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Abstract 

Collaboration and teaming are critical for solving complex 
problems. However, little is known about how group dynamics 
affect teaming behaviours and, ultimately, problem-solving 
effectiveness. The present study aimed to validate a novel 
measure of the dynamics of team communication – here termed 
turn-taking entropy – and to investigate what aspects of those 
dynamics affect collaborative-problem-solving performance. 
Thirty-two teams of 4 were asked to complete a simulated 
crisis-response task in which they had to rank 15 items in order 
of their importance to their team’s survival (first individually 
and then as a team). Group responses were better than the 
aggregated individual responses of team members (suggesting 
teaming benefits), and were better when team members had 
task-relevant skills and knowledge. However, response quality 
was not significantly related to task completion time. 
Additionally, the proposed entropy measure appeared to 
capture group communication dynamics, and appeared to 
differentiate stable an unstable patterns of communication. 
Implications and directions for future research are discussed. 

Keywords: teaming; problem solving; turn taking; entropy; 
Lost at Sea. 

Introduction 

By working collaboratively, agents can often work more 

efficiently or achieve better outcomes than if they had worked 

independently (for example, Barron, 2000; Hill, 1982; 

Johnson & Johnson, 2009; O’Donnell, 2006; Saleh et al., 

2005). It is this very feature of collaboration that makes 

teaming such an effective strategy for solving a wide variety 

of complex tasks (Graesser et al., 2018). Indeed, teams are 

used to maximise the quality of medical care (Baker et al., 

2006; Ervin et al., 2018; McKee & Healy, 2002), to solve 

complex design and engineering problems (Galbraith, 2009; 

Reiter-Palmon & Leone, 2019), and to meet the complex 

demands of military operations (Goodwin et al., 2018; 

Shuffler et al., 2012). Given the increasing number and 

complexity of problem-solving challenges found in modern 

workplaces (Gatewood et al., 2015; Hoffman et al., 2020; 

World Economic Forum, 2020) and the increased 

dependence on teams to solve these problems (Chowdhury & 

Murzi, 2020; Hall et al., 2018), understanding the dynamics, 

mechanisms, and necessary precedents of effective teaming 

is more important than ever (Graesser et al., 2018; 

RamosVillagrasa et al., 2018; Wiltshire et al., 2018). 

Some researchers have suggested taking a Dynamical 

Systems Theory or complex-adaptive-systems approach to 

investigating teams (for example, Gorman et al., 2017). 

However, dynamical modelling of any system requires 

defining system variables that best capture the 

behaviour/dynamics/team characteristic of interest. In the 

past, some researchers have used the ratio of the latency 

between regular communication functions (Gorman et al., 

2010), the Shannon entropy (Shannon, 1948) of 

communication functions (Wiltshire et al., 2018), the 

frequency and variety of turn-taking patterns (Hoogeboom 

and Wilderom, 2020), and dynamic complexity (Schiepek et 

al., 2010; Wiltshire et al., 2021), just to name a few examples. 

Many complex adaptive systems, including problem-

solving teams, over time exhibit qualitatively distinct stable 

phases in their behaviours (for example, Barnosky et al., 

2012; Folke et al., 2004; Hughes et al,. 2013; Scheffer, 2020; 

Wang et al., 2009; Zhou et al., 2011). While transitions 

between these phases can be gradual (for example, Heerklotz 

& Tsamaloukas, 2006; Shimizu et al., 2017; Song et. al, 

2008), often the transitions are sudden, nonlinear, and 

unpredictable (May et al., 2008; McSharry et al., 2003; 

Scheffer et al., 2009; Venegas et al., 2005). Wiltshire et al. 

(2018) theorised that teams’ stable communication patterns 

emerge as a direct result of the constraints placed on the 

teams’ components. During stable phases, there is large 

constraint on the system, and a large basin of attraction 

towards a particular system state (or pattern of team-member 

interactions). In such cases, the system will recover quickly 

from minor perturbations or disturbances (such as changing 

task contexts or new ideas being suggested by team members; 

Scheffer et al., 2009) which can be seen in high 

autocorrelation or low variability (Dakos et al., 2012; 

Scheffer et al., 2009), low dynamic complexity (Schiepek & 
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Strunk, 2010; Wiltshire et al., 2021), and low entropy (Likens 

et al., 2014; Wiltshire et al., 2018) in measures of the team’s 

system state. Conversely, approaching or during the 

transitions between stable phases, there is less constraint on 

the system and a smaller (or flatter) basin of attraction, and 

the system will recover more slowly from perturbations (a 

phenomenon known as “critical slowing down”; Scheffer et 

al., 2009), if indeed it does recover at all. As such, 

approaching or during a phase transition, CPS teams may 

exhibit critical instability (Wiltshire et al., 2021) which may 

be seen in lower autocorrelation, greater variability, greater 

dynamic complexity, and greater entropy in the teams’ 

dynamics. 

