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Spatio-temporal impacts of a utility’s 1 

efficiency portfolio on the distribution grid 2 

Jessica Granderson1, Samuel Fernandes1, Samir Touzani1, Chih-Cheng Lee1,3, Eliot 3 

Crowe1, Margaret Sheridan2  4 

Abstract 5 

6 

Energy Efficiency has historically focused on delivering savings to offset growth in energy supply. 7 

Today’s growing emphasis on decarbonization of the energy supply is driving renewables 8 

adoption and increased interest in electrification. As a result, energy efficiency is being assessed 9 

not just in its ability to offset load growth, but also for its ability to alleviate location-specific 10 

constraints on transmission and distribution infrastructure. This work demonstrates that 11 

advanced measurement and verification modeling techniques can be used to estimate the spatio-12 

temporal grid impact of a portfolio of energy efficiency programs. It extends measurement-based 13 

methods to an entire Demand Side Management portfolio and uses a single model to predict 14 

annual as well as seasonal building energy use with near-zero bias. In addition, new metrics are 15 

introduced to assess grid level impacts of energy efficiency. The results show that the efficiency 16 

program portfolio delivers savings of over 12% at the territory-wide proxy level, with substation 17 

and feeder level savings ranging from 0.4%-26%, and -5%-42% respectively. These savings 18 

impacted 1.0%-1.4% of the energy used at these locations in the grid. This work provides a 19 

methodology with  potential to connect efficiency with distribution planning, carrying 20 

implications for non-wires alternatives and targeted delivery of efficiency programs. 21 

22 

Keywords:  Advanced Metering Infrastructure (AMI), Demand Side Management (DSM), Energy 23 

Efficiency (EE), Fractional Savings (FS), Measurement and Verification (M&V), Relative Fractional 24 

Savings (RFS), Transmission and Distribution (T&D) 25 
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E Energy (kilowatt-hour [kWh]) 27 
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T Temperature (degrees Celsius [°C]) 28 

t Time (seconds) 29 

P Energy demand (kilowatts [kW]) 30 

 31 

1. Introduction 32 

Energy Efficiency (EE) is the practice of using less energy to provide the same or an improved 33 

level of service to an energy consumer, in an economically efficient way (Goldman et al. 2010). It 34 

has historically focused on the delivery of savings as a means to reduce consumer energy costs 35 

and offset growth in energy supply. Today, there is growing emphasis on decarbonization of the 36 

energy supply chain, which is driving renewables adoption and increased interest in 37 

electrification (the practice of switching natural gas consumption to electricity, which is in turn 38 

provided by low/no carbon energy sources). Energy efficiency is now being considered not just 39 

for its ability to offset growth in supply, but also for its ability to alleviate location-specific 40 

constraints on transmission and distribution (T&D) infrastructure as load growth increases 41 

unevenly across regions. Also, the EE industry is beginning to consider the time-differentiated 42 

value of efficiency, since the increasingly diverse generation mix means that carbon emissions 43 

can vary significantly by time of day/year. Moving beyond the traditional approach of average 44 

annualized savings for EE surfaces additional insights into the value of efficiency relative to 45 

avoided carbon, cost-effectiveness, and grid-level hourly net load shapes.     46 

 47 

Targeting EE programs either independently or in concert with demand response (DR) and 48 

distributed generation can play a role in deferring capital investments for T&D infrastructure 49 

(Chew et al. 2018), which have averaged approximately $45B annually over the last decade in the 50 

U.S. (Neme et al. 2015). These ‘non-wires alternatives’ (NWA) are defined as: “An electricity grid 51 

investment or project that uses non-traditional T&D solutions, such as distributed generation, 52 

energy storage, energy efficiency, demand response, and grid software and controls, to defer or 53 

replace the need for specific equipment upgrades, such as T&D lines or transformers, by reducing 54 

load at a substation or circuit level” (Navigant 2017). Studies from as early as the 1990s showed 55 

that demand side management (DSM) programs that are carefully matched to local area costs 56 

and timing of loads can cost effectively and reliably defer infrastructure investments (Kinert et 57 

al. 1992). Due to increasing T&D costs relative to costs of generation, strategies have been tested 58 

to develop area-specific marginal costs, loads and DSM load impacts (Orans et al. 1991). This was 59 

significant because it allowed for T&D benefits to be emphasized more in DSM program planning.     60 

