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A FASTER PATH-BASED ALGORITHM FOR TRAFFIC ASSIGNMENT

R. Jayakrishnanl, Wei K. Tsai2, Joseph No Prashkers, Subodh Rajadhyaksha~

Institute of Transportation Studies, University of California at lrvine
Irvine, California 92717, USA

ABSTRACT

This paper takes a fresh look at the arguments against path-enumeration algorithms for the traffic

assignment problem and provides the results of a gradient projection method. The motivation
behind the research is the orders of magnitude improvement in the availability of computer

storage over the last decade. Faster assignment algorithms are necessary for real-time traffic
assigmaaent under several of the proposed Advanced Traffic Management System (ATM$)

strategies, and path-based solutions are preferred. Our results show that gr_zd~ent projection
converges in 1/10 iterations than the conventional Frank-Wolfe algorithm. The computation time

improvement is of the same order for small networks, but reduces as the network size increases.
We discuss the computer implementation issues carefully, and provide schemes to achieve a 10-

fold speed-up for larger networks also. We have used the algorithm for networks of up to 2000

nodes on a typical computer work station, and we discuss certain data structures to save storage

and solve the assignment problem for even a 5000 node network.

INTRODUCTION

As is well known, traffic assignment is the process of finding the flow pattern in a given
network with a given travel demand between the origin~destination pairs. Equilibrium assignment

finds flow patterns under user equilibrium, when no driver can unilaterally change routes to
achiew~ better travel times. Optimal assignment determines the flow patterns such that the total

travel time cost in the network is minimum, usually under external control. Assignment has long
been an essential step ha the transportation planning process. See Sheffi(1) for detailed

discussions on traffic assignment
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Real-time traffic assignment could be a part of potential ATIS (Advanced Traveller

Information Systems) or ATMS (Advanced Traffic Management System) strategies (see Kaysi

and Ben-Akiva (2), for a discussion of such strategies). The applications of network assignment

in such real-time contexts could be in the on-line estimation of origin-destination demand

matrices, or in an on-line dynamic assignment framework. The conventional approach, used in

planning applications, is to solve the assignment problem with the Frank-Wolfe algorithm

(denoted as F-W in the rest of the paper), also known as the convex-combinations algorithm (1).

However, real-time applications typically require path-based solutions (see Mahmassani and Peeta

(3)), which are not available with the lit, k-flow based F-W algorithm. Faster convergence is also

a very desirable feature for a real-time algorithm.

In this paper, we report our investigation of the Goldstein-Levitin-Poljak gracfient

projection algorithm, as formulated by Bertsekas(4). This algorithm fails under the set 

algorithms called ’path-enumeration’ algorithms, which have traditionally been discarded by

transportation researchers as too memory-intensive and slow for large networks. In light of the

orders of magnitude improvement in the availability of computer memory in recent years, we feel

such algorithms deserve a fresh look. In this paper we describe our implementation of the

algorithm and the extremely encouraging results. We discuss the assignment formulation for the

sake of completeness in the next section, and follow it by a literature review and farther

qualitative discussions of the algorithms. We then proceed to discuss the computer

implementation issues. The paper concludes with the results on comparative performance of the

algorithms and pointers for future research.

THE STATIC USER-EQUILIBRIUM ASSIGNMENT PROBLEM

As is well known, the static assignment user equilibrium problem is stated as

x,

a 0

subject to the demand and non-negativity constraints given by

(1)

(2)
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L>_0
where,

= flow on link a (sum of the flows on the paths sharing link a),

= cost(travel time) on link a for a flow of co,

= flow on path k connecting origin r and destination s,

= the total traffic demand between r and s,

= the set of paths with positive flow between r and s.

3

(3)

The above problem or variations of the same has appeared in some of the recently proposed

dynamic assignment algorithms with time-varying demands, such as the hi-level algorithm of
Janson(5) and the instantaneous dynamic assignment algorithm of Ran et al.(6). Note also 

a system optimal assignment problem reduces to a user equilibrium problem with transformed
(marginal) cost functions (1), and hence algorithms developed for user equilibrium assignment

are applicable to the system optimal assignment as well.

