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ABSTRACT

Cosmological probes pose an inverse problem where the measurement result is obtained through
observations, and the objective is to infer values of model parameters that characterize the underlying
physical system — our universe, from these observations and theoretical forward-modeling. The only
way to accurately forward-model physical behavior on small scales is via expensive numerical simu-
lations, which are further “emulated” due to their high cost. Emulators are commonly built with a
set of simulations covering the parameter space with Latin hypercube sampling and an interpolation
procedure; the aim is to establish an approximately constant prediction error across the hypercube. In
this paper, we provide a description of a novel statistical framework for obtaining accurate parameter
constraints. The proposed framework uses multi-output Gaussian process emulators that are adap-
tively constructed using Bayesian optimization methods with the goal of maintaining a low emulation
error in the region of the hypercube preferred by the observational data. In this paper, we compare
several approaches for constructing multi-output emulators that enable us to take possible inter-output
correlations into account while maintaining the efficiency needed for inference. Using a Lyα forest flux
power spectrum, we demonstrate that our adaptive approach requires considerably fewer — by a factor
of a few in the Lyα P (k) case considered here — simulations compared to the emulation based on
Latin hypercube sampling, and that the method is more robust in reconstructing parameters and their
Bayesian credible intervals.

Keywords: Cosmological parameters; Intergalactic medium; Computational methods

1. INTRODUCTION

The field of cosmology has rapidly progressed in the
past few decades, going from a largely qualitative pic-
ture of the hot Big-Bang to the now well-tested standard
model of cosmology. This relatively simple model de-
scribes current observations at a few-percent level using
only six parameters (Planck Collaboration et al. 2018).
While this has been a great success — driven by a deluge
of observations — questions still remain about the na-
ture of dark matter and dark energy, primordial fluctu-
ations relating to the inflation in the early universe, and
the mass of neutrino particles. To make further progress
in answering these questions, new ground- and space-
based observational missions will be carried out, probing
the highly nonlinear scales of cosmic structure. Planned
wide-field sky surveys such as the Dark Energy Spectro-
scopic Instrument (DESI Collaboration et al. 2016), the
Large Synoptic Survey Telescope (LSST Dark Energy
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Science Collaboration 2012), the Wide Field Infrared
Survey Telescope (WFIRST, Spergel et al. 2015), and
Euclid (Refregier et al. 2010) will provide precision mea-
surements of cosmological statistics such as weak-lensing
shear correlations, cluster abundance, and the distribu-
tion of galaxies, quasars and Lyα absorption lines. In-
ferring values of the physical model parameters using
observations of the mentioned sky surveys is a problem
that belongs to the class of inverse problems in statistics.

The application of Markov chain Monte Carlo
(MCMC, Metropolis et al. (1953); Gelman et al. (2013))
or similar Bayesian methods requires hundreds of thou-
sands to even millions of forward-model evaluations in
order to determine the posterior probabilities of the
considered parameters. When modeling the highly non-
linear regime of the structure formation in the universe,
each such evaluation is a high-performance computing
simulation costing more than 105 CPU hours. Most per-
turbation theory methods break down at about the scale
of x . 65h−1Mpc (Carlson et al. 2009). The most re-
cent works have pushed this scale down to ∼ 10h−1Mpc
(d’Amico et al. 2020; Ivanov et al. 2020; Chen et al.
2020), but this is still between one and two orders of
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magnitude larger than what is needed for Lyα studies.
Cosmological simulations that from first principles nu-
merically evolve the density field are therefore essential
for the analysis and scientific inference of the future
observational data sets.

While it may seem at first that this cost makes the
inference computationally unfeasible, it is in fact pos-
sible to efficiently sample the parameter space with a
dramatically reduced number of simulations, provided
that certain smoothness conditions are satisfied. This is
achieved through the development of cosmological emu-
lators, that is, computationally cheap surrogate models
of expensive cosmological simulations. The pioneering
work on these techniques in cosmology was the cosmic
calibration effort (Heitmann et al. 2006; Habib et al.
2007), resulting in a 1% accurate matter power spec-
trum emulator (Heitmann et al. 2010). Later works have
expanded the range of validity of this nonlinear matter
power spectrum in terms of the k and redshift cover-
age, and they also increased the number of cosmologi-
cal parameters (Lawrence et al. 2017; Euclid Collabora-
tion et al. 2019). In addition, this emulation technology
proliferated into modeling many other statistics and ob-
servables, including gravitational lensing quantities (Liu
et al. 2015; Petri et al. 2015; Wibking et al. 2020), the
galaxy halo occupation model (Kwan et al. 2015), the
halo mass function (McClintock et al. 2018), the galaxy
correlation function (Zhai et al. 2018), the 1D Lyα flux
power spectrum (Walther et al. 2019), and the 21cm
power spectrum (Jennings et al. 2019). More generally,
outside the field of astrophysics, there is a large body of
work on emulators and designs for large-scale computer
experiments, see, e.g. Haaland & Qian (2011) and Klei-
jnen (2015).

In this work we are not concerned with building an
emulator for the cosmological simulation models that
is accurate over the entire prior range of the input pa-
rameter values. We instead focus on constructing an
emulator in an adaptive fashion by preferentially select-
ing the inputs for the simulation that are more likely
to result in the values of the output that are consis-
tent with the observational data. By building up our
emulator in this sequential way, we strive to avoid per-
forming unnecessary simulations that would be needed
to have a globally accurate surrogate. To find an opti-
mal point in parameter space for running the simulation,
we use Bayesian optimization techniques (Mockus 1994;
Kennedy & O’Hagan 2001; Mockus et al. 2014; Leclercq
2018), specifically developed to efficiently determine the
global optima of functions (we also refer to Shahriari
et al. (2016) or Frazier (2018) for recent pedagogical
surveys of Bayesian optimization). A similar Bayesian
optimization for the construction of an emulator of the
1D Lyα flux power spectrum has recently been consid-
ered in Rogers et al. (2019). The authors subsequently
applied their method to the problem of the Lyα for-
est in Bird et al. (2019). The difference between their

work and our here is that we use a different acquisi-
tion function and a different problem parametrization.
In practice, we do expect the two approaches to result
in similar computational efficiency and we consider our
work as complementary to that of Rogers et al. (2019).

The execution of such an iterative workflow can be ef-
ficiently executed on high-performance computing plat-
forms using the system described in Lohrmann et al.
(2017). Briefly, as the workflow requires exploration of
the parameter space via simulation trials, each of these
simulations becomes a job managed by a parallel sched-
uler. This approach relies on Henson (Morozov & Lukić
2016), a cooperative multitasking system for the in situ
execution of loosely coupled codes.

Our treatment of multi-output emulation is different
from the previous approach of Habib et al. (2007), which
relied on dimension-reducing techniques. Instead of ap-
proximating the power spectrum in the basis obtained
from a principal component decomposition of the sim-
ulator’s covariance structure, we assume a simple sep-
arable form for the covariance of the power spectrum
as a vector-valued function (similarly to the approach
of Conti & O’Hagan (2010)). This allows us to start
with a small number of training inputs for the initial
emulator construction and to iteratively refine the ini-
tial design. Additionally, the separable structure of the
covariance function allows us to perform training and
prediction with the emulator using Kronecker products
of small matrices; this makes it efficient.

In this work, we use a 1D Lyα flux power spectrum as
an output quantity of interest. Following reionization
that occurs around redshift z ∼ 8, the diffuse gas in
the intergalatic medium (IGM) is predominantly pho-
toionized, but the small residual fraction of the neutral
hydrogen gives rise to Lyα absorption that is observed
in spectra of distant quasar sightlines (for a recent re-
view, see McQuinn (2016)). This so-called Lyα forest
is the premier probe of the IGM and cosmic structure
formation at redshifts 2 . z . 6. As Lyα absorption
at z ∼ 3 is sensitive to gas at around the cosmic mean
and at redshifts z ≥ 4 even to the underdense gas in
void regions of the universe (Lukić et al. 2015), com-
plex and poorly understood physical processes related
to galaxy formation are expected to play only a minor
role in determining its structure (Desjacques et al. 2006;
Kollmeier et al. 2006). Forward-modeling the structure
of the IGM for a given cosmological and reionization
scenario is thus a theoretically well-posed problem, but
it requires expensive cosmological hydrodynamical sim-
ulations. The 1D power spectrum is a summary statis-
tic of the Lyα flux field that measures the Fourier-space
analog of two-point correlations in flux absorption along
lines of sight to quasars. This statistic can be sensibly
used to measure cosmological parameters (Seljak et al.
2006; Palanque-Delabrouille et al. 2020), constrain the
neutrino sector (Palanque-Delabrouille et al. 2015; Rossi
et al. 2015; Yèche et al. 2017), probe exotic dark matter
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models (Armengaud et al. 2017; Iršič et al. 2017; Rogers
& Peiris 2020), or measure the thermal properties of the
IGM (Boera et al. 2019; Walther et al. 2019). Here, we
focus on parameters describing the thermal state of the
IGM, similarly as in Walther et al. (2019). However,
there is nothing specific to the Lyα forest probe, partic-
ular data set or simulations in our inference formalism,
thus the method we present here can straightforwardly
be applied to other cosmological probes as well.