More recently, Chew et al. 2018 summarized case studies of NWAs from leading U.S. projects. 61 

The majority of these case studies demonstrated success in helping to delay or permanently defer 62 

infrastructure upgrades. For example, the Brooklyn Queens Demand Management (BQDM) 63 
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Program, is often noted in the EE industry as a successful effort implemented to delay the 64 

construction of a new substation beyond initial load-relief projections (Chew et al. 2018).  65 

 66 

Since different EE projects/measures produce savings at different times of day (the so-called 67 

“savings shape”), there is opportunity to target measure deployment for maximum temporal 68 

value. For example, a commercial lighting EE measure will produce more savings during the day, 69 

whereas a residential hot water measure will produce more savings in the morning or evening. 70 

From a system perspective, the cost of generating and supplying electricity, and the associated 71 

environmental impacts, as well as net load, varies by time of the year and time of day. Therefore, 72 

to accurately quantify the system-wide value of energy savings, it is necessary to account for 73 

seasonal and hourly variations in energy savings. Mims et al. 2017 show that the time-varying 74 

value of energy efficiency savings is important because when calculating the benefits to the 75 

power system, the energy savings value will vary by the season and hour of the day that the 76 

energy reductions occur (Mims et al. 2017). Boomhower et al. 2017 in their analysis reveal that 77 

the value of electricity is highly variable even within a single day, and this variability is tending to 78 

grow larger as a greater fraction of electricity comes from solar and other intermittent 79 

renewables (Boomhower et al. 2017). In Novan et al. 2018, the authors use meter-based data 80 

and are able to estimate not just total energy savings, but also when they occur (Novan et al. 81 

2018).  82 

 83 

The consideration of how DSM programs can be coupled with distributed generation and energy 84 

storage to deliver more targeted spatial and temporal benefits to both customers and the grid, 85 

brings new opportunities for the use of interval meter-based energy savings analysis methods. 86 

While demand response programs have typically used interval meter data, energy efficiency 87 

savings analyses more commonly use engineering calculations or stipulated savings that 88 

represent population average annual energy reduction. However, interval meter-based savings 89 

analysis methods offer the ability to disaggregate load, based on time of day, day of week, and 90 

season.  91 

 92 

Prior work has investigated building-level applications of meter-based savings analysis, for EE and 93 

DR. For example, Mathieu et al. 2011 present methods for analyzing commercial and industrial 94 

facilities’ advanced metering infrastructure (AMI) data with a focus on DR (Mathieu et al. 2011).  95 

Bode et al. 2014 use whole building level interval meter data to screen sites and estimate energy 96 

savings (Bode et al. 2014).  Jump et al. 2015 used smart meter data to determine how well the 97 

whole building level approach to energy savings estimation is applicable and concluded positively 98 

that the approaches were viable (Jump et al. 2015). Granderson et al. 2017 show more broadly 99 

the commercially available technologies that use AMI data both for energy analytics and 100 

advanced M&V (sometimes called “M&V 2.0”) (Granderson et al. 2017b). Most meter-based 101 
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savings analysis however, in the field and in the literature, have focused on total energy savings 102 

and have not considered the time or season in which those savings occur. Other methods that 103 

do not use meter-based savings analysis to estimate building load impact on the distribution grid 104 

are also present in the literature. Mejia et al. 2020 present a spatio-temporal growth model for 105 

estimating the adoption of new end-use electric technologies encouraged by energy-efficiency 106 

policies (Mejia et al. 2020).  This work uses a geographically weighted regression to capture the 107 

spatio-temporal nature of energy efficiency savings. The results show load curves of distribution 108 

transformers that provide valuable information regarding the distribution network expansion 109 

planning, but the analysis does not quantify actual impacts from specific efficiency programs. 110 

Arnaudo et al. 2019 use co-simulation of the electricity grid and buildings to monitor grid capacity 111 

to avoid overloading (Arnaudo et al. 2019). They find that given grid capacity limits, different 112 

energy efficiency policies could be implemented in buildings to unlock better energy and 113 

environmental performance. Even though this work was using simulated data rather than AMI 114 

data, it is useful for higher level distribution grid planning including uncertainty analysis.  115 

