
UC Berkeley
UC Berkeley Previously Published Works

Title
Learning Heuristics for Quantified Boolean Formulas through Deep Reinforcement Learning

Permalink
https://escholarship.org/uc/item/2hf532wf

Authors
Lederman, Gil
Rabe, Markus N
Lee, Edward A
et al.

Publication Date
2018-07-20
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hf532wf
https://escholarship.org/uc/item/2hf532wf#author
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

80
7.

08
05

8v
3 

 [
cs

.L
O

] 
 3

0 
O

ct
 2

01
9

LEARNING HEURISTICS FOR QUANTIFIED BOOLEAN

FORMULAS THROUGH REINFORCEMENT LEARNING

Gil Lederman
Electrical Engineering and Computer Sciences
University of California at Berkeley
gilled@eecs.berkeley.edu

Markus N. Rabe
Google Research
mrabe@google.com

Edward A. Lee
Electrical Engineering and Computer Sciences
University of California at Berkeley
eal@eecs.berkeley.edu

Sanjit A. Seshia
Electrical Engineering and Computer Sciences
University of California at Berkeley
sshesia@eecs.berkeley.edu

ABSTRACT

We demonstrate how to learn efficient heuristics for automated reasoning algo-
rithms for quantified Boolean formulas through deep reinforcement learning. We
focus on a backtracking search algorithm, which can already solve formulas of
impressive size - up to hundreds of thousands of variables. The main challenge is
to find a representation of these formulas that lends itself to making predictions
in a scalable way. For a family of challenging problems, we learned a heuris-
tic that solves significantly more formulas compared to the existing handwritten
heuristics.

1 INTRODUCTION

An intriguing question for artificial intelligence is: can (deep) learning be effectively used for sym-
bolic reasoning? There is a whole spectrum of approaches to combine them: One extreme is to
use learning for predicting which of a small pool of algorithms (or heuristics) performs best, and
run only that one to solve the given problem (e.g. SATzilla (Xu et al., 2008)). This approach is
clearly limited by the availability of handwritten algorithms and heuristics (i.e. it can only solve
problems for which we have written at least one algorithm that can solve it). The other extreme
is to analyze formulas solely with deep learning approaches (Allamanis et al., 2016; Evans et al.,
2018; Selsam et al., 2018; Amizadeh et al., 2019). However, this approach shows poor scalability
compared to the state-of-the-art in the respective domains depsite the recent breakthroughs in deep
learning. Instead of relying entirely on deep learning or on the availability of good handwritten al-
gorithms, we explore the middle ground. We ask the question how to tightly combine deep learning
with formal reasoning algorithms with the goal to improve the state-of-the-art, i.e. to solve formulas
that could not be solved previously.

Existing formal reasoning tools work in a mechanical way: they only apply a small number of care-
fully crafted operations and use heuristics to resolve the degrees of freedom in how to apply them.
We address the problem of automatically learning better heuristics for a given set of formulas. We
focus on the branching heuristic in modern backtracking search algorithms, as they are known to
have a high impact on the performance of the algorithm. We cast the problem to learn better branch-
ing heuristics for backtracking search algorithms as a reinforcement learning problem: Initially, the
reinforcement learning environment randomly picks a formula from a given set of formulas, and
then runs the backtracking search algorithm on that formula. The actions that are controlled by the
learning agent are the branching decisions, i.e. pick a variable and assign it a value - everything else
is handled by the solver.

Challenges This reinforcement learning problem comes with several unique challenges:

1

http://arxiv.org/abs/1807.08058v3


Representation: While learning algorithms for images and board-games usually rely on the grid-
like structure of the input and employ neural networks that match that structure (e.g. convolutional
neural networks). For formulas, however, there is no standard representation for learning algorithms.

It may seem reasonable to treat Boolean formulas as text and learn embeddings for formulas through
techniques such as word2vec (Mikolov et al., 2013), LSTMs, or tree RNNs. However, formulas in
formal reasoning tools typically consist of thousands of variables, which is much larger than the
text-fragments typically analyzed with neural networks. Further, unlike words in natural language,
individual variables in Boolean formulas are completely devoid of meaning. The meaning of vari-
able x in one formula is basically independent from variable x in a second formula. Hence, learning
embeddings for variables and sharing them between formulas would be futile.

Unbounded action space: An action consists of a choice of variable and value. While values will
be Boolean, the number of variables depends on the size of the input formula. Therefore, we have
an unbounded number of actions, which are further different for every formula.

Length of episodes: As we are dealing with a highly complex search problem, solver runs (=
learning episodes) can be very long—in fact, for many of the formulas we have never observed a
terminating run—and we observed a huge variance in the length of runs.

Performance: Our aim is to solve more formulas in less time. The use of neural networks incurs a
huge runtime overhead for each decision (the solver takes ≥10x fewer decisions per second). So the
decisions taken by the neural networks need to be dramatically better than the handcoded heuristic
decisions to outweigh their runtime cost.

Correctness: Reinforcement learning algorithms have shown to often find and exploit subtle im-
plementation errors in the environment, instead of solving the intended problem. While testing and
manual inspection of the results is a feasible approach for board games and Atari games, it is neither
possible nor sufficient in large-scale formal reasoning - a solver run is simply too large to inspect
manually and even tiny mistake can invalidate the result. In order to ensure correctness, we need an
environment with the ability to produce formal proofs, and check the proofs by an independent tool.

Quantified Boolean Formulas In this paper, we focus on quantified Boolean formulas (QBFs) of
the form ∀X.∃Y.ϕ, where X and Y are sets of Boolean variables and ϕ is in conjunctive normal
form. QBFs are complex enough to serve as an interesting proxy for complex mathematical rea-
soning tasks. Challenging applications such as program synthesis and the synthesis of controllers
and ranking functions have been encoded into QBFs like the one above Solar-Lezama et al. (2006);
Faymonville et al. (2017); Cook et al. (2013). However, the problem definition and also the syn-
tactical structure of QBFs is simple compared to more general settings, such as first-order or even
higher-order logics. This makes algorithms for QBF a good target for the study of neural architec-
tures.