The outline of the paper is as follows. In Section 2 we
describe the details of the forward model for the Lyα
power spectrum. In addition to hydrodynamical simu-
lations, we also use an approximate model for postpro-
cessing the thermal state of the IGM which is described
in Appendix A. In Section 3 we provide a high-level
overview of our main approach to inferring cosmolog-
ical parameters from measurement data. First, we state
the general Bayesian inference problem, and following
Bilionis & Zabaras (2014), we show how it can be refor-
mulated using a Gaussian process (GP) emulator as a
Bayesian surrogate of the forward model. Next, we pro-
vide an outline of the adaptive algorithm developed in
Takhtaganov & Müller (2018), which we use to construct
a GP emulator iteratively. The details of the GP emu-
lator construction and a comparison of the approaches
to modeling interactions between emulator outputs are
provided in Section 4, as well as in the Appendix B.
Results of applying this method on Viel et al. (2013)
data and inferring thermal parameters of the IGM are
given in Section 5. Finally, we present our conclusions
in Section 6.

2. FORWARD MODEL

In this paper, we analyze different ways of inferring
the model parameters using flux power spectrum obser-
vations. To this end, it is necessary to model the growth
of cosmological structure and the thermal evolution of
the IGM on scales far smaller (down to O(10h−1kpc))
than those described by the linear perturbation theory.
Cosmological hydrodynamical simulations with atomic
cooling and UV heating are the only method capable of
modeling this process at the percent level accuracy (for
approximate methods, see Sorini et al. 2016; Lochhaas
et al. 2016, and references therein). Unfortunately, such
simulations are computationally very expensive, ∼ 105

CPU hours or more. It is therefore desirable to also
have a “reduced” model, which we can evaluate for a
large number of points in the chosen parameter space,
even if not as accurate as the full simulation model. In
the following we will first review our “direct” simulation
model, and in Section A we will present the approximate
model based on post-processing the simulation’s instan-
taneous temperature-density relation and the mean flux.

2.1. Simulations

The hydrodynamical simulations we use in this pa-
per are part of the THERMAL suite of Nyx simulations

(Walther et al. 2019) consisting of 75 models, each in
L = 20h−1Mpc box with 10243 Eulerian cells and 10243

dark matter particles. The Nyx code (Almgren et al.
2013) follows the evolution of dark matter modeled as
self-gravitating Lagrangian particles, and baryons mod-
eled as an ideal gas on a set of rectangular Carte-
sian grids. The Eulerian gas dynamics equations are
solved using a second-order accurate piecewise parabolic
method (PPM) to accurately capture shocks. Besides
solving for gravity and the Euler equations, we also in-
clude the main physical processes relevant for the Lyα
forest. We consider the chemistry of the gas as having a
primordial composition of hydrogen and helium, include
inverse Compton cooling off the microwave background
and keep track of the net loss of thermal energy result-
ing from atomic collisional processes (Lukić et al. 2015).
All cells are assumed to be optically thin to ionizing ra-
diation, and radiative feedback is accounted for via a
spatially uniform, time-varying UV background radia-
tion given to the code as a list of photoionization and
photoheating rates (Haardt & Madau 2012).

This type of simulations is used as a forward model
in virtually any recent inference work using Lyman al-
pha power spectrum (Boera et al. 2019; Walther et al.
2019; Palanque-Delabrouille et al. 2020; Rogers & Peiris
2020). Effects of inhomogeneous reionization are ne-
glected, both temperature and UV background fluctua-
tions. We do expect future simulations to start adopt-
ing models with fluctuations (Oñorbe et al. 2019) to
achieve better accuracy of the power spectrum, espe-
cially on larger scales. High column density absorbers
(NHI & 1017cm−2), which broaden absorption lines
with characteristic damping wings (Rogers et al. 2018),
are also not modelled in these simulations. Note that
these percent-level details regarding the accuracy of the
physics forward model are not affecting any of our con-
clusions.

Thermal histories are generated in a similar way as in
Becker et al. (2011) through rescaling the photoheat-
ing by a density dependent factor: ε = A∆Bεhm12.
Here, ∆ = ρb/ρ̄b is the baryon overdensity, εhm12 are
the heating rates tabulated in Haardt & Madau (2012)
while A and B are free parameters adjusted to obtain
different thermal histories. Note that while this ap-
proach makes it straightforward to change instantaneous
density-temperature relation in the simulation, chang-
ing the pressure smoothing scale is more difficult as it
represents an integral of (an unknown) function of tem-
perature across cosmic time. We will return to this point
later in Section 5.

We choose mock sightlines, or “skewers”, crossing the
domain parallel to one of the axes of the simulation grid
and piercing the cell centers. Computationally, this is
the most efficient approach. This choice of rays avoids
explicit ray-casting and any interpolation of the cell-
centered data, which introduce other numerical and pe-
riodicity issues. As a result, from an N3 cell simulation,
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we obtain up to N2 mock spectra, each spectrum having
N pixels. We calculate the optical depth, τ , by convolv-
ing neutral hydrogen in each pixel along the skewer with
the profile for a resonant line scattering and assuming
Doppler shift for velocity (for details, see Lukić et al.
2015). We compute this optical depth at a fixed red-
shift, meaning we do not account for the speed of light
when we cast rays in the simulation; we use the gas ther-
modynamical state at a single cosmic time. The simu-
lated skewers are therefore not meant to globally mock
observed Lyα forest spectra, but they do recover the
statistics of the flux in a narrow redshift window, which
is what we need for this work. We have neglected in-
strumental noise and metal contamination in simulated
skewers, but this will not be relevant for the conclusions
of this paper.

2.2. Model parameters

Lyman-α forest simulations include both cosmological
parameters as well as astrophysical parameters needed
to model the thermal state of the gas, which is signif-
icantly affected by hydrogen and helium reionizations.
Our main goal is to test and improve the parameter sam-
pling scheme and the emulation method used for con-
straining the parameters; in order to reduce the compu-
tational expense, in this work we will focus our attention
on the set of “standard” parameters, {T0, γ, λP , F̄}, de-
scribing the thermal state of the IGM. We keep the cos-
mological parameters fixed and based on the Planck Col-
laboration et al. (2014) flat ΛCDM model with h = 0.67,
Ωm = 0.32, Ωbh

2 = 0.022312, ns = 0.96, σ8 = 0.8288.
The values for thermal parameters T0 and γ are

obtained from the simulation by approximating the
temperature-density relation as the power law:

T = T0∆γ−1 , (1)

and finding the best fit using a linear least squares
method in log T – log ∆ (Lukić et al. 2015). Therefore,
T0 parametrizes the temperature at mean density in the
universe, while γ is the slope of temperature-density re-
lation, expected to asymptote γ ≈ 1.6 long after reion-
ization ends. To determine the pressure smoothing scale,
λP in post-processing. , we fit the cutoff in the power
spectrum of the real-space Lyα flux, as described in
Kulkarni et al. (2015). Real-space Lyα flux is calcu-
lated using actual density and temperature at each cell
in the simulation, but omitting all redshift-space effects
such as peculiar velocities and thermal broadening.

In section 5.3 we will demonstrate our adaptive GP
approach on the problem of inferring the three parame-
ters θ = (F, T0, γ). There, we use as the forward model
the post-processing of hydrodynamical simulations as
the forward model, which is described in Appendix A.
We use only three out of four parameters, as there is
no good way to model λP in post-processing since this
parameter depends on the integrated thermal history

rather than one moment in time. The advantage of us-
ing this approximate model is that it allows us to evalu-
ate our model at different points in parameter space at
a very low computational cost. While this in principle
already demonstrates the efficiency of our new sampling
scheme, the worry of conclusions being affected by leav-
ing out λP parameter can be legitimately raised.

To alleviate that worry and confirm that demon-
strated behavior of our adaptive GP emulator is not
qualitatively different when parameter space changes, in
Section 5.4 we apply our technique on the problem where
a forward model consist of hydrodynamical simulations
and a full set of {T0, γ, λP , F̄} parameters. For compu-
tational efficiency, we use an existing THERMAL suite
of Nyx simulations1. This means we are not evaluating
the forward model at any chosen point, which would be
the case in practical application of our method. Impor-
tantly, the conclusions from this experiment are fully
consistent with experiment presented in Section 5.3.

3. ADAPTIVE CONSTRUCTION OF GAUSSIAN
PROCESS EMULATORS FOR BAYESIAN

INFERENCE

In this section we outline our main approach to the
adaptive construction of the GP emulators. Our ap-
proach is designed to solve the specific problem at hand,
which is inferring the parameters of interest that serve
as input into the forward model of the power spectrum
from the observational data. The main ingredient of
our approach is a so-called “acquisition” function that
guides the selection of the training inputs for the emu-
lator. This acquisition function arises from the form of
the likelihood for the measurement data. Thus, before
explaining the acquisition process we start by providing
a general framework.

We denote the parameters of interest by θ ∈ Rp. We
denote the vector of observations by d = (d1, . . . , dq)

T ,
where each di represents a measured value of the Lyα
forest flux power spectrum at a certain value of the
wavenumber k. The outputs of the forward model of
the power spectrum for a given θ will be thought of as
a q-dimensional vector P(θ) (more on this in Section
4). We will work under the assumption of the Gaussian
measurement noise with zero mean and known covari-
ance ΣE . With this specification of the measurement
noise we formulate the likelihood function for the obser-
vational data which depends on the value of the forward
model at θ:

L(θ|d) = Nq(d−P(θ) |0q,ΣE). (2)

Assuming the Bayesian framework, we model the prior
information about the parameters θ as a known distri-
bution p(θ). Given the prior and the observed mea-
surements d, the solution of the inverse problem is the

1 http://thermal.joseonorbe.com/
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posterior density obtained by applying Bayes’ rule:

p(θ|d) ∝ L(θ|d)p(θ). (3)

This posterior density can, in principle, be explored with
MCMC methods. However, since evaluating the likeli-
hood function L(θ|d) requires evaluating the forward
model P(θ), the direct application of MCMC methods
for the current application (or any expensive-to-evaluate
forward model) is infeasible. This difficulty can be cir-
cumvented by using a surrogate model, such as a Gaus-
sian process emulator, in place of the forward model.
A Gaussian process is fully specified by its mean and
covariance functions. The mean is commonly set to
zero, while the covariance function describes statisti-
cal relation between data points and is reflection of the
prior beliefs. This Bayesian nature of the Gaussian pro-
cesses makes them particularly suitable for our frame-
work. Next, we provide a formal review of GP emulators
leaving the details out until Section 4 and outline our
adaptive approach to sequentially adding training inputs
for the emulator.

