
Lawrence Berkeley National Laboratory
LBL Publications

Title
LOGICAL MODELING OF TEMPORAL DATA

Permalink
https://escholarship.org/uc/item/2hc04856

Authors
Segev, A.
Shoshani, A.

Publication Date
1987-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hc04856
https://escholarship.org
http://www.cdlib.org/

.-
J

, i

LBL-22636 C". ~

ITlI Lawrence Berkeley Laboratory
11;:1 UNIVERSITY OF CALIFORNIA, BERKELEY

Information and ComputipgJ'" j~' u_:: .~;~y

Sciences Division JUi"l 2 6 1887

Presented at the International Conference
on Management of Data (SIGMOD 1987),
San Francisco, CA, May 27-29, 1987

LOGICAL MODELING OF TEMPORAL DATA

A. Segev and A. Shoshani

March 1987

L' - i,' .,'.)

s JCU:"_": L'\!T;:~ S :CTJOi\j

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain COlTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any walTanty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

t.·

! .:.

LOGICAL MODELING OF TEMPORAL DATA

Arie Segevt and Arie Shoshani+

tSchool of Business Administration
The University of California

Berkeley, CA 04720

+Computer Science Research Department
Lawrence Berkeley Laboratory

University of California
Berkeley, California 04720

March, 1087

LBL-22838

This research was supported by the Applied Mathematics Sciences Research Pro
gram of the Office of Energy Research, U.S. Department of Energy under contract
DE-AC03-76SF00098.

".j

LOGICAL MODELING OF TEMPORAL DATA

Arie Segevt and Arie Shoshani*

t School of Business Administration and
lawrence Berkeley laboratory
The University of California
Berkeley, California 94720

* lawrence Berkeley laboratory
The University of California
Berkeley, California 94720

Abstract
In this paper we examine the semantics and develop
constructs for temporal data independent of any tradi
tional data model. such as the relational or network
data models. Unlike many other works which extend
existing models to support temporal data. our purpose
is to characterize the properties of temporal data and
operators over them without being influenced by tradi
tional models which were not specifically designed to
model temporal data. We develop data constructs that
represent sequences of temporal values. identify their
semantic properties. and define operations over these
structures.

1. INTRODUCTION
Our approach to modeling temporal information is

to start with the understanding and specification of the
semantics of temporal data independent of any specific
logical data model (such as the relational model. the
entity-relationship model. the CODASYl network
model. etc.) We differ from many other works whose
starting point is a given model which is extended to
support temporal data. Examples of works that extend
the relational model are [Ariav et al 84. Clifford &
Tansel 85. Gadia 86. lum et al 84]. and examples of
works that extend the Entity-Relationship model are
[KJopproge 81. Adiba & Quang 86). We believe that
our approach leads to precise characterization of the
properties of temporal data and operators over them
without being influenced by traditional models which
were not specifically designed to model temporal data.
Once such characterization is achieved. we can attempt
to represent these structures and operations in specific
logical models. Typically. this will require extensions
or changes of the logical models; or perhaps will point
out that some models are inadequate for temporal
modeling.

Our initial motivation for temporal data comes
from applications in scientific and statistical databases
(SSDBs). where physical experiments. measurements,
simulations. and collected statistics are usually in the
time domain. Unlike many business applications that
deal only with current data. SSDB applications are
inherently time dependent. and in most cases the con
cept of a "current version" does not even exist. How
ever. it is obvious that in business applications. tem
poral data is also essential. Many business applica
tions keep a complete history of transactions over tbe
database. This is quite obvious in most business appli
cations. such as banking. sales. inventory control. and
reservation systems. Furthermore. often this history
needs to be statistically analyzed for decision making
purposes. Other applications where the time domain is
inherent include engineering databases. econometrics.
surveys. policy analysis. music. etc.

We do not attempt to model temporal "cause and
effect" events (e.g. send a paper to a referee. if the
referee does not respond \\ Ithin a month. send a rem
inder letter). as described in [StUder 86). We are
mainly interested in capturl ng the semantics of ordered
sequences of data values in the time domain. as well as
operators over them. Consequently. we define the con
cept of a Time Sequence (TS). which is basically the
sequence of values in the time domain for a single
entity instance. such as the salary history of an indivi
dual or the measurements taken by a particular detec
tor in an experiment. We define the properties of the
TSs. such as their type (continuous. discrete. etc.).
their time granularity (minutes. hours. etc.). their life
span. and other.

The association of these properties to the TSs
allow us the treatment of such sequences in a uniform
fashion. First. we can define the same operators for
TSs of different types. such as to select parts of a TS
or to aggregate over its values. Furthermore. we can
define operators between TSs of different types. such
as multiplying a discrete TS with a continuous TS.
Second. we can design the same physical structures for
different types of TSs. We can also take advantage of
some of the properties for designing more efficient
storage and access of temporal data.

In a recent paper [Shoshani & Kawagoe 86). we
have described the Time Sequence framework. with

preliminary ideas on operators aver TSs, and on physie

cal organization for TSs. Another paper [Rotem &
Segev 87] describes the design of a physical database
structure for TSs. In this paper we are concerned with
the precise specification of TSs, collections of TSs, and
operators over them. This paper is an extension of an
earlier version [Segev & Shoshani 86].

In section 2. we present our view of temporal
semantics starting with the basic notion of a temporal
value, and leading to constructs representing collec
tions of TSs. In section 3, we give precise definitions
of the temporal constructs for a time sequence (TS),
and a time sequence collection (TSC). We need these
constructs in order to define precisely the operators
over them. In section 4. we describe the general struc
ture and properties of such operators, and define their
syntax. In section 5, we discuss the requirements that
would have to be added to the relational model· in
order to accommodate the temporal data model
developed here. Section 6 contains a summary and
planned future work.

2. TEMPORAL SEMANTICS
In this section we describe the semantic properties

of temporal data and the intuition for the data con
structs we have chosen. In the next section we define
precisely these constructs.

2.1. Time sequences
In order to capture the semantics of temporal

data. we start with some basic concepts. A temporal
data value is defined for some object (e.g .• a person), at
a certain time point (e.g .• March. 1986). for some attri
bute of that object (e.g .• salary). Thus. a temporal data
value is a triplet <s .l.a >. where s is the surrogate for
the object. I is the time. and a is the attribute value.
Note that for a non-temporal data value t is considered
the "current" value. and therefore omitted.

