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Abstract 
In this paper we examine the semantics and develop 
constructs for temporal data independent of any tradi­
tional data model. such as the relational or network 
data models. Unlike many other works which extend 
existing models to support temporal data. our purpose 
is to characterize the properties of temporal data and 
operators over them without being influenced by tradi­
tional models which were not specifically designed to 
model temporal data. We develop data constructs that 
represent sequences of temporal values. identify their 
semantic properties. and define operations over these 
structures. 

1. INTRODUCTION 
Our approach to modeling temporal information is 

to start with the understanding and specification of the 
semantics of temporal data independent of any specific 
logical data model (such as the relational model. the 
entity-relationship model. the CODASYl network 
model. etc.) We differ from many other works whose 
starting point is a given model which is extended to 
support temporal data. Examples of works that extend 
the relational model are [Ariav et al 84. Clifford & 
Tansel 85. Gadia 86. lum et al 84]. and examples of 
works that extend the Entity-Relationship model are 
[KJopproge 81. Adiba & Quang 86). We believe that 
our approach leads to precise characterization of the 
properties of temporal data and operators over them 
without being influenced by traditional models which 
were not specifically designed to model temporal data. 
Once such characterization is achieved. we can attempt 
to represent these structures and operations in specific 
logical models. Typically. this will require extensions 
or changes of the logical models; or perhaps will point 
out that some models are inadequate for temporal 
modeling. 

Our initial motivation for temporal data comes 
from applications in scientific and statistical databases 
(SSDBs). where physical experiments. measurements, 
simulations. and collected statistics are usually in the 
time domain. Unlike many business applications that 
deal only with current data. SSDB applications are 
inherently time dependent. and in most cases the con­
cept of a "current version" does not even exist. How­
ever. it is obvious that in business applications. tem­
poral data is also essential. Many business applica­
tions keep a complete history of transactions over tbe 
database. This is quite obvious in most business appli­
cations. such as banking. sales. inventory control. and 
reservation systems. Furthermore. often this history 
needs to be statistically analyzed for decision making 
purposes. Other applications where the time domain is 
inherent include engineering databases. econometrics. 
surveys. policy analysis. music. etc. 

We do not attempt to model temporal "cause and 
effect" events (e.g. send a paper to a referee. if the 
referee does not respond \\ Ithin a month. send a rem­
inder letter). as described in [StUder 86). We are 
mainly interested in capturl ng the semantics of ordered 
sequences of data values in the time domain. as well as 
operators over them. Consequently. we define the con­
cept of a Time Sequence (TS). which is basically the 
sequence of values in the time domain for a single 
entity instance. such as the salary history of an indivi­
dual or the measurements taken by a particular detec­
tor in an experiment. We define the properties of the 
TSs. such as their type (continuous. discrete. etc.). 
their time granularity (minutes. hours. etc.). their life 
span. and other. 

The association of these properties to the TSs 
allow us the treatment of such sequences in a uniform 
fashion. First. we can define the same operators for 
TSs of different types. such as to select parts of a TS 
or to aggregate over its values. Furthermore. we can 
define operators between TSs of different types. such 
as multiplying a discrete TS with a continuous TS. 
Second. we can design the same physical structures for 
different types of TSs. We can also take advantage of 
some of the properties for designing more efficient 
storage and access of temporal data. 

In a recent paper [Shoshani & Kawagoe 86). we 
have described the Time Sequence framework. with 



preliminary ideas on operators aver TSs, and on physie 

cal organization for TSs. Another paper [Rotem & 
Segev 87] describes the design of a physical database 
structure for TSs. In this paper we are concerned with 
the precise specification of TSs, collections of TSs, and 
operators over them. This paper is an extension of an 
earlier version [Segev & Shoshani 86]. 

In section 2. we present our view of temporal 
semantics starting with the basic notion of a temporal 
value, and leading to constructs representing collec­
tions of TSs. In section 3, we give precise definitions 
of the temporal constructs for a time sequence (TS), 
and a time sequence collection (TSC). We need these 
constructs in order to define precisely the operators 
over them. In section 4. we describe the general struc­
ture and properties of such operators, and define their 
syntax. In section 5, we discuss the requirements that 
would have to be added to the relational model· in 
order to accommodate the temporal data model 
developed here. Section 6 contains a summary and 
planned future work. 

2. TEMPORAL SEMANTICS 
In this section we describe the semantic properties 

of temporal data and the intuition for the data con­
structs we have chosen. In the next section we define 
precisely these constructs. 

2.1. Time sequences 
In order to capture the semantics of temporal 

data. we start with some basic concepts. A temporal 
data value is defined for some object (e.g .• a person), at 
a certain time point (e.g .• March. 1986). for some attri­
bute of that object (e.g .• salary). Thus. a temporal data 
value is a triplet <s .l.a >. where s is the surrogate for 
the object. I is the time. and a is the attribute value. 
Note that for a non-temporal data value t is considered 
the "current" value. and therefore omitted. 

An important semantic feature of temporal data is 
that for a given surrogate the temporal data values are 
totally ordered in time: that is they form an ordered 
sequence. For example. the salary history of John 
forms an ordered sequence in the time domain. We 
call such a sequence a lime sequence (TS). TSs are 
basic structures that can be addressed in two ways. 
Operators over them can be expressed not only in 
terms of the values (such as "salary greater than 30K"), 
but also in terms of temporal properties of the 
sequence (such as "the salary for the last 10 months". 
or the "revenues for every Saturday"). The results of 
such operators is also a TS whose elements are the 
temporal values that qualified. 