While our approach in principle works with any backtracking search algorithm for QBF, we decided
to demonstrate its use in Incremental Determinization (Rabe & Seshia, 2016). We modified CADET,
an open-source implementation of Incremental Determinization that performed competitively in re-
cent QBF competitions (Pulina, 2016) and turned it into a reinforcement learning environment. The
advantage of CADET in the context of reinforcement learning is its ability to produce proofs (which
most other solvers do not), which ensures that the reinforcement learning cannot simply learn to
exploit bugs in the environment.

Graph Neural Networks We consider each constraint and each variable of a given formula as a
node in a graph. Whenever a variable occurs in a constraint, we draw and edge between their nodes.
We then use a Graph Neural Network (GNN) (Scarselli et al., 2009) to predict the quality of each
variable as a decision variable, and pick our next action accordingly. GNNs allow us to compute
an embedding for every variable, based on the occurrences of that variable in the given formula,
instead of learning an embedding that is shared across all formulas. Based on this embedding, we
then use a policy network to predict the quality of each variable (or literal), and choose the next
action accordingly. GNNs also allow us to scale to arbitrarily large formulas with a small and
constant number of parameters.

2



Contributions This paper presents the successful integration of GNNs in a modern automated
reasoning algorithm in a reinforcement learning setup. Our approach balances the performance
penalty incured by the use of neural networks with the impact that improved heuristic decisions have
on the overall reasoning capabilities. The branching heuristic that we learn significantly improves
CADET’s reasoning capabilities on the test set of the benchmark, i.e. it solves more formulas within
the same resource constraints. This is a huge step towards replacing VSIDS, the dominant branching
heuristic in CDCL-based solvers for the last 20 years Moskewicz et al. (2001b); Eén & Sörensson
(2003); Biere et al. (2009); Lonsing & Biere (2010); Rabe & Seshia (2016).

We also study the generalization properties of our approach: We show that training a heuristic on
small and easy formulas helps us to solve much larger and harder formulas; generalization to formu-
las from different benchmarks is still limited though. Further, we provide an open-source learning
environment for reasoning in quantified Boolean formulas. The environment includes the ability to
verify its own runs, and thereby ensures that the reinforcement learning agent does not only learn to
exploit implementation errors of the environment.

Structure: After a primer on Boolean logics in Section 2 we define the problem in Section 3, and
describe the network architecture in Section 4. We describe our experiments in Section 5, discuss
related work in Section 6 and present our conclusions in Section 7.

2 BOOLEAN LOGICS AND SEARCH ALGORITHMS

We start with describing propositional (i.e. quantifier-free) Boolean logic. Propositional Boolean
logic allows us to use the constants 0 (false) and 1 (true), variables, and the standard Boolean opera-
tors like ∧ (“and”), ∨ (“or”), and ¬ (“not”).

A literal of variable v is either the variable itself or its negation ¬v. By l̄ we denote the logical
negation of literal l. We call a disjunction of literals a clause and say that a formula is in conjunc-
tive normal form (CNF), if it is a conjunction of clauses. For example, (x ∨ y) ∧ (¬x ∨ y) is in
CNF. It is well known that any Boolean formula can be transformed into CNF. It is less well known
that this increases the size only linearly, if we allow the transformation to introduce additional vari-
ables (Tseitin, 1968). We thus assume that all formulas in this work are given in CNF.

DPLL and CDCL. The satisfiability problem of propositional Boolean logics (SAT) is to find a
satisfying assignment for a given Boolean formula or to determine that there is no such assignment.
SAT is the prototypical NP-complete problem and many other problems in NP can be easily reduced
to it. The first backtracking search algorithms for SAT are attributed to Davis, Putnam, Logemann,
and Loveland (DPLL) (Davis & Putnam, 1960; Davis et al., 1962). Backtracking search algorithms
gradually extend a partial assignment until it becomes a satisfying assignment, or until a conflict
is reached. A conflict is reached when the current partial assignment violates one of the clauses
and hence cannot be completed to a satisfying assignment. In case of a conflict, the search has to
backtrack and continue in a different part of the search tree.

Conflict-driven clause learning (CDCL) is a significant improvement over DPLL due to Marques-
Silva and Sakallah (Marques-Silva & Sakallah, 1997). CDCL combines backtracking search with
clause learning. While DPLL simply backtracks out of conflicts, CDCL “analyzes” the conflict by
performing a couple of resolution steps. Resolution is an operation that takes two existing clauses
(l1 ∨ · · · ∨ ln) and (l′1 ∨ · · · ∨ l′n) that contain a pair of complementary literals l1 = ¬l′1, and derives
the clause (l2 ∨ · · · ∨ ln ∨ l′2 ∨ · · · ∨ l′n). Conflict analysis adds new clauses over time, which cuts
off large parts of the search space and thereby speeds up the search process.

Since the introduction of CDCL in 1997, countless refinements of CDCL have been ex-
plored and clever data structures improved its efficiency significantly (Moskewicz et al., 2001a;
Eén & Sörensson, 2003; Goldberg & Novikov, 2007). Today, the top-performing SAT solvers, such
as Lingeling (Biere, 2010), Crypominisat (Soos, 2014), Glucose (Audemard & Simon, 2014), and
MapleSAT (Liang et al., 2016), all rely on CDCL and they solve formulas with millions of variables
for industrial applications such as bounded model checking (Biere et al., 2003).

Quantified Boolean Formulas. QBF extends propositional Boolean logic by quantifiers, which
are statements of the form “for all x” (∀x) and “there is an x” (∃x). The formula ∀x. ϕ is true if, and

3



only if, ϕ is true if x is replaced by 0 (false) and also if x is replaced by 1 (true). The semantics of ∃
arises from ∃x. ϕ = ¬∀x. ¬ϕ. We say that a QBF is in prenex normal form if all quantifiers are in
the beginning of the formula. W.l.o.g., we will only consider QBF that are in prenex normal form and
whose propositional part is in CNF. Further, we assume that for every variable in the formula there
is exactly one quantifier in the prefix. An example QBF in prenex CNF is ∀x. ∃y. (x∨y)∧ (¬x∨y).