One aim of the present study was to validate assumptions 

regarding collaborative problem solving (specifically, that 

the processes of teaming provide non-linear performance 

benefits above solely the aggregation of knowledge and 

skills). Another aim was to validate a new measure for 

capturing the dynamics of team communication, here termed 

“turn-taking entropy”, that represents the unpredictability of 

the speaking order of team members, and that can be 

calculated without the need for transcription and semantic 

coding of communication (as was the case in Wiltshire et al., 

2018) or EEG recording equipment (as was the case in Likens 

et al., 2014). Additionally, the present study investigated how 

aspects of those dynamics affect teaming behaviours and, 

ultimately, problem-solving performance. To do this, teams 

of participants were asked to complete the same task as in 

Wiltshire et al. (2021)’s study, the Lost at Sea task (a widely 

used crisis-response simulation task in which participants are 

asked to imagine that they are stranded on a lifeboat in the 

middle of the ocean, and to rank 15 items in order of their 

importance to the team’s survival; Neminoff & Pasmore, 

1975). 

It was hypothesized that teams’ rankings lists would be 

closer to the “correct” rankings than the lists aggregated from 

their members’ individual lists (Hypothesis 1). However, it 

was also expected that team members’ individual-task ability 

would still positively contribute to group-task performance 

(Hypothesis 2). Furthermore, it was hypothesized that the 

longer that teams worked together and the more that members 

exhibited teaming behaviours, the greater the teaming 

benefits and the better they would perform on the Lost at Sea 

task (Hypothesis 3). 

It was hypothesized that turn-taking entropy would vary 

across teams and across communication, and would exhibit 

clear peaks and troughs (Hypothesis 4). It was also 

hypothesized that higher entropy would be associated with 

longer task completion time and increased performance 

(Hypothesis 5). It was hypothesized that the more that teams 

reorganised (both in terms of the magnitude of the 

reorganisation and in terms of the number of reorganisations), 

the longer they would take to complete the task, but the better 

the quality of their final list (Hypothesis 6), and finally, it was 

hypothesized that the faster that teams reorganised, the less 

time that they would take to complete the task (Hypothesis 

7). 

Method 

Participants 

Data were collected for 32 four-person teams (128 

participants) as part of a larger study on collaborative 

problem solving. Participants were first-year psychology 

students from Macquarie University who signed up for the 

study as individuals using the university’s SONA system in 

exchange for course credit. The majority of participants (116) 

had never interacted with any of their teammates prior to the 

study, but 8 teams contained at least two team members that 

were at least familiar acquaintances. 

Ninety-nine participants identified as female, 28 identified 

as male, and 1 identified as non-binary or third gender. 15 

teams comprised of only females and 1 team comprised of 

only males. 60 participants identified as White/Caucasian, 33 

identified as Asian, 2 identified as African, 1 identified as 

Aboriginal Australian, 1 identified as Pacific Islander, and 31 

identified as Other. Ages ranged from 17 to 49 (M = 19.8, SD 

= 4.7). 

Materials 

Lost at Sea Task. The Lost at Sea task is a crisis-response 

simulation in which participants are asked to imagine that 

they have been stranded on a lifeboat in the South Pacific 

after their yacht and most of its contents have been destroyed 

in a fire. The participants are then tasked with ranking a list 

15 items in order of importance to their survival (Nemiroff & 

Pasmore, 1975). In our version of the task, participants read 

the task instructions and completed their rankings in a virtual 

presentation of the task (designed using the cross-platform 

Unity game engine, version 2020.3.17f1 LTS; Unity 

Technologies, San Francisco, California) displayed on 

touchscreen tablet computers (Microsoft Surface Pro 9). On 

their tablets, participants were able to access/hide task 

instructions, drag items into ranking positions, see how much 

longer they had to rank the items, and, in the group-ranking 

portion of the task, see their team’s rankings list. 