Suppose that we have collected a set of evaluations of
the forward model P(θ) at n input points:

D = {θ(j),P(θ(j))}nj=1. (4)

The information in D can be used to obtain a surrogate
model specified by a random variable PGP with a pre-
dictive distribution conditioned on the input θ and data
D:

p
(
PGP |θ,D

)
=

∫
p
(
PGP |θ,D,ψ

)
p(ψ | D)dψ. (5)

Here ψ denotes the hyperparameters of the predictive
model, p

(
PGP |θ,D,ψ

)
is the predictive distribution

of the assumed model given the hyperparameters, and
p(ψ|D) is the posterior distribution of ψ given data D.
Hyperparameters are thus free parameters which allow
for customization (“training”) of the Gaussian process
for the particular problem. Together with the choice
of the covariance function, they define a specific Gaus-
sian process model (this will be detailed in Section 4.1).
In this work, we use the Bayesian view on model selec-
tion, where the optimal hyperparameters are determined
by maximizing the probability of this model given the
data. Specifically, we use the maximum likelihood esti-
mate (MLE) of the hyperparameters when training the
surrogate model PGP . More generally, one could apply
MCMC for obtaining p(ψ|D), see details in Appendix
B.

The solution of the inverse problem with a limited
number of forward model evaluations can now be for-
mulated using the likelihood of the observational data
evaluated using the surrogate model. This D-restricted
likelihood (similarly to Bilionis & Zabaras (2014)) is de-
fined as follows:

L(θ |d,D) =

∫
L
(
θ |d,PGP

)
p
(
PGP |θ,D

)
dPGP , (6)

where L
(
θ |d,PGP

)
= Nq

(
d−PGP (θ) |0q,ΣE

)
. Once

we have an approximation of the distribution p(ψ|D),
e.g., ψMLE when using MLE approach, we can inte-
grate the product of the two Gaussians and obtain an
approximate formula for the likelihood L(θ |d,D), see
Takhtaganov & Müller (2018) and Appendix B for de-
tails:

L(θ |d,D) ≈ exp

[
−g(θ;D,ψMLE)

2

]
(7)

Evaluations of the approximate likelihood L(θ|d,D)
involve computing the following misfit function between
the observational data and the predictions of the GP
emulator

g(θ;D,ψ) =(d−m(θ;D,ψ))T (ΣE + ΣGP (θ;D,ψ))−1

× (d−m(θ,D,ψ))

(8)

for the estimate ψ = ψMLE . In (8), we denote by
m(θ;D,ψ) the mean vector of the GP emulator evalu-
ated at θ, and by ΣGP (θ;D,ψ) its predictive covariance.
This misfit function captures the discrepancy between
the observed values of the power spectrum and the pre-
dicted values in the norm weighted by the measurement
error and the uncertainty of the emulator. Note that
for the inputs θ in the training set D, the mean of the
GP emulator m(θ;D,ψ) coincides with the values of the
power spectrum P(θ), and the covariance ΣGP (θ;D,ψ)
vanishes, and thus the exact value of the misfit (and
hence the likelihood) is known.

We use the misfit function (8) to inform our choice of
the candidate inputs to add to the dataset D in order
to improve the GP surrogate. The “improvement” we
are looking for is to make the approximate likelihood
L(θ|d,D) more accurately resemble the “true” likeli-
hood L(θ|d). The overall accuracy of the GP emulator
over the support of the prior is unimportant.

Our adaptive approach to extending the training set
D is based on an acquisition function commonly used
in Bayesian optimization—the so-called “expected im-
provement” (EI) criterion (Jones et al. 1998). In our
version of the EI criterion, we look for an input θ that
provides the largest expected improvement in fit with
expectation taken with respect to the posterior distri-
bution of the hyperparameters p(ψ|D):

I(θ) ≡
∫

[gmin − g(θ;D,ψ)]+p(ψ|D)dψ

≈ [gmin − g(θ;D,ψMLE)]+.

(9)

Here gmin denotes the smallest misfit to the measure-
ment data for the points in the current training set
D, and [ · ]+ takes the positive part of the difference:
[ · ] ≡ max{ · , 0}. This formulation allows us to balance
the exploration and the exploitation of the GP emulator
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in an iterative search for a new training input to maxi-
mize the expected improvement in fit function I(θ), i.e.,
we search for the input θ that provides the largest im-
provement in fit to the measurement data under the cur-
rent GP model, conditioned on the misfit being smaller
than the current best value for the points in the training
set. The outline of the algorithm is given in Algorithm
1. For more details see Takhtaganov & Müller (2018).

Algorithm 1 Adaptive construction of GP emulators

Input: Initial design
{
θ(j)

}n
j=1

, threshold value εthresh,

search space Xθ, maximum allowed number of forward

model evaluations smax.

Output: Adaptive design D.

1: Evaluate P(θ) for θ ∈
{
θ(j)

}n
j=1

to obtain D ={
θ(j),P

(
θ(j)

)}n
j=1

.

2: for s from 1 to smax do

3: train the GP model using current design;

4: update the current best fit value gmin;

5: maximize the expected improvement in fit func-

tion I(θ) over the search space Xθ, and let θs =

arg max
θ∈Xθ

I(θ);

6: if I
(
θs

)
< εthresh · gmin then

7: break

8: end if

9: evaluate P at θs and augment the training set: D =

D ∪
{
θs, P

(
θs

)}
;

10: end for

11: return D.

For our numerical experiments, we take the search
space Xθ to be the support of the prior p(θ), and we
set the threshold value εthresh to be 1%. We solve the
auxiliary optimization problem in Step 5 by using multi-
start gradient-based optimization, see Takhtaganov &
Müller (2018) for details. We set the allowed number of
simulations smax to a large number so that the effective
termination condition is the one on line 6. In practice,
smax is dictated by the simulation budget. In the next
section, we discuss the details of the construction of the
GP emulators for modeling the Lyα forest power spec-
trum.

4. GAUSSIAN PROCESS EMULATORS FOR THE
LYα FLUX POWER SPECTRUM

We model the power spectrum P (k,θ) as a multi-
output Gaussian process with outputs corresponding to
the fixed values of the wavenumber k. Furthermore,
we assume a separable structure of the kernel function,
meaning that it can be formulated as a product of a
kernel function for the input space θ alone, and a ker-
nel function that encodes the interactions between the
outputs k (Alvarez et al. 2012, Section 4).

In the following subsections we discuss in details the
construction of multi-output GP emulators for the mod-

eling of the power spectrum P (k,θ). To our knowledge,
a similar comparison of multi-output emulators has not
been done in the current context. Through a detailed
numerical comparison, we arrive at the two preferred
approaches that are used in the rest of the paper. Our
choices are motivated by considerations of efficiency, ac-
curacy, and correct modeling of correlation between the
outputs.

The preferred approach will inherently be application
dependent. We work here on the Lyman α flux power
spectrum, but we emphasize that in a different setting,
with much stronger correlations, there would be a bigger
difference between different approaches. The methodol-
ogy that we describe in this section can thus be used to
diagnose when to apply a given approach, and is meant
to serve as a practical guide for the application special-
ists. Readers who are not practitioners themselves could
skip this section and proceed to results presented in Sec-
tion 5.

4.1. Gaussian process emulators

We will treat P (k,θ) as a function from Xk×Xθ to Rq,
where Xk ⊂ R, Xθ ⊂ Rp, and q is the number of values
of the wavenumber k for which we have observations.
For a given vector of input parameters θ, we treat the
output of the simulation code as a vector P(θ) ∈ Rq of
the values of the power spectrum at fixed values of k.

Similarly to Conti & O’Hagan (2010), we model P(·)
as a q-dimensional separable Gaussian process:

PGP (·)|ψ,Σk ∼ Nq(µ(·), c(·, · ; ψ)Σk), (10)

conditional on hyperparameters ψ of the correla-
tion function c : Xθ × Xθ × Xψ → R, and sym-
metric positive-definite matrix Σk ∈ Rq×q. This

means that for any two inputs θ(1) and θ(2), we

have E
[
PGP (θ(i)) |ψ,Σk

]
= µ(θ(i)), i = 1, 2, and

Cov
[
PGP (θ(1)),PGP (θ(2)) |ψ,Σk

]
= c(θ(1),θ(2);ψ)Σk.

As indicated by several studies, e.g., Chen et al. (2016),
the introduction of the regression term µ(·) does not
generally affect the performance of the predictive model,
and, in some cases, might have an adverse effect. In our
case, adequate results were obtained by simply setting
µ(θ) ≡ 0. Furthermore, we set the covariance function
c(·, · ; ψ) to be squared-exponential with p+ 1 hyperpa-
rameters ψ = (σc, `1, . . . , `p)

T :

c
(
θ(1),θ(2);ψ

)
= σ2

c exp

(
−

p∑
i=1

(
θ
(1)
i − θ

(2)
i

)2
2`2i

)
. (11)

Note that the choice of the covariance function here is
purely empirical and does not affect the forthcoming
methodology.

Our treatment of the inter-output covariance matrix
Σk differs from that in Conti & O’Hagan (2010) and
Bilionis et al. (2013). There, the authors assume a weak
non-informative prior on the matrix Σk and integrate it
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out of the predictive posterior distribution. Instead, we
study four different approaches for treating interactions
between outputs, summarized in the following Section
4.2.