REVIEW OF RELEVANT LITERATURE

There has been extensive work done on network optimization approaches to address the
traffic equilibrium assignment problem. A detailed discussion of the conventional approaches

to it is presented by Sheffi(1). A detailed study by Lupi(7) showed that the Frank-Wolfe

algorithm is superior to most other algorithms. Nagurney(8) compared the Frank-Wolfe
algorithm with the Dafermos-Sparrow algorithm (9) and found the latter to be in general more
efficient. There has been some research to improve the efficiency of the F-W algorithm. Arezki

and Van Viler(10) presented an analytic implementation of the PARTAN technique as applied

to the Frank-Wolfe algorithm and presented results indicating improvements over the original
algorithm. Leblanc et al.(l 1) and Florian et al.(12) showed how the PARTAN method could 

applied to the traffic network equilibrium assignment problem and showed improved convergence
in real networks. Weintraub et al.(13) investigated a method of improving the convergence 

the Frank-Wolfe algorithm by making modifications on the step size. One of the most recent

improvements was by Larsson and Patriksson(14) who employed simplicial decomposition

approaches to the original F-W algorithm.
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Algorithms for assignment based on Benders decomposition have also been developed by
Florian(15) and Barton et al.(16). Projection-based algorithms that have been developed in 

past include those by Pang and Chan(17) and Daferrnos(18). There has however not been 

drawn from advances made in the parallel field of optimal flow assignment in computer
communication networks. The gradient projection algorithm popularized by Bertsekas(19) is one

such algorithm that we investigate in this study. In computer COMmUnication, the networks are

usually smaller in size compared to the large urban networks where traffic assignments are
carried out for planning purposes, and this may have been why transportation researchers have

not paid enough attention to the research in that field.

SELECTION OF ALGORITHMS: HISTORICAL PERSPECTIVE

The choice of an appropriate algorithm for the traffic equilibrium assignment problem is
guided by several criteria for selection depending on the sped fie needs of the application, the
overriding criteria often being the memory requirements of the algorithm and its speed of

convergence. These concerns become increasingly critical as the network size increases. We

provide the following discussion to reveal the motivations behind tiffs research.

The conventional choice for the traffic assignment problem so far has been the Frank-

Wolfe algorithm. This choice has been guided largely by the memory requirements criterion.
Since the F-W algorithm at any one iteration deals with only a single path between each origin-

destination pair, its storage requirements are well within the capabilities of most ordinary

computers. However, it has the drawback that typically the convergence becomes very slow as

it approaches the optimal solution. It shows a tendency to flip-flop as it gets close to the
optimum. The reason is that the algorithm is driven more by the constraint comers and less by

the actual descent direction of the objective function surface, once it is close to the solution.
This was not considered a serious problem in earher apphcations of the traffic assignment, as the

problem was being addressed from a transportation planning viewpoint. Under this scenario,
assignment is used for forecasting purposes where the origin-destination demand data itself are

derived using the extrapolation of current values or statistical models. This inherent inexactness
in the process renders the exact estimation of link volumes unimportant and so practitioners are

often content to stop the algorithm after a few iterations when it reaches within 5-10% of the
solution. The memory requirement criterion was of importance too. When the Frank-Wolfe

algorithm was introduced to the transportation field in the late 70s, computers were incapable of
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handling the larger memory requirements of path-enumeration algorithms. Recent advances in

computing equipment have placed vastly increased computing power in smaller and smaller

machines. Computer work stations with 16M storage are only about as expensive as a PC with

128K storage in the mid 80s, and have more storage than the largest mainframes of the late 70s.

Given these possibilities it is important that we rethink our choice of traffic assignment

algorithms and take advantage of the technological edge provided by current and future

improvements in computer hardware.

Another aspect of F-W algorithm is that it does not automatically find the intersection

turning movcments. This has traditionally been found by microcoding the intersections with

specific turning links, which usually increases the number of nodes and links in the networks

considerably. Path flow solutions automatically provide such turning counts without any

rnicrocoding of the network, thus keeping the network sizes small. However, if separate flow-

cost functions are to be used for turning movements, microcoding may be necessary with path-

based algorithms also.

