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Pathophysiology of Massive Infantile Spasms: Perspective on
the Putative Role of the Brain Adrenal Axis

Tallie Z. Baram, MD, PhD
Department of Neurology, University of Southern California, and Division of Neurology, Childrens
Hospital Los Angeles, Los Angeles, CA.

Abstract
Massive infantile spasms are an age-specific seizure syndrome of infancy. Uniquely, the spasms
respond to hormonal manipulation using adrenocorticotropic hormone (ACTH) or glucocorticoids.
A hypothesis explaining the efficacy of hormonal therapy, age-specificity, multiple causative
factors, and spontaneous resolution of infantile spasms is presented. Corticotropin-releasing
hormone (CRH), an excitant neuropeptide suppressed by ACTH/steroids, is implicated. Evidence
for the age-specific convulsant properties of CRH is presented, and a putative scenario in which a
stressinduced enhancement of endogenous CRH-mediated seizures is discussed. Clinical testing of
the CRH-excess theory and its therapeutic implications are suggested.

Massive infantile spasms (MIS) represent a seizure disorder with unique clinical and
electrographic features [1-4]. It is relatively common (1:2,000–4,000 births [5, 6]) and has
been known to respond to adrenocorticotropic hormone (ACTH), since 1958 [7]. Long-term
intellectual outcome of affected infants, however, remains poor, with 76 to 95% of survivors
having moderate to severe mental retardation [1, 3, 6, 8]. Therefore, MIS continues to attract
research concerning both pathogenesis and therapy. Several large series [1, 3, 9-11] and
recent reviews [6, 8, 12-14] have focused on clinical and electroencephalographic
phenomenology of MIS, and on the therapy and outcome aspects of this entity. Here I
introduce an age-specific endogenous-convulsant hypothesis for the pathophysiology of
MIS. The hypothesis implicates an endogenous neuropeptide, which is known to cause
seizures in infant rats, and is suppressed by ACTH and glucocorticoids (GCs). I shall present
evidence for this hypothesis, discuss some of its predictions for treatment options, and place
it in the context of current therapeutic controversies.

Definition and Description
Infantile spasms were first described by West [15] in 1841. Reports of an infantile
myoclonic epilepsy with poor neurodevelopmental outcome appeared in the European
literature, under the names West syndrome, Salaam epilepsy, and others. In the 1950s, Gibbs
and Gibbs [16] defined hypsarrhythmia as the high-voltage, chaotic electrographic
counterpart of MIS. The ictal correlates of the spasms themselves were delineated by
Hrachovy and associates [17]. The poor response of infantile spasms to conventional
anticonvulsants [1-4] led to the discovery of the efficacy of ACTH in patients with MIS [7],
and to the use of this hormone as well as GCs as the major therapeutic agents for this
disorder.
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The syndrome of MIS consists of a constellation of myoclonic seizures in an infant, whose
EEG pattern is that of hypsarrhythmia or its variants [1-4, 7-11, 14, 17]. The
electroencephalographic (EEG) pattern, response to therapy, and poor outcome distinguish
MIS from a variety of other myoclonic epilepsies of infancy [1, 18]. Furthermore, MIS is a
time-locked entity; it arises in infancy after a delay from the time of insult and, in the
majority of cases, disappears spontaneously. Even without treatment, 89% of patients are
reported to be spasm free by 5 years of age [19].

Proposed Pathophysiology
MIS develops in infants with a variety of central nervous system (CNS) pathologies [1-4].
Structural anomalies, tuberous sclerosis, and other phakomatoses are commonly associated
with MIS. Prenatal as well as peri- and postnatal infections, stroke, trauma, and even
chromosomal aberrations have all been implicated as causative factors. This multitude of
associated factors has suggested that MIS may be a “final common pathway” or an age-
specific yet cause-nonspecific response of the brain [1, 20, 21].

Mechanistic theories for the development of MIS have included autoimmune dysfunction
[8], developmental “arrest” [21], and brainstem [8] and unihemispheric dysfunction [22].
Any putative mechanism for MIS must explain, or at least be compatible with, most of the
unique features of this seizure disorder. Some of these are: How can a single entity have
diverse causes (vide supra)? Why does MIS arise after a period of delay? Why only in
infancy? Why does it disappear? Why is MIS associated with profound and lasting cortical
dysfunction? Why does it respond to ACTH and GCs?

The efficacy of ACTH and prednisone in elimination of the spasms and normalization of the
EEG has been one of the few noncontroversial issues in MIS since the initial report, in 1958,
by Sorel and Dusaucy-Bauloye [7]. ACTH and GCs result (in 60–80% of patients) in a
complete, sudden, and rapid cessation of overt seizures [1-4, 8, 11], commonly within days
[23]. Furthermore, the high-voltage hypsarrhythmic EEG normalizes or is improved. This
response to ACTH and steroids is considered an all-or-none phenomenon [2, 4, 8, 10-12],

Several mechanisms may explain the observed efficacy of ACTH and GCs. ACTH and
steroids may have intrinsic anticonvulsant properties [24, 25]. Some authors consider ACTH
superior to prednisone [23]. The former may act as an anticonvulsant per se [26] or result in
higher, more sustained elevation in GC levels [23]. Animal studies regarding the
anticonvulsant properties of GCs and ACTH are inconclusive, i.e., both convulsant and
seizure-suppressant effects have been reported [24-27]. Few studies have addressed the
effects of these compounds in infant animals [26, 28]. Direct effects of GCs on neuronal
excitability in the adult have recently been reviewed [25]. GCs may also act indirectly by
modulating neurotransmitter or second messenger systems [25]. GCs, acting via specific
receptors, modulate the expression of a number of genes in the CNS, and may thus alter
neuronal excitability as well [29]. ACTH may accelerate CNS myelination and dendritic
formation, and thus may shorten the vulnerable, hyperexcitable epoch of infancy [21].

An alternative explanation of ACTH and GC efficacy in MIS is that both hormones suppress
an intrinsic convulsant with inherent neuronal excitation properties. Abundance of this
convulsant or its receptors, or receptor sensitivity, are abnormally increased in infants with
MIS. The abnormal levels and excitant properties of this hypothetical molecule should be
age specific and occur in infancy only. Does a substance fulfilling these requirements exist?
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Corticotropin-releasing Hormone and the Brain-Adrenal Axis
Corticotropin-releasing hormone (CRH) is a 41-amino acid neuropeptide isolated originally
from the mammalian hypothalamus [30]. In response to a variety of stressful stimuli, the
synthesis and secretion of this neuropeptide are increased [31]. CRH acts on the pituitary to
promote the release of ACTH, which, in turn, enhances GC synthesis and release from the
adrenal. ACTH and GCs act via a negative feedback mechanism to suppress the synthesis
and secretion of CRH [31, 32]. This brain-adrenal axis and the negative feedback regulators'
effects of ACTH and GCs are shown in Figure 1.

The developmental pattern of CRH gene expression in the rat has recently been elucidated
(Fig 2, top panel). CRH synthesis commences during late fetal life, but diminishes
significantly perinatally [33, 34]. CRH synthesis remains low during the first postnatal days,
then increases to adult levels. The prevalence of CRH receptors (measured by binding
studies) in the developing rat brain has a different time course; receptor number is maximal
during the first postnatal week [35]. Thus, during the first postnatal week, there is a large
number of unoccupied CRH receptors throughout the rodent brain. Maximal receptor
concentration is found in laminae III and IV of frontoparietal cortex, cerebellum, and certain
brainstem nuclei [36].

Nonendocrine Effects of Corticotropin-releasing Hormone in the Central
Nervous System

CRH and its mRNA are distributed in specific CNS regions; outside the hypothalamus, high
peptide concentrations are found in the amygdala, inferior olive, and some brainstem nuclei
[37, 38]. CRH has excitant properties on a wide variety of neurons in several species
[39-44]. In vitro studies of hippocampal slice preparation [39] and in vivo eiectrographic
investigations [40-42] amply document that CRH increases neuronal excitability. In adult
rats, CRH administered into the cerebral ventricles results in epileptiform discharges in
amygdala [41] and hippocampus [42], and 3 to 7 hours later, in overt, “limbic” seizures [41].

We have recently found CRH to be a far more rapid and potent convulsant when
administered to infant rats [45, 46]. Seizures occur with a latency of as little as 2 minutes,
and with CRH doses as low as 7.5 × 10−12 mol (compared with 1,500 × 10−12 mol in the
adult). The potency of the peptide is inversely related to age, and diminishes rapidly in the
“juvenile” versus the “infant” rat [45]. The effects of increased abundance of the
endogenous neuropeptide on brain excitability or susceptibility to seizures are not known at
the present time.

The CRH-Excess Theory of Massive Infantile Spasms
Various types of injury to the developing brain may be followed by MIS [1, 6, 21]. We
suggest that the difference between those injuries that lead to MIS (in symptomatic cases),
and those that do not, lies in their effects on CRH gene expression and secretion. Stress has
been shown, in laboratory animals, to increase CRH gene expression [47] and secretion [48]
and to alter the brain-adrenal axis throughout life [49, 50]. Humans with depression and
those with anorexia nervosa have increased CRH levels in the cerebrospinal fluid (CSF), and
an abnormal CRH-ACTH-GC axis [51-53].

The presence of individual variability in the response to a variety of stressors is currently
being recognized in neonates and infants [54]. The relevance of such variability to short- and
long-term health and susceptibility to a number of illnesses is under intense study [54-56].
Abnormally great CRH production, release, or response may thus result from either
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abnormal stress in early life, or an aberrant response to common stresses. Hypertrophy,
sprouting, and/or hyperfunction of specific CRH-containing neuronal pathways in the
brainstem [38] may lead to myoclonic seizures. Such neuronal sprouting response to injury
is well established in the hippocampus [57]. A candidate pathway in the case of CRH may
be the inferior olivodentatorubral circuit. Injury to afferent (ventral tegmental or
dentatoolivary [58]) inpur results, after a delay period, in olivary “hypertrophy” and palatal
myoclonus in human adults [59]. The activation of such pathway may require a shorter delay
in children [60]. Only some candidate lesions result in hypertrophy and/or myoclonus [58].
CRH is a putative neurotransmitter in the inferior olive in the human and rodent [6l, 62].
CRH inputs to locus ceruleus and is a modulator of rapid eye movement (REM) sleep [63],
which is highly abnormal in infants with MIS [8]. Additionally, “overactivated” cortical and
limbic CRH-responsive neuronal circuits may underlie the highly abnormal EEG and the
global cognitive dysfunction.

Hypothetically, ACTH and GCs could act via suppression of this overabundant or overactive
endogenous convulsant, CRH. The developmental decline in the number of CRH receptors,
at least in the rodent [35], would predict the eventual resolution of increased CRH-induced
neuronal activation. Present information is insufficient to distinguish between two
possibilities, i.e., (1) infants with cryptogenic MIS have experienced unusual stresses that
lead to sprouting and hyperfunction of CRH-neuronal pathways, and (2) certain traits,
genetic or otherwise, of infants with cryptogenic MIS lead to an excessive CRH activation in
response to usual, “normal” stresses with subsequent MIS.

Human Evidence for the CRH-Excess Theory of Massive Infantile Spasms
Verification of increased brain levels of CRH in infants with MIS is inherently problematic.
Surgical biopsy and autopsy specimens are predominantly from older children with a history
of the disorder, at a time when the criteria for MIS are no longer fulfilled [64]. Attempts
have been made to measure CSF levels of CRH as well as of ACTH and cortisol, the major
human GC. Nalin and colleagues [65] found a reduction in CSF ACTH levels in 15 infants
with MIS. We have recently confirmed this finding in 14 patients controlled for age, stress
levels, and diurnal hormonal variation [66]. We also demonstrated diminished CSF Cortisol
levels in these infants. We found no difference in CSF CRH in infants with MIS when
compared with age-matched control subjects. In primates, however, CSF CRH levels do not
correlate with those in the hypothalamus [67]. Whether CRH levels in specific brain regions
in infants with MIS differ from those of control subjects is unknown.

The complex interactions of CRH, not only with the ACTH-GC axis, but with other
neurotransmitters are becoming evident. For example, serotonin (5-HT) plays a major role in
myoclonus [68], and chronic administration of ACTH to neonatal rats reduced cortical 5-
HT2 receptor density [69]. Excess 5-HT activity has been proposed as a pathogenetic factor
in MIS [69, 70]. CSF studies of neurotransmitter metabolites in CSF of infants with MIS
have yielded conflicting results [8, 71-73]. A body of evidence suggests that, in both humans
and rodents, 5-HT input from the raphe [74] may regulate the hippocampal input into the
negative feedback of the CRH-ACTH-GC axis ([75, 76] and see Fig 1).

Predictions and Perspective for the Therapy of Massive Infantile Spasms
The treatment for patients with MIS remains controversial. Although ACTH and GCs
remain the mainstay of pharmacological therapy, they may have little effect on neurological
outcome [1-4], Moreover, these hormones have significant, and occasionally fatal, side
effects [77]. Other antiepileptic drugs, i.e., nitrazepam [78], valproate [79], and vigabatrin
[80], as well as pyridoxine [81] combined with valproate [82], and γ-globulins [83], may
have some benefit, especially when used for several months. Few long-term therapy studies
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have controlled for rhe natural resolution of MIS [19, 84]. The CRH-excess hypothesis
predicts that specific receptor blockers of CRH [85] will arrest MIS. Such agents may prove
safer, with fewer side effects than ACTH and GCs [86]. Furthermore, by acting at multiple
CNS sites, they may also alter cognitive outcome of affected infants.

Surgical therapy has been found efficacious for a few infants with focal seizures along with
MIS, or intractable focal seizures in a child with a remote history of MIS [87, 88]. The
causes for MIS range from global CNS dysfunction to highly focal lesions (e.g., stroke
[89]). Therapy may address the “symptom,” via the use of anticonvulsants or ACTH/GCs,
or, in selected cases, may be successfully directed against the causative or instigating lesion.

In summary, we propose that abnormally increased CRH synthesis and activity, secondary
to antecedent injury or stress, results in selective neuronal hyperexcitability during a period
with high CRH-receptor abundance. “Hypertrophic” CRH-responsive brainstem circuits
could explain the spasms per se. