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HEALTH AND MED IC INE

Discovery and verification of extracellular microRNA
biomarkers for diagnostic and prognostic assessment of
preeclampsia at triage
Robert Morey1†, Lara Poling1†, Srimeenakshi Srinivasan1, Carolina Martinez-King1,
Adanna Anyikam1, Kathy Zhang-Rutledge1‡, Cuong To1, Abbas Hakim1, Marina Mochizuki1,
Kajal Verma1, Antoinette Mason1, Vy Tran1, MorganMeads2, Leah Lamale-Smith1, Hilary Roeder1,
Mariko Horii2, Gladys A. Ramos1, Peter DeHoff1, Mana M. Parast2 , Priyadarshini Pantham1,
Louise C. Laurent1*

We report on the identification of extracellular miRNA (ex-miRNA) biomarkers for early diagnosis and prognosis
of preeclampsia (PE). Small RNA sequencing of maternal serum prospectively collected from participants under-
going evaluation for suspected PE revealed distinct patterns of ex-miRNA expression among different categories
of hypertensive disorders in pregnancy. Applying an iterative machine learning method identified three bivari-
ate miRNA biomarkers (miR-522-3p/miR-4732-5p, miR-516a-5p/miR-144-3p, and miR-27b-3p/let-7b-5p) that,
when applied serially, distinguished between PE cases of different severity and differentiated cases from con-
trols with a sensitivity of 93%, specificity of 79%, positive predictive value (PPV) of 55%, and negative predictive
value (NPV) of 89%. In a small independent validation cohort, these ex-miRNA biomarkers had a sensitivity of
91% and specificity of 57%. Combining these ex-miRNA biomarkers with the established sFlt1:PlGF protein bio-
marker ratio performed better than either set of biomarkers alone (sensitivity of 89.4%, specificity of 91.3%, PPV
of 95.5%, and NPV of 80.8%).
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INTRODUCTION
Preeclampsia (PE) is a form of placental dysfunction that affects ap-
proximately 5 to 8% of pregnancies worldwide (1, 2). PE manifests
as hypertension and proteinuria, and in severe cases can lead to
end-organ injury (1, 2). Currently, the only intervention that can
halt the progression of disease is delivery, and thus, many pregnan-
cies affected by PE are delivered early to protect the health of the
mother and fetus. As a result, PE is the leading cause of iatrogenic
preterm birth.

Although it is thought that PE arises from abnormal trophoblast
differentiation and invasion in early placental development (3–5),
clinical manifestations do not arise until the second half of pregnan-
cy. The most common symptom of PE is headache, followed by
visual changes and abdominal pain. Typically, the diagnosis of PE
is made when a pregnant patient displays new-onset hypertension
(blood pressure >140/90 mmHg) and proteinuria (>0.30 g/24
hours) (6), but atypical cases where one of these features is absent
or uninformative are not uncommon, particularly for women with
preexisting conditions, such as chronic hypertension or kidney
disease. A subset of patients with PE develop additional clinical fea-
tures, including liver or kidney dysfunction, low platelet counts, ce-
rebral edema, seizures, or placental abruption. Given the broad
array of clinical presentations for PE, it can be difficult to differen-
tiate the early signs and symptoms of PE from other conditions.

Currently, early diagnosis of and/or risk assessment for the later
development of PE is problematic due to the lack of assays that are
highly specific for this disease. Accurate evaluations are important
when planning the intensity of pregnancy surveillance or determin-
ing the timing of delivery. If delivery is induced too early, the
neonate may be unnecessarily exposed to complications associated
with prematurity. However, if the decision to deliver is made too
late, the mother and neonate may be exposed to an increased risk
of severe manifestations of PE, which can lead to serious morbidity
or death. This dilemma frequently leads to expensive and lengthy
hospital stays for patients at high risk of PE. The management of
PE could be substantially improved, and unnecessary hospitaliza-
tions could be avoided, if an assay were developed to diagnose
early PE rapidly and accurately and/or assess the risk of severe PE.

At present, a highly sensitive and specific assay for early diagno-
sis or prognostic evaluation of PE does not exist (7), although mul-
tiple commercial protein biomarker tests for PE have been reported.
The most accurate of these tests are designed to detect two proteins
in the blood: placental growth factor (PlGF) and soluble FMS-like
tyrosine kinase 1 (sFlt1). PlGF is important in the development of a
healthy placenta, as it promotes the formation of new blood vessels,
while sFlt1 inhibits the function of PlGF (8). In women with PE,
PlGF levels may be decreased, while sFlt1 levels may be increased
(8). The level of these two proteins is reported as a ratio of sFlt1:
PlGF. As the ratio of sFlt1:PlGF increases, so does the risk of
preterm PE.

The primary limitation of the sFlt1:PlGF ratio is its relatively low
positive predictive value (PPV), which numerous studies have re-
ported to be between 30 and 65% (9–12). Still, it is currently the
most promising protein biomarker screening tool for PE. The
benefit of the sFlt1:PlGF ratio is its negative predictive value
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(NPV), which is helpful in ruling out PE and identifying women at
low risk for development of PE among those with signs or symp-
toms of PE. While sFlt1:PlGF may be helpful in certain scenarios,
the diagnosis of PE still depends on standard clinical signs and
symptoms. Studies have yet to demonstrate that pregnancy out-
comes are improved by screening suspected cases of PE using the
sFlt1:PlGF ratio (8).

Although the sFlt1:PlGF ratio has been available for almost 20
years, it was only recently approved by the U.S. Food and Drug Ad-
ministration (FDA) and at this time is excluded from the PE screen-
ing practices recommended by the U.S. Preventative Services Task
Force, the National Institute for Health and Care Excellence, the
American College of Obstetricians and Gynecologists, and the
Society of Obstetricians and Gynecologists of Canada. Collectively,
these organizations find limited clinical utility in the commercially
available PE biomarker tests and have requested the development of
better screening biomarkers and tools for risk prediction (7).

To improve upon existing assays, many research efforts have
evaluated proteins other than sFlt1 and PlGF (13–21). Some
studies have moved beyond protein biomarkers altogether to
nucleic acid–based laboratory tests. These studies initially focused
on long noncoding RNA molecules, cell-free DNA, and cellular
mRNA (22–25), but over the past decade, an increasing number
of studies have explored the utility of extracellular microRNAs
(ex-miRNAs) as diagnostic or prognostic biomarkers for PE
(26–43).

Many of these biomarker studies have used a candidate ap-
proach, measuring levels of specific biomolecules based on results
of previous studies demonstrating that they are expressed specifi-
cally by the placenta and/or play a role in placental development
or function. While this approach has yielded notable results in
several published studies, none of these studies have led to the de-
velopment of a clinical assay. Thus, both the utility of nucleic acid
biomarkers for PE and investigation of their roles in the pathophys-
iology of this disease are still in early stages.

Since it has not been established that only placental biomolecules
are perturbed in women at elevated risk of developing PE, we rea-
soned that a comprehensive unbiased approach might reveal bio-
markers for PE. Therefore, the primary aim of this study was to
use an unbiased transcriptomic approach to discover ex-miRNA
biomarkers for the early diagnosis of PE in a cohort of pregnant
women being evaluated for signs and symptoms of PE. Post hoc
analysis was also performed to explore the utility of ex-miRNA bio-
markers for prediction of severity of PE in those who developed this
complication.