4.2. Approaches for dealing with multi-output models

1. First, we test a naive approach that emulates each
output separately with a single-output GP. We re-
fer to this approach as (MS) as it corresponds to
the MS (many single-output) emulator in Conti &
O’Hagan (2010). This approach has an increased
computational cost (which could be alleviated by
training in parallel) compared to training only one
GP as the following two approaches do. Also, this
approach ignores any dependencies between the
outputs.

2. In our second approach (IND), we treat the out-
puts as independent given the hyperparameters of
the covariance function c(·, · ; ψ). This approach
has been considered in Bilionis & Zabaras (2014)
and Takhtaganov & Müller (2018). It leads to
a simple and efficient implementation of a multi-
output emulator with a diagonal Σk, see Appendix
B for details.

3. Our third approach (COR) assumes that correla-
tions between different outputs are non-zero but
are still independent of the parameter θ. In this
case, we fix the correlation matrix a priori and use
it to obtain Σk by rescaling by the training vari-
ances. This approach requires specifying the inter-
output correlation matrix. In terms of computa-
tional efficiency, this approach still allows us to
use the Kronecker product structure of the train-
ing covariances (see Appendix B) and is as efficient
as using the diagonal covariance in approach IND.

4. Our final approach (INP) is related to Approach
COR, but it is computationally more demand-
ing. Here, we treat k as another input dimension
into the GP model with associated covariance ker-
nel being again a squared-exponential. The main
computational cost is associated with inverting
the training covariance matrices, which become q
times larger due to the addition of another input
dimension. Conceptually, however, this approach
is similar to Approach COR with Σk having en-
tries specified by the squared-exponential kernel
for a fixed (learned) value of the length-scale hy-
perparameter `p+1 associated with the k input di-
mension. The difference to Approach COR is that
the inter-output correlation matrix now depends
on the training data. As our experiments demon-
strate, this additional flexibility provides no dis-
cernible advantage. This approach is referred to
as TI (time-input) emulator in Conti & O’Hagan

(2010) where an extra dimension is time rather
than k.

All of our approaches utilize matrix-valued kernels
that fall into the category of separable kernels, see (Al-
varez et al. 2012, Section 4) for an overview. Specifically,
our Approaches IND, COR, and INP are examples of the
so-called intrinsic coregionalization model or ICM (Al-
varez et al. 2012, Section 4.2). The ICM approach allows
for an efficient implementation of GP-based regression
and inference that exploits the properties of the Kro-
necker product of the covariance matrix, see Appendix B
for details. For the adaptive algorithm, efficiency is im-
portant for solving the auxiliary optimization problem
for the expected improvement in fit function I(θ). Solv-
ing this optimization problem requires multiple restarts
as the I(θ) function is highly multi-modal, leading to
a large number of evaluations of the GP emulator pre-
dictions and their gradients. For the GP-based infer-
ence, having an efficient emulator allows us to carry out
MCMC sampling of the posterior with minimum com-
putational effort. As the following numerical study of
the considered approaches suggests, in our application
it is reasonable to expect that the outputs correspond-
ing to different values of the wavenumber k have similar
properties with respect to the parameters θ, therefore,
our choice of the separable form of the kernel is justified.

4.3. Numerical study of multi-output approaches

In this section we compare the predictive performance
of the different multi-output Gaussian process emulators
introduced in Section 4.2 using an approximate model of
the power spectrum P (k,θ) described in Section A. To
obtain a better picture of the dependence of the results
on the choice of design inputs, we build emulators using
10 to 30 inputs arranged in a Latin Hypercube Design
(LHD) where the minimum distance between the points
has been maximized—the so-called maximin LHD (see,
e.g., Johnson et al. (1990)). For each design we perform
multiple experiments. For each experiment we gener-
ate a large test set consisting of 500 input-output pairs
for computing various measures of predictive accuracy.
In order to avoid an unnecessary cost associated even
with the post-processing procedure of Section A, we pre-
compute the power spectrum on a dense grid in Xθ using
our automatized Henson system (Morozov & Lukić 2016;
Lohrmann et al. 2017) and interpolate the outputs using
tri-linear interpolation to obtain the continuous approxi-
mation of the power spectrum in Xθ. We have confirmed
that the P (k,θ) error associated with this interpolation
is negligible. Specifically, we take a grid of 103 input
parameters θ = (F, T0, γ) covering the box

Xθ = [0.2, 0.5]× [3× 103K, 3× 104K]× [1.0, 2.0] . (12)

We restrict our attention to the redshift of z = 4.2 and
q = 8 outputs corresponding to the following k values
{3.26×10−3, 6.51×10−3, 9.77×10−3, 1.63×10−2, 2.28×
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Figure 1. Correlation matrix between outputs (k-

wavemodes) 1 through 8 for the COR emulator.

10−2, 3.26×10−2, 5.21×10−2, 8.14×10−2}km−1s, which
cover the range of values as the Viel et al. (2013) mea-
surements that we use later. In the following we simply
number these k outputs from 1 to 8.

We construct the four multi-output GP emulators
(MS, IND, COR, and INP) using fixed LHDs with 10,
20, and 30 points in Xθ. In each case, the training out-
put values are normalized (see Appendix B). We fit the
hyperparameters of the covariance function using the
maximum likelihood approach (MLE in Appendix B).
Recall that the COR emulator requires a fixed output
correlation matrix Σk. We obtain an estimate of this
matrix by first using the INP emulator built with LHD
20 design. Upon training of the INP emulator we ob-
tain an estimate of the length scale for its k (output)
variable. By plugging-in this estimate into the one-
dimensional squared-exponential kernel and evaluating
the kernel for the values of k that we consider, we get a
desired estimate of Σk. This estimate remains fixed for
all experiments with the COR emulator, see Figure 1.

To test the predictive performance of the emulators we
use a test set consisting of N = 500 points in a random-
ized LHD. We use the following measures of predictive
accuracy.

1. Standardized mean squared error (SMSE): this is
the mean-squared prediction error scaled by the
variance of the test data for each output j =
1, . . . , q:

SMSEj =

N∑
i=1

(
mj

(
θ(i),D

)
− Pj

(
θ(i)
))2

N∑
i=1

(
P j − Pj

(
θ(i)
))2 , (13)

wheremj(θ,D) is the j-th component of the vector
of predictive means m(θ,D) of the GP model, and

P j is the mean of the test values Pj(θ
(i)), i =

1, . . . , N .

2. Credible interval percentage (CIP), also known as
coverage probability: the percentage of the 100α%
credible intervals that contain the true test value.
For an emulator that provides adequate estimates
of the uncertainty about its predictions, this value
should be close to α. We plot the CIP against
α ∈ [0, 1] and look for deviations from the straight
line. This statistic can only be plotted for each
output separately.

3. Squared Mahalanobis distance (SMD) between the
predicted and the test outputs at a test point i:

SMDi =
(
P(θ(i))−m(θ(i),D)

)
ΣGP (θ(i),D)−1

×
(
P(θ(i))−m(θ(i),D)

)
, (14)

where m(θ,D) and ΣGP (θ,D) are the predic-
tive mean and the predictive covariance of the
multi-output GP emulator, respectively. Accord-
ing to the multivariate normal theory, this distance
should be distributed as χ2

q for all test points. A
discrepancy between the distribution of distances
for the emulator and a reference distribution indi-
cates a misspecification of the covariance structure
between the outputs.

Figure 2 reports the SMSE estimates for the three
LHDs. In each case we repeat the experiment 20 times,
meaning that we generate 20 training and 20 test sets
for each of the three designs and use them to train and
test each of the four emulators. We observe a notice-
able spread of the estimates between the experiments
with the same number of design points regardless of the
chosen emulator or output index. Increasing the size
of the training design generally improves accuracy but
does not necessarily combat the variation in results for
different experiments. All four emulators demonstrate
similar output-marginal accuracy, and the difference in
errors for different outputs is low, with the exception of
output 8, which has consistently higher relative errors
for all four emulators. The COR and the INP emula-
tors appear to have a similar spread of the error values
indicating that fixing the output covariance Σk a priori
rather than allowing it to depend on training data has
little effect on accuracy. The MS and the IND emula-
tors achieve smaller errors, but also have relatively larger
spreads between experiments, which suggests higher de-
pendence on the design than in the cases of COR and
INP emulators.

While there is little that separates different multi-
output approaches in terms of per-output SMSE, the
results for CIP and SMD provide a more complete pic-
ture.

Figure 3 reports the CIP estimates for the three LHDs
and for selected output indices (1, 4, and 7, in the top,
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Figure 2. Standardized mean-squared errors (SMSE) for the four multi-output emulators (MS, IND, COR, INP) for three

different LHDs (LHD 10, 20, and 30). Test errors are computed with 500 points. Each experiment is repeated 20 times.

middle, and bottom rows, respectively). Here we report
the CIP values averaged over the 20 experiments. In
general, we observe that all four emulators underesti-
mate the uncertainty in their predictions, i.e., they are
over-confident in their predictions. This trend becomes
more pronounced with growing training design size. We
view this as an artifact of the MLE approach to GP
training, see discussion in (Takhtaganov & Müller 2018,
Section 3). Among the emulators, the MS emulator ex-
hibits the worst performance and is most over-confident
in its predictions in all cases. The other emulators com-
pensate for the shortcomings of the MLE approach by
accounting for correlations between the outputs. The
IND emulator does it in a least effective way, and hence
performs worse than the COR and the INP emulators.
The COR emulator on average comes closest to provid-
ing accurate uncertainty estimates.