The recent advent of IVHS (Intelligent Vehicle-Highway Systems), brings up needs for

real-time traffic assignments with different requirements than in the case of planning applications.

Such assignments may be part of dynamic assignment frameworks or real-time O-D demand

estimation frameworks. Faster convergence becomes important, and path-based solutions may

be necessary. Moreover, there is increasing emphasis placed on estimating the fuel consumption

and rnodeUing the air quality over specific routes. Solutions based on path flows provide speed

profiles over the network paths which are conceivably useful (though, still very approximate) for

such applications. Link flow solutions from the F-W algorithm are much poorer in this regard.

THE GRADIENT PROJECTION ALGORITHM (GP)

The gradient projection algorithm is extensively used in computer cormntm/cation

networks, where path flow solutions are essential for optimal flow routing. However, the

networks in these applications are typically much smaller than urban traffic networks and the

path-enumeration issues have not been serious concerns. Moreover, the network structures are

also somewhat different in these two applications. We adapt the basic Goldstein-Levitin-Poljak

gradient projection algorithm formulated by Bertsekas(4) to the traffic assignment problem, and

concentrate on the practical convergence and computer implementation issues.



Jayakrishnan et al. 6

In contrast to the Frank-Wolfe algorithm which finds auxiliary solutions that are at comer
points of the linear constraint space, the gradient projection algorithm makes successive moves
in the direction of the minimum of a Newton approximation of a transformed objective function.

The objective function includes the demand constraints also, and thus the feasible space for

gradient projection is defined only by the non-negativity constraints, as opposed to both non-
negativity and demand constraints in the case of F-W. Should the move to the minimum in the

negative gradient direction result in an infeasible solution point, a projection is made to the
constraint boundaries. As a result of the redefinition of the problem, infeasibility occurs only

when a variable violates the non-negativity constraint and thus the projection is easily

accomplished by making that variable zero. We describe this in detail below.

The formulation of the algorithm focusses on the traffic demand constraints

~f, -- q,,
k~g.

where K is the set of paths (with positive flow) between origin r and destination 

If we express the shortest path flows f~- in terms of other path flows

the standard optimization problem (equations 1 through 3) can be restated as,

(4)

rain (5)

subject to >_ 0 V fk (6)

where Z is the new objective function and ] is the set of non-shortest path flows between all

the O-D pairs.

For each O-D pair, while at any feasible (non-optimai) solution, a better solution can be found
by moving in the negative gradient direction. This gradient is calculated with respect to the

flows on the non-shortest paths (which are the only independent variables now), and a move-size
is found using the second derivatives with respect to these path-flow variables. Once the flows
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on these non-shortest paths are updated, the flow on the shortest path is appropriately updated

so that the demand constraint is satisfied.

The gradient of the objective function written in terms of the non-shortest path variables can be

found using,

(7)

whicla results from the definition of Z. Thus each component of the gradient vector is the

differences between the first derivative lengths of a path and the corresponding shortest path (14).

In the case of equilibrium assignment, the objective function is in terms of integrals and the first

derivative lengths are simply the path costs at that flow solution.

A small increase in the flow on a path k results in an equal decrease in the flow on the

corresponding shortest path. This results in no change in the flow on the common part of the two

paths° Thus the second derivative is simply the sum of the second derivative lengths of the links

on either path k or path k’, but not boths. Once the second derivatives of Z with respect to

each path flow are calculated, we assume a diagonal Hessian matrix and the inverse of each

second derivative gives an approximate quasi-Newton step size for updating each path flow.

For the remainder of the paper, when we refer to the ’first derivative lengths’, we mean

the t%’st derivatives of the objective function, which is composed of link costs at specific path

flow.,; (i.e., t(x) ). Similarly, ’second derivative lengths’ refers to the second derivative of 

bta
objective function, and is composed of first derivatives of link costs. (i.e., ~ at x =x,).