Since all the temporal values in a TS have the 
same surrogate value. they can be represented as 
<s.U.a)">. that is a sequence of pairs (l.a) for a given 
surrogate. It is convenient to view TSs graphically as 
shown in Figure I. Imagine that Figure la shows a 
daily balance of a checking account. Note that in this. 
case the pairs in the TS have the values (1.,10), (6.3), 
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Figure I: Example of tim~ sequences 

(8.7). (14.5), (17,11), but that these values extend to 
other time points of the sequence as shown. We label 
such behavior of the TS "step-wise constant". In con­
trast, Figure I b shows a TS of the number of copies 
sold per day for a particular book. Here the temporal 
values apply only to the days they are specified for. 
We call this property of the TS "discrete". A further 
example is shown in Figure Ic which represents meas­
urements of a magnetic field by a particular detector 
taken at regular intervals (Say. every second). In this 
case, one can interpret tht: TS as being "continuous" 
in the sense that values in between the measured 
points can be interpolated i r need be. 

These examples illustrate that while a TS is 
defined structurally as an ordered sequence of temporal 
values. its semantic behavior can differ according to 
the application involved. In the next section. we define 
precisely TSs and their semantic properties. Such a 
definition will permit us to treat TSs uniformly when 
defining operations among them. In addition. one can 
design the same physical structures for TSs that have 
different semantic properties. such as continuous or 
discrete. Physical structures for TSs were discussed in 
a recent paper [Rotem & Segev. 871. 

2.2. Time sequence collections 
It is natural and useful to consider the collection 

of TSs for the objects that belong to the same class (or 
type). For example. consider the collection of TSs that 
represent the salary histories for all the employees in 
the database. We refer to such a collection as the time 
sequence colleclion (TSC). The usefulness of the TSC 
structure stems from the ability to address the tem­
poral attributes of an entire class. and relate them to 
other (possibly non-temporal) attributes of the class. 
For example. we may be interested in the salary history 
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of employees in the computer department for the last 6 
months. Such operations over TSCs are discussed in 
the Section 4. 

Since our purpose here is to model temporal 
semantics. we choose to stay away from modeling con­
cepts of any specific data model. such as relations, enti­
ties. relationships, record types, sets, etc. Rather. we 
prefer the concept of a class of objects and the 
representation of TSs for them. A TSC will then be 
used as the construct to represent the temporal values 
associated with a class. Our approach is to first define 
the structure and properties of TSCs as well as opera­
tions over them. and then find a mapping to any 
specific data model that we may choose (relational, 
Entity-relationship. etc.) Next. we describe classes 
more precisely. The concepts below have appeared in 
several forms in the literature. We adopt them here 
because they are convenient for describing TSCs. 

2.3. Classes 
A class is any collection of objects that have the 

same attributes (such as a person. a department. or a 
detector.) Every object of a class has a unique 
identifier. called a surrogate. A composite class is a 
class whose identifier requires more than a single surro­
gate. For example. "attendance" is a class whose 
identifier is "student. course". In general. a composite 
class can be defined by using the identifiers of other 
classes or other composite classes. For example. sup­
pose that a course can be taught by several professors, 
then an "assignment" class can be defined from the 
composite class "attendance" and the class "profes­
sor". A composite class can be thOUght of as a result 
of the "aggregation" construct discussed in [Smith & 
Smith 77]. For our purposes. this definition of a class 
is sufficient. Classes with similar properties will result 
from the "generalization" construct described in 
[Smith & Smith 77]. 

Note that composite classes as described above are 
constructs that are quite general. For example. in the 
Entity-Relationship (ER) model entities usually 
correspond to simple classes. and relationships to com­
posite classes. However. in the ER model one cannot 
define new relationships using existing relationships. 
while composite classes can be defined using other 
composite classes. A CODASYL network model is 
even more restrictive~ not only that sets cannot be used 
to define further sets or record types. but sets cannot 
have their own attributes as is the case in relationships 
of the ER model. Composite classes have no such res­
trictions. In the relational model one· can define rela­
tions with composite keys. but the model carries no 
explicit information that the keys came from other 
relations. Next. we discuss TSCs as the constructs that 
describe the temporal properties of classes. 

2.4. Simple TSCs 
We start with a simple TSC. which is defined for 

a simple class (i.e a class with a single surrogate as its 
identifier). and a single temporal attribute. A simple 
TSC can be described as a triple (S. T , ... ) where S. T. 
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and A are the surrogate, time, and attribute domains. 
respectively. A simple TSC can thus be viewed as the 
collection of all the temporal values of a single attri­
bute for all the surrogates of a simple class. It is con­
venient to think of a simple TSC in a two-dimensional 
space as shown in Figure 2. 
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Figure 2: A two-dimensional representation of a 
time sequence collection 

In this representation. each row corresponds to a TS 
for a particular surrogate. The dots represent points 
where temporal values exist. In the next two sections 
we describe the semantics of simple TSCs and opera­
tions over them. 

We note here that non-temporal values can be 
represented as a special case of the TSC. A non­
temporal attribute has a single time point (usually 
"current time"). and therefore its TSC will be reduced 
to a single column structure. This observation is useful 
later for operations that involve both temporal and 
non-temporal data. 

Complex TSCs are TSCs whose components S. 
T. and A do not represent a single element. We discuss 
each in turn. 

The case that S is not a single element 
corresponds to a composite class. We denote this case 
as (.5. T .,4). This case can also be visualized as a two­
dimensional structure. where the rows are labeled with 
the composite surrogate identifier of the class. This 
structure is useful in representing the temporal 
behavior of relationships and their attributes. For 
example. suppose that people are assigned to different 
projects over time. The history of such a relationship 
can be represented as «S 's).T .A). where (S,S) 
corresponds to (people, projects). and A corresponds to 
a binary assignment attribute (which can be 
represented as the values 0 and I. for example). 

The case that T is not a single element· 
corresponds to a situation where temporal values have 
more than one time sequence associated with them. 
Such situations were discussed in length in [Snodgrass 
& Ahn 85]. where the distinction is made between 
"transaction time" and "valid time". Transaction time 



is the time that an action is recorded. and valid time is 
the time that the action takes effect (e.g. a salary raise 
recorded in March. but it is effective in January). 
Other authors called such times as "logical" and "phy­
sical" times. We denote tbis case as (S. f .A). This case 
requires the support of a single TSC with multiple 
time lines. 

The case that A is not a single element occurs 
when several attributes occur (or are measured) at pre­
cisely the same time points. For example. when collect­
ing air pollution samples at regular intervals. several 
measurements are taken. such as carbon monoxide. 
nitrogen compounds. etc. We denote this case as 
(S. T .A">. In addition to the semantic information that 
these attributes occur together in the time domain. this 
case also provides a concise way of representing 
together several TSC5 that have the same temporal 
behavior. An imponant special case is in rep!esenting 
non-temporal data as the degenerate TSC (S.4). where 
all the non-temporal attributes can be treated together 
in a single TSC. 

Obviously. any combination of the above three 
cases can exist simultaneously. To simplify our discus­
sion here. we only describe the constructs (section 3) 
for simple TSC5. However. the operators (section _4) 
are defined for TSC5 with multiple attributes (S. T .4 ). 
Future work will address other extensions for complex 
TSCs. 

3. CONSTRUCTS FOR TEMPORAL DATA 
In this section. we define the basic constructs of 

the temporal data model (TOM). These constructs can 
be processed by the data manipulation operators 

. presented in the next section. In Section 2 we defined a 
temporal value as a triplet <5.I.a >. and a time 
sequence TS as an object <5.(I.a )*> consisting of a 
time-ordered set of temporal values for a single surro­
gate instance. 

We distinguish between the time points and the 
data points of a TS. The time points of a TS are all 
the potential points in time that can assume data 
values. In contrast. the data points of a TS are only 
the points that actually have data values associated 
with them. For example. suppose that the salary of an 
individual can change during any month of a cenain 
year. but actual changes took place in April and 
October. Then. only' these two months are called the 
data points of that TS. Since each of the months could 
potentially have a value. we refer to them as the time 
points of the TS. In general. the data points of a TS 
are a subset of the time points. :-.Jext. we define the 
.propenies of a TS. 

Time Granularity 
This propeny specifies the granularity of the time 

points (l) of a TS. i.e. the points in time that can 
potentially have data values. We allow for two time 
granularity representations - ordinal and calendar. The 
ordinal representation simply signifies that the 
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potential time points are counted by integer ordinal 
position (1.2.3 .... ). The calendar representation can 
assume the usual calendar time hierarchy values: year. 
month. day •.... second. etc. 

LiCe Span 

Each TS has a lifespan associated with it. The life 
span is specified by a stan_point and an end_point 
defining the range of valid time points of the TS. The 
stan-times and end-times are also represented as ordi­
nal or calendar. Usually. the time granularity and the 
life span have the same representation. i.e. they are 
both ordinal or both calendar. However. this is not a 
requirement. For example. an experiment may produce 
a TS of measurements taken every second. Suppose 
that the stan and end times of the experiment are not 
imponant. Thus. this TS has a calendar granularity of 
a second. and an ordinal life span. 

We are interested in three cases of a life span: 
a) stan_point and end_point are fixed. 
b) stan_point is fixed and end_point is currenctime. 
c) a fixed distance is defined between the stan_point 

and the end_poi nt. The end_point is 
"currenCtime" and the starcpoint is dynamically 
changed to maintain the fixed distance from the 
end_point. 
In general. the life span can consist of disjoint 

non-continuous segments. However. this feature can be 
represented explicitly in the TS by using "null" data 
values. A time point with a null value has the meaning 
that a data value does not exist for this time point. 
Using null data values can simplify the processing of 
TS. since it is not necessary to check the legal seg­
ments of the life span. Thus. we prefer the use of null 
values rather than definin~ multiple segments in the 
life span. 

Regularity 

A regular TS contains a value for each time point 
in the life span interval. Thus. the data points of a reg­
ular TS are the same as the time points of that TS. An 
irregular TS contains values for only a subset of the 
time points within the life span interval. 

While the specification of this property is quite 
useful for the J~sign of physical structures. it has 
semantic value as well. It is important for a user to 
know whether a data value can be expected for every 
time point of the TS. Also. most time series analysis 
methods can only be applied to regular TSs. 

Type 

The type of a TS determines the data values of 
the TS for time points that do not have explicit data 
values. In general. there is an interpolation function 
associated with each TS. Some of the interpolation 
functions are very common. and therefore are given 
specific type names below. 

We are interested in the following types of time 
sequences: 

J 
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a) Step-wise constant: if (ti ,ai) and (tkoad are two 
consecutive pairs in TS such that Ii < Ib then 
aj = ai for Ii ~ Ij < II.:' 

b) Continuous: a continuous function is assumed 
between (/i,ai) and (tkoad which assigns aj to I j 
(Ii ~ Ij ~ II.:) based on a curve fitting function. 

c) Discrete: each value (aj) in TS is not related to 
other values. Consequently, missing values cannot 
be interpolated. 

d) User defined type: missing values in TS can be 
computed based on user defined interpolation 
functions. 
It should be noted that the type property may 

apply to both a regular and irregular TS. For example, 
a type step-wise constant for a regular TS means that 
the associated interpolation rule applies to all granular­
ities smaller than or equal to the granularity of the TS; 
this is true for all continuous types of which step-wise 
constant is a special case. 

Now. we can define a lime sequence colleclion 
(TSC) more precisely. A TSC is a collection of time 
sequences for the same surrogate class and with the 
same properties. The TSC is a basic construct in the 
TOM and can be manipulated by. the operators dis­
cussed in the next section. 

It follows from the above definition of a TSC that 
the properties of the TSC are the same as those 
defined for a TS. since all the TSs that belong the the 
same TSC have the same properties. Below is an 
example of a TSC and its properties, as well as two 
instances of TSs that belong to it. 