Figure 4 shows the box plots of the distributions of
the squared Mahalanobis distances for the test points
for the three designs. We only show the results of a
single experiment for each design. The reference distri-
bution χ2

8 has mean of 8 and variance of 16. We observe
that although all of the emulators fail to correctly model
the posterior covariance (a direct consequence of under-
estimating the predictive uncertainty), the IND, COR,
and INP emulators all do better than MS with the last
two coming closest to the reference. If we look at the
means of the distributions, then for LHD 10, the average
values over the 20 experiments are 54, 38, 27, and 29 for
the MS, IND, COR, and INP emulators, respectively.
The results shown represent the general trend that, on
average, COR and INP emulators tend to represent the
predictive covariance better.

In terms of the wall-clock time required for train-
ing and evaluating the four emulators, the most time-
consuming emulator to train is INP for which the re-
quired training time grows exponentially with the size
of the training set. The next most time-consuming em-
ulator to train is MS, however, it can be easily trained

and evaluated in parallel since there is no overlap be-
tween the outputs. The time for training IND and COR
emulators is approximately the same and is considerably
less than for the other two since only a single GP needs
to be trained.

Based on the performed experiments, in the following
we choose to work with IND and COR emulators due
to their good performance on the three test statistics as
well as good computational efficiency. The question of
how to obtain the correlation matrix for the COR em-
ulator still remains open. In our numerical experiments
we did not observe significant differences in the emulator
performance with the small changes to the correlation
matrix Σk. In particular, the estimates of Σk obtained
with the INP emulator were similar for all experiments.
It appears that the variability in the results due to the
training designs outweighs the variability from using ap-
proximate correlations.

As mentioned previously, an alternative way of treat-
ing the separable form of the covariance is to assume a
“non-informative” prior on Σk as in Conti & O’Hagan
(2010) which allows analytical integration of this ma-
trix out of the predictive distribution. In addition, if
the mean µ(·) is taken to be a generalized linear model
with a flat prior, it can also be treated analytically. We
deviated from the approach of Conti & O’Hagan (2010)
for the sake of a simpler and more interpretable model.

5. NUMERICAL STUDY OF INFERENCE WITH
ADAPTIVE GP EMULATORS

In this section we evaluate the performance of the
adaptive construction of the GP emulators introduced
in Section 3. First, we solve a synthetic inference prob-
lem for the same set of three parameters θ = (F, T0, γ).
For this task, we generate synthetic measurement data
with the post-processing model of Section A and cor-
rupt it with noise. Similarly to Section 4.3, we use a tri-
linear interpolation of the outputs of the post-processing
model as the forward model for the GP construction
and inference. We run Algorithm 1 and use the con-
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Figure 3. Percentage of credible intervals (CIP) containing the true test values for the four multi-output emulators (MS, IND,

COR, INP) for three different LHDs based on 500 test points and averaged over 20 experiments. Top row - output 1, middle

row - output 4, bottom row - output 7. The closer the colored graphs are to the black line, the better.

structed GP emulator to obtain the posterior of the pa-
rameters θ given the measurements. We compare the
results obtained with the adaptive approach to those
obtained using the GP emulators built using fixed de-
sign (see Section 5.1). Having a relatively inexpensive
forward model, we can obtain a reference posterior using
the “true” likelihood L(θ|d), which allows us to obtain
quantitative measures of the quality of the GP-based
posteriors.

Following this detailed study, we use the adaptive al-
gorithm to obtain parameter posteriors using observa-
tional data from Viel et al. (2013) and using the post-
processing model A as the forward model. These results
are reported in Section 5.3.

Finally, we use a simplistic version of our adaptive
approach to construct posteriors for an extended set of
parameters, namely θ = (F, T0, γ, λP ), using the same
Viel data and the THERMAL suite of Nyx simulations.

Here, we restrict the search space Xθ to the 75 points for
the parameters (T0, γ, λP ) in this dataset and 40 values
of F giving us a total of 3,000 possible values of θ. We
use our adaptive algorithm to select a small subset of
the points for constructing a GP emulator. We compare
the results obtained with this restricted version of our
algorithm to those in Walther et al. (2019) where all 75
points for (T0, γ, λP ) and several values of F were used
for the GP construction. Note that we do not expect to
obtain identical results, as, besides differences in imple-
mentation (Walther et al. (2019) build a GP emulator
using the PCA-based approach of Habib et al. (2007),
see below), we also use only Viel et al. (2013) subset
of measurement data for the given redshift. The reason
for this approach is our focus on the inference method.
However, even using a “restricted” version of our adap-
tive algorithm, we are able to effectively constrain the
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Figure 4. Distribution of the squared Mahalanobis distances for the four multi-output emulators (MS, IND, COR, INP) for

three different LHDs computed with 500 test points. The reference distribution (ref) is χ2
8. A single representative experiment
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for the GP-based posteriors. While fixed-design-based emulators can occasionally

produce good quality posteriors, the inconsistency of the results makes them a poor choice compared to adaptive designs.

parameters using only a fraction of the available inputs
and simulation results.

5.1. State-of-the-art data-agnostic approach

Construction of emulators is often done using space-
filling LHDs, such as maximin and orthogonal designs
Moon et al. (2011), or sliced LHDs Qian (2012). Some
of those space-filling LHDs are also used by the cosmo-
logical community for selecting the training points for
the construction of emulators. Typically, the number
of training points is selected a priori and remains fixed.
For example, in the first such work in cosmology (Habib
et al. 2007), the space-filling LHD with 128 points is se-
lected for the problem of inferring 5 cosmological param-
eters from matter power spectrum measurements. The
authors employ a PCA-based approach to constructing
multi-output emulators. Specifically, they use a singu-
lar value decomposition (SVD) of the simulations at the

training points specified by the LHD. The weights of the
SVD are then modeled as independent GP emulators.

A similar approach is taken in Walther et al. (2019)
for recovering thermal parameters of the IGM using the
Lyα flux power spectrum. However, the training points
do not exactly form an LHD, as one of the parameters,
λP , is difficult to independently vary in a way that is
not correlated with the other thermal state parameters
T0 and γ. This is because λP probes the integrated ther-
mal history which is smooth for each individual physi-
cal model of heating and cooling of the IGM during and
after reionization process. Of course, in principle one
could generate models with abruptly changing instan-
taneous temperature such that the pressure smoothing
does not have enough time to adjust, but we lack phys-
ical motivation for such models. In addition, one of
parameters—the mean flux of the Lyα forest—is not
part of the LHD as it can be easily rescaled in the post-
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processing, thus its sampling does not require running
additional expensive simulations.

5.2. Comparison of the adaptive method and the
data-agnostic approach

We continue to use the post-processing model de-
scribed in Section A as the true “forward model” (with
the same q = 8 outputs). We first generate the mock
measurement by evaluating the model at a fixed θtrue =
(0.275, 1.245 × 104K, 1.6)T , and we corrupt the result-
ing measurement vector with noise from a multivari-
ate Gaussian distribution Nq(0q, σ2

eIq) with σe = 0.01.
This level of measurement noise is consistent with the
observational data (Viel et al. 2013) that we use later.

In order to analyze how the size of the initial design for
the adaptive algorithm influences the obtained solution,
we perform experiments with 4, 6, or 8 design points in
the three-dimensional parameter space θ = (F, T0, γ).
In each iteration s of Algorithm 1, we construct a GP
surrogate using the current selection of design points,
we solve the auxiliary optimization problem to maxi-
mize the expected improvement in fit function, and aug-
ment the design set with a single point that provides the
largest predicted improvement. We iterate until the rel-
ative expected improvement drops below a 1% thresh-
old.

For each selection of the size of the initial training de-
sign, we run our algorithm 10 times, each time selecting
new initial design points using a maximin LHD. For each
of the initial designs, we run the algorithm with two em-
ulator choices: IND and COR (see Section 4.2). For the
COR emulator the inter-output correlation matrix Σk is
taken to be the same as the one used in Section 4.3 (see
Figure 1). On average the final designs contain 10–11

inputs regardless of the number of points in the initial
design or the emulator choice.

We perform MCMC sampling of the posterior using
the integrated likelihood based on the constructed GP
surrogates (see Appendix B for details). To obtain a
quantitative measure of the quality of the obtained pos-
teriors, we compute the Hellinger distance between the
GP-based posteriors pGP (θ|d,D) and the reference pos-
terior pref (θ|d) obtained by a direct MCMC sampling
with the “true” likelihood function, i.e., the likelihood of
the measurement data that uses evaluations of our (post-
processing) forward model. The Hellinger distance is a
metric for evaluating differences between two probability
distributions and is a probabilistic analogue of the Eu-
clidean distance. It can be related to other commonly
used distance measures, such as total variation distance
and Kullback-Leibler divergence, see, e.g., Dashti & Stu-
art (2016). It has also been recently studied in the con-
text of posteriors obtained with Gaussian process emula-
tors (Stuart & Teckentrup 2018). The Hellinger distance
between pref and pGP is defined as follows:

DH(pref , pGP ) =(
1

2

∫
Xθ

(√
pref (θ|d)−

√
pGP (θ|d,D)

)2
dθ

)1/2

.

(15)

To compute DH(pref , pGP ) we approximate the den-
sities pref and pGP by fitting kernel-density estimates
(KDEs) with Gaussian kernels to the generated sam-
ples from the respective posteriors and discretize the
integral in equation (15) using 3-dimensional Sobol’ se-
quence with 104 points. The results for the posteriors
obtained with the adaptive GPs (10 runs for each initial
design) are presented in Figure 5 on the left.

We compare the posteriors obtained with the adap-
tive approach to the posteriors obtained by training GP
models wtih fixed maximin LHDs. Here, we fix the de-
sign sizes to be 10, 11, and 12. As in the adaptive case,
we train the GP emulators using both IND and COR
approaches, and we repeat each experiment 10 times.
The results for the posteriors obtained with the fixed
designs are shown in Figure 5 on the right.