 116 

In previous work, the authors have developed and tested promising advanced M&V approaches 117 

to partially automate the savings estimation process through the analysis of time series meter 118 

data. Granderson et al. 2015, and Granderson et al. 2016 showed through statistical test 119 

procedures that these automated techniques are accurate and robust in modeling and predicting 120 

commercial buildings’ annual energy use. A literature review did not surface prior work that has 121 

analyzed time-based energy efficiency savings at different levels of the distribution grid 122 

infrastructure (e.g., substation level and feeder level) using meter-based savings analyses.  123 

 124 

Addressing this gap in the published research, the goal of this work was to demonstrate the use 125 

advanced M&V modeling techniques to estimate the spatio-temporal impact of a portfolio of EE 126 

programs, relative to the distribution grid. This paper presents the results of an analysis of 127 

interval meter data from over 25,000 accounts from a California utility. The specific research 128 

questions that were answered in this work were: 1) what are EE savings at different locations in 129 

the distribution grid, and how much do those savings impact the total load at those locations? 2) 130 

what is the hourly EE savings shape at different locations in the distribution grid, and how does 131 

this shape vary by season?  132 

 133 

The paper proceeds as follows: Section 2 describes the methodology underlying the study, 134 

Section 3 summarizes the findings, and Section 4 provides a discussion of the results. The final 135 

section provides conclusions and ideas for future work. 136 

 137 

2. METHODOLOGY 138 

 139 
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To determine grid-level savings due to energy efficiency, AMI data from a California utility was 140 

provided, covering the period 2015 to 2018 that indicated accounts that participated in EE 141 

programs in 2016 and 2017.  This data was pre-processed and analyzed as shown in Figure 1, to 142 

establish aggregate spatio-temporal load impact estimates for both EE program participants and 143 

non-participants. Sections 2.1 to 2.4 describe the study method in detail.  144 

 145 
 146 

Figure 1: Flowchart showing analytical steps in the study 147 

 148 

2.1 Composition of the dataset  149 

A dataset of hourly Advanced Metering Infrastructure (AMI) accounts was used for the analyses 150 

presented in this paper. These AMI meters corresponded to 12 different substations and 51 151 

feeders, representing a sample across the territory. The dataset included accounts that 152 

participated in EE programs and those that did not; in the remainder of this paper those accounts 153 

types are referred to as EE and Non-EE. For the EE participants, the date of installation of the EE 154 

measures were also provided, so that a baseline and analysis period could be defined to analyze 155 

the impact of the EE programs. In addition, the data was labeled to indicate customers who had 156 

relocated during the analysis period, those who had an electric vehicle (EV), and those who had 157 

a photovoltaic (PV) system. Appendix A summarizes the EE customer types at each substation 158 

i.e., if they were commercial, residential, industrial, or unlabeled. 159 

 160 

2.2 Data pre-processing 161 

For the assessment of EE program impacts, 2015 was taken as the baseline year and 2018 was 162 

selected as the analysis year. Meter data from the following account types were removed from 163 

the analyzed dataset: 164 

• Accounts that relocated in 2015 or 2018, because the change in energy consumption 165 

could have been caused by occupancy change rather than by the EE measure. 166 

• Accounts that had an EV or a PV, because they were a very small number in the sample 167 

and their load shape patterns were highly variable.  168 
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• Accounts for which data was missing in either the baseline year or analysis year. 169 

After completing the data pre-processing, 1,372 EE accounts and 25,841 Non-EE accounts were 170 

included in the study sample. 171 

 172 

The analysis was performed at three levels of account grouping: 1) The sum of data from all 173 

meters across all substations, which can be viewed as a proxy for the utility’s territory-wide 174 

distribution grid. This is referred to as “total level.” 2) The sum of data from all meters associated 175 

with a given substation, for all 12 substations. 3) The sum of data from all meters associated with 176 

a given feeder, for all 51 feeders. 177 

 178 

For each of the three account grouping levels the accounts were split into two subsets: EE and 179 

Non-EE. Then, in order to decrease the variability of the energy use time series, and thus improve 180 

the prediction accuracy of the considered baseline modeling method, the hourly energy use was 181 

aggregated for all of the accounts within a subset (i.e., EE and Non-EE). This was conducted for 182 

the baseline year (2015) and the analysis year (2018). Thus, for each time step t the energy use 183 

for the EE and Non-EE accounts was defined in Equations 1 and 2 as: 184 

 185 

��
����� = ∑ ��

	�
��



	��   (1) 186 

 187 

��
�� = ∑ ��

	�



	��   (2) 188 

 189 

where ������  is the number of accounts in the Non-EE subset, ��� is the number of accounts in 190 

the EE subset, and ��
	
 is the energy use of account j at the time step t.  191 

Note that: at the total level ������  is equal to the total number of Non-EE accounts that are in 192 

the dataset (i.e., 25,841) and ��� is equal to the number of EE accounts that are in the dataset 193 