We focus on 2QBF, a subset of QBF that admits only one quantifier alternation. W.l.o.g. we can
assume that the quantifier prefix of formulas in 2QBF consists of a sequence of universal quanti-
fiers ∀x1 . . .∀xn, followed by a sequence of existential quantifiers ∃y1 . . . ∃ym. While 2QBF is
less powerful than QBF, we can encode many interesting applications from verification and synthe-
sis, e.g. program synthesis (Solar-Lezama et al., 2006; Alur et al., 2013). The algorithmic problem
considered for QBF is to determine the truth of a quantified formula (TQBF). After the success
of CDCL for SAT, CDCL-like algorithms have been explored for QBF as well (Giunchiglia et al.,
2001; Lonsing & Biere, 2010; Rabe & Seshia, 2016; Rabe et al., 2018). We focus on CADET, a
solver that implements Incremental Determinization a generalized CDCL backtracking search al-
gorithm (Rabe & Seshia, 2016; Rabe et al., 2018). Instead of considering only Booleans as values,
the Incremental Determinization algorithm assigns and propagates on the level of Skolem functions.
For the purpose of this work, however, we do not have to dive into the details of Incremental Deter-
minization and can consider it simply as some backtracking algorithm.

Correctness. Writing performant code is an error-prone task, and correctness is critical for many
applications of formal reasoning. Some automated reasoning tools hence have the ability to produce
proofs, which can be checked independently. CADET is one of the few QBF solvers that can produce
proofs without runtime overhead. We believe that the ability to verify results of solvers is particularly
crucial for learning applications, as it allows us to ensure that the reinforcement learning algorithm
does not simply exploit implementation error (bugs) in the environment.

3 PROBLEM DEFINITION

In this section, we first revisit reinforcement learning and explain how it maps to the setting of logic
solvers. In reinforcement learning, we consider an agent that interacts with an environment E over
discrete time steps. The environment is a Markov decision process (MDP) with states S, action
space A, and rewards per time step denoted rt ∈ R. A policy is a mapping π : S × A, such that
∑

a∈A
π(s, a) = 1 ∀s, defining the probability to take action a in state s. The goal of the agent

is to maximize the expected (possibly discounted) reward accumulated over the episode; formally
J(π) = E [

∑∞

t=0
γtrt|π].

In our setting, the environment E is the solver CADET (Rabe & Seshia, 2016). The environment
is deterministic except for the initial state, where a formula is chosen randomly from a distribution.
At each time step, the agent gets an observation, which consists of the formula and the solver state.
Only those variables that do not have a value yet are valid actions, and we assume that the observa-
tion includes the set of available actions. The agent then selects one action from the subset of the
available variables. Formally, the space of actions is the set of all variables in all possible formulas
in all solver states, where at every state only a small finite number of them is available. Practically,
the agent will never see the effect of even a small part of these actions, and so it must generalize to
unseen actions. An episode is the result of the interaction of the agent with the environment. We
consider an episode to be complete, if the solver reaches a terminating state in the last step. As
there are arbitrarily long episodes, we want to abort them after some step limit and consider these
episodes as incomplete.

3.1 BASELINES

While there are no competing learning approaches yet, human researchers and engineers have
tried many heuristics for selecting the next variable. VSIDS is the best known heuristic for the
solver we consider. It has been a dominant heuristic for SAT and several CDCL-based QBF al-
gorithms for over 20 years now Moskewicz et al. (2001b); Eén & Sörensson (2003); Biere et al.
(2009); Lonsing & Biere (2010); Rabe & Seshia (2016). We therefore consider VSIDS as the main
baseline. VSIDS maintains an activity score per variable and always chooses the variable with
the highest activity that is still available. The activity reflects how often a variable recently oc-

4



curred in conflict analysis. To select a literal of the chosen variable, VSIDS uses the Jeroslow-Wang
heuristic (Jeroslow & Wang, 1990), which selects the polarity of the variable that occurs more often,
weighted by the size of clauses they occur in. For reference, we also consider the Random heuristic,
which chooses one of the available actions uniformly at random.

4 THE NEURAL NETWORK ARCHITECTURE

Our model gets an observation, consisting of a formula and the state of the solver, and selects one of
the formula’s literals (= a variable and a Boolean value) as its action. The model has two components:
An encoder that produces an embedding for every literal, and a policy network that that rates the
quality of each literal based on its embedding. We give an overview of the architecture in Fig. 1,
describe the GNN in Subsection 4.1 and the policy network in Subsection 4.2.

4.1 A GNN ENCODER FOR BOOLEAN FORMULAS

A, v1, . . . ,vn, c1, . . . , cm

Encoder GNN

. . .emb. of v1 emb. of ¬vn

. . .Policy NN

sg

Policy NN

sg

qual. of v1 qual. of ¬vn

Softmax

probabilities ∈ R
2n

Figure 1: Sketch of the architecture for a formula
ϕ with n variables vi and m clauses. sg is the
global state of the solver, A is the adjacency ma-
trix, and vi and ci are the variable and clause la-
bels.

In order to employ GNNs, we view the formula
as a graph, where each clause and each literal
is a node (see Fig. 2. For each literal in each
clause, we draw an edge between their nodes.
The resulting graph is bipartite and hence, we
represent its edges as an 2n × m adjacency
matrix A with values in {0, 1}, where 2n is
the number of literals and m is the number of
clauses. This graph structure determines the se-
mantics of the formula except for the quantifica-
tion of variables (i.e. whether a variable is uni-
versally or existentially quantified), which are
provided as labels to the variables. For each
variable v, the variable label v ∈ R

λV , with
λV = 7, indicates whether the variable is uni-
versally or existentially quantified, whether it
currently has a value assigned, and whether it
was selected as a decision variable already on
the current search branch. We use the variable
label for both of its literals and by vl we denote
the label of the variable of l. For each clause
c, the clause label c ∈ R is a single scalar (in
{0, 1}), indicating whether the clause was orig-
inal or derived during conflict analysis.

While we are ultimately only interested in em-
beddings for literals, our GNN also computes
embeddings for clauses as intermediate values. Literal embeddings have dimension δL = 16 and
clause embeddings have dimension δC = 64. The GNN computes the embeddings over τ rounds.
We define the initial literal embedding as l0 = 0, and for each round 1 ≤ t ≤ τ , we define the literal
embedding lt ∈ R

δL for every literal l and the clause embedding ct ∈ R
δC for every clause c ∈ C

as follows:

ct = ReLU
(
∑

l∈c WL[v
⊤
l , l

⊤
t−1, l̄

⊤
t−1] +BL

)

, and lt = ReLU
(

∑

c,l∈cWC [c
⊤, c⊤t ] +BC

)

.

The trainable parameters of our model are indicated as bold capital letters. They consist of the
matrix WL of shape (2δL + λV , δC), the vector BL of dimension δC , the matrix WC of shape
(δC + λC , δL), and the vector BC of dimension δL.

x

y (x ∨ y)

¬x (¬x ∨ y)

¬y

Figure 2: The bipartite graph
for (x ∨ y) ∧ (¬x ∨ y).

Invariance properties. The meaning of a formula in CNF is invari-
ant under permutations of its clauses and of literals within each
clause due to the commutativity of conjunction and disjunction. Our
GNN architecture is invariant under these reorderings, as both con-
junctions and disjunctions are computed through commutative oper-

5



ations (a sum), and, therefore, it cannot accidentally overspecialize
to the ordering of clauses or literals. Swapping the literals of a vari-
able does not change the truth of the formula either, and our GNN
architecture respects that as well. The only place in our architecture
where we use the information of which literals belong to the same
variable is in the input to ct. Depending on which literal of a vari-
able occurs in the clause we order its literal embeddings differently. Lastly, note that variables are
completely nameless in our representation.

4.2 POLICY NETWORK

The policy network predicts the quality of each literal based on the literal embedding and the global
solver state. The global solver state is a collection of λG = 5 values that include only the essential
parts of solver state that are not associated with any particular variale or clause. We provide addi-
tional details in Appendix A. The policy network thus maps the final literal embedding [v⊤

l , l
⊤
τ , l̄

⊤
τ ]

concatenated with the global solver state to a single numerical value indicating the quality of the lit-
eral. The policy network thus has λV +2δL+λG inputs, which are followed by two fully-connected
layers. The two hidden layers use the ReLU nonlinearity. We turn the predictions of the policy
network into action probabilities by a softmax (after masking the illegal actions).

Note that the policy network predicts a score for each literal independently. All information about
the graph that is relevant to the policy network must hence flow through the literal embedding. Since
we experimented with graph neural networks with few iterations this means that the quality of each
literal is decided locally. The rationale behind this design is that it is simple and efficient.

5 EXPERIMENTS

We conducted several experiments to examine whether we can improve the heuristics of the logic
solver CADET through our deep reinforcement learning approach. 1

Q1 Can we learn to predict good actions for a family of formulas?

Q2 How does the policy trained on short episodes generalize to long episodes?

Q3 How well does the learned policy generalize to formulas from a different family of formu-
las?

Q4 Does the improvement in the policy outweigh the additional computational effort? That is,
can we solve more formulas in less time with the learned policy?

5.1 DATA

In contrast to most other works in the area, we evaluate our approach over a benchmark that (1) has
been generated by a third party before the conception of this paper, and (2) is challenging to state-
of-the-art solvers in the area. We consider a set of formulas representing the search for reductions
between collections of first-order formulas generated by Jordan & Kaiser (2013), which we call
Reductions in the following. Reductions is interesting from the perspective of QBF solvers, as its
formulas are often part of the QBF competition. It consists of 4500 formulas of varying sizes and
with varying degrees of hardness. On average the formulas have 316 variables; the largest formulas
in the set have over 1600 variables and 12000 clauses. We filtered out 2500 formulas that are solved
without any heuristic decisions. In order to enable us to answer question 2 (see above), we further
set aside a test set of 200 formulas, leaving us with a training set of 1835 formulas.

We additionally consider the 2QBF evaluation set of the annual competition of QBF solvers, QBFE-
VAL (Pulina, 2016). This will help us to study cross-benchmark generalization.

5.2 REWARDS AND TRAINING

We jointly train the encoder network and the policy network using REINFORCE (Williams, 1992).
For each batch we sample a formula from the training set, and generate b episodes by solving it

1We provide the code and data of our experiments at https://github.com/<anonymized>.

6

https://github.com/


0 20 40 60 80
100

101

102

103

solved formulas

d
ec

is
io

n
li

m
it

Random

VSIDS

Learned

0 20 40 60 80 100 120
10−2

10−1

100

101

102

103

solved formulas

ti
m

e
li

m
it

in
se

co
n

d
s

VSIDS

Learned

Figure 3: Two cactus plots showing how the number of solved formulas grows with increasing
resource bounds. Left: Comparing the number of formulas solved with growing decision limit for
Random, VSIDS, and our learned heuristic. Right: Comparing the number of formulas solved with
growing wall clock time. Lower and further to the right is better.

multiple times. In each episode we run CADET for up to 400 steps using the latest policy. Then we
assign rewards to the episodes and estimate the gradient. We apply standard techniques to improve
the training, including gradient clipping, normalization of rewards, and whitening of input data.

We assign a small negative reward of −10−4 for each decision to encourage the heuristic to solve
each formula in fewer steps. When a formula is solved successfully, we assign reward 1 to the last
decision. In this way, we effectively treat unfinished episodes (> 400 steps) as if they take 10000
steps, punishing them strongly.

5.3 RESULTS

We trained the model described in Section 4 on the Reductions training set. We denote the result-
ing policy Learned and present the aggregate results in Figure 3 as a cactus plot, as usual for logic
solvers. The cactus plot in Figure 3 indicates how the number of solved formulas grows for in-
creasing decision limits on the test set of the Reductions formulas. In a cactus plot, we record one
episode for each formula and each heuristic. We then sort the runs of each heuristic by the number
of decisions taken in the episode and plot the series. When comparing heuristics, lower lines (or
lines reaching further to the right) are thus better, as they indicate that more formulas were solved in
less time.

We see that for a decision limit of 400 (dashed line in Fig. 3, left), i.e. the decision limit during
training, Learned solved significantly more formulas than either of the baselines. The advantage of
Learned over VSIDS is about as large as VSIDS over purely random choices. This is remarkable for
the field and we can answer Q1 positively.

Figure 3 (left) also shows us that Learned performs well far beyond the decision limit of 400 steps
that was used during its training. Observing the vertical distance between the lines of Learned and
VSIDS, we can see that the advantage of Learned over VSIDS even grows exponentially with an
increasing decision limit. (Note that the axis indicating the number of decisions is log-scaled.) We
can thus answer Q2 positively.

A surprising fact is that small and shallow neural networks already achieved the best results. Our
best model uses τ = 1, which means that for judging the quality of each variable, it only looks
at the variable itself and the immediate neighbors (i.e. those variables it occurs together with in a
constraint). The hyperparameters that resulted in the best model are δL = 16, δC = 64, and τ = 1,
leading to a model with merely 8353 parameters. The small size of our model was also helpful to
achieve quick inference times.