An important semantic feature of temporal data is
that for a given surrogate the temporal data values are
totally ordered in time: that is they form an ordered
sequence. For example. the salary history of John
forms an ordered sequence in the time domain. We
call such a sequence a lime sequence (TS). TSs are
basic structures that can be addressed in two ways.
Operators over them can be expressed not only in
terms of the values (such as "salary greater than 30K"),
but also in terms of temporal properties of the
sequence (such as "the salary for the last 10 months".
or the "revenues for every Saturday"). The results of
such operators is also a TS whose elements are the
temporal values that qualified.

Since all the temporal values in a TS have the
same surrogate value. they can be represented as
<s.U.a)">. that is a sequence of pairs (l.a) for a given
surrogate. It is convenient to view TSs graphically as
shown in Figure I. Imagine that Figure la shows a
daily balance of a checking account. Note that in this.
case the pairs in the TS have the values (1.,10), (6.3),

2

10

1 2 3 4 S , 7 8 9 10 11 12 13 14 IS 16 17

.) Account bal.uc.: -"p-wis. coutUlt

I I I
b) looks so14: 41scr.t.

1""--- -.. -- ---" ",

...... - -~ - .. -,

Figure I: Example of tim~ sequences

(8.7). (14.5), (17,11), but that these values extend to
other time points of the sequence as shown. We label
such behavior of the TS "step-wise constant". In con
trast, Figure I b shows a TS of the number of copies
sold per day for a particular book. Here the temporal
values apply only to the days they are specified for.
We call this property of the TS "discrete". A further
example is shown in Figure Ic which represents meas
urements of a magnetic field by a particular detector
taken at regular intervals (Say. every second). In this
case, one can interpret tht: TS as being "continuous"
in the sense that values in between the measured
points can be interpolated i r need be.

These examples illustrate that while a TS is
defined structurally as an ordered sequence of temporal
values. its semantic behavior can differ according to
the application involved. In the next section. we define
precisely TSs and their semantic properties. Such a
definition will permit us to treat TSs uniformly when
defining operations among them. In addition. one can
design the same physical structures for TSs that have
different semantic properties. such as continuous or
discrete. Physical structures for TSs were discussed in
a recent paper [Rotem & Segev. 871.

2.2. Time sequence collections
It is natural and useful to consider the collection

of TSs for the objects that belong to the same class (or
type). For example. consider the collection of TSs that
represent the salary histories for all the employees in
the database. We refer to such a collection as the time
sequence colleclion (TSC). The usefulness of the TSC
structure stems from the ability to address the tem
poral attributes of an entire class. and relate them to
other (possibly non-temporal) attributes of the class.
For example. we may be interested in the salary history

\.,-1

,"

\ I
"

of employees in the computer department for the last 6
months. Such operations over TSCs are discussed in
the Section 4.

Since our purpose here is to model temporal
semantics. we choose to stay away from modeling con
cepts of any specific data model. such as relations, enti
ties. relationships, record types, sets, etc. Rather. we
prefer the concept of a class of objects and the
representation of TSs for them. A TSC will then be
used as the construct to represent the temporal values
associated with a class. Our approach is to first define
the structure and properties of TSCs as well as opera
tions over them. and then find a mapping to any
specific data model that we may choose (relational,
Entity-relationship. etc.) Next. we describe classes
more precisely. The concepts below have appeared in
several forms in the literature. We adopt them here
because they are convenient for describing TSCs.

2.3. Classes
A class is any collection of objects that have the

same attributes (such as a person. a department. or a
detector.) Every object of a class has a unique
identifier. called a surrogate. A composite class is a
class whose identifier requires more than a single surro
gate. For example. "attendance" is a class whose
identifier is "student. course". In general. a composite
class can be defined by using the identifiers of other
classes or other composite classes. For example. sup
pose that a course can be taught by several professors,
then an "assignment" class can be defined from the
composite class "attendance" and the class "profes
sor". A composite class can be thOUght of as a result
of the "aggregation" construct discussed in [Smith &
Smith 77]. For our purposes. this definition of a class
is sufficient. Classes with similar properties will result
from the "generalization" construct described in
[Smith & Smith 77].

Note that composite classes as described above are
constructs that are quite general. For example. in the
Entity-Relationship (ER) model entities usually
correspond to simple classes. and relationships to com
posite classes. However. in the ER model one cannot
define new relationships using existing relationships.
while composite classes can be defined using other
composite classes. A CODASYL network model is
even more restrictive~ not only that sets cannot be used
to define further sets or record types. but sets cannot
have their own attributes as is the case in relationships
of the ER model. Composite classes have no such res
trictions. In the relational model one· can define rela
tions with composite keys. but the model carries no
explicit information that the keys came from other
relations. Next. we discuss TSCs as the constructs that
describe the temporal properties of classes.

2.4. Simple TSCs
We start with a simple TSC. which is defined for

a simple class (i.e a class with a single surrogate as its
identifier). and a single temporal attribute. A simple
TSC can be described as a triple (S. T , ...) where S. T.

3

and A are the surrogate, time, and attribute domains.
respectively. A simple TSC can thus be viewed as the
collection of all the temporal values of a single attri
bute for all the surrogates of a simple class. It is con
venient to think of a simple TSC in a two-dimensional
space as shown in Figure 2.

$

J, TS 1
I
I
I
I •
I
I
I

St - - - • - - - - - - • YtJ'

Figure 2: A two-dimensional representation of a
time sequence collection

In this representation. each row corresponds to a TS
for a particular surrogate. The dots represent points
where temporal values exist. In the next two sections
we describe the semantics of simple TSCs and opera
tions over them.

We note here that non-temporal values can be
represented as a special case of the TSC. A non
temporal attribute has a single time point (usually
"current time"). and therefore its TSC will be reduced
to a single column structure. This observation is useful
later for operations that involve both temporal and
non-temporal data.

Complex TSCs are TSCs whose components S.
T. and A do not represent a single element. We discuss
each in turn.

The case that S is not a single element
corresponds to a composite class. We denote this case
as (.5. T .,4). This case can also be visualized as a two
dimensional structure. where the rows are labeled with
the composite surrogate identifier of the class. This
structure is useful in representing the temporal
behavior of relationships and their attributes. For
example. suppose that people are assigned to different
projects over time. The history of such a relationship
can be represented as «S 's).T .A). where (S,S)
corresponds to (people, projects). and A corresponds to
a binary assignment attribute (which can be
represented as the values 0 and I. for example).

