors responding to different proper-
ties (e.g. light/dark, high/low contrast, hot/cold, soft/hard).
If a projected object image overlaps with a grid cell, the
cell’s feature detectors take on the value +1.0 if the feature
is present and -1.0 if the feature is absent (Treisman &
Sato, 1990). Cells on which the object image is not pro-
jected are quiescent and take on the value 0.0. An occlud-
ing screen is also projected on the retina. The cells
corresponding to those positions have a constant value of
1.0 and do not encode object features.



The network experiences 4 different objects with corre-
lated features (i.e., {-1 1 -1 1}, {-1 1 1 -1}, {1 -1 1 -1}, {1-1
-1 1}). All object images are 2x2 grid cells large. For each
object presentation, an object moves once back and forth
across the retina, either horizontally or vertically. Vertical
movements can result in either non-occluding or occluding
events while all horizontal movements involve an occluding
event. Note the ambiguity when predicting the next position
of the object based on a snapshot of its current position.
There are four possible next positions for the object: up,
down, left, or right. This can only be resolved by learning to
attend to the temporal history of the object.

The object recognition module generates a spatially invar-
iant representation of the object by using an unsupervised
leaming algorithm. That is, it learns to partition the world
into consistent feature clusters (to respond similarly to simi-
lar objects) without explicit teaching. The feature representa-
tion is encoded on a bank of 5 complex cells. These cells are
initially randomly connected to all feature detectors. The
module develops its representations by using a modified ver-
sion of the algorithm developed by Foldiak (1991)!. This
algorithm exploits the fact that an object tends to be tempo-
rally contiguous with itself. Thus two successive images will
probably be derived from the same object. Learning results
in an object (defined by a unique set of features) activating
the same complex cell irrespective of its position on the ret-
ina.

The trajectory prediction module uses a partially recurrent
feed-forward network trained with the backpropagation
leamning algorithmz. At each time step information about the
visible position of the object image is extracted from the ret-
ina. The retinal grid cells with which the object image over-
laps become active (+1.0) while the other cells remain
inactive (0.0) (Recall that the trajectory prediction module
does not encode feature information about object identity.)
These 100 values are mapped one-to-one onto 100 units in
the visual memory layer. The network is trained to predict
the next instantaneous position of the object. The result is
output on a bank of 100 units coding position in the same
way as the inputs into the module. The network has a target
of +1.0 for those units corresponding to the next object posi-
tion and 0.0 for all other units.

All units in the visual memory layer have a self-recurrent
connection. This gives them the power to process temporal
information and generate a representation of the object’s spa-
tio-temporal history>. The result is a spatial distribution of
activation in the form of a comet with a tail that tapers off in

1. Setting the activations of the loosing units in the competitive

phase to a small negative value (—P ) greatly increases the stabil-
ity of the representations under continued training. We used the
following parameter values: & = 0.1, B = 0.02, learning rate
€ = 0.001, and weight_range = 0.2.

2. All back-propagation networks used the following parameter val-
ues:learning rate € = 0.1 and momentum n = 0.3.

3. The recurrent connections were fixed at p = 0.3.
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the direction from which the object has come. The length
and distinctiveness of this tail depend on the velocity of
the object. The information in this layer is then forced
through a bottle-neck of 75 hidden units. It is here that the
network has to generate a more compact, internal re-repre-
sentation of the object’s spatio-temporal history. As there
are no direct connections from the input to the output, the
network’s ability to predict the next position is a direct
measure of the reliability of its internal object representa-
tion. We suggest that the responses of the trajectory pre-
diction network correspond (o the responses observed in
infants through the use of (passive) preferential or surprise
measures (e.g., Baillargeon, 1993; Spelke, 1994). They are
a test of the infant’s sensitivity to violations of object posi-
tion.

The output of the response integration network corre-
sponds to the infant’s ability to co-ordinate and use the
knowledge it has about object position and object identity.
This network is designed to integrate the internal represen-
tations generated by other modules (i.e. the feature repre-
sentation at the complex cell level and spatio-temporal
representation in the hidden unit layer) as and when
required by a response task. It consists of a single-layered
backpropagation network whose task is to output the same
next position as the prediction network for two of the
objects, and to inhibit any response (all units set to 0.0) for
the other two objects. This reflects the fact that infants do
not respond (e.g. reach) for all objects. Some objects are
desired (e.g. sweet) whereas other are not desired (e.g.
sour). Active intentional response necessarily require the
processing of featural as well as trajectory information.