To answer Q3, we evaluated the learned heuristic also on our second data set of formulas from the
QBF solver competition QBFEVAL. Random solved 67 formulas, VSIDS solved 125 formulas, and
Learned solved 111 formulas. The policy trained on Reductions significantly improved over random
choices, but does not beat VSIDS. This is hardly surprising, as our learning approach specialized the
solver to a specific—different—distribution of formulas. Also it must be taken into account that the

7



solver CADET has been tuned to QBFEVAL over year, and hence may perform much stronger on
QBFEVAL than on the Reductions benchmark. We include further cross-benchmark generalization
studies in the Appendix.

To answer our last question, Q4, we compare the runtime of CADET in with our learned heuristic to
CADET with the standard VSIDS heuristic. In Fig. 3 (right) we see that for small time limits (up to
10 seconds), VSIDS still solves more formulas than the learned heuristic. But, for higher time limits,
the learned heuristic starts to outperform VSIDS. For a time limit of 1 hour, we solved 120 formulas
with the learned heuristic while only 110 formulas were solved with VSIDS (see right top corner).
Conversely, for solving 110 formulas the learned heuristic required a timeout of less than 12 minutes,
while VSIDS took an hour. Furthermore, our learning and inference implementation is written in
Python and not particularly optimized. The NN agent is running in a different process from CADET,
and incurs an overhead per step for inter-process communication and context switches, which is
enormous compared to the pure C implementation of CADET using VSIDS. This overhead could
be easily reduced, and so we expect the advantage of our approach to grow.

6 RELATED WORK

Independent from our work, GNNs for Boolean logic have been explored in Neu-
roSAT (Selsam et al., 2018), where the authors use it to solve the SAT problem directly. While
using a similar neural architecture, the network is not integrated in a state-of-the-art logic solver,
and does not improve the state of the art in performance. Selsam & Bjørner (2019) recently ex-
tended NeuroSAT to use its predictions in a state-of-the-art SAT solver. In contrast to their work,
we integrate GNNs much tigher into the solver and train the heuristics directly through reinforce-
ment learning. Thus allow deep learning to take direct control of the solving process. Also, we
focus on QBF instead of SAT, which strongly affects the runtime tradeoffs between spending time
on “thinking” about a better decision versus executing many “stupid” decisions.

Amizadeh et al. (2019) suggest an architecture that solves circuit-SAT problems. Unlike NeuroSAT,
and similar to our approach, they train their model directly to find a satisfying assignment by using
a differentiable “soft” satisfiability score as their loss. However, like NeuroSAT, their approach
aims to solve the problem from scratch, without leveraging an existing solver, and so is difficult
to scale to state-of-the-art performance. They hence focus on small random problems. In contrast,
our approach improves the performance of a state-of-the-art algorithm. Furthermore, our learned
heuristic applies to SAT and UNSAT problems alike.

Yang et al. (2019) extended the NeuroSAT architecture to 2QBF problems. In contrast to our work,
they do not embed their GNN model in a modern DPLL solver, and instead try to predict good
counter-examples for a CEGAR solving approach. For that reason, they focus on formulas that are
trivial for state-of-the-art solvers (with 18 variables)

Reinforcement learning has been applied to other logic reasoning tasks. Kaliszyk et al. (2018) re-
cently explored learning linear policies for tableaux-style theorem proving. Kusumoto et al. (2018)
applied reinforcement learning to propositional logic in a setting similar to ours; just that we employ
the learning in existing strong solving algorithms, leading to much better scalability. Balunovic et al.
(2018) use deep reinforcement learning to improve the application of high-level strategies in SMT
solvers, but do not investigate a tighter integration of deep learning with logic solvers. Bansal et al.
(2019) provide a learning environment for higher-order logics. Most previous approaches that
applied neural networks to logical formulas used LSTMs or followed the syntax-tree of formu-
las (Bowman et al., 2014; Irving et al., 2016; Allamanis et al., 2016; Loos et al., 2017; Evans et al.,
2018). Instead, we suggest a GNN approach, based on a graph-view on formulas in CNF. Very
recent work suggests that GNNs appear to be a good architecture for logics that are much more
powerful than the (quantified) Boolean logics considered in this work (Paliwal et al., 2019).

Other competitive QBF algorithms include expansion-based algorithms (Biere, 2004;
Pigorsch & Scholl, 2010), CEGAR-based algorithms (Janota & Marques-Silva, 2011; 2015;
Rabe & Tentrup, 2015), circuit-based algorithms (Klieber, 2012; Tentrup, 2016; Janota, 2018a;b),
and hybrids (Janota et al., 2012; Tentrup, 2017). Recently, Janota (2018a) successfully explored
the use of (classical) machine learning techniques to address the generalization problem in QBF
solvers.

8



7 CONCLUSIONS

We presented an approach to improve the heuristics of a backtracking search algorithm for Boolean
logic through deep reinforcement learning. Our approach brings together the best of two worlds:
The superior flexibility and performance of intuitive reasoning of neural networks, and the ability
to explain (prove) results in formal reasoning. The setting is new and challenging to reinforcement
learning; QBF is a very general, combinatorial problem class, featuring an unbounded input-size
and action space. We demonstrate that these problems can be overcome, and reduce the overall
execution time of a competitive QBF solver by a factor of 10 after training on similar formulas.

This work demonstrates the huge potential that lies in the tight integration of deep learning and log-
ical reasoning algorithms, and hence motivates more aggressive research efforts in the area. Our
experiments suggest two challenges that we want to highlight: (1) We used very small neural net-
works, and—counterintuitively—larger neural networks were not able to improve over the small
ones in our experiments. (2) The performance overhead due to the use of neural networks is large;
however we think that with more engineering effort we could be significantly reduce this overhead.

REFERENCES

Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles Sutton. Learning
continuous semantic representations of symbolic expressions. arXiv preprint arXiv:1611.01423,
2016.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In Proceedings of the IEEE International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp. 1–17, October 2013.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An unsu-
pervised differentiable approach. In ICLR, 2019.

Gilles Audemard and Laurent Simon. Glucose in the SAT 2014 competition. SAT COMPETITION
2014, pp. 31, 2014.

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,
2016. URL http://arxiv.org/abs/1607.06450.

Mislav Balunovic, Pavol Bielik, and Martin Vechev. Learning to solve smt formulas. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31, pp. 10317–10328. Curran Associates, Inc., 2018. URL
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas.pdf.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist:
An environment for machine learning of higher-order theorem proving (extended version). CoRR,
abs/1904.03241, 2019. URL http://arxiv.org/abs/1904.03241.

Armin Biere. Resolve and expand. In International Conference on Theory and Applications of
Satisfiability Testing (SAT), pp. 59–70. Springer, 2004.

Armin Biere. Lingeling, plingeling, picosat and precosat at sat race 2010. FMV Report Series
Technical Report, 10(1), 2010.

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan Zhu, et al. Bounded
model checking. Advances in computers, 58(11):117–148, 2003.

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185. IOS
press, 2009.

Samuel R Bowman, Christopher Potts, and Christopher D Manning. Recursive neural networks can
learn logical semantics. arXiv preprint arXiv:1406.1827, 2014.

9

http://arxiv.org/abs/1607.06450
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas.pdf
http://arxiv.org/abs/1904.03241


Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. URL
http://arxiv.org/abs/1412.3555.

Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M Wintersteiger. Ranking function
synthesis for bit-vector relations. Formal methods in system design, 43(1):93–120, 2013.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM (JACM), 7(3):201–215, 1960.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In International Conference on Theory
and Applications of Satisfiability Testing (SAT), pp. 502–518. Springer, 2003.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural
networks understand logical entailment? arXiv preprint arXiv:1802.08535, 2018.

Peter Faymonville, Bernd Finkbeiner, Markus N Rabe, and Leander Tentrup. Encodings of bounded
synthesis. In International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 354–370. Springer, 2017.

Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. QUBE: A system for deciding
quantified boolean formulas satisfiability. In International Joint Conference on Automated Rea-
soning, pp. 364–369. Springer, 2001.

Eugene Goldberg and Yakov Novikov. Berkmin: A fast and robust sat-solver. Discrete Applied
Mathematics, 155(12):1549–1561, 2007.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Een, Francois Chollet, and Josef Ur-
ban. Deepmath-deep sequence models for premise selection. In Advances in Neural Information
Processing Systems, pp. 2235–2243, 2016.

Mikoláš Janota. Towards generalization in QBF solving via machine learning. In AAAI Conference
on Artificial Intelligence, 2018a.

Mikoláš Janota. Circuit-based search space pruning in QBF. In International Conference on Theory
and Applications of Satisfiability Testing (SAT). Springer, 2018b.

Mikoláš Janota and Joao Marques-Silva. Abstraction-based algorithm for 2QBF. In International
Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 230–244. Springer,
2011.

Mikolás Janota and Joao Marques-Silva. Solving QBF by clause selection. In IJCAI, pp. 325–331,
2015.

Mikoláš Janota, William Klieber, Joao Marques-Silva, and Edmund Clarke. Solving QBF with
counterexample guided refinement. In International Conference on Theory and Applications of
Satisfiability Testing (SAT), pp. 114–128. Springer, 2012.

Robert G Jeroslow and Jinchang Wang. Solving propositional satisfiability problems. Annals of
mathematics and Artificial Intelligence, 1(1-4):167–187, 1990.

Charles Jordan and Łukasz Kaiser. Experiments with reduction finding. In International Conference
on Theory and Applications of Satisfiability Testing (SAT), pp. 192–207. Springer, 2013.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Mirek Olšák. Reinforcement learning of
theorem proving. arXiv preprint arXiv:1805.07563, 2018.

William Klieber. Ghostq QBF solver system description, 2012.

Mitsuru Kusumoto, Keisuke Yahata, and Masahiro Sakai. Automated theorem proving in intuition-
istic propositional logic by deep reinforcement learning. arXiv preprint arXiv:1811.00796, 2018.

10

http://arxiv.org/abs/1412.3555


Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based branch-
ing heuristic for sat solvers. In International Conference on Theory and Applications of Satisfia-
bility Testing (SAT), pp. 123–140. Springer, 2016.

Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF solver. JSAT, 7(2-3):71–76,
2010.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided proof
search. arXiv preprint arXiv:1701.06972, 2017.

João P Marques-Silva and Karem A Sakallah. GRASP - A new search algorithm for satisfiability.
In Computer Aided Design, pp. 220–227. IEEE, 1997.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th annual Design Automation Con-
ference, pp. 530–535. ACM, 2001a.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings DAC, pp. 530–535. ACM, 2001b. ISBN
1-58113-297-2. doi: 10.1145/378239.379017.

Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and Christian Szegedy. Graph
representations for higher-order logic and theorem proving. CoRR, abs/1905.10006, 2019. URL
http://arxiv.org/abs/1905.10006.

Florian Pigorsch and Christoph Scholl. An AIG-based QBF-solver using SAT for preprocessing. In
Proceedings of the 47th Design Automation Conference, pp. 170–175. ACM, 2010.

Luca Pulina. The ninth QBF solvers evaluation-preliminary report. In QBF@ SAT, pp. 1–13, 2016.

Markus N Rabe and Sanjit A Seshia. Incremental determinization. In International Conference
on Theory and Applications of Satisfiability Testing (SAT), pp. 375–392. Springer International
Publishing, 2016.

Markus N Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In Formal Methods in
Computer-Aided Design (FMCAD), 2015, pp. 136–143. IEEE, 2015.

Markus N Rabe, Leander Tentrup, Cameron Rasmussen, and Sanjit A Seshia. Understanding and
extending incremental determinization for 2QBF. In International Conference on Computer Aided
Verification (accepted), 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. Trans. Neur. Netw., 20(1):61–
80, January 2009. ISSN 1045-9227. doi: 10.1109/TNN.2008.2005605. URL
http://dx.doi.org/10.1109/TNN.2008.2005605.

Daniel Selsam and Nikolaj Bjørner. Neurocore: Guiding high-performance SAT
solvers with unsat-core predictions. CoRR, abs/1903.04671, 2019. URL
http://arxiv.org/abs/1903.04671.

Daniel Selsam, Matthew Lamm, Benedikt Bunz, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a SAT solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Combi-
natorial sketching for finite programs. ACM Sigplan Notices, 41(11):404–415, 2006.