(i.e., 1,372); at the substation level ������  and ���  are respectively equal to the number of Non-194 

EE and EE accounts that are connected to a specific substation; at the feeder level ������  and 195 

���  are respectively equal to the number of Non-EE and EE accounts that are connected to a 196 

specific feeder. 197 

 198 

For the remainder of this paper, both EE and Non-EE accounts will be referred to as account types 199 

and the total, substation and feeder level aggregations will be referred to as analysis levels.  200 

 201 

  202 

2.3 Baseline Energy Modeling 203 

Regression methods are a standard approach used for developing baseline models that aim to 204 

model the relationship between energy use and a set of independent variables (also known as 205 
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explanatory variables) � = (�(��, … , �(���, where d is the number of independent variables. The 206 

most commonly available independent variables in energy use baseline modeling are the time of 207 

the week and the outdoor air temperature. Mathematically the regression problem can be 208 

represented for a given observation set {(x1,y1),…, (xT,yT)}, as 209 

 210 

�� = �(��� + �� ,      � �~ �(0, ��
 �    (3) 211 

  212 

where �� = (�(��, … , �(���, ! = 1, … , # are d dimensional vectors of inputs variables, ��  is 213 

independent Gaussian noise with mean 0 and variance ��
 . Building a baseline model consists of 214 

approximating the function �(�� given a set of T observation {(x1,y1),…, (xT,yT)}. 215 

 216 

In recent years several baseline energy modeling approaches that use interval meter data have 217 

been introduced in the academic literature and in the industry. For instance, Mathieu et al. 218 

present a regression-based electricity load model that uses a time-of-week indicator variable and 219 

outdoor temperature to characterize demand response behavior (Mathieu et al. 2011). Heo and 220 

Zavala present a Gaussian process (GP) modeling framework to determine energy savings and 221 

uncertainty levels in M&V (Heo and Zavala 2012), while Burkhart et al. present a Monte Carlo 222 

expectation maximization framework for M&V (Burkhart et al. 2014). More recently Touzani et 223 

al. presented a Gradient Boosting Machine baseline model for M&V (Touzani et al. 2018). These 224 

methods are based on traditional linear regression, nonlinear regression, and machine learning 225 

regression methods. The temporal variation in electricity consumption in buildings can be driven 226 

by several factors, including weather, occupancy schedule, and daily and weekly periodicity. In 227 

practice and in the literature, to capture these effects, it is common to use two different input 228 

variables - outside air temperature and time of the week. Historically, energy savings analysis has 229 

focused on total annual energy savings.  230 

 231 

Since one of the key research questions associated with this work concerns the seasonality of 232 

hourly savings shapes, an analysis was performed to evaluate the impact of including season as 233 

independent variable on seasonal model goodness of fit metrics. Two models were considered: 234 

The Gradient Boosting Machine (GBM) baseline model (Touzani et. al 2018), which is an ensemble 235 

tree-based machine learning method, and Time-of-Week-and-Temperature (TOWT) model 236 

(Mathieu et al. 2011), which is a piecewise linear model where the predicted energy consumption 237 

is a combination of two terms that relate the energy consumption to the time of the week and 238 

the piecewise-continuous effect of the temperature. In previous studies (Granderson et al. 2017, 239 

Touzani et al. 2018) GBM and TOWT were shown to be highly accurate at predicting annual 240 

consumption, equaling or outperforming other M&V industry standard models. The GBM model 241 

was configured with input variables for outside air temperature, time of the week, an indicator 242 

to specify if the day of the observation is a holiday, an indicator to specify if the day of the 243 
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observation is a week day or a weekend and an indicator to represent the season of the 244 

observation (where “winter” covered the period December to February, etc.). The TOWT model 245 

uses only time of the week and the outside air temperature as input variables.  246 

 247 

The goodness of fitness of each model was assessed using three statistical model fitness metrics: 248 