Example 
Surrogate class: bank account number 
Temporal-attribute type: account balance 
Time granularity: day 
Life span: start_point = 1/1/86; end_point= 1/9/86 
Regularity: irregular 
Type: step-wise constant 

A TS for account number 1462 is: 
( I /I /86.57). (1/4/86.50). (1/6/86.65). (I/9/86,60)} 

A second TS for account number 2526 is: 
((1/1/86.35), (1/3/86.45), (117/86,55)} 

A two-dimensional representation of this TSC is 
shown in Figure 3a. where rows represent different sur­
rogates and columns represent the time points of the 
TSC. Although it is' convenient to view a TSC in this 
two-dimensional space, we do not imply that this is the 
preferred structure either for physical or logical 
representation. Indeed there may be different represen­
tations that can be used for illustrative or visual pur­
poses. For example. Figure 3b shows a graphical 
representation of the TSC, where the interpolation 
function (in this case step-wise constant) is used to fill 
in missing time points. Figure 3c shows a tabular (rela­
tional) representation of the TSC. Figure 3d is another 
tabular representation. where the surrogate values are 
not repeated (this representation was referred to in the 
literature as non-first normal form of a relation). 
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Finally, Figure 3e shows an expanded tabular form of 
the TSC, where the missing values have been interpo­
lated. 

The above examples illustrate that the operators 
·defined for TSCs should not be dependent or selected 
according to a particular representation. Rather, when 
a particular representation is chosen to conform to a 
given model (such as tables as in Figure 3c for the rela­
tional model), then the operators defined in the next 
section should be supported by that model. 

4. OPERATIONS OVER TSCs 

4.1. Principles 
The operators presented in this section obey two 

principles. These principles hold regardless of the 
complexity of the operators. 

The first principle is that every operator over one 
or more source TSCs will produce a single target TSC. 
This principle permits the iterative application of 
operators to form a sequence of complex operations 
when needed. It should be noted that, in a particular 
implementation, the basic operators can be combined 
into higher-level operators. 

The second principle is that every operator must 
have three functional parts: target specification, map­
ping, and function; we describe them below. This prin­
ciple ensures that all the operators are consistent. It 
also permits complex user-defined operators to con-
form to the format of the other operators. . 

Target Specification 

The target specification part determines the valid 
points of the target TSC. A point of a TSC is specified 
uniquely by the s and I components of the temporal 
value. As will be shown later. a target specification can 
result in a subset of the data points of the source TSC, 
or can have different data points specified (e.g. the 
source TSC specifies days, and the target TSC specifies 
months.) 

Mapping 

The mappingt part specifies for each point of the 
target TSC the set of points of the source TSC to be 
manipulated to generate a target temporal value. For 
example. in an aggregation operation. for each target 
point there is a set of source points used to generate 
the target value. 

t We use here the term mapping in the sense of correspon­
dence between source and target points rather than in its precise 
mathematical meaning. 
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Figure 3: Different representations of a TS(· 

Function 

The function pan specifies the function to be 
applied to the values of the source points in order to 
generate the target value. This function may be as 
simple as a sum and other arithmell~ operations. or it 
can invol\e complex computations that could be user 
specIfied b~ means of a program. 

It should be pointed out that any of the above 
pans ma~ be specified as ··identity··. In the case of tar­
get specification. an identity specification means that 
all the points in the source TSC will appear in the tar­
get TSC. An identity mapping means that each target 
point corresponds to the same source point. An iden-

6 

titv fun~tion mean', that tht: target value is the same as 
th~ source value. \t the lllher -extreme. each of these 
pans can he completel~ user specified by means of a 
program. We 'A ill ~I ve below an example that requires 
user defined parts. 

..&.2. Common operators 

I n this section we describe the basic retrie\ al 
operators of the TOM. The retrie\al operators and 
their three functional parts are summarized in Table I: 
their precise s~ nta\ is gi \en in the Appendix. The s~ n­
tax that 'Ae adopted is SQL-like and its general form is 
given below I the use of T. ")". . ~'. and .• ' are explained 
in the .~ppendi.\.) 
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operator-name (:--ITO target-tsc function 
FROM source-tsc [.source-tscJ· 
WHERE target-specification 
GROUP BYITO mapping-specification 

In general. there are many operators over time 
sequences that are useful for different. applications. For 
e:<ample. there is a large body of literature on tlm.e 
series analvsis that uses different operators for statisti­
cal analvsis. such as regression. cross correlation. etc. 
Our purPose here is to identify several common opera­
tor classes bv means of the three parts mentioned 
above: target ·speciflcation. mapping. and function. For 
more complex operations. user deli ned routines (which 
can be stored in libraries) can be incorporated in the 
queries in place of each of these three parts. T~e most 
general case is when all three parts are user defined as 
shown in the last entry of Table I. In general. user 
deli ned parts can replace any of the parts of the opera­
tors shown in Table I. 

In addition to the operators shown in Table I. 
there are additional operators that we do not specify 
here in detail. These include a set operator to combi~e 
TSCs. update operators. and a data delinition opera­
tor. The data d~linition operator is needed in order to 
create TSCs and to deline their properties (discussed 
in Section 31. The data delinition op~rator can also be 
used to e'(plicitl\' change the prop~rties of an existing 
TSC (implicit changes may occur as a result of data 

manipulation operations. e.g. the time granularity of a 
TSC is changed when the user specifies an aggregation 
along the time dimension). It should also be noted that 
certain shortcuts can be incorporated into the syntax 
b ... combining functionalities of the basic operators in 
Table I into higher-level operators (including the incor­
poration of-property definition syntax into the basic 
operatorsl. We do not discuss here such shortcuts any 
further. 

Each operator and its syntax will be explained by 
examples. The examples utilize the following TSCs. 

BOOK_SALES (type = discrete) • contains the daily 
sales of books (surrogates): the temporal attribute 
contains the number of books sold. and is named 
QUA~TITY. 

BOOK_PRICE (type '" stepwise constant) • contains 
the daily prices (temporal attribute named PRICE) 
of books (surrogates). 

BOOK (type = nontemporal) • contains three attributes 
for each book: TY PE (math. computers. etc.). 
AlJTHOR·~AME. and DISCOUNT (% discount 
for QU.-\~TITY> 10). 

EMP _COMMISSION (t' pe = discrete) - contains the 
daily commissions (temporal attribute named 
COMMISSIO~) of ~mployees (surrogates). 

EMP _SALARY (type = stepwise constant) • contains 
the monthly salarie~ (temporal attribute named 
SAl.-\RY) of employees (surrogates). 

Operator Target Specification Mappinl Function 

select predicate conditions identity arithmetic operations 
over S,T and A over attributes 

or identity 

aggregate implied by mapping group specification aggregation operators 
over S or T (sum, maxim un, ... ) 

accumulate identity sequence specification aggregation operators 
over T (sum. maxim un .... ) 

restrict surrogate restriction identity identity 
by auxiliary TSC 

composition identity corresponding points arithmetic or 
of source TSCs aggregation operators 

general user defined user defined user defined 

Table 1: Classification of temporal operators 
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SELECTION 
The selection operator extracts parts of a TSC 

that satisfy a predicate referencing sand/or 1 and/or a 
values. The target specification part determines the 
points (S./) of the source TSC that will appear in the 
target TSC. The mapping part is identity in this case. 
while the function can be either an identity or a mani­
pulation of the a -values. By default. the target TSC 
inherits all the properties of the source TSC. except 
the lifespan which may be changed as a result of the 
temporal clause. 

The predicates over the s and a values are the 
usual predicates found in query languages. However. 
the predicates over t values have additional features 
that refer to sequences of the temporal values. Selec­
tion over t values can be made by specifying intervals 
or sequences (in addition to the usual, predicates.) 
Intervals are specified by start and end points. 
Sequences are specified by giving the number of points 
desired from a reference point. The sequence points 
can be specified looking forward (using NEXT) or 
backwards (using LAST.) There is a distinction made 
~etween requesting time points or data points (i.e. only 
time pomts that have data values.) The predicates T­
:'IiEXT. T-lAST. V-NEXT. V-LAST are used for this 
purpose. When the reference point of a sequence is 
specified as ordinal number. it refers to data points or 
time points according to the predicate (T·LAST. T­
NEXT. etc.) used. 

The time points can be specified as calendar 
values (in the same units of the TSC. or as ordinal 
values referring to their position in the TS. They can 
also assume the values BEGIN and END to specify the 
beginning and end of the TS. For example. an interval 
can be specified as (111186 TO END). We give below 
several SELECT queries that illustrate some of the 
above predicates. 

Example I 
"Get the January sales figures for books #5 and #9." 

SELECT [NTO JAN_SALES QUANTITY 
FROM BOOK_SALES 
WHERE S IN (5.9) AND TIN (111186 TO 1131186) 

The example illustrated one possible specification of 
the time points. In examples 1 and 3 below. assume 
that the salary TS of employee .10 is l (4/85:14000). 
(6/85:25000). (8/85:18000). (9185:30000). 
(11/85:33000). (1186:36000»). 

Example 2 
"Get the 4 salary values preceding January 1986 for 
employee • to." Note that we want the last four dis­
tinct salary values. not the salary for the last four 
months. Thus. the predicate V-LAST is used. 
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SELECT INTO EMPIO_SALARY SALARY 
FROM EMP _SALAR Y 
WHERE S= to AND T IN (V-LAST 4 FROM 1/86) 

The resulting time and salaries are (6/85:25000). 
(8185:28000). (9/85:30000). (11/85:33000)}. That is. 
the ,values of the 4 TS data points preceding 1186 are 
retneved. Example 3 
"Get the salary values of employee # lOin the 4 
months preceding January 1986." 

This query is the same as in Example 2. except that we 
use the predicate T·LAST instead of V-LAST. In this 
case. the resulting time and salaries are (((9/85:30000), 
((10/85:30000). (11185:33000). (l2/85:33000)}. Note 
that in this case. the values for October and December 
were interpolated using the interpolation rule associ­
ated with the stepwise-constant type property. 
AGGREGATION 

The aggregation operator can be applied over 
g~oups in the time dimension or the surrogate dimen­
sIon. For the time dimension. the target specification 
part determines the new time points of the target TSC. 
In many cases. time aggregations are for calendar time 
where the new time points of the target TSC will be of 
granularity higher than that of the source TSC. For the 
surrogate dimension. the target specification part will 
determine new surrogate values: these values are usu­
ally a -values from another TSC. For example. books 
may be aggregated by type. and therefore the new sur­
rogate values will be the TYPE values. For aU cases of 
aggregatio~. each point in the target TSC is mapped to 
a set of POlDtS 10 the source TSC (note that in the case 
of aggregation these sets of points are disjoint). The 
function to be applied tl) each set of mapped points 
can be any aggregate that >:!~nerates a single-valued out­
put (such as sum. average:, count. etc.). By default. the 
target TSC inherits all the properties of the source 
TSC. except the time granularity which may be 
changed. and the type which is changed to discrete. 

Example 4 
"Sum the book sales by month." 

AGGREGA TE I "TO MONTHLY_SALES 
SUM QUA:"TITY 

FROM BOOK_S \LES 
GROUP T BY \IO:'liTH 

Note that the time hierarchv and its time-unit key­
words are known to the' svste~. 
Example S . 
"Sum the daily book sales by type." 

AGGREGATE INTO TYPE SALES 
SUM QUANT[TY -

FROM BOOK_SALES 
GROUP S BY BOOK.TYPE 

[n this case. the grouping information (namelv. the 
type of book) is obtained from another TSC. . 



