
UC San Diego
Technical Reports

Title
A Model-Driven Engineering Approach to Requirement Elicitation for Policy-Reactive
Cyberinfrastructures

Permalink
https://escholarship.org/uc/item/2hg028q2

Authors
Demchak, Barry
Krueger, Ingolf

Publication Date
2012-09-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hg028q2
https://escholarship.org
http://www.cdlib.org/

A Model-Driven Engineering Approach to Requirement Elicitation

for Policy-Reactive Cyberinfrastructures

Barry Demchak and Ingolf Krüger

Computer Science and Engineering Department

University of California, San Diego

La Jolla, CA, USA

{bdemchak,ikrueger}@cs.ucsd.edu

Abstract—A cyberinfrastructure (CI) is an Internet-based

collection of computing services dedicated to providing data

storage, computations, and visualizations to a stakeholder

ecosystem. A major CI function is to execute workflows on

behalf of stakeholders. Each stakeholder will participate in the

CI only if the workflows incorporate certain requirements,

which may vary from stakeholder to stakeholder. Additionally,

because successful CI use by one stakeholder depends on the

results of successful use by other stakeholders, a failure of the

CI to enforce stakeholder requirements risks the viability of

the entire CI. A critical enabler for CIs is the efficient

elicitation of stakeholder requirements, called policies, and

their accurate and timely enactment. This paper presents a

technique that combines UML Activity Diagrams and a

Domain Specific Language (DSL) to enable stakeholders to

formulate identity- and environment-based access control

policies in the context of a workflow. To demonstrate the

technique, we recruited exposure biologists as domain experts

interested in inserting access control policies into a workflow in

the PALMS CI, a health monitoring system currently used at

UC San Diego. We found that not only could the experts

successfully formulate their policies, but that translation of

these policies to the implementation level was quick and

accurate. This work extends work in design-level security

engineering techniques (UMLsec[1] and SecureUML[2]),

Activity Diagram formalisms[3], and DSLs[4]. In leveraging

workflow visualization, efficient policy articulation, and timely

enactment, this technique encourages exploration of the

requirement space by domain experts.

Keywords-cyberinfrastructure, Domain Specific Language,

DSL, elicitation, UML, Activity Diagram

I. INTRODUCTION

As an emerging class of large scale computing systems,
cyberinfrastructures (CIs) are poised to become important
enablers of community-based computational and information
processing in academia, government, and commerce. As an
Internet-based distributed collection of data storage,
computation, and visualization resources, CIs provide a
substrate on which stakeholder communities can build and
deliver value by organizing CI resource access through
automated processes called workflows. They also provide an
infrastructure through which communities can create
significant additional value via cooperation and exchange.

A major threat to the promise of these systems is their
complexity, which, in part, arises from the explicit and
implicit need to satisfy the requirements of all communities
simultaneously. While many technologies can be harnessed
to tame different aspects of cyberinfrastructure construction,
such solutions are at significant risk of failure without first
proceeding from a solid base of actionable requirements,
followed up by a requirement stream that reflects changing
stakeholder needs.

Model Driven Engineering (MDE) is a methodology that
encompasses many of the technologies needed to build a CI.
At its core, MDE enables the management of complexity
through the use of abstractions, evidenced by models
expressed predominantly in the Unified Modeling Language
(UML). These models can be used to describe both system
structure and flow at various levels of abstraction, from the
highly abstract to the highly concrete, and from the
requirements stage to application deployment.

A complimentary approach is Service-Oriented
Architecture (SOA), which, at its core, represents computing
activities as patterns of interaction between computing
components where information is exchanged via messages.
By specifying interactions between components representing
CI resources, a SOA can be used to model CI workflows. A
critical feature of SOA systems is the ability to intercept
messages traveling between components – thus enabling
message transformations and additional message routing that
can respond to stakeholder requirements by altering or
augmenting workflows without compromising existing
functionality.

While MDE and SOA can be leveraged to elicit and
realize functional requirements (and to a lesser degree, non-
functional requirements), systems built using these
technologies often react to changes in requirements only
after long latencies, even if agile development methodologies
are used. The consequence of such latencies can be severe to
stakeholders whose requirements develop and evolve rapidly
– their ability to contribute to the CI community and derive
value from it can be compromised to the point where other
communities that rely on them are compromised, too.

A major source of this problem in CIs is the number and
diversity of stakeholder groups, the diversity of their
requirements, and the limited resources developers have for
eliciting requirements and enacting them quickly.

Our vision for a solution to this dilemma is to enable a
more proactive stakeholder posture in the requirements
elicitation and enactment process, with multiple benefits:

• precise requirement formulation

• low latency between requirement formulation
and enactment

• high fidelity of enactment relative to real
stakeholder requirements

• improved understanding of the requirement
space by both stakeholder and developer

To accomplish this, we propose the Alternate Workflow
Specification (AWS) technique, which exposes stakeholders
to CI workflows modeled as UML Activity Diagrams. Under
AWS, stakeholders can propose modifications to such
workflows by formulating alternate workflows using a
specially constructed Domain Specific Language. By
conceiving the workflow in SOA terms, AWS proposes
workflow insertion semantics based on SOA message
interception techniques. Informally speaking, we call
alternate workflows defined in this way policies.