NMBE, CV(RMSE) and R2 (see definition and description of the metrics in Granderson et al. 249 

2017a). Figure 2 shows the three model fitness metrics for both GBM and TOWT models by 250 

season and by analysis level. Each chart shows data points for EE models and Non-EE models, 251 

e.g., at the total proxy level there are two TOWT R2 data points for Autumn, one for the EE model 252 

and one for the Non-EE model. Overall the GBM models outperformed the TOWT models, having 253 

higher R2, lower CV(RMSE), and NMBE closer to zero. The most significant improvement can be 254 

seen in the NMBE metric where GBM models have near-zero bias (NMBE) across all seasons, 255 

which is most desirable for accurate seasonal savings quantification. Given its near-zero bias for 256 

both annual as well as seasonal time horizons, the GBM model was used in this work.  257 

 258 

2.4 Analysis framework 259 

The GBM baseline model was fit to the data for the two account types and the three analyzed 260 

levels of the distribution grid. Model goodness of fitness metrics R2, CV(RMSE) and NMBE were 261 

evaluated to verify model sufficiency. The threshold values of model fitness metrics for CV(RMSE) 262 

and NMBE were from ASHRAE Guideline 14 (ASHRAE 2014), while the R2 value is an industry best 263 

practice. These were: 264 

 265 

•  Coefficient of determination or R2, threshold > 0.7, 266 

•  Coefficient of Variation of the Root Mean Squared Error (CV(RMSE)), threshold <25%; 267 

•  Normalized Mean Bias Error (NMBE) target within -0.5% to +0.5% range.  268 

 269 

Using the baseline models, energy use predictions for the analysis year (2018) were generated. 270 

The annual savings for the EE and the Non-EE groups was calculated as the difference between 271 

the baseline predictions and the actual consumption in the analysis period (known as the 272 

“avoided energy consumption” approach to estimating savings). The analysis result was 273 

expressed as a percentage reduction in consumption, the fractional savings (FS), defined in 274 

ASHRAE Guideline 14 as shown in Equation 4: 275 

$% =
�&'�()*�'�()

�&'�()
=

�(+,-

�&'�()
  (4) 276 

where �&.�/� is the model-predicted energy consumption in the analysis period, and �.�/� is the 277 

actual energy consumption in the analysis period. 278 

 279 



 

8 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

Figure 2: Seasonal goodness of fit metrics for GBM and TOWT models at the proxy total (top), substation (all 293 

substations in middle), and feeder levels (all feeders at bottom). 294 

 295 

The FS of the EE group was compared to the FS of the Non-EE group as an additional verification 296 

of the validity, or reliability of the savings results, that complemented the assessment of baseline 297 

model goodness of fit. The expectation is that the savings observed for EE program participants 298 

will be significantly different from changes in consumption for the Non-EE program participants 299 

(which may reduce or increase over time). Confirming that this is indeed the case in the analysis 300 

results was used to verify that the EE savings signal was above some level of energy consumption 301 

change that may affect all accounts, EE and Non-EE, independent of their participation in energy 302 
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efficiency programs (For example, changes in the economy, naturally occurring efficiency, or 303 

upstream utility efficiency interventions). In the following, for simplicity this change in energy use 304 

for NonEE accounts, that may occur independent of efficiency program participation, is called 305 

‘noise.’  306 

 307 

The FS was calculated to quantify the efficiency savings achieved by accounts at different points 308 

in the distribution grid. To assess the impact of those savings on the energy used at these points 309 

in the grid, the metric relative fractional savings (RFS) was developed. Defined in Equation 5, the 310 

RFS expresses the savings of a given set of EE program participants as a fraction of the energy 311 

used at level of the distribution grid in which the EE accounts are located. This is in contrast to 312 

the fractional savings (FS), which quantifies savings for a particular aggregation of accounts with 313 

respect to their own historical consumption.  314 

 315 

RFS is defined as: 316 

0$% =
�(+,-

∑ �&'�()
  (5) 317 

where �&.�/� is the model-predicted energy consumption in the analysis period, and �.�/� is the 318 

actual energy consumption in the analysis period. The denominator of equation 5 corresponds 319 

to the sum of EE and the Non-EE groups for each location in the distribution grid. 320 