ACCUMULATION 
The accumulation operator is carried out along the 

time dimension. Its purpose is to obtain a new value 
for eacb data point based on a sequence of values 
preceding or foUowing it in the TS. For example. get­
ting the balance of an account from the TS of deposits 
and withdrawals involves a SUM accumulation from 
tbe beginning of tbe TS. 

The target specification part for this operator is 
"identity", i.e. tbe points of the target TSC are the 
same as the points of tbe source TSC (which also 
implies tbat there is no change in the time granularity). 
Each point of the target TSC is mapped to a set of 
points in the source TSC. Unlike the aggregation 
operation. the sets of mapped points are not disjoint. 
The function part may be any aggregation function. 
The default properties of the target TSC are the same 
as for aggregation. 

Example 6 
Assume that the temporal values of a TS are 
6.4.7.3.5.4. The following illustrates typical mappings 
and the results of applying the SUM function to them. 

GROUP TO BEGIN; the result is: 6.10.17.20.25.29. 
Each value in the source sequence was replaced by the 
sum of itself and all the values preceding it. 
GROUP TO END; the result is: 29.23.19.12.9.4. Each 
value in the source sequence was replaced by the sum 
of itself and all the values following it. 
GROUP TO V-LAST 2; the result is: 6.10.11.10.8.9 
Each value in the source sequence was replaced by the 
sum of itselJ and the value preceding it. 
GROUP TO V-NEXT 2; the result is: 10.11.10.8.9.4 
Each value in the source sequence was replaced by the 
sum of itself and the value succeeding it. The usage of 
T·LAST and T-NEXT is the same as in Example 3~ 
Example 7 
This example calculates a series of moving averages 
useful in forecasting applications. 
"Get a series of 7-day moving averages of book sales." 

ACCUMULA TE INTO A VG_SALES 
A VG QUANTITY 

FROM BOOK_SALES 
GROUP TO T-LAST 7 
RESTRICTION 

A restriction operator involves a target TSC. a 
source TSC. and an auxiliary TSC (following the BY 
keyword). This operation is similar to the semi-join 
operation in the relational model. Its purpose is to 
select only those surrogates of the source TSC that also 
appear in the auxiliary TSC. For example. suppose 
that we want to look at sales records of mathematics 
books only. Since the type of book is in a TSC other 
than the sales TSC. a restriction operator is needed, 

Both the source and the auxiliary TSC must have 
the same surrogate type. The target specification part 
qualifies time points of the source TSC only for those 
surrogates that appear in the auxiliary T$.C as 
explained above. The auxiliary TSC can have 

9 

predicate conditions applied to its attributes in order 
to select the surrogates of interest. The mapping and 
the function parts of the operation are identity. The 
target TSC inherits all the properties of the source 
TSC. 

Example 8 
-"Get the salary history of employees who are paid a 
commission greater than 1000." 

RESTRICT INTO COM_EMP 
FROM EMP _SALARY 
BY EMP _COMMISSION.COMMISSION > 1000 
COMPOSITION 

The composition operator enables manipulation of 
related data that are part of two TSCs. We distinguish 
between three types of compositions: pairwise. by sur­
rogate. and by time. In the case of pairwise composi­
tion (this is the default when the 'BY comp-method' 
clause is not specified). the source TSCs must have the 
same surrogates. time granularity, and lifespan. In this 
case. a function is applied to each corresponding pair 
of points (one from each TSC) to produce a single 
value in the target TSC. The target specification part 
is identity (with respect to either of the source TSCs). 
A target point is mapped to two points. each of wbich 
is an identity mapping to one of the source TSCs. The 
function part manipulates each pair of source a -values 
(values are interpolated when necessary) to produce a 
single target value. The following example illustrates a 
pairwise composition. 
Example 9 
"Get the daily book revenues (assume no discounts)." 

COMPOSE INTO BOOK_REVENUE 
REVENUE = QUA:'IITITY x PRICE 

FROM BOOK_SALES. BOOK_PRICE 
The default properties of the target TSC in pair­

wise composition are as fullows. The time granularity 
and lifespan properties of the target TSC remain the 
same as those of the source rscs. If both source rscs 
are regular so is the target TSC: otherwise. the target 
TSC is irregular. The type of the target TSC is: 
discrete. if either uf the source TSCs is discrete: step­
wise constant. if both of the source TSCs are stepwise 
constant: and conIIDUOUS. if both source TSCs are con­
tinuous or one is \.·ontinuous and the other is stepwise 
constant. 

The more general case of composition is between 
the corresponding values of multiple TSCs _ We chose 
to show here the case of two TSCs only since it 
simplifies its presentation. Clearly. we can get the 
same effect by multiple applications of the pairwise 
compositions. 

When composition is done by surrogate. the first 
source TSC must be the TS of a single surrogate with 
time granularity and lifespan the same as those of the 
second source rsc. This single surrogate row (when; 
viewed in the 1·dimensional space of Figure 1) is 
applied to each of the surrogate rows of the second: 
TSC. The target specification part is an identity with. 
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J)eCt to the second source TSC. Each target point is 

apped to two points; the first point is the id~nti~y 
int in the second source TSC. and the other POlDt IS 

epoint in the Drst TSC having tbe same time value 
~ tbe mapped point in the second TSC. The function 
part and the default properties of the target TSC are 
~be same as in the case of pairwise comparison. 

In the case of composition by time. the first source 
'rsc has a single time point. An example is a non­
temporal TSC with a single attribute. This operator is 
similar to the composition by surrogate. except that a 
lime column is applied· to each of the columns of tbe 
second source TSC. The target specification part is an 
identity with respect to the second source TSC. Each 
target point is mapped to two points; the first point is 
tbe identity point in the second source TSC. and the 
other point is the point in the first TSC having the 
same surrogate value as the mapped point in the 
second TSC. The function part is the same as in the 
case of pairwise comparison. The properties of the tar­
get TSC are the same as those of the second source 
TSC. The next example illustrates composition by 
time. 