5 A smaU increase in the flow on path k causes an equal decrease in the flow on the shortest
pal k’~. The flows on the common lhtks on these paths do not change. The increase in flow on
the other links on k causes positive second derivatives. The decrease in flow on the other links
on k,s also causes positive second derivatives, as it increases the negative fu’st derivatives.



Jayakfishnan et al. 8

Based on the above discussion, the gradient projection algorithm can be formalized as

follows:

Step 0: Initialization. Set t -t(0), Va and perform all-or-nothing assignments. This yields path

flows j~, V r,s and link flows x~, Va. Set iteration counter n=l. Initialize the path-set

K with the shortest path for each O-D pair rs.

Step 1: Update. Set t~=t(x~), ’Ca. Update the fhst derivative lengths dk" (i.e., path-costs 

current flow) of all the paths k in K, V r,s.

Step 2: Direction finding. Find the shortest paths k’~ from each origin r to each destination s,

based on {t,"}. If different from all the paths in the existing path-set K (no need for path

comparison here; just compare dk"), add it to K~s and record d~. If not, tag the shortest

among the paths in K as ,~.

Step 3: Move. Set the new path flows.

:;" = max { O, ::- V r,,,
Sk

where,

_ ~t~

a denotes links that are on either k or k,,, but not on both, and

o~" is a scalar step-size modifier (say, a" = I).

Also,

k

Assign the flows on the trees and find the link flows x~"÷~.
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Step 4: Convergence test. If the convergence criterion is met, stop.

Else, set n -" n+l and go to step 1.

9

It is better to keep ~z~ a constant (i.e., cx"--o~, Vn). It can be shown that given any

starting set of path flows, there exists an ~ such that if ore (0,~], the sequence generated by

this algorithm converges to the optimum (Bertsekas(1)), provided the link cost functions 

convex. Our experience shows that o~ = 1 achieves very good convergence rate, and all the

results shown in this paper use this value of or. The solutions reached are unique in terms of

the link flows, but the path-flow solution, while it is optimal is not necessarily unique (See

Sheffi(1) for a discussion on why the path-flow solutions need not be unique).

A qualitative graphical comparison of GP and F-W algorithms is shown in figure 1. In

this case, F-W moves in directions which are almost orthogonal to the descent direction, once

it is close to the optimum, because the moves are towards constraint comers to avoid

infeasibility. GP still moves in the descent direction when it is closer to the optimum. Note that

this is just an example, and is provided only to illustrate the qualitative reason behind the faster

convergence of GP. The actual nature of the objective functions and the constraints in the

network assignment context are quite different.

GP distributes flows from existing paths to the shortest path during every iteration,

different fractions of flow being taken out of the alternative paths between an O-D pair. A

careful look at the F-W algorithm will show that it also implicitly redistributes flows from

alternative paths. However, the fraction taken out from the paths are all same, and the path flow

solutions are never kept track of.

COMPUTATIONAL STORAGE CONSIDERATIONS

The GP algorithm is a path-enumeration algorithm and the paths need to be carefully stored to

prewmt memory problems. This is aa issue that has rarely been addressed in the computer

communication applications, but we address this here due to the larger size of the traffic networks

that we need to deal with. In GP, one shortest path tree is built during each iteration, from each



Frank-Wolfe
Successive moves to the minimum in the direction
of the constraint corners, based on the linearized
objective function at each solution point.

Gradient Projection
Successive moves to the minimum in the direction
of steepest descent (i.e., negative gradienO. If
infeasible, project to the violated constraint.

Figure 1. Illustrative Comparison of Gradient Projection and Frank-WoLfe Algorithms
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origin. The paths between an O-D pair are all generated during different iterations, and each path

is part of one of the shortest path trees built from the corresponding origin node. It is important

not to store the paths as node-lists, but rather as predecessor trees (note that each iteration

produces shortest paths, which are invariably trees). This avoids double storage of common

portions of different paths found from each origin in each iteration. As we store one predecessor

node number for each node, each tree in a network of N nodes requires N storage locations. This

results in No*N storage locations in each iteration, where No is the number of origins. Thus the

main memory requirement of the algorithm is of the order of No*N*Ni, where Ni is the number

of iterations. We do not see the kind of combinatorial explosion that is expected to occur with

path-enumeration algorithms. The fact that the paths in each iteration are part of trees is thus

a very handy feature of the GP algorithm.