The case that T is not a single element·
corresponds to a situation where temporal values have
more than one time sequence associated with them.
Such situations were discussed in length in [Snodgrass
& Ahn 85]. where the distinction is made between
"transaction time" and "valid time". Transaction time

is the time that an action is recorded. and valid time is
the time that the action takes effect (e.g. a salary raise
recorded in March. but it is effective in January).
Other authors called such times as "logical" and "phy
sical" times. We denote tbis case as (S. f .A). This case
requires the support of a single TSC with multiple
time lines.

The case that A is not a single element occurs
when several attributes occur (or are measured) at pre
cisely the same time points. For example. when collect
ing air pollution samples at regular intervals. several
measurements are taken. such as carbon monoxide.
nitrogen compounds. etc. We denote this case as
(S. T .A">. In addition to the semantic information that
these attributes occur together in the time domain. this
case also provides a concise way of representing
together several TSC5 that have the same temporal
behavior. An imponant special case is in rep!esenting
non-temporal data as the degenerate TSC (S.4). where
all the non-temporal attributes can be treated together
in a single TSC.

Obviously. any combination of the above three
cases can exist simultaneously. To simplify our discus
sion here. we only describe the constructs (section 3)
for simple TSC5. However. the operators (section _4)
are defined for TSC5 with multiple attributes (S. T .4).
Future work will address other extensions for complex
TSCs.

3. CONSTRUCTS FOR TEMPORAL DATA
In this section. we define the basic constructs of

the temporal data model (TOM). These constructs can
be processed by the data manipulation operators

. presented in the next section. In Section 2 we defined a
temporal value as a triplet <5.I.a >. and a time
sequence TS as an object <5.(I.a)*> consisting of a
time-ordered set of temporal values for a single surro
gate instance.

We distinguish between the time points and the
data points of a TS. The time points of a TS are all
the potential points in time that can assume data
values. In contrast. the data points of a TS are only
the points that actually have data values associated
with them. For example. suppose that the salary of an
individual can change during any month of a cenain
year. but actual changes took place in April and
October. Then. only' these two months are called the
data points of that TS. Since each of the months could
potentially have a value. we refer to them as the time
points of the TS. In general. the data points of a TS
are a subset of the time points. :-.Jext. we define the
.propenies of a TS.

Time Granularity
This propeny specifies the granularity of the time

points (l) of a TS. i.e. the points in time that can
potentially have data values. We allow for two time
granularity representations - ordinal and calendar. The
ordinal representation simply signifies that the

4

potential time points are counted by integer ordinal
position (1.2.3). The calendar representation can
assume the usual calendar time hierarchy values: year.
month. day •.... second. etc.

LiCe Span

Each TS has a lifespan associated with it. The life
span is specified by a stan_point and an end_point
defining the range of valid time points of the TS. The
stan-times and end-times are also represented as ordi
nal or calendar. Usually. the time granularity and the
life span have the same representation. i.e. they are
both ordinal or both calendar. However. this is not a
requirement. For example. an experiment may produce
a TS of measurements taken every second. Suppose
that the stan and end times of the experiment are not
imponant. Thus. this TS has a calendar granularity of
a second. and an ordinal life span.

We are interested in three cases of a life span:
a) stan_point and end_point are fixed.
b) stan_point is fixed and end_point is currenctime.
c) a fixed distance is defined between the stan_point

and the end_poi nt. The end_point is
"currenCtime" and the starcpoint is dynamically
changed to maintain the fixed distance from the
end_point.
In general. the life span can consist of disjoint

non-continuous segments. However. this feature can be
represented explicitly in the TS by using "null" data
values. A time point with a null value has the meaning
that a data value does not exist for this time point.
Using null data values can simplify the processing of
TS. since it is not necessary to check the legal seg
ments of the life span. Thus. we prefer the use of null
values rather than definin~ multiple segments in the
life span.

Regularity

A regular TS contains a value for each time point
in the life span interval. Thus. the data points of a reg
ular TS are the same as the time points of that TS. An
irregular TS contains values for only a subset of the
time points within the life span interval.

While the specification of this property is quite
useful for the J~sign of physical structures. it has
semantic value as well. It is important for a user to
know whether a data value can be expected for every
time point of the TS. Also. most time series analysis
methods can only be applied to regular TSs.

Type

The type of a TS determines the data values of
the TS for time points that do not have explicit data
values. In general. there is an interpolation function
associated with each TS. Some of the interpolation
functions are very common. and therefore are given
specific type names below.

We are interested in the following types of time
sequences:

J

'.

a) Step-wise constant: if (ti ,ai) and (tkoad are two
consecutive pairs in TS such that Ii < Ib then
aj = ai for Ii ~ Ij < II.:'

b) Continuous: a continuous function is assumed
between (/i,ai) and (tkoad which assigns aj to I j
(Ii ~ Ij ~ II.:) based on a curve fitting function.

c) Discrete: each value (aj) in TS is not related to
other values. Consequently, missing values cannot
be interpolated.

d) User defined type: missing values in TS can be
computed based on user defined interpolation
functions.
It should be noted that the type property may

apply to both a regular and irregular TS. For example,
a type step-wise constant for a regular TS means that
the associated interpolation rule applies to all granular
ities smaller than or equal to the granularity of the TS;
this is true for all continuous types of which step-wise
constant is a special case.

Now. we can define a lime sequence colleclion
(TSC) more precisely. A TSC is a collection of time
sequences for the same surrogate class and with the
same properties. The TSC is a basic construct in the
TOM and can be manipulated by. the operators dis
cussed in the next section.

It follows from the above definition of a TSC that
the properties of the TSC are the same as those
defined for a TS. since all the TSs that belong the the
same TSC have the same properties. Below is an
example of a TSC and its properties, as well as two
instances of TSs that belong to it.