Furthermore, we observe that for CIs that implement
workflows using SOA technologies (including interception),
there is a direct and natural correspondence between a
stakeholder-written policy and the workflow a developer
would author into an executing system. We call CIs that can
execute authored policies policy-reactive.

Policies can be used to realize a wide range of functional
and non-function requirements, including security,
performance, fault tolerance, and so on.

In this paper, we limit the use of AWS to enacting access
control on CI resources, where access control is defined as
restrictions placed on the use of a resource based on some
criteria, such as user identity. We demonstrate the use and
potential efficacy of the technique by presenting it to a group
of stakeholders in the PALMS CI, a health monitoring
system operating at the University of California, San Diego.

We show that:

• A blending of MDE and SOA techniques is
effective in eliciting access control requirements
from domain experts

• A DSL can be used to define policies on
existing workflows

• Refinements of DSL approach may be useful in
improving domain expert performance in access
control requirement elicitation and policy
authorship

• Focusing on access control requirement
elicitation yields other requirements

We know of no other approach that attempts to elicit and
enact requirements in this way. However, various aspects of
AWS were inspired by model driven security work at the
domain design and analysis level [1][2], requirements syntax
languages [4], and directed elicitation techniques [5].

The remainder of the paper describes the specifics of the
AWS technique. Section II presents the theory underpinning
AWS. Section III presents the PALMS-CI case study in
which AWS is evaluated. Section IV describes an evaluation
of AWS by PALMS domain experts. Section VI presents an

analysis and interpretation of the results. The remaining
sections present discussion, related work, future work, and
conclusions.

II. THEORY OF SOLUTION

Under Model Driven Engineering, there are a number of
well-known techniques for eliciting functional requirements
from stakeholder communities, then modeling the structure
of entities (e.g., UML class and object diagrams) and data
flow (e.g., UML activity, sequence, and state diagrams) , and
component interactions (e.g., UML sequence and
collaboration diagrams) needed to support them. Within a
collection of models, different views often represent different
concerns, and modelers can combine views to explore the
interplay of multiple concerns at various levels of
abstraction.

AWS demonstrates how UML Activity Diagrams can be
leveraged to superimpose the concern of access control onto
a workflow model, thereby enabling the elicitation of access
control requirements from domain experts. It draws on

formalisms basic to SOA, the semantics and graphic
simplicity of Activity Diagrams, and the definition of
applicable Domain Specific Languages (DSL). Using a DSL,
AWS enables a user to specify access control policies on a
workflow represented by an Activity Diagram, thereby
enabling a developer to directly implement access control in
an application.

A. Workflow and SOA

A workflow has been informally defined as the
“computerised facilitation or automation of a business
process” [6] where a business process involves the
orchestration of one or more data flows between one or more
activities, and one activity may depend on the execution of a
previous activity. In its most basic form, a workflow begins
with some data entering a system, where some activity
transforms it and routes the result to one or more other
activities. The workflow terminates after the last
transformation is complete. Variability amongst workflows
occurs as a result of operating on different data streams,
executing different activities, executing activities in parallel
or serially, and joining concurrently flowing data streams [7].

A workflow can be modeled in terms of services, where a
service is logically defined as an interaction between two
components via message exchange [8]. Using the service
paradigm, complex component interactions can be modeled,

Figure 1. Service Interface Contract

and formalisms exist for service composition, overlapping
execution, and the analysis of properties such as liveness [9].
Additionally, models exist that demonstrate how a service
can be hierarchically composed of other services, thereby
enabling modeling of complex systems of systems [10].
Additionally, they describe how messages exchanged
between components can be intercepted and then
transformed, relayed, reconveyed, rerouted, or otherwise
acted upon, thereby implementing dynamic routing and
various crosscutting concerns such as security, reliability,
and failure management.

While service definitions are often component-centric, a
dual exists in a message-centric perspective: a service can be
modeled as the transformation of one message into another
by an intervening component. We define a service interface
contract as the guarantees that can be asserted on incoming
and outgoing messages. Components interacting with the
intervening component can rely on its meeting its service
interface guarantees. For example, Figure 1 is a sequence
diagram showing a service interaction between three
components. The service interface contract for Component 2
would be the content and semantics of the incoming
messages 1) request and 2) reply and the outgoing
messages 2) request, 1) reply, and 3) async.
Additionally, the contract would include any message timing
or other interaction constraints specified.

In recasting a workflow activity as a service component,
we bring service-oriented modeling and analysis to
workflows. From a message-centric viewpoint, a workflow
activity can be considered a message transformer (or filter)
relative to an incoming and outgoing message or set of
messages. Particularly, a component can be replaced with
another component so long as it fulfills the service interface
contract (explicitly or implicitly) defined for it. Additionally,
incoming and outgoing messages can be intercepted and
transformed. Finally, a component can be replaced by a
collection of interacting components so long as the collection
observes the original service interface contract.

B. Workflow and Activity Diagrams

Workflows can be described using a number of notations,
each of which emphasize different workflow aspects or
facilitate different analyses. In the MDE community, UML
v2.1 Activity Diagrams are preferred as a high level
graphical construct for relating activities, data flows, and
synchronization – similar to a flowchart. It is commonly
used to model workflow aspects of functional requirements,
and in its detailed form, can represent exceptions, multiple
kinds of conditionals on execution, the flow of typed data,
and the state of data elements. It coordinates with other UML
diagrams (e.g., class, object, sequence, and state), which
present more detailed views of entity relationships and
sequencing [11]

Specifically, at the core of an Activity Diagram (e.g.,
Figure 2) is the activity box, which represents a
transformation of incoming data, a change in the system
state, or both. Activity boxes are connected by directed flow
edges, where the edge represents the flow of a typed data
element from one activity into another. When an activity box

accepts more than one flow edge, it is defined to suspend its
processing until upstream activities have generated data
elements for each of the flow edges. When an activity box
emits more than one flow edge, it is defined to generate
different data elements heading to different activity boxes.
Activity Diagrams have special symbols representing forked
and joined directed flows. A solid bar that accepts a single
directed flow and emits multiple directed flows is defined as
a fork; it copies the inbound data onto the outbound flows,
and the connected activity boxes execute in parallel. A solid
bar that accepts multiple directed flows and outputs a single
flow is a join; the output flow is the data presented by the
incoming flows, and it is emitted when all incoming flows
present data. Additionally, a diamond symbol can indicate a
split control flow, which directs a data flow to one activity or
another. It can also indicate a merged data flow, which
accepts data flows from multiple activities and immediately
forwards whatever data it receives to a downstream activity
box.

An Activity Diagram’s directed data flow has semantics
similar to a message flow in a service. However, unlike a
service, activity boxes perform a transformation without
being associated with a particular component. To conform
activity boxes to service components, an Activity Diagram
can be organized into partitions that can be labeled with a
node name, which can be interpreted as a component in a
service interaction.

AWS relies on Activity Diagrams because they present a
familiar workflow metaphor accessible to non-developers
such as domain experts representing stakeholder
communities. At the same time, when partitioned, they can
express many of the same interactions as a service can.
Particularly, an activity box in a partition can be considered
to present and adhere to a service interface contract based on
the directed flows it accepts and generates. Therefore, it
makes sense to discuss intercepting and transforming
directed flows and replacing activity boxes with other
activity boxes or networks of activity boxes, provided the
result conforms to the original service interface contract,
which may be relied upon by the connected activity boxes.

Figure 2. Activity Diagram with Policy Insertion

C. Access Control and Policy

Access control is a concern separate from, yet intimately
connected, to workflow. Whereas a workflow relates
activities and data flows, a system that exclusively executes
workflows may not meet stakeholder requirements for
limiting access to data or activities by inappropriate parties.
Limited access can be implemented in many ways, including
prohibiting access to data or an activity, or allowing access
to only a subset of data or an activity’s capabilities.

(Note that access control is a subset of security, which
encompasses topics such as encryption, storage reliability,
non-repudiation, and others.)

The criterion for access control involves three elements:
the data flow or activity over which to exert control, the
circumstance in which control should be asserted, and the
particular control to be imposed.

The circumstance calculation involves a conditional often
referencing a user’s identity, attributes of the user, the state
of the application, the state of the system (e.g., the current
time), or any combination of these.

A common access control is to simply reject access and
return an error message or exception. Alternatively, an
incoming or outgoing data flow may be filtered, decimated,
truncated, or de-resolved (e.g., a de-identification or a
bounded randomization). In service terms, a generalization
of these two approaches is to replace the target activity with
a different activity. To reject access, the replacement activity
would simply propagate an error message or exception.
Alternatively, to affect a data flow, the replacement activity
might consist of an ingress filter service connected to the
original activity, which might be connected to an egress filter
service – the filter services would alter the data flow
according to the access control requirement.

Accordingly, we define a subflow as a portion of a
workflow characterized by a service interface contract. We
define a policy as a conditional replacement of a subflow
with another subflow that meets the original subflow’s
service interface contract. While a policy can be used to
implement many concerns in an SOA, we restrict it to access
control in this paper. Figure 2 shows an example of a
workflow before and after a policy (shaded) is inserted. The
Small Calc subflow observes the same service interface
contract as the Big Calc subflow, and is executed
conditionally based on the user’s role.

In a service-oriented analysis, access control can be
implemented as a service separate from workflow activities.
Loose coupling between these services allows an access
control mechanism to be changed without impacting the
service interface contract maintained between activities. For
the purpose of requirements elicitation, it also promotes
focus on access control instead of the implementation of the
activity itself.

Note that within an executing application, policy is
evaluated and executed by a policy engine, which is inserted
as an interceptor along the data path controlled by the policy.
The policy engine evaluates the conditional, and then
replaces the target subflow as appropriate.

D. Domain Specific Languages and the Stakeholder

In order for a domain expert (representing a stakeholder
community) to specify an access control policy, she must
associate an existing data flow (evidenced in an Activity
Diagram) with a condition and a replacement subflow
specification. Whereas it is possible to specify all three
components in “concise, plain English”, such specifications
often are fraught with ambiguity and misinterpretation [12],
which can lead to protracted negotiations with developers
and systems with unintended behaviors.

The criterion for a specification language are that it must
enable an efficient and effective communication path
between a domain expert and the developers, must not
burden a domain expert with unfamiliar convention, and
must be simple enough to use quickly and repeatedly in an
agile development environment. Since the specification of
conditions and actions is relative to a working system, it
must relate concepts native to the system. That said, all AWS
DSLs share a common structure, as follows.

The language for specifying the existing data flow is
graphical – on a copy of an Activity Diagram, the domain
expert puts a hatch mark on the associated directed flow
edge.

The language for specifying the conditional is a standard
boolean expression containing predicates that evaluate
application entities, message content, application states,
system states, and application-related functions. An example
of such a DSL is presented in the case study in Section III.

The language for specifying the replacement subflow
identifies a filter activity, which may be implemented as a
composition of other filters.

The general form of a policy for ingress is:

If conditional, first action1, then action2,

otherwise policy

where conditional is defined above, action1 is an
activity representing a filter having a name and filter-specific
parameters, and action2 is either continue (to execute the
existing activity) or the name of a substitute activity. policy
is defined as another ingress policy, and can also be simply
continue. For example, the following policy can transform
the “Without Policy” flow in Figure 2 to the “With Policy”
flow.

If user is guest, first Eliminate 90,

then Small Calc,

otherwise continue

Similarly, the general form of a policy for egress is:

If conditional, finally action3

where conditional is defined above, and action3 is the
name of a filter activity and parameters.

Note that the exact form or legal values of a conditional,
filter, or activity are not specified for two reasons. First, such
policy statements will be evaluated and understood by
human developers, not an automated language processor.
Therefore, within limits, loose syntax can be tolerated.

Second, though it is important to apprise the domain expert
of the existence and meaning of important domain entities
and activities and their relationship so they can be used in
policies, it is equally important to allow the domain expert to
fabricate domain entities and activities as the need arises.
Such fabrications are likely to contain the seeds of
requirements for system modifications, which may come to
light as developers negotiate with domain experts over the
true meaning of these fabrications.

Finally, by keeping the DSL simple and ad-hoc, the
domain expert can focus on defining policies instead of
formatting them – leaving more time and energy for policy
development.

III. PALMS CASE STUDY

The PALMS-CI is a cyberinfrastructure built at the
University of California, San Diego to support the research
of a worldwide community of exposure biologists. This
community is represented by a number of principal
investigators (PIs) that monitor and study human health as a
function of geographical location and ambient conditions.
Each PI may conduct one or more studies, which typically
involves collecting data from sensors (e.g., heart rate,
accelerometer, and GPS) worn by scores or hundreds of
human subjects for periods of a week or more. Once the data
is collected, either the PI or a research assistant (RA) uploads
it into a PALMS repository, where it remains available for
analysis and visualization. Additionally, the PI may agree to
share raw or processed data with other investigators.

The PALMS-CI is a SOA based on a Rich Services [13]

pattern executing on a Mule Enterprise Service Bus.
PALMS-CI services implement the functionality of major
domain entities (e.g., calculations, visualization, and
repositories for studies, subject information, data,
calculations, and calculation results) and services are
connected via a message bus. The PALMS-CI presents itself
as a single component that exposes its services via Web
Services-based API calls using a request/reply pattern.

A PALMS user interacts with the PALMS-CI by using a
web browser running JavaScript generated by the Google
Web Toolkit (GWT). As such, the browser acts as an
intermediary between the user and the PALMS-CI, and it
presents the workflow experienced by the user.

To date, the PALMS-CI supports an end-to-end

workflow consisting of creating a study, identifying a list of
human subjects, uploading subject data, defining calculations
on the data, and viewing data and calculated results.

Currently, there are no access control policies that would
constrain the use or misuse of study data, either accidentally
or by malicious outsiders. For this reason, only a small,
close-knit group of researchers can make use of the system,
and then only for processing anonymized information subject
to Institutional Review Board (IRB) restrictions.

In order to service more PIs and their studies, PALMS-CI
must support access control policies that meet the
requirements of various stakeholder groups (e.g., PIs,
funding agencies, IRBs, etc). Even within a stakeholder

group different individuals may prefer certain policies over
others, and the preference may vary from study to study.

The PALMS-CI development staff is capable of eliciting
access control policy requirements from the known
stakeholders and then enacting them within the CI. However,
as the stakeholder population grows and becomes more
diverse, the burden on the developers to service these
requirements is borne at the expense of budget, long delivery
times, and access control implementations that still fail to
keep up with changing requirements.

A. User Identity and Grouping

The major PALMS-CI access control policy needs focus
on restricting access to particular data or processes based on
user identity. To achieve flexibility in targeting policies, we
allow users to be organized into groups, consistent with an
RBAC discipline

1
 modified to accommodate a Facebook-

style friends system. As shown in Figure 3, for a study-
centric group structure, a PI can define groups of users that
reflect the PI’s organizational structure. For a given study,
common groupings could be PIs, RAs, and Guests. For a
friend-centric group structure, a PI can define groups of users
that crosscut studies. Policies can be targeted toward study
groups, friend groups, or individual users. User identity is
established via logon credentials (i.e., userID and password)
presented by the browser, verified by a caBIG Identity
Provider

2
, and evidenced by an x.509

3
 certificate.