Example 10 
"Get the daily book revenues for discounted sales 
only." Since discounts exist only when the quantity is 
greater than 10. we first have to eliminate smaller 
quantities (these values are replaced by nulls.) This is 
done with the SELECT statement below. Then. we 
have to find the discounted price for each book. How­
ever. the price of the books changes over time while 
there is only a single discount value for each book (in 
the BOOK TSC.) Thus. we need to apply the column 
DISCOUNT to the BOOK. PRICE TSC. This is done 
in the first composition (by time). The second composi­
tion (pairwise) creates the desired revenue TSC. 

SELECT INTO DISCOUNT_QUANTITY 
D_QTy,.QUANTITY 

FROM BOOK_SALES 
WHERE QUANTITY> 10 

COMPOSE INTO DISCOUNT_PRICE 
D_PRICE .. ( I-(DISCOUNT/lOO»xPRICE 

FROM BOOK.BOOK_PRICE 
BYT 

COMPOSE INTO DISCOUNT_REVENUE 
D_REVENUE-D_QTYxD_PRICE 

FROM DISCOUNT _QUANTITY.DISCOUNT _PRICE 

4.3. An example or UHr defined operators 
The following is a fairly complex example that is 

taken from a real application. We go through it in 
some detail to illustrate how it can be handled with 
user defined operators over TSCs. 

Consider the measurements that result from a typ­
ical high energy physics experiment. Such experiments 
often use several kinds of detectors to determine (even­
tually) the trajectory. energy. velocity. etc. of panicles. 

10 

We restrict our attention to two kinds of measure­
ments: electric voltage tbat corresponds to the position 
of the particle relative to the detector. and the mag­
netic field measured at regular intervals. 

Suppose tbat tbe above measurements are organ­
ized as TSCs where the surrogates represent the 
different detectors. There is one TSC for electric meas­
urements and one TSC for magnetic measurements. 
The goal is to correct the electric measurements 
according to the magnetic fields. To achieve this we 
first have to find tbe magnetic fields at the positions of 
the electric detectors. and tben use these values to 
compute the corrected electric values. 

Let us consider first computing the magnetic fields 
at the position of the electric detectors. A general 
operator can be defined as follows. The target' 
specification part specifies that the surrogates of the 
target TSC are the same as those of the electric detec­
tor TSC. The temporal points stay the same as the 
magnetic field TSC. The mapping part specifies for 
each electric detector position (of the target TSC) the 
relevant magnetic detectors that will be used for com­
puting the magnetic values. This is done by a user pro­
vided program that uses the coordinates of the detec­
tors (for example. finding a set of near neighbors). 
Finally. the function part specifies the computation to 
be used to generate the target values (for example, a 
weighted average). Here. again. the function is pro­
vided by the user. 

Next. the operator for correcting the electric field 
values is specified. It is a fairly simple composition 
operator over the electric TSC and the magnetic TSC 
computed in the previous step. The function part is a 
user defined program that computes the corrections. 
Note that the two TSCs may generally have different 
time points. since the measurements of the magnetic 
field are taken at regular I ntervals. while the electric 
fields are taken only when I nduced by passing particles. 
However. this is taken care of automatically by the sys­
tem. since the magnetic field TSC has the type "con­
tinuous". and the values are interpolated by a system 
supplied interpolation routine. As noted in section 3. 
the interpolation routine can also be user defined if 
necessary. 

5. REPRESENTI~G THE TOM IN THE RELA­
TIONAL MODEL 

We indicated in the introduction that our goal is 
to develop a temporal model which is independent of 
any specific traditional data model. Once such a goal is 
achieved. we can examine what is required to represent 
the structures and operators we have developed in 
existing logical models. We examine here the effects of 
representing the TDM in the relational model. The dis­
cussion below is only an outline of such a representa­
tion; detailed specifications are the subject of current 
research. 

First. we need to represent TSCs. At fi~t glance 
this could be simply achieved by defining a relation 
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witb tbree columns for S, T, and A. However, a T5.C 
has severaJ semantic properties that need to be maID­
tained by the system; i.e., granularity, lifespan, type, 
and regularity. maintaining these properties is quite 
'important since this is the means by which the s~st~m 
can perform interpolation of data values for mlS~lng 
temporal values and to interpret the operations 
correctly. Thus. we will need a special relation type (a 
temporaJ relation) that supports these semantic proper­
ties. 

A temporaJ relation must also have the semantics 
of being time ordered. as is a TSC. While tbe t~ples 
can be stored in principle in any order there IS an 
implicit time order for certain operations. For exam­
ple. assume that the temporal relation represents salary 
history by month as a step-wise constant seque~ce. A 
select operator for the salary in a month that IS not 
stored in the relation would have to order the salary 
values by month in order to determine the salary in the 
last appropriate month. Other operators. such as accu­
mulation and composition. also use this implicit order. 

The representation of a TSC as a three column 
relation conforms with the representation of relations 
as tables. However, it implies a repetition of the surro­
gate values for all the time values that exist. This is the 
reason that some authors have chosen to use non-first­
normal form relations. For example. in [Clifford & 
Tansel 85], the authors proposed some variatio~s. of 
relations. Clifford suppresses the surrogate repetltlon 
and lists the time-value pairs of each temporal attri­
bute in successive tuples. Tansel defines a complex 
data type that contains a list of triples for s~art-time, 
end-time. and value. While such representations may 
improve the visualization of a temporal relation. they 
are not essential to the representation of a TSC. As 
long as the system recognizes and supports the logical 
construct of a temporal relation (with the structuraJ 
and semantic properties of TSCs). it may choose any 
of several visual representations. such as those shown 
in Figure 3. 

Next. we examine the operators on TSCs and 
whether they can be supported by current relational 
operators. The select operator can be supported with 
predicate conditions on relations; excep~ that ne,w 
predicates will have to be defined for the time domalD 
that refer to ordered values (e.g. last 10 months). and 
calendar values (e.g. every Thursday). The aggregation 
operator could be supported by the aggregate functions 
of relational languages. except that the language would 
need to recognize the calendar hierarchy (e.g. days 
grouped into months) for the purpose of aggregation. 

The accumulation operator cannot be directly 
represented with relational operators. since it requires 
a running accumulation of values. Similarly. the com­
position operator that finds matching values (if neces­
sarv bv interpolation) in the time domain is an opera­
tor' th~t has to be added. The restriction o'Perator which 
behaves like a semi-join. can probably be defined ~y a 
combination of a join and a projection. Finally. to 
accommodate user defined operators. there would have 
to be a facility where any of the three parts of an 
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operator discussed in section 4 (i.e.. target 
specification. mapping, function) can be replaced by a 
user detined program. Also. the system should permit 
the interpolation function of a temporaJ relation to be 
user defined. 

We believe that many of the constructs for opera­
tors over TSCs developed in this paper can be readily 
used with temporal relations. This is particularly true 
for extending SQL since we have used an SQL-Iike for­
mat. 

6. SUMMARY AND FUTURE WORK 
[n this paper we have developed a temporal data 

model which is independent of any specific traditional 
data model. such as the relational model. We believe 
that this approach is more appropriate than extending 
existing models to accommodate temporal data. since 
such models were not designed especially to model 
temporal semantics. 

We have defined temporaJ data structures tbat 
support naturally sequences of temporaJ values. We 
have described the semantic properties of sucb struc­
tures. and developed operators that manipulate them. 
We have demonstrated by means of several examples 
the capability to represent the semantics of and to 
manipulate temporal data. We have also outlined the 
requirements to be added to the relational model in 
order to support the temporal data model presented in 
this paper. Current research addresses the detailed 
specifications of such requirements. We also plan to 
develop the representation of the temporal data model 
developed here as part or extensions of existing models 
(other than the relational). 

Other research work includes the extension of the 
operators for complex TS( '\ to include structures that 
permit multiple surrogate,. as well as multiple time 
lines: and an investigation of the use of abstract data 
types methods to define op~rators on time series. 
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Appendix 

The following notation is used in the syntax below: 
lower-case letters are used for variable names: upper­
case letters are used for keywords: 1 denotes 'or': [ 1 is 
used to designate optional expressions: and • denotes 
zero or more occurrences. The general syntax of an 
operator is: 



operator-name INTO target-tsc function 
FROM source-tsc [,source-tsc]* 
WHERE target-specification 
GROUP BYITO mapping-specification 

The Syntax of TDM's Data Retriel'aI Laapage 

SELECT [INTO target-tsc] att-list 
FROM source-tsc 
[WHERE select-clause] 

AGGREGA TE [INTO target-tsc] function 
[UNIQUE] [attribute-name] 

FROM source-tsc 
GROUP [S I T] BY group-clause 

ACCUMULATE [INTO target-tsc] function 
[UNIQUE] [attribute-name] 

FROM source-tsc 
GROUP TO acc-clause 

RESTRICT [INTO target-tsc] 
FROM source-tsc 
BY aux-tsc.att-clause 

COMPOSE [INTO target-tsc] c-function 
FROM source-tsc.soutce-tsc 
[BY comp-method] 

target-tsc :: = tsc-name 
source-tsc :: oz tsc-name 
aux-tsc :: oz tsc-name 
select-clause :: oz select-element 

I (select-clause boolean-op select-clause) 
select-element :: oz surr-clause 

I temp-clause I att-clause 
boolean-op :: = AND' I OR 
surr-clause :: == [NOT1 surr-predicate 
temp-clause :: = [NOT] temp-predicate 
att-c1ause :: == [NOT] att-predicate 

surr-predicate :: == S predicate-op value 
I S IN (values) 

predicate-op :: = = I ~ I > I ~ I < I ~ 
values :: = value [. value]· 
value :: == integer I real I string 

att-predicate ::.. aU predicate-op value 
I value predicate-op att I au IN (values) 
I au predicate-op att 

au :: = attribute-name I (aU arith-op att) 
arith-op ::.. + I - I x I / I .* 
an-list :: = [new-name-] an [.[new-name .. ] an]* 

temp-predicate ::.. T predicate-op t-value 
I T IN (t-values) 
I T IN (t-range [,t-range)·) 

t-value ::.. t-ordinal I t-calendar 
t-ordinal :: .. integer I BEGIN I END 
t-calendar ::- gregorian-value I BEGIN I END 
t-values ::,. t-ordinal [.t-ordinal)* 

I t-calendar [,t-calendar)* 
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t-range :: = interval I sequence 
interval ::= t-start TO t-end 
sequence :: = sequence-op integer 

FROM reference-time 
sequence-op ::= V-LAST I V-NEXT 

I T-LAST IT-NEXT 
reference-time :: = t-value 
t-start :: = t-value 
t-end ::.. t-value 

function :: = . A VG I MAX I MIN I SUM I COUNT 
groupcclause ::= time-unit I integer 

I tsc-name(.attribute-name] 
acc-clause ::.. sequence-op integer I BEGIN I END 
time-unit ::.. YEAR I MONTH I DAY 

I HOUR I MINUTE I SECOND 

c-function ::'" new-name= aggr-expr 
I new-name= arith-expr 

aggr-expr :: = aggr-op [attribute-name,attribute-name]· 
aggr-op :: .. MAX I MIN I AVE 
arith-expr ::.. «arith-pair) arith-op value) 

I (value arith-op (arith-pair» 
arith-pair :: = c-att arith-op c-att 
c-att ::= att-name I (c-an arith-op value) 

I (value arith-op c-att) 
comp-method ::= SIT 

Notes: 
I) AU tokens in the syntax that end with '-name' are 
strings of characters amd/or digits. 
2) The token 'gregorian-value' can assume different for­
mats (such as mm/ddlyy for' months. days. years) 
which depend on the application. We chose not to 
specify the formats here. 
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