Occluded Tracking

The network learns very quickly to predict an object’s next
position when it is in sight. Moreover, the hidden unit rep-
resentations that it develops persist even when the object
has disappeared and allows the network to keep track of
the object even when it is no longer directly perceptible.
Figure 2 shows a graphic representation of the network’s
ability to predict the next position of an occluded object.
The left-hand column shows what is projected onto the
retina once featural information has been removed. The
right-hand column shows the corresponding object posi-
tion predicted by the trained trajectory network. The rows
(from top to bottom) correspond to successive time steps.
This network has seen 30,000 presentations of randomly
selected objects moving back and forth in random posi-
tions and directions at a fixed speed.

At + = 0, the object is about to disappear behind the
occluding screen. At all subsequent time steps, the net-
work correctly predicts that the object will have moved
over one position. Note especially step 3 for which the
direct perceptual information available to the network is
exactly the same as at + = 2. The network is able to pre-



Retinal Input Prediction

Figure 2: Network tracking of occluded object at 5 consec-
utive time intervals. Both the screen and the object are pro-
jected onto the retina. The network correctly predicts the
next position of the object even when the object is not
directly perceptible.
dict the subsequent reappearance of the object taking
account of how long it has been behind the screen. Moreo-
ver, as found with infants (Muller & Aslin, 1978), the net-
work’s ability to track an occluded object depends on the
length of the occluding screen: the longer the screen, the
worse the performance.

Developmental lag

The model was designed to examine the developmental lag
between an infant’s implicit knowledge of object perma-
nence (predictive visual pursuit) and its ability to demon-
strate that knowledge with an appropriate response (manual
retrieval). Figure 3a shows the network performance (aver-
aged across 10 randomized replications) on both the manual
retrieval and visual pursuit tasks when presented with an
unoccluded desired object. The reliability of a module is
computed as (1 - sum-of-squared-errors across outputs) aver-
aged over the output units and patterns involved in the event.
In this case, the network learns very quickly to track and to

Unoccluded Desired Objects Occluded Desired Objects

Occluded Undesired Objects

identify the desired object and to produce an appropriate
retrieval response.

When the object is occluded the network’s behavior is
very different (Figure 3b). Tracking and retrieval
responses are initially equally poor. The internal represen-
tations are not adequately mature to support any reliable
response. At about 5000 epochs they begin to diverge. The
reliability of the predictive visual pursuit develops faster
than that of the integrated manual retrieval response.
Around 20,000 epochs there is a consistent difference
between the network performance in the two different
modes. The accuracy differential on the two tasks then dis-
appears with further training.

Note that the manual retrieval response which is
required for a desired object has exactly the same mode of
representation as that for predictive visual pursuit. Moreo-
ver, both sets of output units receive exactly the same
information from the hidden units about the spatio-tempo-
ral history of the object. The only way the functioning of
these two modules differs is that the module that drives
manual retrieval must integrate information coming from
the object recognition module. This indicates that the
developmental lag in the network arises from the added
task demands of integrating information.

An advantage of modeling is that we can test this
hypothesis directly thanks to a manipulation which would
not be possible with infants. If the developmental lag is
indeed due to the need for an integration of information,
then it should disappear when presented with a task that
does not require information integration. One possibility is
to observe the network’s behavior when presented with an
undesired object. Undesired objects do not require infor-
mation integration because it suffices to attend only to the
feature representation in order to elicit a proper response,
i.e, not to retrieve the object. Once the object has been
identified as undesirable, then an inhibitory output can be
emitted which does not require any spatio-temporal infor-
mation. Figure 3c show the network’s performance when
presented with an undesired object. It learns more quickly
to inhibit attempts at retrieval than to track objects. The
feature recognition module learns to categorize the differ-
ent object types very quickly.
Hence, it is the need to attend to
and integrate information from
"""" . different sources that produces

the lag between reliable predic-
tive visual pursuit and manual
retrieval of occluded objects.

""" - Retrioval A Test of the Model’s Fit

0 951 095+ 0954
&
-
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Figure 3: Network performance on predictive visual pursuit and manual retrieval 10 ()  york as a function of the veloc-

an unoccluded desired object, (b) an occluded desired object, and (c) an occluded unde-

sired object.
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ity of the object image (fast



Network Rellabllity

0951

(a)

Reliabilty

. low velocity

0854

10000 15000 20000 25000 30000
Epochs of Training u high veloctty

8 Total infant looking time 08 Initial infant looking time
g 0 5.: g 044
E E
- 803
B 044 s
$ § 024
- B
a ] &

o— — Ry () A

low high near far
Velocity Distance
(®) (©)

Figure 4: The effect of velocity on tracking in (a) the net-
work and on the infants’ (b) total tracking time and (c) ini-
tial tracking time.

objects move two grid cells per unit time whereas slow move
one grid cell every two time steps). There is consistently bet-
ter performance at the higher velocity. The greater accuracy
arises from the more distinct representations generated in the
visual memory layer at higher velocities.