 321 

To determine the hourly EE savings shapes at different locations in the distribution grid, and how 322 

those shapes vary with season, average hourly savings were quantified for weekdays, for both 323 

accounts types. These hourly savings were computed for the full year of the 2018 analysis period, 324 

and also for the each of four seasons. Winter was taken as spanning December through February, 325 

spring as March through May, summer as June through August, and fall as September through 326 

November. In this analysis only the FS metric was analyzed, due to the fact that the RFS is less 327 

visible at the hourly level. As in the analysis of annualized EE at different points in the grid, the 328 

hourly FS for EE participants was compared to the FS for Non-EE participants to verify that they 329 

EE savings signal was indeed above the ‘noise’.   330 

 331 

 332 

 333 

 334 

 335 

 336 

3. FINDINGS 337 
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This section first presents the utility’s EE programs energy savings at different points in the 338 

distribution grid. These annualized results are followed by findings that illustrate hourly savings 339 

profiles for the full year, and for the different seasons of the year.  340 

 341 

3.1 Annual efficiency savings in the distribution grid  342 

For the proxy total distribution grid level (the aggregate of twelve substations, containing 1,372 343 

EE accounts and 25,821 Non-EE accounts, with EE accounts comprising 5.4% of the total number 344 

of accounts in the analysis). The left plot in Figure 2 shows that the EE accounts saved 12.6% from 345 

the baseline year to the analysis year, while the Non-EE accounts ‘saved’, i.e., reduced their 346 

consumption, by 2.7%. As noted in the methodology section, the reduction in energy use 347 

observed in the Non-EE accounts group could be due to a number of exogenous factors, however 348 

as expected, the EE accounts are savings significantly more, verifying that the savings signal is 349 

discernible from the ‘noise’.   350 

 351 

The right plot in Figure 3 shows that the 12.6% savings that were achieved by the EE accounts 352 

manifested as a 1.3% reduction in the total energy used across the twelve substations. That is, 353 

energy efficiency was observed to impact grid-level energy use by 1.3%. However, the impact of 354 

the Non-EE accounts was even larger, with 2.7% FS translating to an RFS of 2.4%. This is due to 355 

the large number of Non-EE accounts versus EE accounts. Even though the 1,372 accounts in the 356 

EE group saved over 12%, the impact of these savings on energy used in the distribution grid was 357 

surpassed by the 2.7% savings were observed in the 25,821 Non-EE accounts.       358 

 359 

  360 

 361 

Figure 3: FS and RFS for EE and Non-EE accounts at the proxy total distribution grid level.  362 

 363 

Figure 4 shows the fractional savings and relative fractional savings for each of the 12 substations 364 

individually. Across substations the average number of EE accounts was approximately 5% of the 365 

total number of accounts, as was the case for the total grid-level proxy. Of the 11 substations 366 

with EE account savings larger than Non-EE accounts, 4 substations also had an RFS for the EE 367 
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accounts that exceeded that of the non-EE accounts.  At the substation level, the FS achieved by 368 

EE participants ranged from near zero, to above 25%, with an average of 11%.  369 

 370 

This indicates that even without the utility explicitly conducting location targeting, efficiency is 371 

delivering observable impacts for a portion of the substations in the distribution grid.  372 

 373 

 374 

Figure 4: FS and RFS for EE and Non-EE accounts at the substation level.  375 

 376 

At the feeder level the average number of EE accounts was 5% of the total number of accounts, 377 

as was the case for the substation and proxy total levels. However, at this level of the distribution 378 

grid, the EE savings signal was more variable, and less discernible. The FS for the EE group was 379 

larger that of the Non-EE group for 39 out of 51 feeders analyzed, and ranged from -4.7 to 42% 380 

with an average of 9%. The RFS for the EE accounts ranged from -2 to 12% with an average of 1%, 381 

and exceeded that of the Non-EE accounts for 12 out of the 51 feeders. 382 

 383 

3.2 Hourly efficiency savings shapes in the distribution grid  384 

Figure 5 shows the average savings for each hour of the day at the proxy total distribution grid 385 

level. The left-most plot shows hourly savings for the full year, and the four plots to the right 386 

show the hourly savings profiles for each season. For every hour of the day, the savings for the 387 

EE accounts is larger than that of the Non-EE accounts, reflecting the validity of the savings 388 

results. Annually, the hourly EE savings range from approximately 7% to over 17%. The annual 389 

and seasonal savings profiles reflect similar shapes, with savings peaking around noon, and 390 

minimum at around 5:00 am. In the summer, the peak savings appear a couple of hours earlier 391 

at 10:00 am. It is also notable that, while Non-EE accounts saw a reduction in consumption overall 392 

(as stated earlier), Figure 4 indicates that consumption actually increased (i.e., a negative savings 393 

value) for some hours in spring and summer. 394 
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 395 

Figure 5. Average hourly FS for EE and Non-EE accounts at the proxy total distribution grid level, annually (left), 396 

and seasonally.  397 

 398 

Figure 6 shows the annual hourly savings profiles for the proxy total distribution grid level, and 399 

also for each of the twelve substations that were analyzed. In contrast to the proxy total grid 400 

level, at the substation level, there are hours of the day for which the savings for EE accounts 401 

group are not larger than that of the Non-EE group. These hours of the day are shaded gray in 402 

the plots, and although relatively few in number, represent time periods for which the hourly 403 

savings signal cannot be distinguished from the ‘noise’ (Substation S3 being the most extreme 404 

example). These substations are dominated by single miscellaneous or industrial accounts, which 405 

have very different consumption patterns and usage levels than typical residential and 406 

commercial accounts. At the substation level the hourly savings shapes are highly varied, with 407 

more diversity of shapes, and also timing of the peak savings. This likely reflects the number and 408 

type of accounts associated with each substation, and the degree and type of efficiency deployed.     409 
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 410 

Figure 6: Average hourly FS for EE (red line) and Non-EE (blue line) accounts annually, at the proxy total 411 

distribution grid level (left), and at each substation analyzed. 412 

 413 

Figure 7 shows the summer season hourly savings profiles for the proxy total distribution grid 414 

level, and also for each of the twelve substations that were analyzed. Summer is a period of 415 

particular interest, as it is the time of year when loads are typically at their highest, putting the 416 

highest demand on the distribution grid. With the exception of substations S3 and S4, the hourly 417 

savings for the EE group are validated as higher than the Non-EE group for most hours of the day. 418 

Overall, for each substation, the summer savings shapes are similar to the full-year savings 419 

shapes, and there remains significant variability between substations.    420 

 421 

 422 
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 423 

Figure 7: Average hourly FS for EE and Non-EE accounts in summer (June, July, August), at the proxy total 424 

distribution grid level (left), and at each substation analyzed. 425 

  426 

Table 1 summarizes the difference in the calculated hourly fractional savings between the EE and 427 

Non-EE groups, at each level of analysis in the distribution grid (total proxy, substation, and 428 

feeder), for the full year, and also for each season. This difference indicates the validity, or 429 

quantifiability of the hourly savings results, and is expressed as the average number of hours (out 430 

of 24), for which the fractional savings of the EE group was larger than that of the Non-EE 431 

comparison group. The results indicate that the hourly savings results are most often valid at the 432 

total proxy level (EE higher than NonEE for all 24 hours of the day), decreasing down the hierarchy 433 

to the substation and feeder levels (e.g., in the Spring, EE savings are higher than NonEE for an 434 

average of just 15 hours of the day). At the substation and feeder level, savings validity is higher 435 

in Summer than in other seasons.  436 

 437 

  438 



 

15 

Table 1. Validity of hourly EE savings results, as indicated by the average number of hours out of 24 for which 439 

the fractional savings of the EE accounts are larger than those of the Non-EE accounts. 440 

 441 

Time Period Total Proxy Substation Feeder 

Whole year 24 21 17 

Winter 24 17 17 

Spring 24 18 15 

Summer 24 21 17 

Autumn 24 20 16 

 442 

4. DISCUSSION 443 

The results of the analysis showed that the utility’s DSM portfolio is delivering significant energy 444 

savings at each location in the distribution grid - from over 12% at the proxy total level, to average 445 

substation and feeder level savings of 11% and 9% respectively. At the substation level, the 446 

savings ranged from 0.4% to 26%, and at the feeder level the range was -5% to 42%. The possible 447 

causes of these wide ranges were not directly studied, but are expected to be driven by 448 

differences in the number of accounts participating in the efficiency programs, the specific 449 

measures installed, and the types of facilities represented, e.g., residential, commercial, 450 

industrial, and agricultural. These savings had a measurable impact on the energy used at these 451 

locations in the grid, with RFS of 1.3% at the proxy total level, to average 1.4% and 1.0% at the 452 

substation and feeder levels. These RFS impacts at the substation and feeder level were also 453 

highly variable, ranging from 0% to 5% (substations), and -2% to 12% (feeders), for the same 454 

reasons.  455 

 456 

The total average efficiency impact (RFS) of 1.4% is reasonable with respect to the utility’s load 457 

reduction planning targets that aim for annual reductions on the order of a couple of percent, 458 

due to building code improvement efforts and energy efficiency programs (which include 459 

midstream/upstream programs with subcontractors and retailers, which weren’t captured by the 460 