However, for the F-W algorithm, the memory requirements are fixed by network size and

are not affected by the number of iterations till convergence. Typically, its requirements are of

the order of No*N, as it stores only one tree (the shortest paths for the all-or-nothing assignmen0

ever), iteration. Thus, GP does have a storage disadvantage compared to F-W, but it is able to

provide a ’richer’ solution for precisely the same reason, as its gives us path-flows as opposed

to link-flows in F-W.

The memory requirement is harcUy a significant concern, based on our experience. With

a simple predecessor array data structure the authors were able to run networks up to 1200 nodes

with 22,300 O-D pairs on a SUN work station. If only about 10 iterations of GP are attempted

(which itself generally finds better solutions than 100 iterations of F-W, as our results shown in

this paper indicate), we can run networks of more than 2000 nodes. We briefly describe a new

data structure that allows us to run networks of up to 5000 nodes and 560,000 O-D pairs till 32

iterations. The purpose for attempting to run such networks is to show that the storage problem

that kept researchers away from applying path enumeration algorithms to larger networks is really

not a problem anymore, at least in the case of GP.

An efficient data structure for larger network 1oroblems: The shortest path trees built in

successive iterations often have several identical branches. When these are stored as sepazato

trees, it results in a great amount of duplication of storage, as we fred several nodes to have the

same predecessor arcs in successive trees. Rather than storing the predecessor arcs for all the

nodes in every iteration, we store a shorter list of nodes for which the predecessor arcs change
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in an iteration (change being defined from the predecessor in the ’anchor’ iteration, say, the firsO.

The information regarding the iteration numbers where predecessor of each node changes, is

stored in terms of the bits of a number. A ’1’ in bit-location i of this number for a node means

that its predecessor changed in iteration i, and a ’0’ would indicate that no change occurred in

kerafion i. In a computer with 32 bit numbers, this lets us store the information with just N

numbers. To find the predecessor for this node during, say, iteration j, we need to find the bit-

location of the last’ 1’. This can be efficiently done at the hardware or software level, and yields

us the appropriate iteration number, i. We go to the short list of changed predecessors

corresponding to iteration i to find the predecessor for the node of concern. This approach will

not achieve good computation time results unless it is carefully implemented, and we leave out

the complicated implementation details in this paper. With this data structure we were able to

reduce the storage requirement for the trees from the No*N*Ni above, to about No*N’C, where

C is about 5-10 for up to even 100 iterations (i.e., Ni=100). This is because the predecessors 

each node changes only less than 10 times during 100 iterations of GP, based on our assignment

runs on realistic traffic networks.

COMPUTATION TIME CONSIDERATIONS

A careful implementation is absolutely essential for the GP algorithm to perform well. As

we found that the algorithm converges generally about 10 times faster than F-W in terms of the

number of iterations, our intention was to ensure that the GP algorithm achieves similar speed

in computation time also. While F-W requires no other operations of computational intensity

comparable to the shortest path determination during each iteration, GP has other procedures

during its iterations which can be more time intensive than the shortest paths determination for

larger networks. Our studies (as discussed in the next section) show that GP converges 10 times

faster than F-W for a 100 node network, but only 60 percent faster for a 900 node network,

though the number of iterations needed is still less than 1/10th. As we find that almost all of the

time in F-W is spent on the shortest path routine for larger networks, this means that there are

routines in GP whose computational intensity increases faster than that of the shortest path

routine as the network size increases. We identify three such key operations, and these have to

be carefully implemented: (1) assignment of the flow on each path to the links along its length

to find the total link flows, (2) finding the fast derivative lengths for all the paths between each

O-D pair, and (3) finding the second derivative lengths for each path. We have been successful

in developing efficient schemes for the first two, but have not been able to tackle the third
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probtem without modifying the algorithm itself. The results that we provide in this paper are

based on a program that includes only the techniques for the Fast derivative lengths. However,

we eUscuss all three aspects here to show the potential of the algorithm to show even better

results than we have provided, ff our suggestions are implemented. Our early results with all

tttree of the following procedures are indeed very encouraging.