B. Activity Diagram and Workflow

To a PALMS user (and a domain expert), a PALMS
workflow can be viewed as a linkage of activities accessible
and experienced in the Browser. However, attempting to
specify access control policies on flows and activities

1
 An RBAC system grants users access based on one or

more groups the user belongs to (e.g., a person can play

soccer if she is a member of the soccer team group)
2
 caBIG is a cyberinfrastructure for cancer research, and

PALMS-CI uses its identity verification services instead

duplicating them
3
 An x.509 certificate is a data structure produced by caBIG

that services can use to verify an identity

Figure 3. PALMS Group Ontology

described at this level result in ambiguous policy placement
and policy definitions that act upon incomplete information –
especially because activities exposed at the Browser level are
actually implemented by calls to the PALMS-CI API.
Accordingly, we elicit access control policy by first exposing
subflows, which appear as request/reply interactions with
PALMS-CI activities as shown in Figure 4.

C. PALMS Domain Specific Language

The PALMS DSL extends the base language defined in
Section II.D, references PALMS-specific domain entities,
and defines operations appropriate for them.

Access control policies can be specified on flows
between the Browser and the PALMS-CI. Flows entering
PALMS-CI activities are requests, and can be subject to
ingress policies. Flows returning to Browser activities are
replies, and can be subject to egress policies.

By convention, all PALMS-CI request messages contain
the identity of the user represented by the Browser.
Therefore, policy conditions can include conditions on the
user, such as the user being a member of one or more groups.
Additionally, when a request message identifies a study (e.g.,
the uploadMsg), membership in groups relative to that study
can be tested.

An example of a system level attribute is the SysTime
value, which is the current time of day. An example of a
conditional that demonstrates the use of time in conjunction
with a complex group membership test in an AcceptData
interaction is:

((User in PIs or RAs)

or (User in PALMS.Users.Carol.Students))

and (SysTime between 6AM and 10PM).

… where PIs and RAs are groups relative to the current
study, and the Students group is fully qualified relative to the
PALMS group ontology (see Figure 3).

An example of a filter appropriate for a reply policy is:

Keep entries where user in study

Note that a reply policy is considered to have access to

values in the ingress message. Consequently, a reply
conditional or filter can test a user identity.

An example of an activity useful as a substitute for an
existing activity is Reply. A request policy that denies access
to guests is:

if (user in Guests), then Reply “no access”,

otherwise continue

IV. EXPERIMENT AND DESIGN

The objectives of the experiment were to determine
whether a PALMS domain expert using AWS could:

• specify the target, action, and location of an
access control policy

• identify new access control-related criteria and
actions

• identify new PALMS-CI requirements
Four PALMS domain experts (subjects 1-4) were chosen

to receive instruction in AWS and then formulate access

Figure 4. PALMS Workflow

control policies. All of the subjects were exposure biology
investigators, and one (subject 4) also had substantial
computer programming skills. Each subject has already
requested that access control features be added to the
PALMS-CI, and has participated in general discussions
regarding the objectives of PALMS access control.

The AWS instruction consisted of a document
containing:

• a description of the experiment objectives

• a brief orientation on a typical PALMS
workflow expressed as an Activity Diagram

• a brief orientation on the PALMS user group
scheme

• a tutorial on the elements of an access control
policy (including specifying a conditional, a
replacement workflow, and placement within
the PALMS workflow)

• a description of the general form of a policy
statement, both for a request-oriented policy and
a reply-oriented policy

Each subject was given three training policy sets. The
first set consisted of a one line textual description of a simple
request-oriented policy, the workflow placement for the
policy, and the actual policy expression. The second set was
like the first set, except the policy was reply-oriented. In the
third set, the policy placement and a slightly exotic
expression were given, and the subject was asked to supply
the textual description.

Each subject was given three exercises involving
formulating and placing policies. The subject was instructed
to try to use the AWS policy syntax for specifying a
condition and a replacement workflow, and to try to use
conditionals and filters they saw being used in the training
set and other examples. The subject was also advised not to
adhere slavishly to the DSL syntax, as deviations may give
us clues to new PALMS requirements.

In the first exercise, the subject was given a text
description for a simple request-oriented policy, and was
asked to specify a matching policy placement and
expression.

In the second and third exercises, the subject was asked
to formulate policies they would like to see in PALMS, and
then specify their placement and expression.

In all cases, the subject was asked to write his solutions
down instead of describing them verbally. There was no time
limit on the exercises. The experiment was administered in
public places with modest ambient foot traffic.

A. Threats to Validity

The hypothesis of this experiment is an assertion that a
PALMS domain expert could use AWS to achieve the three
objectives listed in Section III.B. Naively speaking, the
hypothesis is proved by a single instance of success.
However, the experiment is designed to explore the degree to
which the objectives are met, and the impediments to
substantial and meaningful domain expert performance.

Given this, we do not assign tasks whose results can be
evaluated as strict success or failure. Instead, our data is our
own subjective observations of performance and the

observations of the subjects themselves. Our conclusions are
based on the implications of the observations regarding the
efficacy of AWS in eliciting clear and actionable
requirements.