Task performance was operationalized as ranking accuracy 

(or more specifically, as the Spearman’s rank correlation, ρ, 

between an individual’s/team’s ranking list and the “correct” 

rankings list that was developed by the US Merchant 

Marines; Nemiroff & Pasmore, 1975). Task performance was 

measured both for final submitted rankings, but also for each 

update/change to the ranking list. Because the magnitude of 

changes in ρ was inversely proportional to the number of 

items in a team’s\individual’s list at the time of the update (ρ 

would increase more for a “correct” addition of a third item 

to a two-item list than for a “correct” addition of a fifteenth 

item to a fourteen-item list), changes to ranking accuracy 

were coded as negative (-1), neutral (0; when ρ did not 

change), or positive (1). 

Finally, to aggregate team members’ individual rankings, 

the ranking positions of each item for each member where 

summed and then ranked in order of this sum. ρ was 

calculated for the aggregated rankings, and “teaming 

2449



benefits” for each team were operationalised as the difference 

between the team’s group ρ and the ρ for its aggregated 

rankings. 

Recording Equipment. Audio was recorded using four 

Shure MX53 over-ear omni-directional headset microphones 

and four Audio-Technica System 10 PRO wireless 

transmitters/receivers feeding into a Zoom LiveTrak L-12 

audio recorder. Video was recorded using four Razer Kiyo 

Ring Light Equipped Broadcasting Cameras (RZ19-

02320100-R3M1) feeding individually via USB 3.0 into a 

custom HP computer (Intel Corei9-9900K CPU, NVIDIA 

GeForce RTX 2080Ti GPU) running the OBS Studio (27.2.3) 

multi-channel recording software. 

Procedure 

Participants were randomly allocated to teams by signing 

up to research time slots. The study design was correlational, 

and no experimental manipulations were made. On arrival, 

participants were fitted with microphones, wireless 

transmitters, and name tags displaying a unique colour (Blue, 

Red, Green, or Grey, printed in large, coloured, Calibri size 

80 font) such that participants were able to refer to each other 

by either colour or their real names. They sat at a round table 

(in front of their tablet and such that the team members were 

facing each other), gave consent, completed a demographic 

information survey also hosted in Qualtrics, and began the 
Lost at Sea task. 

Participants were given a short verbal description of the 

task before being instructed to read the full task information 

presented in the virtual Lost at Sea environment. Participants 

were given 10 minutes to complete their individual rankings, 

starting from the moment that they hid the task instructions 

and accessed the ranking screen. When all team members had 

finished their individual rankings, they were given 20 

minutes to complete the group rankings, starting from the 

moment the experimenter remotely opened the group-ranking 

instructions simultaneously on all team members’ screens. 

During the tasks, the experimenter observed the 

participants from an adjoining room via the video camera 

feed. Participants were not allowed to talk to each other 

before, between, or after the ranking tasks, except when 

completing the group ranking. 

Data Processing 

Speaker coding. Using Adobe After Effects (18.4.1), 

animated 495ms-duration audio waveforms for the 

microphone audio for each team member were generated and 

laid over the OBS Studio videos of the four camera feeds for 

each team. This was done to make it clear which team 

members were speaking and which team members were silent 

during periods of cross-talk (i.e., when one member’s 

microphone picked up the sound of another member talking). 

Four research assistants were trained on how to label the 

outputted videos using Prodigy (v1.11.8; Python 3.10.0) 

annotation software, and one assistant per video recorded 

speaker, start time, and end time for each speech utterance 

(i.e., speaking turn). Interjections such as “um”, “oh”, and 

“mmhm”, as well as any vocalized laughter, were coded as 

utterances/turns, whereas sighs, heavy breaths, and non-

vocalized laughs were not. All videos and labels were then 

reviewed by the primary investigator for errors. 

To determine who was the primary speaker (i.e., whose 

turn it was) during periods of cross talk, each list of speaking 

utterances was first converted into four separate time series 

(one for each team member) of whether that team member 

was (1) or was not (0) speaking (at each 30ms window of the 

task) using custom Python (3.10.0) code. Then, more Python 

code was used to merge each set of four time series back into 

a list of speaker changes that occurred during the task. A 

change of speaker was determined to have occurred every 

time a new speaker started a new utterance (even if they 

overlapped the previous speaker). If, however, the 

overlapping speaker finished their utterance before the 

previous speaker finished theirs, a speaker change back to the 

original speaker was deemed to have occurred at the end of 

the new speaker’s utterance. Additionally, a change of 

speaker to “No Speaker” was recorded if there was 3s or more 

of no team members talking. 