RESULTS
Characteristics of the study population
A total of 131 subjects were recruited and enrolled. Of these, one
subject was lost to follow-up and seven were excluded during
quality control of the small RNA sequencing (RNA-seq) data due

Table 1. Study subject demographics and clinical characteristics. Demographics and clinical characteristics of subjects used for statistical analysis. P values
represent statistical significance for characteristics between cases and controls within the discovery and verification cohorts, and between the discovery and
verification cohorts (rightmost column). GA, gestational age; GABD, gestational age at blood draw; NICU, neonatal intensive care unit; small for GA, birthweight
<10th percentile for GA.

Discovery (n = 82) Verification (n = 41)

PE Dx All Other Dx PE Dx All Other Dx
Case = 48 Control = 34 P Case = 23 Control = 18 P P

Mean maternal age (years) 31.9 ± 6.5 31.2 ± 5.4 0.6 29 ± 6 33.2 ± 5.2 0.03 0.67

Median gravidity 2 ± 2.3 2 ± 2 0.3 2 ± 2.5 2 ± 1.3 0.39 0.75

Median parity 0.5 ± 1.2 1 ± 1.6 0.06 0 ± 1.4 1 ± 1 0.26 0.7

Mean first BMI 29.9 ± 7.2 28.9 ± 6.9 0.6 32.8 ± 8 27.6 ± 8.7 0.1 0.78

Mean last BMI 33.0 ± 7.3 32.7 ± 6.5 0.81 36.8 ± 8.4 31.6 ± 9 0.08 0.27

No. of subjects with diabetes 18 (37.5%) 9 (26.5%) 0.35 8 (34.8%) 8 (44.4%) 0.75 0.55

Race/ethnicity

Hispanic 21 (43.8%) 13 (38.2%)

<0.01

11 (47.8%) 6 (33.3%)

<0.01 <0.01

White non-Hispanic 18 (37.5) 17 (50%) 5 (21.7%) 7 (38.9%)

Asian 6 (12.5%) 0 1 (4.3%) 4 (22.2%)

African American 3 (6.3%) 0 2 (8.7%) 0

Other 0 4 (11.8%) 4 (17.4%) 1 (5.6%)

Median GABD (days) 238 ± 30.2 245 ± 24.0 0.25 244 ± 25.7 241 ± 25.6 0.79 0.66

Median GA delivery (days) 247.5 ± 26.9 273 ± 12.4 <0.01 249 ± 25.8 272 ± 8.1 <0.01 0.49

No. of preterm deliveries 12 (25%) 4 (11.8%) 0.16 5 (21.7%) 5 (27.8%) 0.72 0.64

Mean birthweight (g) 2188 ± 872 3240 ± 516.5 <0.01 2345 ± 1005 3258.9 ± 396.3 0.001 0.48

No. of NICU 37 (80.4%) 9 (27.3%) <0.01 16 (69.6%) 2 (11.1%) <0.01 0.18

No. of small for GA 24 (52.2%) 3 (88%) <0.01 10 (43.5%) 1 (5.6%) 0.01 0.54
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to insufficient miRNA complexity or low read depth (Fig. 1A).
Cases were defined as pregnancies with an adjudicated PE diagnosis
(n = 71), and controls (n = 52) were from participants with either
hypertension that did not meet the criteria for PE or normal (non-
hypertensive) pregnancy outcomes. The pass-filter 71 cases and 52

controls were subjected to further analysis. Cases and controls were
divided into discovery (n = 82; 48 PE cases and 34 controls) and
verification (n = 41; 23 PE cases and 18 controls) cohorts at a
ratio of 2:1. The discovery and verification cohorts were matched
by fraction of cases and controls (Fig. 1B) and gestational age at
blood draw (GABD), which ranged from 22.6 to 39.1 weeks for
cases and 32.6 to 40.4 weeks for controls. Data file S1 lists all subjects
and includes assignment to discovery and verification cohorts, as-
signment as cases and controls, and detailed adjudicated diagnoses.
Data file S8 contains sample-level metadata.

Comparisons for demographic and clinical factors between the
discovery and verification cohorts, and between the cases (PE Dx)
and controls (All Other Dx) were then performed (Table 1). Signifi-
cant differences (P≤ 0.05) were observed for median gestational age
(GA) at delivery, mean birthweight, small for gestational age (SGA;
birth weight of <10%), and admission to the neonatal intensive care
unit (NICU) between the cases and controls in both the discovery
and verification cohorts; these differences are expected given the
known associations between PE and outcomes such as iatrogenic
delivery and SGA neonates. There was also a significant difference
in race/ethnicity between cases and controls, with higher percentag-
es of Hispanic and non-white subjects in the case compared to the
control category. All other factors were similar between cases and
controls for both the discovery and verification cohorts. The only
significant difference between the discovery and verification
cohorts was seen for race/ethnicity, with the predominant differ-
ence being a larger proportion of white non-Hispanic participants
in the discovery cohort.

Generation and pre-processing of ex-miRNA data
As detailed in Materials and Methods, exRNA was extracted from
maternal serum samples and then subjected to small RNA-seq.
The small RNA-seq data were trimmed, cleaned, and mapped
using the exceRpt pipeline (44), and the raw count data were used
for quality control, removing samples with total miRNA counts
<500,000 or complexity <300 miRNAs with at least 10 raw counts

Fig. 1. Study population characteristics. (A) Flow chart depicting the exclusion
of seven subjects due to insufficient RNA quality and one subject due to loss at
follow-up. The remaining 123 samples were submitted for analysis (71 cases, 52
controls). (B) Pie charts depicting the breakdown of cases and controls in
the cohort.

Table 2. Top 10 ranked univariate extracellular miRNA (ex-miRNA). Ex-miRNAs were ranked according to chi-square P value in the discovery cohort, and the
top 100 were then evaluated in the verification cohort. The top 10 univariate ex-miRNAs ranked by chi-square P value in the verification cohort that also had a
discovery chi-square rank <100 are shown. Discovery and verification rank and chi-square P value are shown along with the verification AUC at the lower 25th and
upper 75th percentiles and whether the expression of the ex-miRNA is up- or down-regulated in the non-preeclampsia (PE) versus PE samples.

miRNA Training rank
(chi-square P)

Discovery (chi-
square P)

Discovery
rank

Discovery (chi-
square P)

Discovery AUC
lower 25

Discovery AUC
upper 75

Non-PE
vs. PE

hsa.miR.4732.5p 64 0.299 4 0.039 0.008 0.2 Up

hsa.miR.363.3p 22 0.188 3 0.039 0.007 0.201 Up

hsa.let.7b.5p 1 0.015 5 0.047 0.012 0.22 Up

hsa.miR.423.5p 2 0.041 2 0.036 0.011 0.221 Up

hsa.miR.144.3p 75 0.317 11 0.077 0.046 0.307 Up

hsa.miR.1323 82 0.326 9 0.075 0.683 0.945 Down

hsa.miR.361.5p 68 0.307 8 0.07 0.708 0.958 Down

hsa.miR.512.3p 31 0.206 10 0.076 0.725 0.961 Down

hsa.miR.518e
(519a,519b,519c,522,523).5p

96 0.352 7 0.063 0.745 0.975 Down

hsa.miR.516a.5p 30 0.205 1 0.034 0.801 0.991 Down
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in at least 50% of the samples. Transformation and batch normali-
zation was conducted using the PEER package as described in Ma-
terials and Methods.