Example
Surrogate class: bank account number
Temporal-attribute type: account balance
Time granularity: day
Life span: start_point = 1/1/86; end_point= 1/9/86
Regularity: irregular
Type: step-wise constant

A TS for account number 1462 is:
(I /I /86.57). (1/4/86.50). (1/6/86.65). (I/9/86,60)}

A second TS for account number 2526 is:
((1/1/86.35), (1/3/86.45), (117/86,55)}

A two-dimensional representation of this TSC is
shown in Figure 3a. where rows represent different sur
rogates and columns represent the time points of the
TSC. Although it is' convenient to view a TSC in this
two-dimensional space, we do not imply that this is the
preferred structure either for physical or logical
representation. Indeed there may be different represen
tations that can be used for illustrative or visual pur
poses. For example. Figure 3b shows a graphical
representation of the TSC, where the interpolation
function (in this case step-wise constant) is used to fill
in missing time points. Figure 3c shows a tabular (rela
tional) representation of the TSC. Figure 3d is another
tabular representation. where the surrogate values are
not repeated (this representation was referred to in the
literature as non-first normal form of a relation).

5

Finally, Figure 3e shows an expanded tabular form of
the TSC, where the missing values have been interpo
lated.

The above examples illustrate that the operators
·defined for TSCs should not be dependent or selected
according to a particular representation. Rather, when
a particular representation is chosen to conform to a
given model (such as tables as in Figure 3c for the rela
tional model), then the operators defined in the next
section should be supported by that model.

4. OPERATIONS OVER TSCs

4.1. Principles
The operators presented in this section obey two

principles. These principles hold regardless of the
complexity of the operators.

The first principle is that every operator over one
or more source TSCs will produce a single target TSC.
This principle permits the iterative application of
operators to form a sequence of complex operations
when needed. It should be noted that, in a particular
implementation, the basic operators can be combined
into higher-level operators.

The second principle is that every operator must
have three functional parts: target specification, map
ping, and function; we describe them below. This prin
ciple ensures that all the operators are consistent. It
also permits complex user-defined operators to con-
form to the format of the other operators. .

Target Specification

The target specification part determines the valid
points of the target TSC. A point of a TSC is specified
uniquely by the s and I components of the temporal
value. As will be shown later. a target specification can
result in a subset of the data points of the source TSC,
or can have different data points specified (e.g. the
source TSC specifies days, and the target TSC specifies
months.)

Mapping

The mappingt part specifies for each point of the
target TSC the set of points of the source TSC to be
manipulated to generate a target temporal value. For
example. in an aggregation operation. for each target
point there is a set of source points used to generate
the target value.

t We use here the term mapping in the sense of correspon
dence between source and target points rather than in its precise
mathematical meaning.

5 T A

1 2 3 4 567 8 9 2 3 456 7 8 9 1462 1/1/86 57

1462 50 65 60 1462 ~ 1- 1462 1/4/86 50 ~7 . . .
J

2526 35 45 55 2526 1462 1/6/86 65 . . .

.) • 2-D ,..p,.u.nt.tion
of. TSC

b) • g,..phic.l ,..p,..s.nt.tion c) • hbul.,. ".p,..s.nt.tion
of. TSC of. TSC .

5

1462

2526

(T,A) pe;rs

(1/1/86,57), (1 /4/86, 50), (1 /6/86,60),
(1 /9/86,60)

(1/1/86,35), (1 /3/86, 45), (1 /7/86,55)

d) • hbul.,. ,..p,.u.nhtion of. TSC
with su,.,.og.tu f.cto,..d out

2 3

1462 57 57 57

2526 35 35 45

4 5 ·6 7 8 9

50 50 65 65 65 60

4S 45 45 55 5S 55

Figure 3: Different representations of a TS(·

Function

The function pan specifies the function to be
applied to the values of the source points in order to
generate the target value. This function may be as
simple as a sum and other arithmell~ operations. or it
can invol\e complex computations that could be user
specIfied b~ means of a program.

It should be pointed out that any of the above
pans ma~ be specified as ··identity··. In the case of tar
get specification. an identity specification means that
all the points in the source TSC will appear in the tar
get TSC. An identity mapping means that each target
point corresponds to the same source point. An iden-

6

titv fun~tion mean', that tht: target value is the same as
th~ source value. \t the lllher -extreme. each of these
pans can he completel~ user specified by means of a
program. We 'A ill ~I ve below an example that requires
user defined parts.

..&.2. Common operators

I n this section we describe the basic retrie\ al
operators of the TOM. The retrie\al operators and
their three functional parts are summarized in Table I:
their precise s~ nta\ is gi \en in the Appendix. The s~ n
tax that 'Ae adopted is SQL-like and its general form is
given below I the use of T. ")". . ~'. and .• ' are explained
in the .~ppendi.\.)

'J

t·

..

.J

operator-name (:--ITO target-tsc function
FROM source-tsc [.source-tscJ·
WHERE target-specification
GROUP BYITO mapping-specification

In general. there are many operators over time
sequences that are useful for different. applications. For
e:<ample. there is a large body of literature on tlm.e
series analvsis that uses different operators for statisti
cal analvsis. such as regression. cross correlation. etc.
Our purPose here is to identify several common opera
tor classes bv means of the three parts mentioned
above: target ·speciflcation. mapping. and function. For
more complex operations. user deli ned routines (which
can be stored in libraries) can be incorporated in the
queries in place of each of these three parts. T~e most
general case is when all three parts are user defined as
shown in the last entry of Table I. In general. user
deli ned parts can replace any of the parts of the opera
tors shown in Table I.

In addition to the operators shown in Table I.
there are additional operators that we do not specify
here in detail. These include a set operator to combi~e
TSCs. update operators. and a data delinition opera
tor. The data d~linition operator is needed in order to
create TSCs and to deline their properties (discussed
in Section 31. The data delinition op~rator can also be
used to e'(plicitl\' change the prop~rties of an existing
TSC (implicit changes may occur as a result of data

manipulation operations. e.g. the time granularity of a
TSC is changed when the user specifies an aggregation
along the time dimension). It should also be noted that
certain shortcuts can be incorporated into the syntax
b ... combining functionalities of the basic operators in
Table I into higher-level operators (including the incor
poration of-property definition syntax into the basic
operatorsl. We do not discuss here such shortcuts any
further.

Each operator and its syntax will be explained by
examples. The examples utilize the following TSCs.

BOOK_SALES (type = discrete) • contains the daily
sales of books (surrogates): the temporal attribute
contains the number of books sold. and is named
QUA~TITY.

BOOK_PRICE (type '" stepwise constant) • contains
the daily prices (temporal attribute named PRICE)
of books (surrogates).

BOOK (type = nontemporal) • contains three attributes
for each book: TY PE (math. computers. etc.).
AlJTHOR·~AME. and DISCOUNT (% discount
for QU.-\~TITY> 10).