While we intend that the experiment design would lead to
sincere effort and thoughtful feedback from domain experts
interested in effecting access control within PALMS, a
number of factors can work against this:

• the description and tutorial materials could be
poorly written or confusing

• the testing environment could have distractions

• the domain expert could be tired

• the domain expert could collude with others

• our assessment criteria could drift over time

• a small and uniform subject pool
While each of these factors are possibilities, we have

acted to mitigate them by furnishing the experiment
materials to the domain experts in advance of the
experiment, by soliciting questions while going over the
descriptions and tutorials immediately before running the
experiment, by monitoring the test environment and the
demeanor of the domain expert, and by interviewing four
domain experts with different talent sets and backgrounds.

V. EXECUTION AND RESULTS

Each of the subjects required about 45 minutes to go
through the discussion and tutorials, and about 15 minutes to
work the exercises. Half of the subjects executed the
experiment without assistance from an interviewer.

A. Subject 1

Subject 1 made a number of responses that challenged
the AWS policy syntax and semantics. He consistently wrote
request-oriented policy expressions containing a conditional
and an action, but did not specify an alternative action. He
explained that he viewed the conditional as a statement of an
access exception that should lead to returning an error. In
attempting to place policy in the workflow, he consistently
placed request-oriented policy on reply flows. In
conditionals, the subject checked user membership in a fully
qualified group name (instead of using study-relative group
names), and mis-specified that name. Additionally, he wrote
declarations instead of filter expressions for actions in reply
policies (i.e., instead of something like filter out type
not “GPS”, he wrote return only GPS data). Finally, when
authoring fresh policies, he preferred to operate on
workflows not presented in the experiment. We drew these
workflows so he could then articulate his policy.

Subject 1 successfully articulated non-access control
requirements that occurred to him during the experiment. He
suggested simplifying the PALMS workflow by taking
advantage of information already available to PALMS, and
creating a best-practices guide to optimize data collection
and organization to take advantage of PALMS features.
Regarding AWS, he expressed reservations that without a
good way to verify the effect of a policy in advance and in
the context of other policies, he would have difficulty
trusting that the policy mechanism would achieve his policy

objectives as he intended. Finally, he wondered what policies
might govern, who could specify policies, and under what
conditions.

B. Subject 2

Subject 2 successfully formulated three request-oriented
policies. Each policy was properly placed on an appropriate
data flow. Two of the policies were incomplete because they
did not specify alternative workflows.

One policy’s conditional directly referenced a group for a
particular study, which would have been an appropriate
comparison only if the actual study involved in the workflow
was the one named in the conditional. A more appropriate
reference would have been to the group corresponding to the
study identified in the message, which would have been
correct for all studies.

Subject 2 did not offer any unsolicited requirements.

C. Subject 3

Subject 3 was interested in policies that addressed
workflows not present in the experiment. Once we drew
appropriate workflows, Subject 3 was able to place policies
on the appropriate data flows. All policies were request-
oriented and focused on denying access. One conditional
checked for user membership in a group, but other
conditionals checked for the study having a “sharable”
attribute and the user having an “IRB certificate” attribute,
neither of which are available in the current PALMS system,
thereby signaling new requirements. In two of the three
policies, the subject authored declarations instead of
workflow substitutions – and the declarations did not map
easily to a workflow substitution.

Once the policy elicitation was complete, the subject
continued to write requirements and questions that had come
to him while writing policies. Requirements were phrased as
short predicates with general scope, and were not easily
actionable (e.g., the addition of a provenance and curation
capability, and then its use in making access control
decisions based on inherited rights).

The subject’s high level policy and requirement focus
were evidence of engaging the PALMS access control policy
topic, but in a way that would sometimes not lead to
implementable policy without further negotiation.

D. Subject 4

Subject 4 consistently formed request-oriented policies
correctly, and exceeded the exercise requirements by
formulating a policy consisting of four separate policies each
placed at different locations, and coordinating to form a
larger policy.

He formed a reply-oriented policy that specified the
return of an empty data set. While conceptually reasonable,
the formulation failed to couch the action as a filter on the
reply message – instead, it was formulated as an assertion.

Subject 4 used the policy elicitation exercise to raise a
useful policy-mediated UI design question. He observed that
in PALMS, many workflows are derived from a pattern of
requesting a list of objects from the CI, allowing the user to
choose from the list, and then requesting that the CI operate

on the choice. He questioned whether a user should be
presented with a list of all available objects, then allowing
her to select one, only to be presented with an error message
when attempting to operate on it if access to it is blocked. He
suggested that a more user-friendly choice would be to filter
unreachable entries. Right or wrong, the issue came up only
as a result of having engaged in the policy elicitation in the
first place.

Subject 4 attempted to formulate a policy based on data
that was not kept by the PALMS-CI (i.e., allowing the view
or deletion of calculation results by anyone other than the
user that created them), thereby implying a requirement to
change the application to support the policy.

VI. ANALYSIS AND INTERPRETATION

The experiment demonstrated that the subjects
understood and were favorably disposed to the general
concept of access control applied to a workflow. It also
demonstrated the potential of AWS to elicit novel
requirements that could be realized by application
modifications, pointing to what those modifications should
be. Finally, it also demonstrated AWS’s potential for
eliciting requirements tangential or unrelated to access
control, including requirements on the policy definition
process itself. Clearly, AWS engaged stakeholders and
focused them on discovering access control-oriented and
other useful requirements.

While each of the subjects appeared to understand the
general concept of applying access control policy placement
in a workflow, there were various degrees of failure in
formulating policy statements, in conceptualizing data flows,
and in conceiving alternate workflows. The specific
difficulties were:

• placing a request policy on a request data flow,
and a reply policy on a reply data flow (1
subject)

• understanding when a workflow operates in the
context of a study, thus enabling conditionals to
reference study-local groups (2 subject)

• specifying and exercising reply-oriented filters
that modify a reply message (4 subjects)

• specifying a request policy as a conditional
workflow instead of as a simple criterion (2
subject)

In most cases, when a developer engaged a subject to
negotiate the true meaning of an access control policy, a
shared understanding was reached quickly because:

• the placement of the policy within the workflow
was usually correct, and gave a strong hint as to
the author’s intent

• the policies themselves were simple, and
running afoul of the intended DSL syntax did
not obscure the author’s intent – no policy
proposed any complex workflow substitution

Because the policies were simple, there was no doubt that
they could be easily and quickly implemented in the
PALMS-CI, so this stage of the experiment was skipped.

Based on the policies articulated by the subjects, the
classes of access control of major interest a) prohibit access
to an activity based on user group membership or user
identity, and b) cull a list of records returned by an activity
based on a simple relationship between the user and a
particular record component. In formulating policy, each of
the subjects avoided the formalism of workflow substitution,
and preferred to articulate statements that were criteria-based
modifications to default flows (i.e., deny if <some

condition>, allow if <some condition>, cull based

on <some condition>).
Subjects may have been hesitant to engage attributes

(other than user) found in request messages, reply messages,
at the system level, or at the application level either because
there was no need, or they didn’t understand what attributes
could be accessed. Since the subjects were not made aware
of these attributes, subjects could have only guessed at their
availability, and only in response to a requirement they had
already thought of.

This issue could be solved by using a graphical user
interface to present the Activity Diagram, and then to inform
subjects of attribute choices in messages travelling along
various data paths (as a result, perhaps of mousing over the
data path) and available at the system and application level.
Such a UI would encourage exploration of possibilities that
could lead to the formulation of requirements otherwise not
immediately apparent either by leveraging existing attributes
or proposing capabilities that could lead to new attributes.

Likewise, a policy wizard would be useful in helping the
subject create well-formed and properly targeted request and
reply policies. Such assistance would alleviate the cognitive
conflicts in attempting to discover and formulate policy at
the same time as writing down a well-formed policy – the
subject could focus solely on policy discovery and
formulation instead of on form. Considering that policy
articulation is likely to be a relatively rare activity for a
domain expert, eliminating the load of constantly relearning
writing mechanics seems particularly appropriate.

Finally, considering that the majority of policies
identified by subjects fall into two basic forms, it seems
appropriate to define a higher level DSL that maps to the
general AWS DSL. The higher level DSL would provide
facilities directly pertinent to user identification (for deny
policies) and list culling (for reply policies), and forego
general workflow replacement. Such a DSL could be
implemented in either text-based or wizard-based forms.

An important aspect of the elicitation of access control
policy is in motivating the domain expert to participate in
such an exercise. While simplifying and focusing the DSL
contributes to this, the larger issue of faith in the policy
mechanism looms. As subject 1 indicated, a domain expert
must have confidence that elicited policy requirements, if
enacted, will have the desired effect on the system. This is
particularly an issue when several stakeholder groups
contribute policies that may interact with each other. Means
must be devised to engender trust by simulating policy
execution and demonstrating its effects – though this is
outside of the scope of this paper, it is within reach of the
Rich Service framework.

VII. DISCUSSION AND RELATED WORK

Policy suitability depends on a clear understanding of the
applicable service interface contracts, and the dimensions of
these contracts are so far underdefined. Non-functional
requirements (e.g., performance) amount to unstated
interface contracts, and to the extent that a policy violates
them, the policy will degrade the system. Additional work is
needed in contract specification.

While AWS is capable of inserting user-supplied
workflows, we have not explored the possibility of inserting
workflows based on transformations (other than filtering) of
existing workflows. We have yet to study the effect of
multiparty protocols or delegation on the policy mechanisms.

In AWS, the contents of a request-oriented message is
available to a conditional applied to a reply-oriented policy.
This amounts to a policy session lasting for the duration of
the target activity. It is unclear whether this is sufficient to
implement separation of duties. This topic needs further
attention.

While policy was discussed in terms of access control at
a server level in a client/server system, no means is provided
for the client (Browser) to ascertain the likely result of an
operation before attempting it. If the client could ascertain
this, it would make decisions at the user interface level in
anticipation of a server interaction. It would be helpful for
the policy mechanism to include a method whereby the client
could determine whether a request would likely succeed or
fail without actually executing it.

AWS does not attempt to perform any kind of policy
validation or consistency checking. However, should the
AWS DSL evolve towards a more rigorous form (e.g.,
through the use of GUI wizards), existing work [3] on
Activity Diagram semantics may allow direct translation of
stakeholder policies into executing CIs. Furthermore, conflict
and completion checking may also be enabled.

Systems such as UMLSec [1] and SecureUML [2] have
leveraged class diagrams annotated with OCL to improve
application security and make guarantees about such
systems. These approaches apply to system structure and
object instances, which is a much harder concept for domain
experts to grasp. These techniques apply at design time, and
are accessible to knowledgeable security workers. AWS is a
requirement elicitation tool operating on workflows. The
objective of security specification is proof of completeness.
The objective of AWS is configurability. These techniques
are complimentary. We should explore the possibility of
these systems tipping of AWS users of policy opportunity,
and visa versa.

[4] discusses policy elicitation in declarative terms,
including ubiquitous requirements. This causes a general rule
to be applied according to general preconditions and triggers.
AWS defines workflows at a particular flow. For large
collections of workflows, specification of policy via AWS
could be tedious and error prone. Adopting a declarative
scheme may avoid this, and it need not replace the one-off
AWS policy scheme.

[14] discusses a study probing the superiority of Activity
Diagrams over EPC (statelike) diagrams for customers/users

and for requirements engineers. The study was inconclusive,
but weighed in favor of Activity Diagrams for
customers/users, which would describe the intended
audience for AWS. It was interesting that requirements
engineers preferred EPC diagrams, and it would be useful to
consider them for polices insertable by technology-oriented
stakeholders.

[15] describes building a secure system via a
walkthrough of resources and reviewing their lifetimes. It
focuses on allow/deny decisions, does not address filtering
return results, and does not provide for access control
configurable based on multiple criteria. As with UMLSec
and SecureUML, this method is complimentary to AWS.

We are aware that AWS has a strong flavor of Aspect
Oriented Programming, and we may exploit AOP features in
future work. For now, our judgment is that the simple-
minded conditional insertion paradigm of AWS is still under
study and is sufficient for our target audience.

VIII. FUTURE WORK

While the textual form of the AWS DSL is successful in
eliciting access control requirements, it does not yield
policies that can be inserted directly into executing
workflows. By using a GUI DSL instead, policies could be
formatted in a controlled way that could result in automatic
code generation leading to automatic policy enactment and a
very good correspondence between stakeholder formulation
and actual execution. This could result in high volumes of
policies, which could conflict with each other and could
incur composition errors when multiple policies target the
same flow. Attempts to use AWS without addressing conflict
checking, composition, completeness checking, would likely
lead to unstable systems and a loss of user confidence.

IX. CONCLUSION

We have demonstrated that by using a blend of MDE and
SOA techniques and analysis, it is possible to elicit
meaningful access control requirements from domain experts
not trained in access control techniques. We showed that
although a DSL could serve as a specification language, the
choice of DSL (perhaps a GUI DSL) would make a
difference in the productivity and comfort level of
stakeholders using AWS. Regardless, we found that using
AWS to elicit policy produced novel, previously
unarticulated requirements at both the access control level
and a general application level. We believe that future work
will improve AWS, and it may be applicable in policy
domains beyond access control. There is still much work to
do in the realm of policy-reactive CIs and in coordinating
with existing and complimentary approaches. AWS is a good
starting point.

ACKNOWLEDGMENT

We acknowledge Kevin Patrick, the principal
investigator of the PALMS project, for his generous support
in developing the PALMS-CI. We also acknowledge the four
experiment subjects for their time and valuable insights
regarding requirements and the policy proposition.

Request for approval of our experiment protocol has been
made to UC San Diego’s Institutional Review Board and is
pending. We expect approval by mid-April 2010.

REFERENCES

[1] J. Juerjens. Security Systems Development with UML. Springer-
Verlag Berlin Heidelberg, 2003.

[2] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based
Modeling Language for Model-Driven Security. Proceedings of the 5th
International Conference on The Unified Modeling Language. pp426-
441, Springer Verlag, 2002.

[3] A. Bhattacharjee and R. Shyamasundar. Activity Diagrams: A Formal
Framework to Model Business Processes and Code Generation.
Journal of Object Technology. Vol 8, No 1, Jan 2009.

[4] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. EARS (Easy
Approach to Requirements Syntax). 17th IEEE International
Requirements Engineering Conference. Atlanta, GA, Sept 2009.

[5] G. Sindre. Mal-Activity Diagrams for Capturing Attacks on Business
Processes. Lecture Notes in Compter Science. Springer
Berlin/Heidelberg. Vol 4542/2007.

[6] The Workflow Reference Model. The Workflow Management
Coalition, Jan. 1995.

[7] http://www.workflowpatterns.com/

[8] M. Broy, I. Krueger, and M. Meissinger. A formal model of services.
ACM Transactions on Software Engineering and Methodology
(TOSEM). Vol 16, Issue 1, 2007.

[9] http://www.springerlink.com/content/g0velc4fv7gp9qmw/

[10] https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=149

[11] Process Aware Information Systems

[12] http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5328644&
isnumber=5328460&tag=1

[13] https://sosa.ucsd.edu/ResearchCentral/view.jsp?id=149

[14] G. Gross and J. Doerr. EPC vs. UML Activity Diagram – Two
Experiments Examining their Usefulness for Requirements
Engineering. 17th IEEE International Requirements Engineering
Conference. Atlanta, GA, 2009.

[15] J. Viega. Building security requirements with CLASP. Proceedings of
the 2005 workshop on Software engineering for secure systems –
building trustworthy applications. St Louis, MO, 2005.