“EE” marker in the dataset used for this study). While the utility’s load reduction estimates are 461 

based primarily on calculated or stipulated savings, the analyses presented in this work provide 462 

a measurement-based lens into the achieved impacts of efficiency on the grid. These observed 463 

impacts were present even without explicit locational targeting of DSM delivery by the utility, 464 

suggesting compelling potential for the more aggressive use of efficiency as a non-wires 465 

alternative. These results were validated through comparison of the reductions in energy use for 466 
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accounts that participated in efficiency programs, and those that did not. Another means of 467 

validating the results was to ensure high levels of model goodness of fit to the baseline data.  468 

 469 

When the annual efficiency savings were disaggregated into average hourly savings shapes, the 470 

results showed that savings at the proxy total grid level peaked at around 12PM-1PM, and ranged 471 

from approximately 7% to 17%. The timing of the peak savings is driven by the measure types 472 

that are implemented in the programs (e.g., lighting, appliance, and equipment efficiency are 473 

common), and the end uses that those measures affect. The seasonal effects on the saving shapes 474 

were modest, with a shift of the summer peak savings to a couple of hours earlier in the day.  475 

 476 

At the substation and feeder level, hourly savings results became less quantifiable, as indicated 477 

by the comparison of the EE group to the NonEE group and by the degree of variation between 478 

savings shapes. With the exception of substations that were known to be dominated by industrial 479 

or other special building types, the effect was not large, but as expected, the hourly savings 480 

results became less quantifiable in moving from the proxy total to the feeder level, and in moving 481 

from the higher temperature and daylight summer period to the other seasons of the year. 482 

 483 

5. CONCLUSIONS AND FUTURE WORK  484 

As the efficiency industry (particularly utilities and their respective regulatory bodies) moves to 485 

consider how energy efficiency can meet the more nuanced needs of a decarbonized renewables-486 

integrated energy system, there is increased need to better understand the time and location of 487 

realized efficiency savings. Using a single model that can predict annual as well as seasonal 488 

building energy use with near-zero bias, this work demonstrated new metrics and methods to 489 

apply meter-based savings analysis to assess grid-level spatio-temporal impacts of energy 490 

efficiency. These approaches provide a methodological and modeling foundation that offers 491 

potential to connect efficiency programs with grid and distribution planning, carrying 492 

implications for non-wires alternatives and targeting the delivery of efficiency programs, as well 493 

as tracking achieved efficiency with respect to forecasts. 494 

 495 

There are several immediate directions for future work to expand upon the initial analyses 496 

presented in this paper. The DSM portfolio-wide analysis could be disaggregated to assess 497 

program-specific effects, and to characterize how the results vary with different distributions of 498 

residential versus commercial and industrial customers. This would provide further insights to 499 

program administrators seeking to design the most impactful portfolio of program offerings, and 500 

could be combined with additional work to enable integration of the customers with EVs and on-501 

site PV. To couple different levels of consumption measurement, the bottom-up analysis using 502 

AMI data could be complemented with an analysis of SCADA measurements at the distribution 503 
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level. Finally, the analyses presented in this work can be applied to NWA projects in the field, and 504 

to future pilots of location- and time-based targeting of EE program delivery.  505 

 506 
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Appendix A 598 

 599 

Table 2. Market segmentation of EE customers at substations analyzed 600 

 601 

SUBSTATION RESIDENTIAL COMMERCIAL INDUSTRIAL MISC 

S1 88 2 NA 1 

S2 57 7 NA NA 

S3 14 NA NA 1 

S4 159 10 2 1 

S5 25 19 1 1 

S6 267 3 NA NA 

S7 145 2 NA NA 

S8 127 2 NA 2 

S9 200 6 NA NA 

S10 84 7 NA NA 

S11 90 3 NA 3 

S12 30 12 NA 1 
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