The comparison of the results in Figure 5 demon-
strates the superiority of the adaptive approach. The
adaptive approach is able to achieve results that are
closer to the reference posterior in the Hellinger dis-
tance, and often with fewer design points. Furthermore,
the results for the adaptive approach are less spread out,
and thus making it more robust and consistent.

In Figure 6, we re-plot the data from Figure 5 for the
adaptive cases, and we show the final design sizes on the
x-axis. As we can see, in most cases, the final design size
is either 10, 11, or 12. There is no significant difference
in the results for different initial design sizes. However,
there appears to be more variability in the final design
sizes when the initial design contains only 4 points (LHD
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for two parameters at a time and overlay results from 60 experiments. The red rectangle represents the HPD intervals of the

marginal distributions of the reference posterior. We observe a good correspondence for the intervals of obtained posteriors with

those of the reference.

0.20 0.26 0.32 0.38 0.44 0.50
F

0.30

0.84

1.38

1.92

2.46

3.00

T 0
, 1

04  K

0.30 0.84 1.38 1.92 2.46 3.00
T0, 104 K

1.00

1.20

1.40

1.60

1.80

2.00

0.20 0.26 0.32 0.38 0.44 0.50
F

1.00

1.20

1.40

1.60

1.80

2.00

Figure 8. 95% HPD intervals for the marginal posteriors obtained with fixed designs (blue rectangles). We plot intervals for two

parameters at a time and overlay results from 60 experiments. The red rectangle represents the HPD intervals of the marginal

distributions of the reference posterior. We observe a noticeably larger scatter in the results between different experiments than

in adaptive designs case presented in Figure 7.

4)—the final designs have between 7 to 13 points. We
also observe a small trend of decreasing distance values
as the final design size increases from 7 to 10. However,
beyond 10 there is no significant difference in the results.
The COR emulator appears less likely to terminate with
a design consisting of less than 10 points, but in terms of
the distance values, COR does not outperform the IND
approach.

Results for the Hellinger distances confirm that there
is little difference between the IND and the COR ap-
proaches for our current application. As far as the choice
of the initial design size, starting with smaller designs
(4 to 6 points for the current three-dimensional prob-
lem) leads to fewer forward model evaluations without
compromising the quality of the result.

Additionally, we compare the posteriors obtained with
the adaptive algorithm and with fixed LHDs by looking
at the 95% highest posterior density (HPD) intervals for
the marginal posteriors for each parameter, i.e., shortest
intervals containing 95% of the marginal posteriors for
each parameter. This provides a visual representation of

the spread of the obtained distributions. We plot the in-
tervals for two parameters at a time and overlay results
from all 60 experiments (2 approaches × 3 initial designs
× 10 random realizations) in Figures 7 (adaptive cases)
and 8 (fixed cases). We observe a good correspondence
between the HPD intervals for the adaptive designs. For
the fixed designs there is much more variation in the
spreads of the posterior estimates. This comparison re-
inforces the conclusion that the results obtained with
fixed designs are inconsistent, and, therefore, less reli-
able.

5.3. Results for the adaptive GP with post-processing
model and Viel data

In this section we apply our adaptive GP approach to
the problem of inferring the same three parameters θ =
(F, T0, γ) using the post-processing model of Section A
as the forward model of the power spectrum, and data
from Viel et al. (2013) for the redshift of z = 4.2.

The measurement data consists of seven values of the
power spectrum for k = {5.01×10−3, 7.95×10−3, 1.26×
10−2, 1.99 × 10−2, 3.16 × 10−2, 5.01 × 10−2, 7.95 ×
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10−2}km−1s with errorbars that we treat as ±1σk. The
measurement noise covariance, thus, has a diagonal form
ΣE = diag[σ2

1 , . . . , σ
2
7 ]. We take a uniform (flat) prior

p(θ) on all three parameters defined over the same box
Xθ as in Section 4.3:

Xθ = [0.2, 0.5]× [3× 103K, 3× 104K]× [1.0, 2.0]. (16)

We use the COR emulator with the same Σk as in Sec-
tion 4.3 and initialize Algorithm 1 with a maximin LHD
with 4 points. The stopping threshold for the algorithm
is again set to 1%.

Figure 9 shows the design points at different iterations
of the adaptive algorithm. The first figure shows the ini-
tial 4 points arranged in maximin LHD, the figure in the
middle has three additional points after three iterations
of the adaptive algorithm, and the last figure shows the
final design upon termination.

Figure 10 shows iteration history of the algorithm with
iteration s = 1 corresponding to the initial design with
four points. The blue line in this figure shows the value
of the best misfit for the points in the training set in
each iteration s, gsmin, scaled by the best misfit value
obtained upon convergence, gbestmin. A point with a better
misfit value is not obtained in every iteration, e.g., in
iterations 2 and 3 we have the same gmin as initially.
The points added to the design in these iterations serve
the purpose of decreasing the overall uncertainty of the
GP. The new point added to the training set D after
iteration s = 3 provides a reduction in gmin for the
first time (see red dot in the middle figure in Figure
9). The red dotted line in Figure 10 shows one minus
the relative expected improvement in each iteration, i.e.,
1−I(θs)/gsmin. As the algorithm progresses, we expect
both lines to approach 1.

Figure 11 shows the power spectrum P(θs=6) evalu-
ated at the last θ added by the algorithm in iteration
s = 6. This point corresponds to the smallest misfit gbestmin

to the Viel data found by our algorithm. This point is
shown as a red dot in the bottom panel of Figure 9.

5.4. Results for the adaptive GP with Nyx simulations
and Viel data

In this section we work with the THERMAL suite
of Nyx simulations consisting of 75 models with given
parameters (T0, γ, λP ) (see Figure 12). Mean flux we
treat in post-processing as in virtually all Lyα power
spectrum inference works. To be specific, in this work
we produce 40 equidistant values for the parameter F
in the interval [0.2, 0.5] for each of the 75 thermal mod-
els, thereby sampling the 4-dimensional parameter space
θ = (F, T0, γ, λP ).

We run a restricted version of Algorithm 1 with the
possible selection of θ limited to the existing thermal
models. We start by selecting the first six points ran-
domly, build a GP emulator using the IND approach,
and evaluate the expected improvement in fit function
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Figure 9. Evolution of the designs for the adaptive GP

using the post-processing model and Viel data. We have

achieved desired convergence with 10 evaluations of the for-

ward model.

I(θ) for the remaining points (using Viel data). We se-
lect the point that corresponds to the largest improve-
ment in fit, and iterate until no further improvement
can be made. In this regime we do not perform a di-
rect optimization over the parameter space but select
the inputs out of the available THERMAL data. Our
restricted algorithm terminates after iteration s = 4 us-
ing a total of 10 design points. Figure 13 shows the plot
demonstrating the fit of the P(θs=4) corresponding to
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Figure 11. P(θs=6) corresponding to the best found misfit

for the adaptive GP with post-processing model and Viel

data.

the best found misfit value. Note that here we used Nyx
simulations as the forward model on a pre-existing set
of discrete points to chose from, and we are reaching
convergence in similar number of evaluations as in Sec-
tion 5.3 when we did continuous search for a candidate
evaluation of the rescaled model (purely by coincidence,
the number of evaluations in both cases was actually
identical: 10).

The other important ingredient is the construction of
the prior p(θ). We use a flat prior for F , log T0, γ,
and log λP in a box constrained by the smallest and the
largest values for each parameter. We then truncate this
prior to the convex hull of the THERMAL grid points, as
is done in Walther et al. (2019). The resulting truncated
prior is shown in Figure 14. This truncation is done to
avoid GP extrapolation into a region of parameter space
where this IGM model cannot produce an answer, for
example, in case of very low T0 but very high pressure
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Figure 12. All 75 simulated models in the THERMAL

suite.
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Figure 13. P(θs=4) corresponding to the best found misfit

value for the adaptive GP with Nyx simulations and Viel

data.

smoothing scale (see also discussion in Section 5.1 about
the λP parameter).

The posterior obtained with this prior using the likeli-
hood based on the adaptively constructed GP is shown
in Figure 15. We observe that the resulting posterior
is considerably more constrained than the prior, al-
though we want to draw the reader’s attention to the
poor constraints on parameter γ, which plays very little
role at high redshifts (at most!) when the density of
Lyα absorbing gas is close to the cosmic mean. Over-
all, the marginal ranges and central values for the pa-
rameters are in good agreement with the ones reported
in Walther et al. (2019). Note, however, that we do
not use BOSS (Palanque-Delabrouille et al. 2013) mea-
surements here, but only Viel et al. (2013) data, as we
want to avoid modeling of correlated Silicon III absorp-
tion which is present in the BOSS dataset. We pre-
fer maintaining the forward model as simple as possible
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Figure 14. Prior p(θ) for θ = (F, T0, γ, λP ) à la Walther et al. (2019)

as the goal of this work is testing and improving infer-
ence schemes for the Lyα power spectrum. In any case,
the fact that our results presented here are completely
consistent with Walther et al. (2019) indicates that the
BOSS dataset contributes negligible information about
the thermal state of the IGM at high redshifts.

6. CONCLUSIONS

In this work we described the use of an adaptive design
of GP emulators of the Lyman α flux power spectrum
for solving inference problems for the thermal parame-
ters of the IGM. To the best of our knowledge, while GP
emulators constructed from a Latin hypercube design
are nowadays in common use in the cosmological com-
munity, the data-driven adaptive selection of training
inputs has been considered only very recently in Rogers
et al. (2019) and in our work. In the future, we expect
to see wider use of similar techniques in other astrophys-
ical applications where observational data already exists
prior to the construction of an emulator.