EMP _COMMISSION (t' pe = discrete) - contains the
daily commissions (temporal attribute named
COMMISSIO~) of ~mployees (surrogates).

EMP _SALARY (type = stepwise constant) • contains
the monthly salarie~ (temporal attribute named
SAl.-\RY) of employees (surrogates).

Operator Target Specification Mappinl Function

select predicate conditions identity arithmetic operations
over S,T and A over attributes

or identity

aggregate implied by mapping group specification aggregation operators
over S or T (sum, maxim un, ...)

accumulate identity sequence specification aggregation operators
over T (sum. maxim un)

restrict surrogate restriction identity identity
by auxiliary TSC

composition identity corresponding points arithmetic or
of source TSCs aggregation operators

general user defined user defined user defined

Table 1: Classification of temporal operators

7

SELECTION
The selection operator extracts parts of a TSC

that satisfy a predicate referencing sand/or 1 and/or a
values. The target specification part determines the
points (S./) of the source TSC that will appear in the
target TSC. The mapping part is identity in this case.
while the function can be either an identity or a mani
pulation of the a -values. By default. the target TSC
inherits all the properties of the source TSC. except
the lifespan which may be changed as a result of the
temporal clause.

The predicates over the s and a values are the
usual predicates found in query languages. However.
the predicates over t values have additional features
that refer to sequences of the temporal values. Selec
tion over t values can be made by specifying intervals
or sequences (in addition to the usual, predicates.)
Intervals are specified by start and end points.
Sequences are specified by giving the number of points
desired from a reference point. The sequence points
can be specified looking forward (using NEXT) or
backwards (using LAST.) There is a distinction made
~etween requesting time points or data points (i.e. only
time pomts that have data values.) The predicates T
:'IiEXT. T-lAST. V-NEXT. V-LAST are used for this
purpose. When the reference point of a sequence is
specified as ordinal number. it refers to data points or
time points according to the predicate (T·LAST. T
NEXT. etc.) used.

The time points can be specified as calendar
values (in the same units of the TSC. or as ordinal
values referring to their position in the TS. They can
also assume the values BEGIN and END to specify the
beginning and end of the TS. For example. an interval
can be specified as (111186 TO END). We give below
several SELECT queries that illustrate some of the
above predicates.

Example I
"Get the January sales figures for books #5 and #9."

SELECT [NTO JAN_SALES QUANTITY
FROM BOOK_SALES
WHERE S IN (5.9) AND TIN (111186 TO 1131186)

The example illustrated one possible specification of
the time points. In examples 1 and 3 below. assume
that the salary TS of employee .10 is l (4/85:14000).
(6/85:25000). (8/85:18000). (9185:30000).
(11/85:33000). (1186:36000»).

Example 2
"Get the 4 salary values preceding January 1986 for
employee • to." Note that we want the last four dis
tinct salary values. not the salary for the last four
months. Thus. the predicate V-LAST is used.

8

SELECT INTO EMPIO_SALARY SALARY
FROM EMP _SALAR Y
WHERE S= to AND T IN (V-LAST 4 FROM 1/86)

The resulting time and salaries are (6/85:25000).
(8185:28000). (9/85:30000). (11/85:33000)}. That is.
the ,values of the 4 TS data points preceding 1186 are
retneved. Example 3
"Get the salary values of employee # lOin the 4
months preceding January 1986."

This query is the same as in Example 2. except that we
use the predicate T·LAST instead of V-LAST. In this
case. the resulting time and salaries are (((9/85:30000),
((10/85:30000). (11185:33000). (l2/85:33000)}. Note
that in this case. the values for October and December
were interpolated using the interpolation rule associ
ated with the stepwise-constant type property.
AGGREGATION

The aggregation operator can be applied over
g~oups in the time dimension or the surrogate dimen
sIon. For the time dimension. the target specification
part determines the new time points of the target TSC.
In many cases. time aggregations are for calendar time
where the new time points of the target TSC will be of
granularity higher than that of the source TSC. For the
surrogate dimension. the target specification part will
determine new surrogate values: these values are usu
ally a -values from another TSC. For example. books
may be aggregated by type. and therefore the new sur
rogate values will be the TYPE values. For aU cases of
aggregatio~. each point in the target TSC is mapped to
a set of POlDtS 10 the source TSC (note that in the case
of aggregation these sets of points are disjoint). The
function to be applied tl) each set of mapped points
can be any aggregate that >:!~nerates a single-valued out
put (such as sum. average:, count. etc.). By default. the
target TSC inherits all the properties of the source
TSC. except the time granularity which may be
changed. and the type which is changed to discrete.

Example 4
"Sum the book sales by month."

AGGREGA TE I "TO MONTHLY_SALES
SUM QUA:"TITY

FROM BOOK_S \LES
GROUP T BY \IO:'liTH

Note that the time hierarchv and its time-unit key
words are known to the' svste~.
Example S .
"Sum the daily book sales by type."

AGGREGATE INTO TYPE SALES
SUM QUANT[TY -

FROM BOOK_SALES
GROUP S BY BOOK.TYPE

[n this case. the grouping information (namelv. the
type of book) is obtained from another TSC. .

ACCUMULATION
The accumulation operator is carried out along the

time dimension. Its purpose is to obtain a new value
for eacb data point based on a sequence of values
preceding or foUowing it in the TS. For example. get
ting the balance of an account from the TS of deposits
and withdrawals involves a SUM accumulation from
tbe beginning of tbe TS.

The target specification part for this operator is
"identity", i.e. tbe points of the target TSC are the
same as the points of tbe source TSC (which also
implies tbat there is no change in the time granularity).
Each point of the target TSC is mapped to a set of
points in the source TSC. Unlike the aggregation
operation. the sets of mapped points are not disjoint.
The function part may be any aggregation function.
The default properties of the target TSC are the same
as for aggregation.

Example 6
Assume that the temporal values of a TS are
6.4.7.3.5.4. The following illustrates typical mappings
and the results of applying the SUM function to them.

GROUP TO BEGIN; the result is: 6.10.17.20.25.29.
Each value in the source sequence was replaced by the
sum of itself and all the values preceding it.
GROUP TO END; the result is: 29.23.19.12.9.4. Each
value in the source sequence was replaced by the sum
of itself and all the values following it.
GROUP TO V-LAST 2; the result is: 6.10.11.10.8.9
Each value in the source sequence was replaced by the
sum of itselJ and the value preceding it.
GROUP TO V-NEXT 2; the result is: 10.11.10.8.9.4
Each value in the source sequence was replaced by the
sum of itself and the value succeeding it. The usage of
T·LAST and T-NEXT is the same as in Example 3~
Example 7
This example calculates a series of moving averages
useful in forecasting applications.
"Get a series of 7-day moving averages of book sales."