Finally, each list of speaker changes was converted into a 

list of speaking turns taking the five values “Blue”, “Red”, 

“Green”, “Grey”, and “No Speaker”. Additionally, each list 

was subdivided into lists of turns during each 60s sliding 

window (using a step size of 1s) across the task. 

Turn-Taking Network Graphs. Treating speaking turns as 

system states, each list of turns was converted into a Markov 

chain and transition matrix. Then, each chain was visualized 

as a 5-node bidirectional network graph using the Matplotlib 

(3.6.3; Hunter, 2007) and NetworkX (3.0; Hagberg et al., 

2008) Python packages (see Figure 1 for examples). In the 

graphs, the nodes represented who was speaking (treating “no 

speaker” as a speaking option) during a turn (i.e., the state of 

the system), and the proportional area of the nodes 

represented the proportional frequency of each 

speaker/silence in the list of turns that the graph was 

constructed from. The arrows between nodes, on the other 

hand, represented the one-step transition probability of who 

would be the next speaker in the next turn, with the thickness 

of the arrow’s lines corresponding to the magnitude of this 

probability. Unlike traditional Markov chains, however, the 

speaker of a turn could not be followed by themself given 

how turns were defined. That is, states in the chain could not 

be recurrent. 

Turn-Taking Entropy. Shannon entropies (Shannon, 1948) 

were calculated for the lists of turns (both for the turn taking 

across the entire group task, and for the turn taking within 

each possible 60s-wide sliding window using a slide step of 

1s; i.e., for each matrix) using the equation: 

 

 H(𝑿)=∑ 𝐏(𝒊)𝒏
𝒊=𝟏 𝐇(𝑿𝒋|𝒊)  (1) 

 

where H(X) is the entropy of the next speaker j given the 

current speaker i is known, i and j have possible outcomes 

“Blue”, “Red”, “Green”, “Grey”, and “no speaker”, P(i) is the 

probability that i was the current speaker (i.e., the diagonals 
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in the turn-taking matrix), and H(Xj|i) is the entropy of who 

will follow i with equation: 

       H(𝑋𝒋|𝒊)=∑ P(𝑗|𝑖)𝑛
𝑗=1 log2 P(𝑗|𝑖) (2) 

where P(j|i) is the probability that speaker j would follow 

speaker i (i.e., the off-diagonals in the turn-taking matrix). 

The minimum theoretical value for H(X) for a four-person 

team – which would occur when there was only one speaker 

or just silence during the observation window – is 0, and the 

maximum theoretical value – which would occur when all 

speakers and silence had equal numbers of utterances – is 

2.32. 

Higher values in turn-taking entropy correspond to greater 

symmetry in the group’s turn taking, as well as lower 

predictability of who will be the next speaker. Hence, higher 

entropy values are indicative of less constraint on the turn-

taking dynamics. Conversely, lower entropy values represent 

less symmetry, less uncertainty, and more constraint. 

Peaks in Entropy. The sliding-window entropies for each 

team were combined into single time series. Using Python 

code, these series were smoothed using a Gaussian kernel 

with a standard deviation of 10 and a window size of 50. 

Then, local maxima and minima were identified in the 

smoothed time series using find peaks function from the 

SciPy (1.10.1) signal package (Virtanen et al., 2020). These 

peaks indicate critical instabilities in the team’s 

communication dynamics, where the team’s behavioural 

patterns and structural organisation are more susceptible to 

perturbations. The periods between peaks correspond with 

stable phases where the behavioural patterns and structural 

organisation are more resistant to perturbations (see Figure 

1). 

Results 

Group-Task Performance 

Individuals’ ranking-accuracy scores (ρ; n = 128) were 

approximately normally distributed (γ = 0.10, κ = 2.74) with 

a mean of .167 (SD = .204) and a range of -.307 to .714. 

Groups’ ρ scores (n = 32) were also approximately normally 

distributed (γ = 0.38, κ = 2.81) with a mean of .248 (SD = 

.178) and a range of -.067 to .682. Teaming-benefit scores 

(i.e., the differences between aggregated-list ρ and group ρ), 

on the other hand, were positively skewed (γ = 0.92) and 

platykurtic (κ = 5.91), and ranged from -.28 to .65 with a 

mean of .06 (SD = .17) and median of .07. 