Our motivation for this work is primarily the reduc-
tion of the number of computationally intensive simu-
lations required to build a GP emulator. By prioritiz-
ing the regions of the parameter space that are consis-
tent with the measurement data under the predictive
model of the emulator, we obtain the desired reduction
without sacrificing the quality of the parameter poste-
riors. A numerical study that we performed on a prob-
lem with an approximate model of the Lyman α forest
power spectrum and with synthetic measurement data

demonstrated that our adaptive approach obtains con-
sistently good approximations of the parameter poste-
rior and outperforms a similar-size fixed design approach
based on maximin Latin hypercube designs.

We provided a complete framework for building multi-
output GP emulators that predict the power spectrum
at the pre-selected modes k. Our numerical study
demonstrates that the resulting multi-output emulators
that either treat outputs as conditionally independent
given the hyperparameters (IND) or explicitly model
linear correlations between the outputs (COR) are ef-
fective and computationally efficient. Furthermore, our
approaches allow us to train emulators using only highly
limited number of training inputs, which in turn enables
the adaptive selection of additional inputs.

The initial results obtained with our adaptive ap-
proach are encouraging. Specifically, for the problem
of inferring three thermal parameters of the IGM and
mean flux using measurements of the power spectrum
at seven values of k our approach (constrained to the 75
available Nyx THERMAL simulations) required simula-
tion outputs for only 10 input values to constrain the
parameters to the same level of accuracy as in Walther
et al. (2019) that used substantially larger number of
simulations.

Finally, we want to emphasize that we do not consider
the “classical” parameterization of θ = (F, T0, γ, λP )
to be the best for modeling the state of the IGM, but
we nevertheless perform this type of analysis as it is
straightforward to make comparisons of our results with
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Figure 15. 1D and 2D marginal posteriors for θ = (F, T0, γ, λP ) obtained with a restricted version of Algorithm 1 using Nyx

simulation and Viel data. Note that we apply smoothing to the plots of the marginal histograms which makes them look more

Gaussian. The numbers above 1D histograms report 50%-quantiles of the marginal distributions plus/minus differences between

84%- and 50%-quantiles and 50%- and 16%-quantiles.

previous works. While these parameters have intuitive
physical meaning in describing the thermodynamical
state of the IGM, there are several practical problems
with them. First, they are output rather than input
parameters which brings significant difficulties with im-
plementations of sampling and iterative emulation pro-
cedure. Second, these 4 parameters are parameterizing
each time snapshot instead of the physical model itself.
For that reason, we consider models which parameterize
the time and duration of the reionization as well as as-
sociated heat input (Oñorbe et al. 2019) as better and
we will be using those in future works.

Authors are grateful to Jose Oñorbe for making his
Nyx simulations available to us, as well as for providing

helpful comments and insights. We thank Joe Hennawi
and members of the Enigma group2 at UC Santa Bar-
bara for insightful suggestions and discussions. This re-
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Scientific Computing Center (NERSC), which is sup-
ported by the Office of Science of the U.S. Department of
Energy under Contract no. DE-AC02-05CH11231. This
work made extensive use of the NASA Astrophysics
Data System and of the astro-ph preprint archive at
arXiv.org.

Software: Nyx (Almgren et al. 2013)

2 http://enigma.physics.ucsb.edu/
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Figure 16. The density-temperature distribution of gas (volume-weighted histogram) in three Nyx simulations: (a) ”fiducial”

one, (b) simulation with lower T0 value than in the fiducial one, and (3) simulation with lower γ value. Other than one parameter

differing, simulations have the same all other parameters, including pressure smoothing scale at this redshift, λP .

APPENDIX

A. RESCALING OF THERMAL PARAMETERS

Parameter space considered in this work consists of four “standard” parameters, {T0, γ, λP , F̄}, describing the
thermal state of the IGM. In this appendix we specify on rescaling of those parameters, which is as model used in
Section 5.3. The advantage of this approximate model is that it does not require producing new simulation for every
new evaluated point.

In photo-ionization equilibrium, the mean flux of the Lyα forest is proportional to the fraction of neutral hydrogen,
and is thus degenerate with the amplitude of the assumed UV background. Therefore, mean flux can be rescaled
by finding the constant multiplier of the optical depth of all spectral pixels in the simulation so that the mean flux
matches the desired value: F̄ = 〈exp (−Aτi,j,k)〉. For accuracy considerations of rescaling the mean flux, we refer the
reader to Lukić et al. (2015).
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Figure 17. Power spectra ratios showing the accuracy of different post-processing approaches for rescaling the instantaneous

temperature in simulations. Solid lines show ratios of low-T0 (left panel) and low-γ (right panel) simulations with respect to

the fiducial simulation. Dashed lines lines show same ratios after rescaling simulations to match fiducial one’s T0–γ relation

assuming all the gas is exactly on the power law (squares) and accounting for the scatter in T0–γ (triangles). Dotted lines

additionally take line of sight velocity from the fiducial simulation demonstrating that most of the remaining rescaling error is

coming from gas elements moving at different speeds. Note that over the BOSS/eBOSS/DESI range of k (yellow region), this

rescaling shows good accuracy.

Modifying any of the other three thermal parameter commonly requires running a new simulation (see, e.g. Walther
et al. (2019)). While modifying λP (3D pressure smoothing) is inherently difficult due to its dependence on the whole
thermal history, we can hope to be also able to modify the instantaneous temperature – the one that determines the
recombination rate and the thermal broadening (1D smoothing). That way, we can generate different values of {T0,
γ, F̄}, without the need to re-run expensive simulations. To test this, we use three simulations which have the same
cosmological and numerical parameters, and yield the same pressure smoothing parameter λp ≈ 68kpc at redshift
z = 3. Temperature-density diagrams for these simulations are shown in Figure 16. The fiducial simulation has
T0 = 1.1 × 104K and γ = 1.57; the “low-T0” simulation differs from fiducial only in that T0 = 7 × 103K, while the
“low-γ” simulation has γ = 1.03 and all other parameters the same as the fiducial model.

In Figure 17 we show power spectra ratios of low-T0 and low-γ simulations with respect to the fiducial model. Mean
flux is matched in all cases shown. Solid lines (with circles) are ratios of unscaled simulations, and we can see they
are significantly different over the k range covered by data (k . 0.08 km−1s). Two dashed lines with square and
triangle points are models where temperature-density relation has been rescaled to the fiducial one without and with
accounting for the scatter in the T − ρ. We notice the significant improvement in power spectrum, and we can also
see that scatter in T − ρ, as expected from optically thin models, does not play a significant role, although it help in
a case of radical change in γ parameter as seen in the right panel of Figure 17. Finally, dashed line represent the case
where we both rescale temperature-density relation, and use line of sight velocity from the fiducial simulation. This is
not a practical solution, as we wouldn’t know these velocities when rescaling a simulation to a target T − ρ relation,
but we want to show that differences in velocity account for most of the remaining error in this rescaling procedure.

While our approximate, post-processing model does not recover power spectrum at a percent accurate level over
the whole range of available data, it is sufficiently accurate for experiments conducted in Section 4. The essential
requirements there are to know the “true” answer for a given model, and to be able to evaluate the model a large number
of times. Note also that this rescaling procedure is loosing accuracy at high-k end which is important for thermal
constraints and interpreting P (k) from high resolution spectra, but over the k range relevant to BOSS/eBOSS/DESI
observations (k . 0.02 km−1s), the achieved accuracy is ≈1%, which should suffice for many studies.

B. TRAINING GP EMULATORS

Let θ(j), j = 1, . . . , ntrain, represent training inputs with P
(
θ(j)

)
being a q-vector of outputs corresponding to a

particular input. Denote by yi the ntrain-vector of the normalized values of the i-th output, i = 1, . . . , q, defined as
follows

yi =

(
P̂i
(
θ(1)

)
, . . . , P̂i

(
θ(ntrain)

))T
, (B1)
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where

P̂i(θ) =
Pi(θ)−mi

V1/2
i

(B2)

with

mi =
1

ntrain

ntrain∑
j=1

Pi
(
θ(j)

)
, Vi =

1

ntrain

ntrain∑
j=1

(
Pi
(
θ(j)

)
−mi

)2

. (B3)

The normalized training outputs together form an output matrix Y = [y1, . . . ,yq] ∈ Rntrain×q. Finally, the vectorized
form of Y is obtained by stacking the normalized training outputs into a (ntrain · q)-vector y = vec(Y).

The set of all training inputs we denote by θtrain = {θ(j), j = 1, . . . , ntrain}, and the combined set of training inputs
and outputs, or training data, by D = {θtrain,Y}.

Training a GP emulator requires specifying the hyperparameters ψ of its kernel. These are characterised by the
posterior distribution (note that conditioning on Σk is implicit but not necessary since it’s fixed)

p(ψ | D) =
p(D|ψ)p(ψ)

p(D)
, (B4)

where
p(D|ψ) = p(Y|θtrain,ψ) = Nntrain×q(Y|µnorm(θtrain), c(θtrain,θtrain;ψ),Σnorm

k ) (B5)

is the likelihood of the training data D under the matrix-normal distribution defining the Gaussian process (see Section
4) and p(D) =

∫
p(D|ψ)p(ψ)dψ is referred to as evidence. Note that µnorm is a normalized version of the mean function

obtained by applying the linear transformation (B2), and Σnorm
k is the inter-output correlation matrix. In order to

somewhat simplify this notation let us denote the covariance matrix for the training inputs by Cψ = c(θtrain,θtrain;ψ).
Also, recall that we take µ(·) ≡ 0. Thus, we have

p(Y|θtrain,ψ) = Nntrain×q(Y|0ntrain×q,Cψ,Σ
norm
k ). (B6)

In a vectorized form we can express the likelihood above as a regular multivariate normal density

p(y|θtrain,ψ) = Nntrain·q(y|0ntrain·q,Σ
norm
k ⊗Cψ). (B7)

How do we obtain the hyper-posterior (B4)? Since no analytical form for this posterior exist, we describe it via a
particle approximation (Bilionis & Zabaras 2016, Section 2.6). That is we approximate the hyper-posterior with a

weighted sum of Dirac delta functions centered at samples ψ(j):

p(ψ|D) ≈
nψ∑
j=1

w(j)δ(ψ −ψ(j)) (B8)

with weights w(j) ≥ 0 and
∑nψ
j=1 w

(j) = 1.