ACCUMULA TE INTO A VG_SALES
A VG QUANTITY

FROM BOOK_SALES
GROUP TO T-LAST 7
RESTRICTION

A restriction operator involves a target TSC. a
source TSC. and an auxiliary TSC (following the BY
keyword). This operation is similar to the semi-join
operation in the relational model. Its purpose is to
select only those surrogates of the source TSC that also
appear in the auxiliary TSC. For example. suppose
that we want to look at sales records of mathematics
books only. Since the type of book is in a TSC other
than the sales TSC. a restriction operator is needed,

Both the source and the auxiliary TSC must have
the same surrogate type. The target specification part
qualifies time points of the source TSC only for those
surrogates that appear in the auxiliary T$.C as
explained above. The auxiliary TSC can have

9

predicate conditions applied to its attributes in order
to select the surrogates of interest. The mapping and
the function parts of the operation are identity. The
target TSC inherits all the properties of the source
TSC.

Example 8
-"Get the salary history of employees who are paid a
commission greater than 1000."

RESTRICT INTO COM_EMP
FROM EMP _SALARY
BY EMP _COMMISSION.COMMISSION > 1000
COMPOSITION

The composition operator enables manipulation of
related data that are part of two TSCs. We distinguish
between three types of compositions: pairwise. by sur
rogate. and by time. In the case of pairwise composi
tion (this is the default when the 'BY comp-method'
clause is not specified). the source TSCs must have the
same surrogates. time granularity, and lifespan. In this
case. a function is applied to each corresponding pair
of points (one from each TSC) to produce a single
value in the target TSC. The target specification part
is identity (with respect to either of the source TSCs).
A target point is mapped to two points. each of wbich
is an identity mapping to one of the source TSCs. The
function part manipulates each pair of source a -values
(values are interpolated when necessary) to produce a
single target value. The following example illustrates a
pairwise composition.
Example 9
"Get the daily book revenues (assume no discounts)."

COMPOSE INTO BOOK_REVENUE
REVENUE = QUA:'IITITY x PRICE

FROM BOOK_SALES. BOOK_PRICE
The default properties of the target TSC in pair

wise composition are as fullows. The time granularity
and lifespan properties of the target TSC remain the
same as those of the source rscs. If both source rscs
are regular so is the target TSC: otherwise. the target
TSC is irregular. The type of the target TSC is:
discrete. if either uf the source TSCs is discrete: step
wise constant. if both of the source TSCs are stepwise
constant: and conIIDUOUS. if both source TSCs are con
tinuous or one is \.·ontinuous and the other is stepwise
constant.

The more general case of composition is between
the corresponding values of multiple TSCs _ We chose
to show here the case of two TSCs only since it
simplifies its presentation. Clearly. we can get the
same effect by multiple applications of the pairwise
compositions.

When composition is done by surrogate. the first
source TSC must be the TS of a single surrogate with
time granularity and lifespan the same as those of the
second source rsc. This single surrogate row (when;
viewed in the 1·dimensional space of Figure 1) is
applied to each of the surrogate rows of the second:
TSC. The target specification part is an identity with.

e
J)eCt to the second source TSC. Each target point is

apped to two points; the first point is the id~nti~y
int in the second source TSC. and the other POlDt IS

epoint in the Drst TSC having tbe same time value
~ tbe mapped point in the second TSC. The function
part and the default properties of the target TSC are
~be same as in the case of pairwise comparison.

In the case of composition by time. the first source
'rsc has a single time point. An example is a non
temporal TSC with a single attribute. This operator is
similar to the composition by surrogate. except that a
lime column is applied· to each of the columns of tbe
second source TSC. The target specification part is an
identity with respect to the second source TSC. Each
target point is mapped to two points; the first point is
tbe identity point in the second source TSC. and the
other point is the point in the first TSC having the
same surrogate value as the mapped point in the
second TSC. The function part is the same as in the
case of pairwise comparison. The properties of the tar
get TSC are the same as those of the second source
TSC. The next example illustrates composition by
time.

Example 10
"Get the daily book revenues for discounted sales
only." Since discounts exist only when the quantity is
greater than 10. we first have to eliminate smaller
quantities (these values are replaced by nulls.) This is
done with the SELECT statement below. Then. we
have to find the discounted price for each book. How
ever. the price of the books changes over time while
there is only a single discount value for each book (in
the BOOK TSC.) Thus. we need to apply the column
DISCOUNT to the BOOK. PRICE TSC. This is done
in the first composition (by time). The second composi
tion (pairwise) creates the desired revenue TSC.

SELECT INTO DISCOUNT_QUANTITY
D_QTy,.QUANTITY

FROM BOOK_SALES
WHERE QUANTITY> 10

COMPOSE INTO DISCOUNT_PRICE
D_PRICE .. (I-(DISCOUNT/lOO»xPRICE

FROM BOOK.BOOK_PRICE
BYT

COMPOSE INTO DISCOUNT_REVENUE
D_REVENUE-D_QTYxD_PRICE

FROM DISCOUNT _QUANTITY.DISCOUNT _PRICE

4.3. An example or UHr defined operators
The following is a fairly complex example that is

taken from a real application. We go through it in
some detail to illustrate how it can be handled with
user defined operators over TSCs.

Consider the measurements that result from a typ
ical high energy physics experiment. Such experiments
often use several kinds of detectors to determine (even
tually) the trajectory. energy. velocity. etc. of panicles.

10

We restrict our attention to two kinds of measure
ments: electric voltage tbat corresponds to the position
of the particle relative to the detector. and the mag
netic field measured at regular intervals.

Suppose tbat tbe above measurements are organ
ized as TSCs where the surrogates represent the
different detectors. There is one TSC for electric meas
urements and one TSC for magnetic measurements.
The goal is to correct the electric measurements
according to the magnetic fields. To achieve this we
first have to find tbe magnetic fields at the positions of
the electric detectors. and tben use these values to
compute the corrected electric values.