We have found that infants also show superior tracking at
higher velocities*. In the study, thirty-six 2- to 6-month-old
infants sat 0.6m from a viewing theatre and watched an 8°
black and white bull’s-eye move back and forth across the
1.5 m theatre at either 8 or 12 */sec. Figure 4b shows the pro-
portion of total tracking time to total visible time that infants
spent tracking an object moving across a viewing theatre.
Infants showed significantly more tracking in the high veloc-
ity condition than the low velocity condition (F(1, 33) =
7.506, p = 0.0098) supporting the predictions of the model.

The total looking time can underestimate the power of a
moving object to elicit tracking since subsequent captures
and looking times can be artificially reduced due to infant
habituation. Since habituation is not implemented in this
model, initial infant tracking time may be a better test of the
model. Figure 4c shows the proportion of looking time for
the initial tracking interval with infants at 0.6m and 1.2m
from the target. The velocities at the far distance were 6 */sec
and 8 */sec. The velocities at the near distance are 8 and 12 °/
sec. These correspond to a constant linear velocity difference
of 4.2 cm/s at both distances. The object was scaled to sub-

4. The results reported here are part of those obtained during a
study designed to test some predictions of the model and to
investigate the role of egocentric and allocentric cues in infants’
visual pursuit. A full report is in preparation.
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tend 8" at either distance. At both distances there is a sig-
nificantly longer initial track at higher velocities (F(1,
33)=6.577, p<0.0151) with no significant effect of dis-
tance (F(1, 33)=0.291, p<0.5933) or distance by velocity
interaction (F(1, 33)=2.548, p<0.12). Again, the main
effect of velocity supports the model’s predictions.

Discussion

This model suggests that connectionist style learning algo-
rithms are powerful enough to develop perceptually inde-
pendent representations of objects. These representations
allow the network to keep track of an object’s properties
such as position, velocity, and feature descriptions even
when the object is fully occluded. Moreover, there is a
gradual emergence of these representations as opposed to
an all-or-none acquisition. The representations are not
present from the onset and are developed through the
interactions of computational-architectural constraints and
interactions with the environment.

A critical characteristic of the approach taken in this
work is the postulation of a small number of different
mechanisms attuned to particular aspects of the environ-
ment (cf. Baillargeon, In press). The model assumes the
existence of a mechanism designed to compute object
identity and a mechanism designed to track object posi-
tion. Each module leams independently from the same,
common experience. The asymmetry in performance on
the manual retrieval task and the predictive visual pursuit
task is a direct consequence of the requirement that com-
putations delivered by both mechanisms need to be inte-
grated for the former task but not for the latter. It should be
noted, however, that the implications of this approach
extend beyond the domains of visual pursuit and manual
retrieval. In general, any task that demands the integration
of the computations from distinct modules is likely to be
developmentally delayed compared to a task that requires
the computations to be delivered from either one of the
modules. Of course, the degree of delay observed will
depend on the difficulty of the integrative process itself.
Thus, in the current model the integration of the computa-
tions is particularly difficult for the manual retrieval of
hidden objects.

The model also enables to make predictions about infant
reactions when objects suffer feature violations. Recall
(see Figure 1) that the object recognition network
receives direct input from the retina. The complex
cells develop spatially invariant object representa-
tions from the very start of learning. As these repre-
sentations become consolidated with training they
will tend to persisl5 over time, even when the object
is occluded. In other words, the complex cells retain
a representation of the object’s properties even when

5. The degree of persistence is primarily determined by the
parameter 8 (see Footnote 1).



the object is out of sight. This information is available
to drive a surprise response. Moreover, note that the
model predicts precocious behaviour in this domain
since the surprise response does not require the integra-
tion of computations from distinct representational
modules. Knowledge of object properties, such as size,
can be driven by computations from a single source.
We are currently implementing this extension of the
model.

In the future, the model offers further opportunities to
investigate the interactions between recognition, visual
tracking, and object permanence. Empirical studies have
suggested that when a different object reappears from behind
the screen, it is the novelty of the object that determines
whether infants interrupt their tracking (Goldberg, 1976) and
not the change itself. Similarly, this model would suggest
that a novel object would disrupt tracking, but only when the
change was to an undesired object or one with radically dif-
ferent features. We continue to investigate these interactions
both in the model and with infants.

In summary, we suppose that objects are represented and
develop in a fragmentary fashion in the child’s cognitive sys-
tem. Different properties of the object (e.g. featural versus
spatial-temporal information) are processed in functionally
independent modules. The manner in which these properties
are brought together depend upon the task demands. The
level of object knowledge that the child demonstrates may
vary according to the requirements of the task itself.
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