Dissimilarly, individuals’ task-completion times (n = 128) 

were left skewed (γ = -0.39) and leptokurtic (κ = 2.25), with 

a mean of 226.4s (SD = 51.1) and a range of 102 to 300s. 

Groups’ task completion times (n = 32), on the other hand, 

had a symmetric (γ = 0.03), u-shaped distribution (κ = 1.64), 

with a mean of 693.8s (SD = 305.9) and a range of 219 to 

1195s. This suggests that no team found the 20min group-

task time limit too short and that the observation period was 

long enough to observe the natural group dynamics. 

Hypothesis 1 (average teaming benefits would be greater 

than 0) was tested using nonparametric bootstrap estimation 

of the mean. Supporting the hypothesis, the test revealed that 

the mean was significantly greater than 0 (Z = 2.27, p = .023). 

This suggests that collaboration and discussion improved 

task performance above solely sharing and averaging team 

members’ initial individual conclusions. 

Hypothesis 2 (average individual task ability would predict 

group performance) was tested using an OLS regression of 

group ρ on individual ρ (averaged across team members). In 

support of the hypothesis, higher individual ρ was 

significantly associated, on average, with higher group ρ (b = 

0.84, SE = 0.26, t(30) = 3.28, p = .003), suggesting that the 

better team members performed on average in their 

individual tasks, the better they performed in the group task. 

Hypothesis 3, on the other hand, was tested with two 

separate regressions. First, to determine whether working 

longer at the task would improve performance, group ρ was 

regressed on group-task completion time. Second, to 

determine whether teaming behaviours (operationalised as 

updating the rankings as updates were indicative of 

challenging others’ perspectives and/or revisiting ideas) led 

to better task performance, group ρ was regressed on the 

number of updates to the list during the task. The regressions 

revealed that time taken to complete the task was not 

significantly related to task performance (b < 0.01, SE < 0.01, 

t(30) = 0.74, p = .465) but number of updates was (b = 0.006, 

SE = 0.003, t(30) = 2.14, p = .040). The more times a team 

updated their list, the more accurate, on average, their list 

was. Therefore, Hypothesis 3 was partially supported by the 

data. 

Turn-Taking Entropy 

Entropy across the entire group task (n = 32) was left 

skewed (γ = -1.26) and platykurtic (κ = 5.66) with a mean of 

1.54 (SD = 0.11) and a range of 1.18 to 1.71 (50.9 to 73.6% 

of maximum possible entropy for a four-person group). 

Sliding-window entropy (n = 22,595), on the other hand, was 

also left skewed (γ = -1.66) and platykurtic (κ = 6.78). It had 

a mean of 1.24 (SD = 0.28) and a range of 0 to 1.72 (0 to 

74.1% of maximum possible entropy). Clearly, in support of 

Hypothesis 4, turn-taking entropy varied across teams and 

across communication. 

The number of peaks (local maxima) in the smoothed 

entropy time series appeared to be randomly distributed, 

however when controlling for the time taken by the group to 

complete the task, the distribution became approximately 

normally distributed (γ = -0.40, κ = 2.69). Whereas the 

absolute number of peaks ranged from 4 to 16 (M = 9.7, SD 

= 4.1), the peaks per minute ranged from 0.55 to 1.10 (M = 

0.86, SD = 0.14). Also in support of Hypothesis 4, sliding-

window entropy clearly exhibited peaks and troughs. Visual 

inspection of the network graphs at the times of peak and 

troughs revealed that teams’ communication patterns differed 

between periods of stable dynamics and critical instabilities, 

and often between different periods of stable dynamics (for 

an example, see Figure 1). 
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Hypothesis 5 (higher entropy would be associated with 

longer task completion time and greater ranking accuracy) 

was tested with three regressions. First, group-

taskcompletion time was regressed on whole-task entropy. 

Contrary to what was hypothesized, whole-task entropy did 

not significantly predict task time (b = 156.13, SE = 527.43,  

t(30) = 0.30, p = .769). Second, group ρ was regressed on 

whole-task entropy. Again contrary to what was 

hypothesized, whole-task entropy did not significantly 

predict group ρ (b = 0.16, SE = 0.31, t(30) = 0.53, p = .600). 