Let us consider first computing the magnetic fields
at the position of the electric detectors. A general
operator can be defined as follows. The target'
specification part specifies that the surrogates of the
target TSC are the same as those of the electric detec
tor TSC. The temporal points stay the same as the
magnetic field TSC. The mapping part specifies for
each electric detector position (of the target TSC) the
relevant magnetic detectors that will be used for com
puting the magnetic values. This is done by a user pro
vided program that uses the coordinates of the detec
tors (for example. finding a set of near neighbors).
Finally. the function part specifies the computation to
be used to generate the target values (for example, a
weighted average). Here. again. the function is pro
vided by the user.

Next. the operator for correcting the electric field
values is specified. It is a fairly simple composition
operator over the electric TSC and the magnetic TSC
computed in the previous step. The function part is a
user defined program that computes the corrections.
Note that the two TSCs may generally have different
time points. since the measurements of the magnetic
field are taken at regular I ntervals. while the electric
fields are taken only when I nduced by passing particles.
However. this is taken care of automatically by the sys
tem. since the magnetic field TSC has the type "con
tinuous". and the values are interpolated by a system
supplied interpolation routine. As noted in section 3.
the interpolation routine can also be user defined if
necessary.

5. REPRESENTI~G THE TOM IN THE RELA
TIONAL MODEL

We indicated in the introduction that our goal is
to develop a temporal model which is independent of
any specific traditional data model. Once such a goal is
achieved. we can examine what is required to represent
the structures and operators we have developed in
existing logical models. We examine here the effects of
representing the TDM in the relational model. The dis
cussion below is only an outline of such a representa
tion; detailed specifications are the subject of current
research.

First. we need to represent TSCs. At fi~t glance
this could be simply achieved by defining a relation

\.i

\)

witb tbree columns for S, T, and A. However, a T5.C
has severaJ semantic properties that need to be maID
tained by the system; i.e., granularity, lifespan, type,
and regularity. maintaining these properties is quite
'important since this is the means by which the s~st~m
can perform interpolation of data values for mlS~lng
temporal values and to interpret the operations
correctly. Thus. we will need a special relation type (a
temporaJ relation) that supports these semantic proper
ties.

A temporaJ relation must also have the semantics
of being time ordered. as is a TSC. While tbe t~ples
can be stored in principle in any order there IS an
implicit time order for certain operations. For exam
ple. assume that the temporal relation represents salary
history by month as a step-wise constant seque~ce. A
select operator for the salary in a month that IS not
stored in the relation would have to order the salary
values by month in order to determine the salary in the
last appropriate month. Other operators. such as accu
mulation and composition. also use this implicit order.

The representation of a TSC as a three column
relation conforms with the representation of relations
as tables. However, it implies a repetition of the surro
gate values for all the time values that exist. This is the
reason that some authors have chosen to use non-first
normal form relations. For example. in [Clifford &
Tansel 85], the authors proposed some variatio~s. of
relations. Clifford suppresses the surrogate repetltlon
and lists the time-value pairs of each temporal attri
bute in successive tuples. Tansel defines a complex
data type that contains a list of triples for s~art-time,
end-time. and value. While such representations may
improve the visualization of a temporal relation. they
are not essential to the representation of a TSC. As
long as the system recognizes and supports the logical
construct of a temporal relation (with the structuraJ
and semantic properties of TSCs). it may choose any
of several visual representations. such as those shown
in Figure 3.

Next. we examine the operators on TSCs and
whether they can be supported by current relational
operators. The select operator can be supported with
predicate conditions on relations; excep~ that ne,w
predicates will have to be defined for the time domalD
that refer to ordered values (e.g. last 10 months). and
calendar values (e.g. every Thursday). The aggregation
operator could be supported by the aggregate functions
of relational languages. except that the language would
need to recognize the calendar hierarchy (e.g. days
grouped into months) for the purpose of aggregation.

The accumulation operator cannot be directly
represented with relational operators. since it requires
a running accumulation of values. Similarly. the com
position operator that finds matching values (if neces
sarv bv interpolation) in the time domain is an opera
tor' th~t has to be added. The restriction o'Perator which
behaves like a semi-join. can probably be defined ~y a
combination of a join and a projection. Finally. to
accommodate user defined operators. there would have
to be a facility where any of the three parts of an

11

operator discussed in section 4 (i.e.. target
specification. mapping, function) can be replaced by a
user detined program. Also. the system should permit
the interpolation function of a temporaJ relation to be
user defined.

We believe that many of the constructs for opera
tors over TSCs developed in this paper can be readily
used with temporal relations. This is particularly true
for extending SQL since we have used an SQL-Iike for
mat.

6. SUMMARY AND FUTURE WORK
[n this paper we have developed a temporal data

model which is independent of any specific traditional
data model. such as the relational model. We believe
that this approach is more appropriate than extending
existing models to accommodate temporal data. since
such models were not designed especially to model
temporal semantics.

We have defined temporaJ data structures tbat
support naturally sequences of temporaJ values. We
have described the semantic properties of sucb struc
tures. and developed operators that manipulate them.
We have demonstrated by means of several examples
the capability to represent the semantics of and to
manipulate temporal data. We have also outlined the
requirements to be added to the relational model in
order to support the temporal data model presented in
this paper. Current research addresses the detailed
specifications of such requirements. We also plan to
develop the representation of the temporal data model
developed here as part or extensions of existing models
(other than the relational).

Other research work includes the extension of the
operators for complex TS('\ to include structures that
permit multiple surrogate,. as well as multiple time
lines: and an investigation of the use of abstract data
types methods to define op~rators on time series.

Acknowledlement
This work was supported by the Applied

Mathematical Sciences Research Program of the Office
of Energy Research. U.S. Department of Energy.
under contract number DE-AC03-76SF00098. and by a
grant from Institute of Business and Economic
Research in the L niversity of California at Berkeley.