Implementation of flow assi~menLprocedure: This refers to assigning the path flow to all the

links on each path, after the path flows are updated during each iteration. There are No*No O-D

pairs in a network (where No is typically 10 to 20 percent of N), and the expected number 

active paths between aa O-D pair, Np, is typicaUy about 5 to 10 at convergence. Each path in a
traffic network has roughly O(N~a) links on them. Thus, this operation could be of

O(N,,*N**N~r2*Np) effort in each iteration, if each path is considered independently (i.e., the link-

level operations are repeated for paths that share common portions). In contrast to this, an

efficient implementation (say, using a heap) of a routine to fred the shortest paths from all origins

to all nodes results in O(No*NlogN) or better computational intensity. Clearly the flow

assignment step becomes much more time consuming for larger networks. We have developed

an efficient tree-traversal procedure to assign the flows, instead of doing it path by path. The

procodure starts from a leaf-node of the tree and goes up assigning the flow on the links till a

node is reached where there is another branch with no flow assigned. Once the flows are added

on all the branches at a node, we fred the total flow to assign on the predecessor link of the

node, and move up. This procedure goes only once over each arc in the tree and hence it is an

O(N) operation for each tree (a maximum of 4 additions per arc in a typical traffic network). Tiffs

results in only Of N**N) operations for all origins, all destinations, and all paths in each iteration.

We leave out further details of this procedure for brevity. Suffices to say that this assigns flows

of multiple paths sharing common portions without repeated calculations at the links. This is a

significant improvement as the computations now do not depend on the number of paths or the

number of nodes on the paths. The computational intensity drops to below that of the shortest

path determination with this method.

Finding the first derivative path lengths: Here the link costs are added up on different paths.

Similar to above, we need to avoid path-based computations of O(No*N**NIa*Np) order in this

case also. Here, we again perform a tree-traversal procedure. We go up from any node in the

tree till the root (origin) node, and add the link costs on the links to find the first derivative

lengl~ till that node. Then we go up from that node once more (second pass), subtracting one
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link-cost at a time to find the costs till each node along the ways. Then we move to any node

not yet considered and repeat the procedure, this time starting the second pass after reaching the

origin node or a node with an already-computed path length. As each node is reached strictly

twice, this results in only O(No*N) operations in every iteration, which is much faster than the

shortest path determination in larger networks.

The second derivative length calcuIations: This requires the addition of second derivative lengths

of links not common between each path and the corresponding shortest path. If this is done path-

by-path, adding the second derivatives on each link with the shortest path, this also results in

0(No*No*Nm*N~) computations. We have so far not been able to find an O(No*N) technique 

this, without changing the GP algorithm itself to some extent. The difficulty arises because the

path under consideration is on another tree, different from the tree that the current shortest path

is part of. It is possible that we can improve the situation only by changing the algorithm

substantially. We suggest using a line-search rather than the second derivatives to fred the step

size in the negative gradient direction. An auxiliary path-flow solution can be easily found in

the negative gradient direction, and then an unconstrained line-search cart be used to determine

the step size to reach the minimum in this direction. This line search can be performed fast in

the Link-flow domain (using the link flows at the current and auxiliary path flow solutions), and

based on the optimal step size, a path-flow update is performed. The flow update would be

based on path flows. Our early experience with this technique has been encouraging.

ASSIGNMENT RESULTS

The assignment studies compare the performance of GP algorithm with the F-W

algorithm. In order to make conclusions on comparative performance of the algorithms, it is

necessary that they be tested under sufficiently diverse networks. We studied the algorithms on

grid networks of different sizes generated using a random network generator program that we

developed, as weU as on the network of major arteriais and freeways in Anaheim, California.

6 The two passes are needed only because we cannot move down the tree, when the tree is
stored with predecessor representation. A threaded-tree storage will let us do a one-pass traversal,
but there may be additional overheads involved. Another option is to keep the tree-traversal order
right after each tree is built, but this requires as many storage locations as the tree itself, and
doubles the storage requirements.
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The test networks are grids only in terms of the connectivity of the links, the link lengths

being determined randomly. There are two links each way between the nodes. The link lengths

are randomly picked from a uniform distribution between 500 and 5000 feet. The free flow

speed on the links are randomly picked from a uniform distribution between 22 mph and 40 mph.

The capacity of the links arc based on the number of lanes (1, 2 or 3), each lane having 

capacity of 1800 vehicles/hour. Certain nodes from the network are randomly picked as origin/

destination centraids. This is done based on a set of rules that attempts to create a network

representative of real-world traffic networks. First, approximately 12.5% (1/8th) of the total

nodes in the network are picked to be centroid nodes, which is about the fraction of zone-centroid

nodes in typical assignment applications. There are at least three links between any two centroid

nodes to ensure that they are not too close to each other. Once the centroids are set up, the

origin-destination flow matrix is generated. Each centroid generates demand at a pre-specified

rate (.9600 veh/hr was used in our studies) and the generated traffic is distributed to other nodes

basexi on the inverse squared distances to develop the O-D matrix.

The Anaheim network has 416 nodes (of which 38 are origin/destination centroids), 914

arcs, and 1406 O-D pairs. A static O-D demand matrix was estimated using the COMEST

progxarn, based on some link counts in the network. The demand data refers to the evening peak

period in the network, which moderately high level levels of congestion. No microcoding of the

intersections was attempted for this network.

The assignments were carried out using a BPR link cost function, t = to(l + 0.15 (x/c)4),

whets: t is the link travel time cost, to is the free-flow cost, x is the flow and c is the link

capacity. Both GP and F-W programs included identical shortest path routines, which is based

on a binary heap data structure. The line-search routine for the F-W algorithm uses aa efficient

Bolzamo search (see Sheffi(1)). The programs were implemented in FORTRAN-77 on a 

SPARC-II work station with 64M storage. The flows and costs were floating point variables.

Table 1 shows the results from assignments on networks of varying sizes. For all the

network sizes. This table shows the number of iterations required by F-W to find the

objective function value that GP f’mds in 2, 4, 6, 8 and 10 iterations, as well as the corresponding

computation time. We gee that F-W requires 30 to 160 iterations to reach the solutions found by



Jayakrishnan et al.

Square Grid Gradient Projection FraY-Wolfe

Networks Iteratiom Obj. function Time (see) Iterations Obj. function Time (see)

36 nodes 2 5385.2 0.08 4 5376.7 0.08

120 arcs 4 4890.2 0.14 27 4889.2 0.51

12 OD pairs 6 4794.5 0.17 54 4793.9 1.02

8 4747.9 0.22 123 4747.8 2.32

I0 4728.8 0.28 390 4728.8 7.35

100 nodes 2 13076.9 0.38 5 13035.8 0.44

360 arcs 4 12562.6 0.76 30 12561.9 2.64

132 OD pairs 6 12526.0 1.14 168 12526.0 14.81

8 12522.1 1.52 618 12522.1 68.58

10 12521.4 1.90 1282 12521.4 198.32

225 nodes 33872.1 1.87 7 33757.4 2.73

840 arcs 4 32979.2 4.13 36 32977.7 14.03

756 ODs 6 32912A 6.26 176 32912.4 68.58

8 32904.8 8.44 509 32904.8 198.32

10 32902.3 10.52 1611 32902.3 627.20

400 nodes 2 70849.9 5.78 6 70835.1 6.90

1520 arcs 4 68797.2 13.86 21 68774.8 24.14

2450 ODs 6 68408.2 22.67 65 68407.5 74.71

8 68343°9 31.33 185 68343.9 212.63

10 68326.8 38.97 537 68326.8 617.19

625 nodes 2 124874 14.51 7 124225 19.03

2400 arcs 4 120151 38.56 23 120144 62.52

6006 ODs 6 119322 64.04 48 119315 130A9

8 119100 88.77 88 119100 239.22

I0 119028 112.39 156 119028 424.08

900 nodes 2 206379 30.90 7 206097 39.56

3480 arcs 4 198483 86.53 26 198436 146.93

12432 ODs 6 197974 148.76 31 197929 175.19

8 196668 207.98 80 196665 452.10

10 196508 271.74 123 196508 695.10

Table 1. Comparative performance of the Gradient Projection and Prank-Wolfe algorithms
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GP in just 6 iterations. For all the networks, we found that GP converges between 10 and 15

iterations to solutions that F-W takes between 300 and 2000 iterations to reach. Clearly, there

is at least an order of magnitude improvement in terms of the number of iterations.