Identification of univariate ex-miRNA biomarkers for early
diagnosis of PE
The PEER package was used to identify candidate univariate bio-
markers composed of single ex-miRNAs (45). The ex-miRNAs
were ranked according to chi-square P value in the discovery
cohort, and the top 100 were then evaluated in the verification
cohort. The top 10 univariate ex-miRNAs ranked by chi-square P
value in the verification cohort that also had a discovery chi-
square rank <100 are shown in Table 2. For the verification
cohort, in addition to the P value, we used PEER to compute the
25th and 75th percentile areas the curve (AUCs) for these candidate
ex-miRNA biomarkers, which was done by subsampling the
samples 1000 times. We discovered that although only a subset of
the candidate ex-miRNAs reached statistical significance according
to the chi-square P value, all the candidate ex-miRNAs that were
more highly expressed in non-PE samples compared to PE
samples showed a 75th percentile AUC of <0.35, and all the candi-
dates that were more highly expressed in PE samples compared to
non-PE samples showed a 25th percentile AUC of >0.65.

The expression of these top 10 candidate univariate ex-miRNA
biomarkers was then examined on a per-sample basis (Fig. 2 and
data file S2). As can be seen in Fig. 2, which shows all patients,

there is a strong separation of the samples by overall diagnosis
(case versus control), by detailed diagnoses (Severity Dx), and by
interval between blood draw and PE diagnosis, but not by cohort
(discovery versus verification) or GABD. Superimposed PE cases
appear to be scattered across several clusters of samples, some of
which are composed mostly of other PE samples and others of hy-
pertensive non-PE samples; this may be because it is clinically chal-
lenging to diagnose superimposed PE and/or that this condition
contains molecular features of both chronic hypertension and PE.
We note that 4 of these 10 candidate miRNAs are encoded on Chr19
and are more highly expressed in PE compared to non-PE, and 3 are
on Chr17 and are more highly expressed in non-PE.

Identification of bivariate ex-miRNA biomarkers for early
diagnosis of PE
The PEER package was used to identify candidate bivariate bio-
markers composed of ratios of the log values for pairs of ex-
miRNAs. To do this, the bivariate features were ranked in the dis-
covery cohort according to a composite score derived from four
metrics: correlation coefficient, chi-square P value, 25th percentile
AUC, and 75th percentile AUC (see Materials and Methods for
details). The top 1000 bivariate features from the discovery cohort
were then evaluated in the verification cohort, and the features with
a 25th percentile AUC of at least 0.7 were selected, yielding 110 can-
didate bivariate biomarkers that passed verification (data file S3).

Fig. 2. Expression of the top 10 candidate univariate extracellular miRNA (ex-miRNA) biomarkers. Heatmap displaying the expression of the top 10 candidate
univariate ex-miRNA biomarkers. Both ex-miRNAs (y axis) and samples (x axis) are clustered using hierarchical clustering. Color bars at the top of the heatmap display
sample metadata and show strong separation of the samples by overall diagnosis (case versus control; n = 71 and n = 52, respectively), by detailed diagnoses, and by
interval between blood draw and preeclampsia (PE) diagnosis, but not by cohort (discovery versus verification; n = 82 and n = 41, respectively) or gestational age at blood
draw (GABD). No patients were included in multiple classifications.
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Fig. 3. Expression of the 110 verified candidate bivariate extracellular miRNA (ex-miRNA) biomarkers. Heatmap displaying the log ratio of the 110 verified can-
didate bivariate ex-miRNA biomarkers. Both bivariate ex-miRNAs (y axis) and samples (x axis) are clustered using hierarchical clustering. Color bars at the top of the
heatmap display sample metadata and show strong separation of the samples by overall diagnosis (case versus control; n = 71 and n = 52, respectively), by detailed
diagnoses, and by interval between blood draw and preeclampsia (PE) diagnosis, but not by cohort (discovery versus verification; n = 82 and n = 41, respectively) or
gestational age at blood draw (GABD). No patients were included in multiple classifications. Blue boxes with letters mark sample clusters discussed in the text. Bivariate
ex-miRNA biomarkers clustered by the presence of a particular ex-miRNA biomarker in the ratio and by location in the genome as shown on the y axis.
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The expression of these top 110 candidate bivariate ex-miRNA
biomarkers was then examined on a per-sample basis (Fig. 3 and
data file S4). As can be seen in Fig. 3, which shows all patients,
there is strong separation of the samples by overall diagnosis (case
versus control), by detailed diagnoses, and interval between blood
draw and PE diagnosis, but not by cohort (discovery versus verifi-
cation), GABD, maternal diabetes, or body mass index (BMI).

Inspecting the miRNA composition of these top 110 candidate
bivariate biomarkers, we observe that several of the candidate uni-
variate biomarkers are present, with the Chr19 biomarkers signifi-
cantly enriched in the numerators [P < 0.01 × 1028, cumulative
distribution function (CDF) of the hypergeometric distribution]
and the Chr17 biomarkers significantly enriched (P < 0.01 × 1036,

CDF of the hypergeometric distribution) in the denominators.
Certain individual miRNAs appear in multiple bivariate biomark-
ers, and these sets of bivariate biomarkers tend to cluster together by
hierarchical clustering (Fig. 3). When visualized by chromosomal
location, it is apparent not only that certain individual miRNAs
are enriched in the set of 110 candidate bivariate biomarkers but
also that certain genomic locations are overrepresented, particularly
on chromosomes 17 and 19 (fig. S1).

Compared to the candidate univariate biomarkers, the candidate
bivariate biomarkers appear to better separate subjects into pheno-
typic subgroups, as indicated by the text in the boxes below the
heatmap in Fig. 3. Going from left to right, cluster A consists
mostly of samples from subjects who developed severe PE, along