Finally, to assess whether sliding-window entropy at the time 

of an update to a team’s ranking list affected whether that 

update improved (Δρ > 0, n = 391) or worsened the list (Δρ < 

0, n = 345), a multilevel logistic model (predicting 

improvement/no improvement with a fixed effect of entropy 

across the window 30s before and 30s after the update and a 

random effect of team) was fit. Because logistic distributions 

model only binary outcomes, the n = 492 neutral updates (Δρ 

= 0) were ignored when fitting the model. Contrary to what 

was hypothesized, entropy did not predict the quality of 

updates to the list (b = 0.36, SE = 0.35, Z = 1.03, p = .303). 

When neutral updates were not ignored in the model and 

instead coded as improvements, entropy remained non-

significant (b = 0.30, SE = 0.23, Z = 1.30, p = .193). 

Although no predictions were made regarding the 
relationship between entropy and teams’ likelihood of 

making changes to their rankings, this relationship was also 

tested. Each of the n = 22,629 sliding-window entropies 

calculated across the 32 time series were coded 1 if the team 

made an update to their list during that second, and 0 if they 

did not. The multilevel logistic model predicting update/no 

update with a fixed effect of entropy and a random effect of 

team revealed that the higher a team’s entropy, the more 

likely they were to update the list (b = 0.40, SE = 0.14, Z = 

2.79, p = .005). 

Hypothesis 6 (the more that teams reorganised their 

communication dynamics, the longer they would take to 

complete the task but the better the quality of their final list) 

was tested with several regressions. More varied entropy 

scores suggests more varied communication dynamics, and 

hence more reorganisation (in absolute terms) in the 

dynamics across the task, controlling for task length. Hence, 

the average (with respects to time) magnitude of 

reorganisation was operationalised as the standard deviation 

(SD) of the sliding-window entropies for that task. These n = 

32 SDs were right skewed (γ = 1.09) and platykurtic (κ = 

4.23), had a mean of 0.167 (SD = 0.093), and ranged from 

0.049 to 0.461. To test whether they predicted task 

completion time and group ρ, two regressions predicting each 

of time and ρ, respectively, were fit. Entropy SD was 

significantly, positively associated with completion time in 

the first regression (b = 1535.3, SE = 531.8, t(30) = 2.89, p = 

.007) but was non-significant in the second (b = -0.04, SE = 

0.35, t(30) = -0.13, p = .899). This provides partial support 

for Hypothesis 6: The more varied a team’s turn-taking 

dynamics, the longer they took to complete the task. 

However, this variance had no effect on the accuracy of the 

final rankings list. 

The number of communication-dynamics reorganisations 

was defined as the number of reorganisations (i.e., critical 

instability to stable phase events, or just critical instabilities), 

and operationalised as the number of peaks in the entropy 

time series, given peaks in entropy were assumed to represent 

critical instabilities. To test whether the number of 

reorganisations predicted completion time and group ρ, two 

more regressions were fit. Again in partial support of 
Hypothesis 6, the number of peaks was significantly 

positively related to completion time (b = 68.44, SE = 5.61, 

t(30) = 12.19, p < .001) but not significantly related to group 

ρ (b = .01, SE = 0.1, t(30) = 0.83, p = .415). That is, the more 

times a team reorganised their dynamics, the longer they took 

to complete the task. However, the number of reorganisations 

did not affect the accuracy of the final rankings list. 

Finally, for Hypothesis 7 (the faster that teams reorganised, 

the less time that they would take to complete the task), 

reorganisation speed was operationalised, following the same 

logic as above, as the number of peaks in the entropy time 

series, but this time divided by the task length (in minutes). 

Regressing task completion time on entropy peaks per minute 

revealed that peaks per minute was significantly, negatively 

associated with completion time (b = -952.44, SE = 367.38, 

t(30) = -2.59, p = .015), thereby supporting Hypothesis 7. The 

Figure 1: The entropy time series for one team during the group task. Network graphs of the turn-taking 

dynamics at and either side of a critical instability have been superimposed over those points. 
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more frequent the reorganisations in turn-taking dynamics, 

the longer the task took. 

Discussion 

The purpose of this study was to validate assumptions 

regarding collaborative-problem-solving performance, to 

validate a novel measure for capturing the dynamics of team 

communication, and to see what effects those dynamics have 

on problem solving. In support of Hypothesis 1, groups 

performed better through collaboration compared to solely 

aggregating individuals’ answers. This suggests that teaming 

(sharing information, challenging perspective, triggering 

novel ideas, etc.) is an important process for optimal problem 

solving. Additionally, in support of Hypothesis 2, the better 

team members were at the individual task, the better their 

teams performed in the group task. That is, team 

collaborative-problem-solving performance was still largely 

dependent on the task-relevant abilities and knowledges of 

team members. 

However, there was mixed support for Hypothesis 3, and 

there were limits to the benefits of teaming. For example, 

spending more time on the task was not associated with better 

performance. It may be that it does not take effective teams 

much time to achieve all – or at least close to all – the 

available benefits of teaming. On the other hand, the number 

of updates to the rankings list did positively correlate with 

performance. This suggests that some of the dynamics of 

effective teaming may be indirectly captured in how rankings 

editors interacted with the list. For example, if the team were 

willing to challenge the list (potentially leading to new 

insights and collaborative learning), this may be seen in items 

already ranked being moved again (i.e., more changes to the 

list). 

In accordance with Hypothesis 4, the proposed turn-taking 

entropy measure varied across teams and across 

communication, and there were clear peaks and troughs in the 

entropy time series (between which the network graphs were 

clearly visually different). This suggests that teams’ turn-

taking dynamics evolved over time, and that the entropy 

measure was able to, at least in part, capture that evolution. 

However, contrary to Hypothesis 5, higher entropy – that is, 

more symmetric and less restricted turn taking – was not 

associated with better group performance, nor was it 

associated with longer task duration. It may be that 

symmetric turn taking and equal sharing of speaking time 

(which would result in higher entropy scores) was not a good 

strategy for teams, especially when task-relevant knowledge 

was not shared equally between team members. In such cases, 

it may have been more optimal for one or two team members 

to dominate the conversation. 

One interesting finding is that teams were more likely to 

make changes to their rankings during periods of higher 

entropy. This suggests that teams were less likely to make 

changes to the list during periods of stable communication. 

This is not wholly surprising. For example, a lack of 

consensus in the group regarding the utility, limitations, and 

correct ranking of an item would be likely to result in 

prolonged, low-entropy, stable communication dynamics 

characterised by one team member explaining their ideas (or 

the principal “owner” of an idea repeatedly trading utterances 

with the main detractor). Conversely, entropy scores would 

be higher in the subsequent situation when all team members 

would take turns to give verbal endorsement of an 

idea/decision just before it was implemented into the 

rankings list. This brief uptick in entropy could be conceived 

as a critical instability that one would expect to quickly settle 

on a more stable dynamic, presumably when the team had to 

discuss its next problem. It is not clear, however, whether 

these instabilities can be triggered by external interference, 

and whether naturalistic and forced instabilities resolve in 

different ways. 

In partial support of Hypothesis 6, more peaks in the 

entropy time series and higher variance in the entropy values 

(indicating more critical instability-resolution events and 

greater variance in communication dynamics, respectively) 

were both associated with longer task-completion times. This 

suggests that the more a team’s dynamics have to change 

(both with respects to the absolute difference in entropy peaks 

and troughs and with respects to absolute changes in entropy) 

to find the stable dynamics, task strategies, or insights 

required to get the rankings to a sufficient level of quality (for 

the team to be satisfied enough to submit the rankings and 

end the task), the longer the task will take. 

Concordantly, in support of Hypothesis 7, the faster that 

teams found their next stable pattern of communication (i.e., 

the greater the peaks per minute), the faster they could find 

optimal dynamics, find optimal solutions, or resolve 

disagreements, etc., and the faster they could complete the 

task. However, contrary to what was predicted, having more 

frequent critical instabilities was not associated with better 

task performance, despite such instabilities leading to more 

updates to the rankings. Hence, having group dynamics 

become unstable and change may not be sufficient for finding 

optimal task solutions/strategies, particularly if the dynamics 

ultimately reached are suboptimal. Future research should 

investigate what constitutes optimal turn-taking dynamics 

and determine what factors make teams more likely to find 

those dynamics. 

In conclusion, this study has reaffirmed the importance of 

collaboration in effective problem solving and demonstrated 

the utility of turn-taking entropy as a measure of team 

communication dynamics. Future research should validate 

this measure against other measures of group dynamics, 

particular with respects to the identification of critical 

instabilities, and further examine how critical instabilities can 

be triggered and manipulated to guide their resolution. 
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