We see that the computation times arc also improved similar to the reduction in iterations,

for smaller networks. This is cxpcctcd, as the main computational step is the shortest path

dcte~nation for both GP and F-W in small networks. However, the computation times with

GP is about 40 percent of that with F-W for 10 iterations of GP in a 1000 node network. This

shows’, that procedures other than the shortest path determination use up significant time in GP

for larger networks, as explained in the previous section. It should be stressed that these

assignrncnts were carried out with an implementation of GP that has not yet include most of the

proccdurcs that we explained before. Thus, cvcn though a 60 percent improvement is significant,

the computation times for GP can be reduced even further than those shown in table I, especially

for larger networks.

Figures 2 to 5 show the results of the assignments on the network of Anaheim, for various

dcrnand levels. The demands generated by the O-D matrix estimated from actual link counts is

denoted as demand level = 1.0. For other demand levels, the cells in the trip table were all

mulfplied by appropriate fractions. These assignments were carried out to examine the effect

of the demand level on the relative performance of GP and F-W. Again we see that for all the

cases, F-W takes more than 10 to 15 iterations to reach the solutions found by GP in I to 3

iterations. There does not appear to be a sign/f/cant change in the performance of GP in

comparison with F-W, as the demand level increases. Both algorithms require more iterations

to converge for higher demand levels, but GP still shows 5 to 10 times faster convergence.

We have not compared the PARTAN version of F-W algorithm to GP. However,

published results on PARTAN (10, 11) indicate that this typically finds solutions about twice 

fast as ordinary F-W, in number of iterations. Based on the improvements that we find with GP,

we decided that the effort was not warranted at this time. Moreover, PARTAN is still not
commonly used for assignments by practitioners. We do intend, however, to carry out these

comparisons in the future.
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CONCLUSIONS

In this paper, we have provided a detailed discussion, and supportive results to show that

pat,h-enumeration algorithms such as gradient projection deserve a fresh look for applications in

traffic assignment. There were two main motivations behind the research: (1) the tremendous

improvement in recent years of the availability of computer memory, and (2) the need for fast

assignment algorithms for certain possible IVHS strategies for optimal routing and guidance

based on dynamic assignment frameworks, real-time trip table estimation, etc. We show that

path-based algorithms can be applied to networks of thousands of nodes. We provide data

structures to handle path-based storage problems, and we suggest techniques to achieve fast

completion ¢~f path-based procedures in the algorithm. These techniques are applicable to other

path-based algorithms alsoo Our implementation of gradient projection converges in an order of

magnitude fewer iterations than the conventional Frank-Wolfe algorithm, and can be made to

show similar computation time speed-up, if implemented carefully.

There are advantages with the path-based solutions generated by the GP algorithm. Such

solutions can be directly used in path-based routing frameworks. Another advantage is the direct

determination of node turning counts without microcoding the intersections and increasing the

network size. In addition, we can find the link-to-link flow variation on each path. This may

provide some opportunities to fred approximate estimates of fuel consumption, environmental

impacts etc., for selected paths or O-D pairs.

Several aspects of the algorithm require further study. One important aspect is the

convergence rates under different link cost functions. Though we have carried out some research

in this area and have found the results to be reasonably robust, our research has by no means

been exhaustive. Application to other related problems such as dynamic assignment and variable

demand assignment would provide more insights on the algorhhm’s performance. Research is

also underway at the University of California, Irvine, on developing gradient projection with

hierarchical decomposition schemes, for traffic network assignment.
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