Fig. 4. Let-7 family clusters and sequence logos. (A) Table showing the let-7 family extracellular miRNA (ex-miRNA) found in the top 100 univariate biomarkers (top)
and the top 110 bivariate biomarkers (bottom). The univariate table is divided by let-7 ex-miRNAs that are either up-regulated or down-regulated in the preeclampsia (PE)
samples and by 5p and 3p. The bivariate table is divided by the let-7 ex-miRNAs found in either the numerator or the denominator of the bivariate ratio. The sequence
logos to the right of the table show a graphical representation of the sequence conservation of nucleotides in the ex-miRNAs. (B) Sequence logos showing a graphical
representation of the two let-7 univariate 5p sequences (top) and the three let-7-3p sequences (bottom) up-regulated in our PE samples. (C) Sequence logo showing a
graphical representation of the three let-7 univariate 5p sequences down-regulated in our PE samples. (D) Sequence logos showing a graphical representation of the one
let-7-3p (top) and four let-7-5p (bottom) sequences found in the numerator of the bivariate ratios. (E) Sequence logo showing a graphical representation of the three let-7-
5p sequences found in the denominator of the bivariate ratios.
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with two cases of superimposed PE, which have uniformly high ex-
pression of all the candidate bivariate biomarkers. The interval
between GABD and initial diagnosis of any form of PE in this
group ranges from 14 days before to 6 days after, suggesting that
this pattern of biomarker expression indicates a current or immi-
nent clinical diagnosis of PE with severe features. Cluster B contains
a relatively even mixture of cases of severe PE and superimposed PE,
along with one case of severe hypertension and one case of mild PE.
The samples in cluster B express moderate levels of all the candidate
bivariate biomarkers. The interval between GABD and initial diag-
nosis of any form of PE in cluster B is generally larger than in cluster
A and ranges from 73 days before to 6 days after, suggesting that the
pattern of biomarker expression in cluster B may serve as an early
predictor of PE with severe features. Cluster C shows uniform and
moderate expression of the bivariate biomarkers in the lower
portion of the heatmap (Fig. 3, miR-20a-5p numerator, miR-423-
5p denominator, let-7 family) and mostly low expression of the bio-
markers in the upper portion of the heatmap (Fig. 3, miR-512-3p
numerator, miR-516a-5p numerator, miR-522-3p numerator) and
consists of a mixture of severe, mild, and superimposed PE, mild
hypertension, and normal (nonhypertensive) cases. However, it
does appear that all but one of the PE cases shows moderately
high expression of the biomarkers with miR-512-3p in the numer-
ator, suggesting that cluster C is composed of two subclusters, one
for PE and one for non-PE. Clusters D and E contain samples with a
broad mix of diagnoses, and a small number of cases of severe PE,
but mostly mild and superimposed PE, mild and severe hyperten-
sion, and normal (nonhypertensive). Cluster D samples show low-
to-moderate expression of the biomarkers in the upper portion of
the heatmap, and essentially no expression of the biomarkers in the
lower portion of the heatmap, while cluster E shows low expression
of the biomarkers in the lower portion of the heatmap and very low
expression of the biomarkers in the upper portion of the heatmap.
Cluster F shows little to no expression of any of the bivariate bio-
markers and is composed of mostly normal samples, with a few mild
and severe hypertension and very few superimposed PE samples.
Given that there was a cluster of bivariate biomarkers that was en-
riched for let-7 family miRNAs in both the numerator and denom-
inator, we examined the expression of the let-7 family miRNAs in
our dataset in more detail (Fig. 4A). We observed that in the top 110
bivariate biomarkers, let-7b-5p, let-7c-5p, and let-7e-5p occurred in
the denominator, which is consistent with our univariate findings
that these miRNAs are expressed at lower levels in PE compared to
non-PE samples. Although the 3p/5p arms are not perfectly concor-
dant between the bivariate and univariate datasets, the let-7a/d/f/g/i
miRNAs are consistently found in the numerators and more highly
expressed in PE than in non-PE. When we examine the sequences of
these miRNAs, we find that for the 5p sequences, a C in position 18
is associated with higher expression in PE as a univariate biomarker
(Fig. 4B)/bivariate numerator (Fig. 4D), while a U in position 18 is
associated with lower expression in PE as a univariate biomarker
(Fig. 4C)/bivariate denominator (Fig. 4E). The 3p sequences were
only found to have higher expression in PE as univariate biomarkers
(Fig. 4B)/bivariate numerator (Fig. 4D); we note that the sequence
concordance among these let-7-3p family members was markedly
lower than for the 5p family members.

Expression patterns of candidate biomarkers across
detailed diagnoses
Given that we had detailed adjudicated diagnoses available [severe
PE: PE with severe features, including HELLP (hemolysis, elevated
liver enzymes, and low platelets); superimposed PE; mild PE: PE
without severe features; other: atypical PE, mild PE with SGA,
severe gestational hypertension with SGA, gestational proteinuria,
gestational thrombocytopenia, severe chronic hypertension with
headache and SGA; mild hypertension: mild chronic hypertension
or mild gestational hypertension; severe hypertension: severe
chronic hypertension or severe gestational hypertension; and
normal/nonhypertensive], we examined the expression of our can-
didate univariate and bivariate biomarkers across these more gran-
ular categories.

Ordering the detailed diagnoses from more severe to less severe
(i.e., severe PE on the left to normal/nonhypertensive on the right),
we see, as might be expected that for most of the 10 candidate uni-
variate biomarkers that there is a smooth progression from either
higher to lower, or lower to higher, expression (fig. S2). However,
interestingly, there were a few miRNAs for which the levels in
samples from severe hypertension are more similar to normal/non-
hypertensive and mild hypertension are more similar to PE (let-7b-
5p, miR-144-3p, miR-361-5p, miR-423-5p).

For the 110 candidate bivariate biomarkers, we performed hier-
archical, agglomerative clustering, using a weighted method with a
Pearson correlation distance metric to identify 10 different patterns
of expression across the detailed diagnoses. The patterns for three of
the largest clusters are shown in Fig. 5 (A to C). Most miRNAs in
these three clusters are found in just two regions on the genome, one
on chromosome 17 and the other on chromosome 19. Clusters 2
and 3 (Fig. 5, A and B) were significantly enriched for miRNAs
found on chromosome 19 in their numerator (P < 0.005 CDF of
the hypergeometric distribution). Ninety percent of the miRNAs
found in the numerator of cluster 2 and all the miRNAs in the nu-
merator of cluster 3 come from the primate-specific microRNA
cluster C19MC. The largest cluster, cluster 7 (Fig. 5C), was signifi-
cantly enriched (P < 0.00005, CDF of the hypergeometric distribu-
tion) for the chromosome 17 miRNA miR-423-5p, found in the
denominator of over 80% of bivariates in the cluster. This miRNA
is in the same cluster as miR-4732-5p, which was enriched in cluster
2 (Fig. 5A). Compared to both the normal/nonhypertensive and the
severe hypertension groups, this cluster contains high ratios of all
the PE groups as well as the mild hypertension group.

Using a recently reported approach for estimation of the frac-
tional contributions of cell/tissue sources to miRNAs in maternal
serum (45), we identified the most likely cell/tissue sources for
our 10 candidate univariate and 110 candidate bivariate biomarkers.
As shown in Fig. 6, the large majority of these candidates likely orig-
inate from the liver, placenta, platelets, or red blood cells (RBCs).
Most of the miRNAs attributed to the placenta are in the “Up in
PE”/Numerator categories, compared to the other three major
cell/tissue sources, where the “Up in PE”/Numerator and “Down
in PE”/Denominator categories are quite evenly balanced. The
miRNAs that were up-regulated in PE were found only in the pla-
centa and, to a lesser extent, the liver, whereas those that were
deemed to be up-regulated in our control patients were found in
platelets or RBCs. These analyses suggest that specific miRNA clus-
ters influence pregnancy-related functions and that they are dysre-
gulated in PE placentas. Moreover, the dysregulation of miRNAs
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Fig. 5. Clustering of the 110 verified candidate extracellular miRNA (ex-miRNA) biomarkers. Three of the largest clusters (out of 10) formed using hierarchical,
agglomerative clustering using a weighted method and Pearson correlation distance metric. Boxplots (left) show the ratios of an exemplar ex-miRNA. Samples are
grouped along the x axis by their detailed diagnosis. Lines across boxes represent the median; boxes contain the 25th to 75th percentile. Chromosome ideogram
with locations of miRNA clusters found in the 110 verified candidate biomarkers (right). Colored numbers in () at the end of the miRNAs represent the number of ex-
miRNAs in the 110 verified ratios potentially present at that location. miRNAs in red font are those present in the cluster displayed in box plot. Pie graphs show the
percentage of the cluster’s numerator or denominator in the displayed chromosome. (A) Boxplot of cluster 2 exemplar miR-522-3p/miR-4732-5p (left) and location of a
percentage (pie chart) of cluster 2’s ex-miRNA bivariates (right). (B) Boxplot of cluster 3 exemplarmiR-516a-5p/miR-199a-5p (left) and location of a percentage (pie chart)
of cluster 3’s ex-miRNA bivariates (right). (C) Boxplot of cluster 7 exemplar let-7f-5p/miR-423-5p (left) and location of a percentage (pie chart) of cluster 7’s ex-miRNA
bivariates (right). Statistical significance bars with “*” indicates statistically significant difference (P < 0.01) between groups using t test.
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can be traced to the placenta or to sources in contact with the ma-
ternal blood supply.