Mate Soos. Cryptominisat v4. SAT Competition, pp. 23, 2014.

Leander Tentrup. Non-prenex QBF solving using abstraction. In International Conference on The-
ory and Applications of Satisfiability Testing (SAT), pp. 393–401. Springer, 2016.

11

http://arxiv.org/abs/1905.10006
http://dx.doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1903.04671


Leander Tentrup. On expansion and resolution in CEGAR based QBF solving. In International
Conference on Computer Aided Verification, pp. 475–494. Springer, 2017.

Grigori S Tseitin. On the complexity of derivation in propositional calculus. Studies in constructive
mathematics and mathematical logic, 2(115-125):10–13, 1968.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based algorithm
selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

Zhanfu Yang, Fei Wang, Ziliang Chen, Guannan Wei, and Tiark Rompf. Graph neural reasoning for
2-quantified boolean formula solvers. arXiv preprint arXiv:1904.12084, 2019.

12



A GLOBAL SOLVER STATE

1. Current decision level

2. Number of restarts

3. Restarts since last major restart

4. Conflicts until next restart

5. Ratio of variables that already have a Skolem function to total variables. Formula is solved
when this reaches 1.

B LITERAL LABELS

Here we describe the exact values for each literal presented to the neural network described in
Section 4. The vector lit consists of the following 7 values:

y0 ∈ {0, 1} indicates whether the variable
is universally quantified,

y1 ∈ {0, 1} indicates whether the variable
is existentially quantified,

y2 ∈ {0, 1} indicates whether the variable
has a Skolem function already,

y3 ∈ {0, 1} indicates whether the variable
was assigned constant True,

y4 ∈ {0, 1} indicates whether the variable
was assigned constant False,

y5 ∈ {0, 1} indicates whether the variable
was decided positive,

y6 ∈ {0, 1} indicates whether the variable
was decided negative, and

C THE QDIMACS FILE FORMAT

QDIMACS is the standard representation of quantified Boolean formulas in prenex CNF. It con-
sists of a header “p cnf <num_variables> <num_clauses>” describing the number of
variables and the number of clauses in the formula. The lines following the header indicate the
quantifiers. Lines starting with ‘a’ introduce universally quantified variables and lines starting with
‘e’ introduce existentially quantified variables. All lines except the header are terminated with 0;
hence there cannot be a variable named 0. Every line after the quantifiers describes a single clause
(i.e. a disjunction over variables and negated variables). Variables are indicated simply by an index;
negated variables are indicated by a negative index. Below give the QDIMACS representation of the
formula ∀x. ∃y. (x ∨ y) ∧ (¬x ∨ y):

p c n f 2 2
a 1 0
e 2 0
1 2 0
−1 2 0

There is no way to assign variables strings as names. The reasoning behind this decision is that this
format is only meant to be used for the computational backend.

D HYPERPARAMETERS AND TRAINING DETAILS

We trained a model on the reduction problems training set for 10M steps on an AWS server of type
C5. We trained with the following hyperparameters, yet we note that training does not seem overly
sensitive:

• Literal embedding dimension: δL = 16

13



0 100 200 300 400 500 600 700 800 900 1,000
100

101

102

103

solved formulas

d
ec

is
io

n
li

m
it

Random

VSIDS

Words

Figure 4: A cactus plot describing how many formulas were solved within growing decision limits
on the Words test set. Lower and further to the right is better.

• Clause embedding dimension: δC = 64

• Learning rate: 0.0006 for the first 2m steps, then 0.0001

• Discount factor: γ = 0.99

• Gradient clipping: 2

• Number of iterations (size of graph convolution): 1

• Minimal number of timesteps per batch: 1200

E ADDITIONAL DATASETS AND EXPERIMENTS

While the set of Reductions-formulas we considered in the main part of the paper was created inde-
pendently from this paper and is therefore unlikely to be biased towards our approach, one may ask
if it is just a coincidence that our approach was able to learn a good heuristic for that particular set
of formulas. In this appendix we consider two additional sets of formulas that we call Boolean and
Words, and replicated the results from the main part. We show that we can learn a heuristic for a
given set/distribution of formulas that outperforms VSIDS by a significant margin.

Boolean is a set of formulas of random circuits. Starting from a fixed number (8) of Boolean inputs
to the circuit, individual AND-gates are added (with randomly chosen inputs with random polarity)
up to a certain randomized limit. This circuit is turned into a propositional Boolean formula using
the Tseitin transformation, and then a small fraction of random clauses is added to add some irregu-
larities to the circuit. (Up to this point, the process is performed by the fuzz-tester for SAT solvers,
FuzzSAT, available here http://fmv.jku.at/fuzzsat/.) To turn this kind of propositional
formulas into QBFs, we randomly selected 4 variables to be universally quantified. This resulted in
a more or less even split of true and false formulas. The formulas have 50.7 variables on average. In
Figure 5 we see that training a model on these formulas (we call this model Boolean, like the data
set) results in significantly better performance than VSIDS. The advantage of the learned heuristic
over VSIDS and Random is smaller compared to the experiments on Reductions in the main part of
the paper. We conjecture that this is due to the fact that these formulas are much easier to begin with,
which means that there is not as much potential for improvement.

Words is a data set of random expressions over (signed) bitvectors. The top-level operator is a com-
parison (=, ≤, ≥, <, >), and the two subexpressions of the comparison are arithmetic expressions.
The number of operators and leafs in each expression is 9, and all bitvectors have word size 8. The
expressions contain up to four bitvector variables, alternatingly assigned to be existentially and uni-

14

http://fmv.jku.at/fuzzsat/


0 100 200 300 400 500 600 700 800 900 1,000
100

101

102

103

solved formulas

d
ec

is
io

n
li

m
it

Random

VSIDS

Boolean

Figure 5: A cactus plot describing how many formulas were solved within growing decision limits
on the Boolean test set. Lower and further to the right is better.

versally quantified. The formulas are simplified using the circuit synthesis tool ABC, and then they
are turned into CNF using the standard Tseitin transformation. The resulting formulas have 71.4
variables on average and are significantly harder for both Random and VSIDS. For example, the
first formula from the data set looks as follows: ∀z.∃x.((x − z) xor z) 6= z + 1, which results in a
QBF with 115 variables and 298 clauses. This statement happens to be true and is solved with just
9 decisions using the VSIDS heuristic. In Figure 4 we see that training a new model on the Words
dataset again results in significantly improved performance. (We named the model Words, after the
data set.)

We did not include the formula sets Boolean and Words in the main part, as they are generated by a
random process - in contrast to Reductions, which is generated with a concrete application in mind.
In the formal methods community, artificially generated sets of formulas are known to differ from
application formulas in non-obvious ways.

F ADDITIONAL EXPERIMENTS ON GENERALIZATION TO LARGER

FORMULAS

An interesting observation that we made is that models trained on sets of small formulas generalize
well to larger formulas from similar distributions. To demonstrate this, we generated a set of larger
formulas, similar to the Words dataset. We call the new dataset Words30, and the only difference to
Words is that the expressions have size 30. The resulting formulas have 186.6 variables on average.
This time, instead of training a new model, we test the model trained on Words (from Figure 4) on
this new dataset.

In Figure 6, we see that the overall hardness (measured in the number of decisions needed to solve the
formulas) has increased a lot, but the relative performance of the heuristics is still very similar. This
shows that the heuristic learned on small formulas generalizes relatively well to much larger/harder
formulas.

In Fig. 3, we have already observed that the heuristic also generalizes well to much longer episodes
than those it was trained on. We believe that this is due to the “locality” of the decisions we force
the network to take: The graph neural network approach uses just one iteration, such that we force
the heuristics to take very local decisions. Not being able to optimize globally, the heuristics have
to learn local features that are helpful to solve a problem sooner rather than later. It seems plausible
that this behavior generalizes well to larger formulas (Fig. 6) or much longer episodes (Fig. 3).

15



0 50 100 150 200 250 300 350 400 450 500 550 600
100

101

102

103

solved formulas

d
ec

is
io

n
li

m
it

Random

VSIDS

Words

Figure 6: A cactus plot describing how many formulas were solved within growing decision limits
on the Words30 test set. Lower and further to the right is better. Note that unlike in the other plots,
the model Words was not trained on this distribution of formulas, but on the same Words dataset as
before.

G ENCODER VARIANTS AND HYPERPARAMETERS

The encoder described in Subsection 4.1 is by no means the only reasonable choice. In fact, the
graph representation described in Fig. 2 is not unique. One could just as well represent the formula
as a bipartite graph on variables and clauses, with two types of edges, one for each polarity. The
encoder then produces encodings of variables rather than literals, and the propagation along edges
is performed with two different learned parameter matrices, one for each edge type. The equations
for such an encoder are:

ct = ReLU

(

∑

l∈c

WV [v
⊤, v⊤t−1] +BV

)

vt = ReLU

(

∑

c,v∈c

WC [c
⊤, c⊤t ] +BC

)

Where WV is one of W+

V ,W−

V (and similarly, WC ∈ {W+

C ,W−

C }), depending on the polarity of
the occurence of v in c, with v as the variable’s label. Accordingly, we change the policy network to
produce two scores per variable embedding vτ , as the qualities of assigning this variable to positive
or negative polarity. In our experiments, this variant of the encoder achieved comparable results to
those of the literal-based encoder.

The hyperparameter τ controls the number of iterations within the GNN. Here too, there are several
variants of the encoder one could consider. The architecture described in Subsection 4.1, which
achieved the reported results, applies the same transformation for every iteration (the matrices WC ,
WL). We’ve also experimented with a variant that uses τ different learned transformations, one per
iteration, denoted W t

C ,W
t
L, for 1 ≤ t ≤ τ (intuitively, this allows the network to perform a different

computation in every iteration). It achieved comparable results, yet with roughly τ times the number
of parameters. A version with even more parameters gave the t′th transformation access not only
to the t − 1 embedding, but to all the 1, . . . , t − 1 previous embeddings, through residual connec-
tions. This version also didn’t achieve significantly better results. To get results with more than
one iteration we had to add a normalization layer between every two iterations. We experimented
with both Layer Normalization (Ba et al., 2016) and a GRU cell (Chung et al., 2014), which gave

16



0 10 20 30 40 50 60 70 80 90 100
100

101

102

103

solved formulas

d
ec

is
io

n
li

m
it

Random

VSIDS

Zero iterations

Learned

With Activities

Figure 7: A cactus plot describing how many formulas were solved within growing decision limits
on the reduction test set with different models. VSIDS, Random, and Learned are same as left side
of Figure 3.

similar results. Adding a 2nd and 3rd iteration achieved only slightly better results when measur-
ing number of decisions to solve a formula, at the cost of more parameters, slower training, and
more importantly, slower inference at runtime. When measuring number of formulas solved in real
time, a single iteration achieved best results overall. However, given the large overhead of our agent
implementation, it is possible that an optimized in-process implementation could still benefit from
multiple iterations in the GNN.

It is interesting to point out that when we tested a model with zero iterations, that is, no GNN
at all, where the policy network gets to see only the variable labels from the solver, it achieved
results that were better than Random and clearly demonstrated learning, but worse than VSIDS, and
considerably less than the results for 1 iteration. That shows that at least the 1-hop neighborhood
of a variable contains information which is crucial, we cannot achieve comparable results without
considering this local topology of the graph.

Another interesting observation is that the model which achieved best results did not have access
to the variable VSIDS activity scores! Adding activity scores to the variable feature vectors in
fact slightly degraded performence. It learns faster, but converges to a lower average reward, and
performs slighly worse on the validation and test sets, especially on the harder problems. We hy-
pothesize that this is because the model learns to rely on the activity scores, and they will be quite
different in harder (longer) episodes, and outside the range it trained on. Furthermore, it shows
that it is possible to achieve a heuristic which performs better than VSIDS without even computing
activities!

The results for the different variants can be seen in Figure 7.

17


	1 Introduction
	2 Boolean Logics and Search Algorithms
	3 Problem Definition
	3.1 Baselines

	4 The Neural Network Architecture
	4.1 A GNN Encoder for Boolean Formulas
	4.2 Policy Network

	5 Experiments
	5.1 Data
	5.2 Rewards and Training
	5.3 Results

	6 Related Work
	7 Conclusions
	A Global Solver State
	B Literal Labels
	C The QDIMACS File Format
	D Hyperparameters and Training Details
	E Additional Datasets and Experiments
	F Additional Experiments on Generalization to Larger Formulas
	G Encoder variants and Hyperparameters