One way to obtain such a particle approximation is by maximizing the likelihood of the data given by (B7). This
leads to a single-particle approximation

p(ψ|D) ≈ δ(ψ −ψ∗MLE), (B9)

where
ψ∗MLE = arg max

ψ∈Xψ
p(D|ψ) (B10)

is the maximum likelihood estimator (MLE) of the hyperparameter vector. In the case of a flat prior on the hyperpa-
rameters this estimator coincides with a maximum a posteriori (MAP) estimator. MLE approach is convenient to work
with, since the covariance matrix Cψ needs to be only formed once, however, it might lead to somewhat over-confident
estimates of predictive uncertainties of the GP emulator . In the case of a sharply peaked likelihood p(D|ψ) the MLE
estimator can be sufficient. Another way of obtaining the particle approximation of the hyper-posterior is by sampling
it using MCMC techniques. This way provides a more complete picture of the hyper-posterior, albeit at an additional
computational cost.

Whether using MLE or MCMC approach to obtaining hyper-posterior p(ψ|D), we need to be able to evaluate the
logarithm of the likelihood function (B7) (note that by applying logarithm we preserve the order relation and obtain a
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better-behaved function). In the following we derive the expression for the log-likelihood of the data and explain how
it can be efficiently computed.

Let Σtot = Σnorm
k ⊗Cψ and let ai,j denote the entries of (Σnorm

k )−1, then

log p(y |θtrain,ψ) = −1

2
yTΣ−1toty −

1

2
log |Σtot| −

ntrain · q
2

log(2π)

= −1

2

q∑
i=1

q∑
j=1

ai,ky
T
i C−1ψ yj −

1

2

(
ntrain log |Σnorm

k |+ q log |Cψ|
)

− ntrain · q
2

log(2π)

= −1

2
tr((Σnorm

k )−1YTC−1ψ Y)− 1

2

(
ntrain log |Σnorm

k |+ q log |Cψ|
)

− ntrain · q
2

log(2π). (B11)

In our implementation we first compute the Cholesky decomposition of the input covariance

Cψ = LLT , (B12)

and let
A = LT \(L\Y), (B13)

then compute
B = YTA, (B14)

and set
D = ST \(S\B), (B15)

where Σnorm
k = SST is the Cholesky decomposition of the output correlation matrix. Then

log p(y |θtrain,ψ) = −1

2

(
tr(D) + 2ntrain

q∑
i=1

log(Si,i) + 2q

ntrain∑
i=1

log(Li,i) + qntrain log(2π)

)
. (B16)

The expression above can be further simplified in certain cases. For example, for the IND emulator that treats
outputs as independent given the Cψ matrix, the output correlation matrix in a unitary matrix Σnorm

k = Iq, and the

computation of tr(D) does not require cross-terms yiC
−1
ψ yj for i 6= j. In the case of IND emulator, the log-likelihood

thus simplifies to:

log p(y |θtrain,ψ) = −1

2

(
tr(B) + 2q

ntrain∑
i=1

log(Li,i) + qntrain log(2π)

)
. (B17)

In our implementation, the optimal hyper-parameter values ψ∗MLE are obtained by maximizing the above log-likelihood
using a multi-start strategy with an quasi-Newton iterative nonlinear optimizer such as Sequential Least Squares
Programming (SLSQP) or Limited memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS-B)3.

C. OBTAINING PREDICTIONS

In order to obtain a prediction for an un-tried input θ, we apply the standard GP formulas obtained by conditioning
on the data D. Furthermore, by exploiting the Kronecker product structure of the covariance, we can apply standard
GP formulas to each output separately. Indeed, as shown in Bonilla et al. (2008),

mnorm(θ;D,ψ) = (Σnorm
k ⊗ cψ)T (Σnorm

k ⊗Cψ)−1y

= ((Σnorm
k )T ⊗ cTψ)((Σnorm

k )−1 ⊗C−1ψ )y

= ((Σnorm
k (Σnorm

k )−1)⊗ (cTψC−1ψ ))y

= (cTψC−1ψ y1, . . . , c
T
ψC−1ψ yq)

T

= (m(θ;D1,ψ), . . . ,m(θ;Dq,ψ))T ∈ Rq, (C18)

3 Convenient implementations of both algorithms exist in Python’s SciPy library.
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where superscript norm indicates that this is the predictive mean of the GP fitted to the normalized outputs, and
cψ = c(θ,θtrain;ψ) ∈ Rntrain . For the predictive covariance we get

Σnorm
GP (θ;D,ψ) = c(θ,θ;ψ)Σnorm

k − (Σnorm
k ⊗ cψ)T ((Σnorm

k )−1 ⊗C−1ψ )(Σnorm
k ⊗ cψ)

= (c(θ,θ;ψ)− cTψC−1ψ cψ)Σnorm
k = V(θ;D,ψ)Σnorm

k . (C19)

Upon re-scaling we obtain:

PGP (θ)|D,ψ,Σk ∼ Nq(PGP (θ)|m(θ;D,ψ),ΣGP (θ;D,ψ)) (C20)

with
m(θ;D,ψ) = (V1/2

1 m(θ;D1,ψ) +m1, . . . ,V1/2
q m(θ;Dq,ψ) +mq)

T , (C21)

and

ΣGP (θ;D,ψ) = V1/2Σnorm
GP (θ;D,ψ)V1/2

= V(θ;D,ψ)(V1/2Σnorm
k V1/2)

= V(θ;D,ψ)Σk, (C22)

where V = diag[V1, . . . ,Vq] ∈ Rq×q. Finally, integrating out the hyperparameters ψ (recall the particle approximation
(B8)) we obtain

PGP (θ)|D,Σk ∼
nψ∑
j=1

w(j)Nq
(
PGP (θ)|m(θ;D,ψ(j)),ΣGP (θ;D,ψ(j))

)
(C23)

D. INFERENCE USING GP EMULATORS

Suppose now that we are given a vector of observations d ∈ Rq and a distribution of the measurement noise
Nq(0q,ΣE) with a known covariance ΣE . Upon substituting the true response P(·) with the GP emulator PGP (·)
in the likelihood of the measurement data, and integrating with respect to the GP distribution (C23), we obtain (see
Takhtaganov & Müller (2018) for details) the so-called D-restricted likelihood

L(θ|d,D) =

nψ∑
j=1

s(j)

nψ
exp

[
−
g
(
θ;D,ψ(j)

)
2

]
, (D24)

where s(j) = (2π)−q/2|ΣE + ΣGP (θ;D,ψ(j))|−1/2, and g(θ;D,ψ) is a data misfit function defined as

g(θ;D,ψ) = (d−m(θ;D,ψ))T (ΣE + ΣGP (θ;D,ψ))−1(d−m(θ;D, ψ)). (D25)

When performing inference the likelihood L(θ|d,D) needs to be repeatedly evaluated for different values of θ. Instead
of using the Cholesky factorization of the matrix appearing in the definition of g(θ;D,ψ), we compute the misfit
efficiently as follows.

First, we cover the case of homoscedastic measurement noise, i.e., when ΣE = σ2
EIq. Denote the matrix appearing

in g(θ;D,ψ) as
Σlik(θ;D,ψ) = ΣE + ΣGP (θ;D,ψ). (D26)

Plugging-in ΣE and ΣGP we get

Σlik(θ;D,ψ) = V(θ;D,ψ)

(
Σk +

σ2
E

V(θ;D,ψ)
Iq

)
. (D27)

We have the sum of a symmetric matrix and a constant times the identity matrix. In this case, the inverse of Σlik can
be efficiently computed using the eigendecomposition of the Σk matrix. Let

Σk = QΛQT , with Q−1 = QT , Λ = diag[λ1, . . . , λq]. (D28)

Then

Σ−1lik(θ;D,ψ) =
1

V(θ;D,ψ)
Q

[
Λ +

σ2
E

V(θ;D,ψ)
Iq

]−1
QT . (D29)
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In order to compute the misfit function g(θ;D,ψ) we first compute

v = QT (d−m(θ;D,ψ)) ∈ Rq, (D30)

then

g(θ;D,ψ) =
1

V(θ;D,ψ)
vTD−1v

=

q∑
i=1

1

V(θ;D,ψ)λi + σ2
E

v2i , (D31)

where D = Λ + (σ2
E/V(θ;D,ψ)Iq is a diagonal matrix. Thus, for each θ and ψ the computation of the data misfit

function requires O(q2) operations.
For a general ΣE , we use the generalized eigendecomposition

ΣEU = ΣkUΛ, (D32)

which leads to the following form for the inverse of Σlik:

Σ−1lik(θ;D,ψ) =
1

V(θ;D,ψ)
U

[
Iq +

1

V(θ;D,ψ)
Λ

]−1
UT . (D33)

Then

g(θ;D,ψ) =

q∑
i=1

1

V(θ;D,ψ) + λi
v2i , (D34)

with v = UT (d−m(θ;D,ψ)).
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