Identification of a small panel of candidate bivariate
biomarkers for improved discrimination between cases and
controls
To improve discrimination between cases and controls, we identi-
fied a small panel of candidate bivariate biomarkers from the set of
110 candidate bivariate biomarkers from the verification cohort
using extreme gradient boosting. We performed an iterative ap-
proach where we selected the top bivariate, in terms of importance,
when running the algorithm on the entire dataset and then removed
all the samples that had a bivariate ratio that was greater than 90% of
the controls. We then re-ran the algorithm an additional two times,
correctly identifying all but five PE cases, three of which were diag-
nosed as superimposed PE and one mild PE (Fig. 7A). The bivariate
with the highest importance in our first iteration was miR-522-3p/
miR-4732-5p (Fig. 7A, top heatmap). This bivariate was interesting-
ly also the exemplar bivariate for cluster 2 (Fig. 5A), which was a
cluster of bivariates that clearly separated severe PE patients and
normal patients. This single bivariate was able to separate over
70% of all severe PE diagnosed cases from controls. The bivariate
with the highest importance score on the second iteration was
miR-516a-5p/miR-144-3p (Fig. 7A, middle heatmap). This bivariate
contained miR-144-3p, a chromosome 17 miRNA that comprised
half of the denominators in cluster 1 (Fig. 5A), and miR-516a-5p,
a chromosome 19 miRNA that comprised 100% of the numerators
in cluster 3 (Fig. 5B), which was a cluster of bivariates that differen-
tiated superimposed PE cases from controls. The third iteration in-
dicated that miR-27b-3p/let-7b-5p had the highest importance score
(Fig. 7A, lower heatmap). This bivariate was found to differentiate
mild PE cases from controls to a larger degree (P < 0.0015, t test)
than all but one of the other 110 verified bivariate biomarkers
and was responsible for selecting over half of the mild PE cases

from the remaining cases and controls. This iterative panel of
three bivariate biomarkers achieved a PPV of 55% at a sensitivity
of 93%, specificity of 79%, a positive likelihood ratio (+LR) of
4.43, and a negative likelihood ratio (−LR) of 0.09, given a 57.7%
prevalence of PE in our study. We noted that the GA and BMI
did not appear to be driving the selection of any of three bivariate
biomarkers (Fig. 7A and data file S5). Additionally, we checked
these three bivariate markers for correlation with patients’ urine
protein-to-creatinine (PC) ratio, 24-hour urine protein levels, plate-
let count, uric acid, aspartate transaminase (AST), alanine transam-
inase (ALT), and systolic and diastolic blood pressure (highest
values on the day closest to the date of blood draw) and found
very little correlation (maximum correlation <0.39). We next per-
formed principal components analysis using these three selected bi-
variate biomarkers (Fig. 7B) and a randomly chosen set of three
bivariate biomarkers from the top ranked 1000 bivariate biomarkers
(Fig. 7C). We found that, as expected, the three selected biomarkers
clearly separated the cases and controls on the first three principal
components, in the order that they were selected. The first three
principal components of the random three biomarkers did not
appear to differentiate between cases and controls. To verify that
this iterative panel of three bivariate biomarkers would work on a
separate cohort, we used the ratio cutoff values iteratively for each of
the three bivariate biomarkers on a separate cohort of 11 cases and 7
controls processed separately through PEER. This independent val-
idation cohort had a PPV of 85% at a sensitivity of 91% and specif-
icity of 57% (fig. S3 and data file 6). These results suggest that a small
panel of bivariate biomarkers can be used in an iterative fashion for
accurate early detection of patients in the process of developing clin-
ical PE and can also provide prognostic information related to the
severity of the final diagnosis.

Serum sFlt1 and PlGF are protein analytes that have been widely
reported to be dysregulated in PE. Generally, the sFlt1:PlGF ratio
has shown better diagnostic performance compared to using

Fig. 6. Potential cell/tissue sources for our candidate extracellularmiRNA (ex-miRNA) biomarkers. Stacked bar graph of the cell and tissue sources for our candidate
ex-miRNA biomarkers. PE, preeclampsia; RBC, red blood cell.
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either biomarker alone (46–49). We were able to acquire sFlt1 and
PlGF Roche data for 70 of our patients (table S7). Currently, a sFlt1:
PlGF ratio of 38 or above is used to predict diagnosis of PE within 4
weeks for women in whom the syndrome is suspected clinically
(11). Using this cutoff, we calculated a sensitivity of 74.5% and a
specificity of 91.3% for sFlt1:PlGF in our subjects. As described
above, using our bivariate miRNA biomarkers, we achieved a

sensitivity over 90% for both the discovery and validation cohort
and a specificity of 79%. Restricting the analysis to only the 70 sub-
jects who had sFlt1:PlGF ratio data, the sensitivity of our miRNA
biomarkers was 89.3% and the specificity was 73.9%. Because of
the multi-step process used for early diagnosis of PE using our bi-
variate miRNA biomarkers, it is not possible to calculate the sensi-
tivity of these biomarkers at a fixed specificity. Instead, to enable

Fig. 7. Panel of three candidate bivariate
biomarkers to discriminate between cases
and controls. (A) Heatmaps showing normal-
ized ratio of each of the three bivariates se-
lected using iterative machine learning
approach (see Materials and Methods) in the
entire cohort (discovery and verification; n = 82
and n = 41, respectively). No patients were in-
cluded in multiple classifications. Black boxes
indicate samples selected after each iteration
(bivariate). Colored bars at the bottom of each
heatmap display diagnosis and detailed diag-
nosis of samples in heatmap. Line graph su-
perimposed on top of heatmap displays the
gestational age in weeks at blood draw. (B)
Principal components analysis (first three prin-
cipal components) of the three selected bi-
variate biomarkers. Blue (cases) and yellow
(controls) dots show samples removed in first
iteration (left column), blue (cases) and yellow
(controls) stars show samples removed in
second iteration (middle column), and blue
(cases) and yellow (controls) x’s show samples
removed in third iteration (right column). Red
diamonds are samples not removed during it-
eration, and white symbols show cases that
were removed during a different iteration. (C)
Principal components analysis (first three prin-
cipal components) of three randomly selected
bivariates from the top 1000 ranked bivariates.
Blue dots show cases, and yellow dots show
controls. PC, protein-to-creatinine; GABD, ges-
tational age at blood draw; GA, gestational age;
PE, preeclampsia.
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more direct comparison of the performance of our bivariate bio-
marker assay with that of the sFlt1:PlGF ratio, we adjusted the
sFlt1:PlGF cutoff to match the specificity of our assay as closely as
possible (sFlt1:PlGF 12.1, specificity of 78.3%), and obtained a sen-
sitivity of 89.4%. This analysis suggests that the bivariate miRNA
biomarker assay has a similar performance to the recently FDA-ap-
proved sFlt1:PlGF assay.