Appendix

The following notation is used in the syntax below:
lower-case letters are used for variable names: upper
case letters are used for keywords: 1 denotes 'or': [1 is
used to designate optional expressions: and • denotes
zero or more occurrences. The general syntax of an
operator is:

operator-name INTO target-tsc function
FROM source-tsc [,source-tsc]*
WHERE target-specification
GROUP BYITO mapping-specification

The Syntax of TDM's Data Retriel'aI Laapage

SELECT [INTO target-tsc] att-list
FROM source-tsc
[WHERE select-clause]

AGGREGA TE [INTO target-tsc] function
[UNIQUE] [attribute-name]

FROM source-tsc
GROUP [S I T] BY group-clause

ACCUMULATE [INTO target-tsc] function
[UNIQUE] [attribute-name]

FROM source-tsc
GROUP TO acc-clause

RESTRICT [INTO target-tsc]
FROM source-tsc
BY aux-tsc.att-clause

COMPOSE [INTO target-tsc] c-function
FROM source-tsc.soutce-tsc
[BY comp-method]

target-tsc :: = tsc-name
source-tsc :: oz tsc-name
aux-tsc :: oz tsc-name
select-clause :: oz select-element

I (select-clause boolean-op select-clause)
select-element :: oz surr-clause

I temp-clause I att-clause
boolean-op :: = AND' I OR
surr-clause :: == [NOT1 surr-predicate
temp-clause :: = [NOT] temp-predicate
att-c1ause :: == [NOT] att-predicate

surr-predicate :: == S predicate-op value
I S IN (values)

predicate-op :: = = I ~ I > I ~ I < I ~
values :: = value [. value]·
value :: == integer I real I string

att-predicate ::.. aU predicate-op value
I value predicate-op att I au IN (values)
I au predicate-op att

au :: = attribute-name I (aU arith-op att)
arith-op ::.. + I - I x I / I .*
an-list :: = [new-name-] an [.[new-name ..] an]*

temp-predicate ::.. T predicate-op t-value
I T IN (t-values)
I T IN (t-range [,t-range)·)

t-value ::.. t-ordinal I t-calendar
t-ordinal :: .. integer I BEGIN I END
t-calendar ::- gregorian-value I BEGIN I END
t-values ::,. t-ordinal [.t-ordinal)*

I t-calendar [,t-calendar)*

12

t-range :: = interval I sequence
interval ::= t-start TO t-end
sequence :: = sequence-op integer

FROM reference-time
sequence-op ::= V-LAST I V-NEXT

I T-LAST IT-NEXT
reference-time :: = t-value
t-start :: = t-value
t-end ::.. t-value

function :: = . A VG I MAX I MIN I SUM I COUNT
groupcclause ::= time-unit I integer

I tsc-name(.attribute-name]
acc-clause ::.. sequence-op integer I BEGIN I END
time-unit ::.. YEAR I MONTH I DAY

I HOUR I MINUTE I SECOND

c-function ::'" new-name= aggr-expr
I new-name= arith-expr

aggr-expr :: = aggr-op [attribute-name,attribute-name]·
aggr-op :: .. MAX I MIN I AVE
arith-expr ::.. «arith-pair) arith-op value)

I (value arith-op (arith-pair»
arith-pair :: = c-att arith-op c-att
c-att ::= att-name I (c-an arith-op value)

I (value arith-op c-att)
comp-method ::= SIT

Notes:
I) AU tokens in the syntax that end with '-name' are
strings of characters amd/or digits.
2) The token 'gregorian-value' can assume different for
mats (such as mm/ddlyy for' months. days. years)
which depend on the application. We chose not to
specify the formats here.

REFERENCES

[Adiba & Quang 86)
Adiba. \1 .. Quang. :--I. B.. Historical Multi
Media Databases. Proceedings of the Interna
tional Con.lerence on Very Large Data Bases
O'LDB). 1986. pp, 63-70.

[Ariav et al 84 J

Ariav. G .. Beller. A .• Morgan. H .. A Temporal
Data t\lodel. Technical Report. New York
University. December. 1984.

[Bolour et al 82J
Bolour.-\.. Anderson. T.L.. Dekeyser. L.1..
Wong. H.K.T .. The Role of Time in Informa
tion Processing: A Survey. AC.\l-SIGAIOD
Record. 12. 3. 1982. pp. 27-50.

[Clifford & Tansel 85]
Clifford. J .. Tansel. A .. On an Algebra for His
torical Relational Databases: Two Views.
Proceedings of the ACM SIG.'vIOD Interna
tional Conference on Management of Data.
May 1985. pp. 247-265.

[Gadia 86]
Gadia. S.K .. Toward a Multihomogeneous
Model for a Temporal Database. Proceedings

;,

of the International Conference on Data
Engineering. 1986, pp. 390-397.

[Klopproge 81]
Klopproge, M.R., TERM: An Approach to
Include the Time Dimension in the Entity
Relationship Model, Proceedings of the Second
International Conference on E-R Approach.
1981. pp. 477-512.

[Lum et al 84]
Lum, V., Dadam. P .• Erbe, R., Guenauer. J .•
Pistor. P., Walch. G .• Werner. H .• Woodfill .. J .•
Designing Dbms Support for the Temporal
Dimension. Proceedings of the ACM SIGMOD
International Conference on Management of
Data. June 1984. pp. 115-130. March. 1986.

[Rotem & Segev 87]
Rotem. D .. Segev. A .. Physical design of Tem
poral Databases. to appear in Proceedings of
the Third International Conference on Data
Engineering. February. 1987.

[Segev & Shoshani 86]
Segev. A .• Shoshani. A .. Modeling Temporal
Semantics. Lawrence Berkeley Laboratory
Technical Report LBL-22337. October 1986.
To. appear in TAIS (Temporal Aspects in
Information Systems) conference. May 1987.

[Shoshani & Kawagoe 86]
Shoshani. A .. Kawagoe. K .. Temporal Data
Management. Proceedings of the International
Conference on Very Large Databases. August
1986. pp. 79-88.

[Smith & Smith 77]
Smith. J. M .. and Smith. D. C. P .. Database
Abstractions: Aggregation and Generalization.
ACJI TODS 2. 2. June 1977.

[Snodgrass 84]
Snodgrass. R .. The Temporal Query Language
TQuel. Proceedings of the Third ACM SIG
.\lOD S.vmposium on Principles of Database
SJ'stems (PODS). Waterloo .. Canada. April
1984. pp. 204-213.

[Snodgrass & Ahn 85]
Snodgrass. R .. Ahn. I.. A Taxonomy of Time
in Databases. Proceedings of the ACM SIG
JIOD International Conference on .'.fanage
ment of Data. May 1985. pp. 236-246.

[Studer 86]
Studer. R.. Modeling Time Aspects of Infor
mation Systems. Proceedings of the Interna
tionai Conference on Data Engineering. 1986.
pp. 364-373.

13

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

'-..l-' -

LA WRENCE BERKELEY LABORA TORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

,,..-- ~