We then used the 70 participants that had both small RNA-seq
and the sFlt1:PlGF measurements and explored whether combining
the bivariate miRNA assay with the sFlt1:PlGF assay would result in
improved performance compared to either assay alone. Inspecting
the 48 cases that were designated as PE by the miRNA assay (42 of
which were true positives and 6 of which were false positives), ap-
plying a cutoff of 12 for the sFlt1:PlGF assay would eliminate the 6
false positives (by correctly identifying them as normal) while re-
taining 39 of the true positives (with 3 being incorrectly reassigned
from PE to normal). Inspecting the 22 cases that were designated as
normal by the miRNA assay (17 of which were true negatives and 5
of which were false negatives), applying a cutoff of 32 for the sFlt1:
PlGF assay would correctly identify 3 of the false negatives as PE,
and retain 2 of the false negatives as normal, retain 15 of the true
negatives, and incorrectly reassign 2 of the true negatives as PE.
Overall, applying the miRNA bivariate biomarkers first, followed
by the sFlt1:PlGF ratio, resulted in 42 true positives, 2 false positives,
21 true negatives, 5 false negatives, a sensitivity of 89.4%, specificity
of 91.3%, PPV of 95.5%, and NPV of 80.8%. Alternatively, applying
a secondary sFlt1:PlGF assessment only to the participants who
were identified as positive by the bivariate miRNA assay results in
39 true positives, 0 false positives, 23 true negatives, and 8 false neg-
atives, for a sensitivity of 82.9% and a specificity of 100%. This sug-
gests that applying the bivariate miRNA biomarkers and the sFlt1:
PlGF ratio sequentially can improve the sensitivity and specificity
for early diagnosis of PE over either set of biomarkers alone.

DISCUSSION
PE is an important cause of fetal and maternal morbidity and mor-
tality, for which there are currently no highly accurate methods for
early diagnosis or prognostic assessment. Here, we used an unbi-
ased transcriptomic approach to identify and verify univariate
(single miRNAs) and bivariate (pairs of miRNAs) extracellular
miRNA biomarkers for the early diagnosis of PE in discovery and
verification cohorts of pregnant women being evaluated in a triage
unit for signs and symptoms of PE. Consistent with our previous
study focused on prediction of PE in an asymptomatic cohort of
pregnant women (45), we were able to verify a larger number of bi-
variate biomarkers compared to univariate biomarkers, presumably
due to the mutual normalizing effect of the miRNA pairs that ac-
counted for the biological and technical variability inherent in small
RNA-seq analysis of human biofluid samples. Moreover, we found
that in addition to separating cases (patients who developed PE)
from controls (those that did not), these ex-miRNA biomarkers
could be used to distinguish among different categories of hyper-
tensive disease in pregnancy.

Many previous studies in this area have focused on miRNA
known to be enriched in the placenta compared to other organs.
However, given that PE is associated with dysfunction of maternal
organs, as well as the placenta, we used an unbiased comprehensive
transcriptomic approach that enabled us to interrogate maternal

serum miRNAs without regard to the source tissue. One hundred
twenty-three patients were enrolled from an obstetrical triage unit,
where they were being evaluated for signs and/or symptoms of PE
and followed until delivery, to determine whether they were diag-
nosed with PE before delivery (cases) or not (controls). The result-
ing 71 cases and 52 controls were divided into matched discovery
and verification cohorts. The cases included subjects with a range
of manifestations of PE, and controls included both nonhyperten-
sive subjects and subjects with chronic hypertension and mild ges-
tational hypertension. Cases and controls were well matched in
terms of clinical factors apart from race/ethnicity and differences
secondary to known associations between PE and iatrogenic deliv-
ery and fetal growth restriction, including median GA at delivery,
mean birthweight, SGA, and admission to the NICU.

We identified the top 100 univariate ex-miRNA biomarkers in
the discovery cohort, re-ranked them using the verification
cohort, and selected the top 10 for further examination. We
found that performing clustering using these 10 univariate bio-
markers not only separated cases and controls but also distin-
guished between detailed diagnoses and correlated with the
interval between blood draw and PE diagnosis. The top 10 included
miR-144-3p,miR-1323, miR-518e-5p, and miR-516a-5p, which have
been reported in previous ex-miRNA studies to be associated with
PE (26, 31, 35, 39, 41, 42). The two univariate candidate PE bio-
markers that were statistically significant in both the discovery
and verification cohorts were let-7b-5p and miR-423-5p. Both ex-
miRNA biomarkers were found at lower levels in our PE cases com-
pared to controls. For let-7b-5p, our results are consistent with
Gunel et al. (28), who also reported that let-7b-5p was present at
lower levels in the plasma of PE cases compared to controls.
However, miR-423-5p has been reported in previous studies to be
up-regulated in maternal plasma in the first trimester of women
who later developed early severe PE (37, 50) and in women diag-
nosed with PE (51). Guo et al. (51) also reported that miR-423-5p
was expressed at higher levels in the placentas of patients with PE
compared to controls and that it inhibits trophoblast migration, in-
vasion, and proliferation via IGF2BP1.

Our bivariate analysis yielded 110 bivariate ex-miRNA biomark-
ers that passed both discovery and verification criteria. The top bi-
variate ex-miRNA biomarkers by frequency and their appearance in
previous reports are shown in data file S8. Two of our top ranked
miRNA univariate biomarkers, miR-423-5p and miR-20a-5p, were
also over-represented in our verified set of bivariate biomarkers,
which also contained a disproportionate number of miRNAs
from chromosome 19. As noted above, extracellular miR-423-5p
has been reported to be more highly expressed in early pregnancy
in patients who later develop PE by other groups (37, 50). Our own
group also identified this miRNA as the numerator of an early pre-
dictive bivariate biomarker for PE (45); we used the same conven-
tion in this previous study, where numerators were more highly
expressed in PE. This raises the possibility that miR-423-5p may
be expressed differently in the maternal circulation in presymptom-
atic and symptomatic PE.

miR-20a has been previously linked with PE and has been re-
ported to inhibit proliferation, migration, and invasion of JEG3
choriocarcinoma cells by targeting FOXA1 (52). As noted above,
our verified bivariate biomarkers are enriched for miRNAs
encoded in a region on chromosome 19 commonly referred to as
the C19MC cluster. Aberrant expression of miRNAs in the
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C19MC has been previously correlated with PE (29, 53), although
the three most highly enriched miRNAs among our verified bivari-
ate biomarkers,miR-512,miR-516, andmiR-522, have not been pre-
viously linked with PE. The C19MC has been found to be
particularly highly expressed in the placenta and in human plurip-
otent stem cells (54) and has recently been reported to suppress
genes critical for maintaining the epithelial cytotrophoblast stem
cell phenotype and linked to the expression of several genes in-
volved in cell migration and proliferation (55, 56). It has been sug-
gested that dysregulation of this miRNA cluster may result in
impaired invasion associated with the shallow placentation of
PE (55).

A markedly higher number of bivariate biomarkers passed in
both discovery and verification phases of our study compared to
univariate biomarkers. The bivariate biomarkers not only showed
better separation of cases and controls but also were able to more
clearly distinguish among subjects in phenotypic subgroups. We
suggest that the superior performance of the bivariate biomarkers
may be due to the internal normalization provided by the two
miRNAs in each bivariate biomarker to account for technical and
biological variability.

In post hoc analysis, we used a hierarchical, agglomerative clus-
tering package using a weighted method and a custom Pearson cor-
relation distance metric to cluster our verified bivariate biomarkers
into 10 clusters, which not only displayed different patterns of ex-
pression across phenotypic subgroups but also showed enrichment
of miRNAs encoded in similar genomic locations, suggesting that
miRNAs transcribed from the same region of the genome are coher-
ently regulated by the physiological differences between the pheno-
typic subgroups. When we analyzed the potential cell or tissue
source of these bivariate biomarkers, we found that they largely
originated from the placenta, liver, platelets, or RBCs. This was
not unexpected, given the fact that dysfunction of several of these
cells/tissues is associated with PE (placenta, liver, and platelets),
and that they either are highly vascularized or are components of
the maternal blood (and therefore are well sampled by serum, the
biofluid used for this study). Consistent with a previous study re-
porting discovery and verification of early predictive ex-miRNAs
for PE in asymptomatic gravidas from our group (45), this
current study found that bivariate ex-miRNA biomarkers for early
diagnosis of PE in symptomatic gravidas were largely composed of
one miRNA from the placenta and one from a nonplacental source,
suggesting that miRNAs expressed by nonplacental cells/tissues
may serve to normalize the placental contributions.

To identify the smallest number of bivariate ex-miRNA bio-
markers that could efficiently separate cases from controls, we
applied a machine learning approach in an iterative fashion. This
consisted of ranking the 110 bivariate biomarkers that passed dis-
covery and verification using XGBoost and using the top-ranked bi-
omarker to identify high-probability PE cases, which were then set
aside. XGBoost was then reapplied to the remaining bivariate bio-
markers and the remaining cases and controls, two more times.
Overall, this iterative process was able to identify over 90% of
cases with a false-positive rate of less than 10% at each iteration
and achieved a PPV of 55% at a sensitivity of 93% and specificity
of 79% (+LR = 4.43, −LR = 0.09) given a prevalence of PE of
57.7% in our study. In the first round, the identified cases were pre-
dominantly those that developed PE with severe features, as well as a
smaller number of superimposed PE cases. The second round

identified most of the remaining superimposed PE cases and our
one severe hypertension/SGA case. The third round identified all
but one remaining PE case, which was a mild PE case. The controls
misidentified as PE using this process were all patients diagnosed
with mild hypertension or gestational proteinuria. No control pa-
tients with severe hypertension were misclassified as PE. These
results suggest that some patients with mild hypertension or gesta-
tional proteinuria may share some physiological features with PE
that lead to similar alterations in ex-miRNA expression, whereas
severe hypertension may actually be physiologically more distinct
from PE. Using a separate cohort of 18 patients, we found all but
one PE case and achieved a sensitivity of 91% and specificity of 57%.

Our approach revealed both univariate and bivariate miRNA
biomarkers, mapped out a method to predict the development of
PE using three bivariate biomarkers in an iterative manner, and val-
idated this approach in a separate patient cohort. The candidate bio-
markers we have found in this cohort of patients will now need to be
confirmed on a larger multicenter independent cohort. Future val-
idation studies are required to establish the clinical utility of this ap-
proach for early diagnosis and prognosis of PE in the obstetrical
triage setting and to better define performance limits of the ap-
proach regarding factors such as the interval from blood draw to
PE diagnosis. Given our additional finding that combining our can-
didate miRNA biomarkers with the sFlt1:PlGF ratio results in im-
proved sensitivity and specificity over either the miRNA or sFlt1:
PlGF biomarkers alone, these future validation studies should
include an evaluation of the utility and performance of this com-
bined approach. Moreover, future in vitro studies to uncover the
target genes regulated by our candidate miRNA biomarkers may
have utility in providing insights into the mechanistic basis for dif-
ferent PE subtypes. We believe that validation and clinical applica-
tion of our candidate biomarkers will allow for better clinical
resource allocation, prevent low-risk patients from unnecessary ad-
mission and procedures, and increase understanding of their roles
in PE disease pathogenesis, which may help develop therapies for
patients at high risk for the development of PE.

MATERIALS AND METHODS
Study design
Patients were consented under an Institutional Review Board (IRB)
protocol approved by the Human Research Protections Program at
UC San Diego. Serum samples and the RNA samples isolated from
them were labeled with study identifiers with no personal identifi-
able information. Each subject signed a HIPAA (Health Insurance
Portability and Accountability Act) release and agreed to have de-
mographic and clinical data collected from the electronic medical
record (EPIC) throughout the course of pregnancy and postpartum.
The primary objective of the study was to use an unbiased transcrip-
tomic approach to discover ex-miRNA biomarkers for the early di-
agnosis of PE in a cohort of patients presenting for evaluation for
possible PE. A secondary objective was to find ex-miRNA biomark-
ers that predict the severity of PE in those who developed this com-
plication. Our sample size was determined by the number of
patients consented during a given time frame, and data inclusion
and exclusion criteria are detailed below and in the text. Patients
were randomly assigned to the discovery and verification groups,
and investigators performing the laboratory analysis were blinded
to patient’s diagnosis.
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Recruitment and enrollment
Patients being evaluated in the UC San Diego OB Triage unit,
between 200 and 406 weeks (20 weeks 0 days and 40 weeks 6 days)
GA, presenting with suspected PE (e.g., complaint of headache,
visual disturbances, epigastric pain, hypertension, proteinuria, or
fetal growth restriction), were approached and screened for enroll-
ment. Patients who received a diagnosis of PE before delivery were
classified as cases, while all patients who did not develop PE were
classified as controls. All diagnoses were determined via retrospec-
tive review of the medical charts at least 8 weeks after delivery.

Inclusion criteria were as follows: pregnant women age ≥ 18,
prenatal care at UC San Diego Prenatal Care Clinics, singleton preg-
nancy, GA between 200 and 406 weeks GA, and undergoing evalu-
ation for suspected PE.

Exclusion criteria were as follows: previous admission during the
current pregnancy for suspected PE, previously diagnosed during
the current pregnancy with severe preterm PE, plan for immediate
delivery, and admission to the hospital for other indications, with
post-admission development of signs or symptoms requiring eval-
uation for PE

Adjudications of pregnancy outcomes
The clinical outcome of each pregnancy was adjudicated by two ob-
stetrician-gynecologists, at least one of which was board-certified in
maternal fetal medicine.

Sample collection
After informed consent was obtained, 10 ml of blood was collected
by peripheral venipuncture, allowed to clot in an upright position
for at least 20 min at room temperature, and then centrifuged at
2000g for 10 min. The serum was removed and placed into
aliquot tubes each containing 0.5 ml of serum and stored at
−80°C. Sample processing was completed within 2 hours of blood
collection. Extracellular RNA (exRNA) isolation and analysis was
performed retrospectively, after delivery. Thus, exRNA levels were
not known by the subject, physician, or study team during the preg-
nancy and had no impact upon the evaluation and management of
the subject. One hundred thirty-one subjects were recruited and
donated samples for the initial discovery and verification groups.
An additional 18 subjects were recruited and donated samples to
verify candidate bivariate biomarkers.

Laboratory analysis
exRNA was isolated from each serum sample using the Plasma/
Serum Circulating and Exosomal RNA Purification Kit (Slurry
Format) (Norgen Biotek Corp., Ontario, Canada). Quality control
of isolated RNA was performed using the Agilent RNA 6000 Pico
Kit (Agilent, Santa Clara, CA). Small RNA-seq libraries were con-
structed using the NEB-Next Multiplex Small RNA Library Prep Set
for Illumina (New England Biolabs Inc., Ipswich, MA). The libraries
were then cleaned using the DNA Clean & Concentrator-5 Kit
(Zymo Research, Irvine, CA), and quality control of the libraries
was performed using the Agilent High Sensitivity DNA Kit
(Agilent, Santa Clara, CA). Equal volumes of the libraries were
pooled, size-selected for products that were 120 to 135 base pairs
in length using a Pippin Prep with a 3% agarose gel cassette (Sage
Science, Beverly, MA), and run on a MiSeq instrument at the UC
San Diego Institute for Genomic Medicine (IGM) Genomics Core
using the MiSeq Nano Reagent Kit (Illumina, San Diego, CA).

Samples that produced adequate numbers of miRNA read counts
were then rebalanced to produce similar numbers of miRNA
reads and sequenced on a HiSeq 4000 instrument to produce 1 ×
75 bp reads (Illumina, San Diego, CA) at the UC San Diego IGM
Genomics Core.

Sequencing data analysis
Small RNA-seq data were trimmed and mapped to known human
sequences using the exceRpt Small RNA-seq Pipeline Workflow im-
plemented in the Genboree Workbench (44). Each sample was eval-
uated for miRNA read depth and miRNA complexity. Samples that
exhibited low miRNA read depth (<500,000 miRNA reads) or low
miRNA complexity (<300 different miRNA species) were excluded
from analysis. miRNAs were filtered such that miRNAs with at least
10 raw reads in at least 50% of cases or controls were retained, re-
sulting in 267 pass-filter miRNAs. The filtered and scaled sequenc-
ing data were normalized by global scaling and visualized using the
Qlucore Omics Explorer Software (Qlucore, Lund, Sweden) and
evaluated using the statistical analysis methods described below.
miRNA tissue contributions were determined using the recently re-
ported fractional contribution of each cell/tissue type to each
miRNA (45). For each miRNA, the tissue with the maximum con-
tribution and any tissue within 10% of the maximum were consid-
ered to be a contributing tissue source.

PEER
Small RNA-seq data were filtered such that miRNAs were required
to have reads detected in at least 25% of the patients. This resulted in
an input dataset of 619 miRNAs. Cases and controls were divided
among discovery (training) and verification groups aiming to main-
tain a similar GA range in both groups. The raw counts for the re-
maining miRNAs are provided in data file S7. Starting with the
discovery group, read counts were log2-transformed and loess-nor-
malized. The PEER package (v.1.0) (57) was then run to model the
effect of our cases and controls. The PEER process performance was
assessed using principal components analysis and Kruskal-Wallis
test. Using the PEER processed data, a P value comparing the
cases and controls was calculated for each miRNA using a general-
ized linear model and chi-square test. AUCs were then generated for
each miRNA with the pROC package, using the Delong and boot-
strap methods to establish confidence intervals and a t test to gen-
erate P values (58). As previously published (45), bivariate datasets
were created with all possible miRNA ratios and ranked by an
inverse rank sum using 1000 bootstraps. At each iteration, AUCs
were calculated in a similar manner to the univariate data, as well
as the squared correlation between the miRNA ratio and the binary
case/control column, and the mean difference between cases and
controls. Five ranks were derived from the resulting 1000 iterations
for each miRNA ratio: (i) the mean of the AUCs, (ii) the lower 25%
quantile of the AUCs, (iii) the mean of the squared correlation, (iv)
the upper 75% quantile of the AUCs, and (v) the P value calculated
using a t test. Each rank was then inverted and summed for each
miRNA ratio to obtain a final ranking (data file S9). The same pro-
cedure was used for processing the verification group. Analysis was
performed using R 3.4.1. Clustering of bivariate biomarkers was
done using the scipy hierarchical, agglomerative clustering
package using a weighted method and a custom Pearson correlation
distance metric. The median, z-scaled bivariate ratios were used as
input into the clustering algorithm. Enrichment analysis of the 110
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bivariate biomarkers was done using the CDF of the hypergeomet-
ric distribution using the top 10,000 bivariate biomarkers as the
initial population size.

The discovery and verification datasets were processed sepa-
rately. Ranked values were combined with the calculated statistics
for each of the miRNA ratios. The data were then filtered for only
miRNA ratios with an AUC of >0.5 and then sorted by their calcu-
lated rank. The top 1000 ranked miRNA ratios were then assessed in
the verification dataset. We considered any miRNA ratio that had a
lower 25% quantile AUC over 0.7 in the verification dataset “veri-
fied” (110 miRNA ratios). To assess the performance of our method,
we performed principal components analysis on both the set of ver-
ified miRNA ratios and 110 randomly selected ratios. The ratio
values used in the principal components analysis were obtained
by combining the discovery and verification datasets before per-
forming normalization. Combined discovery and verification
miRNA ratio ranking values, the raw AUCs, the squared correla-
tions, and P values the ranks were based on, the mean and
median of both the cases and controls for the separate miRNAs
in the ratio, and the normalized ratio values from the combined
dataset for the top 1000 miRNA ratios in the discovery dataset are
provided in data file S10.

The univariate discovery and verification dataset were created
separately using the AUCs and chi-square P values generated for
each of the 619 miRNAs and then ranked using the chi-square
values. The top 100 ranked miRNAs from the univariate discovery
dataset were extracted from the univariate verification dataset and
ranked based on the chi-square P value. To assess the performance
of our method, we performed principal components analysis using
all patient samples on all 619 miRNAs, the top 100 discovery
miRNAs, and the top 10 miRNAs based on the verification
dataset ranking. Normalized univariate data combined with calcu-
lated AUCs, squared correlation, chi-square P values, and t test P
values for both the discovery and verification groups are provided
in data file S11.

Candidate bivariate marker selection
Feature selection of the 110 verified bivariate ratios was performed
using an XGBClassifier model from the python package XGBoost
(v. 1.4.0). The test size was set at 0.15, random state equaled 42,
and feature importance values were obtained from the coefficients.
The bivariate found to have the largest feature importance was used
to sort the 110 bivariates, and all samples higher than 90% of the
control samples along with the bivariate were removed for the
second iteration of the XGBClassifier. The process was repeated
for a total of three iterations/bivariates. Principal components anal-
ysis of all the samples using the three highest bivariates was per-
formed using principal components analysis (PCA) from sklearn
(v. 0.23.2) and plotted using plotly (v. 4.7.0). Sensitivity was calcu-
lated as True Positives/(True Positives + False Negatives), specificity
was calculated as True Negatives/(True Negatives + False Positives),
PPV was calculated as PPV = True Positives/(True Positives + False
Positives), and NPV was calculated as NPV = True Negatives/(True
Negatives + False Negatives).

Statistical analysis
Clinical data were analyzed using Student’s t test, Mann-Whitney U
test, and Fisher’s exact test with SPSS version 25. The testing level
and adjustments are detailed in Results and Materials and Methods

each time a statistical test was used. Hierarchical clustering was per-
formed and displayed using the Qlucore Omics Explorer Software
(Qlucore, Lund, Sweden) to visualize candidate miRNAs identified
using the PEER process. Clustering and enrichment of the 110 bi-
variate biomarkers was done using the CDF and is detailed above.

Supplementary Materials
This PDF file includes:
Figs. S1 to S3
Legends for data files S1 to S11

Other Supplementary Material for this
manuscript includes the following:
Data files S1 to S11
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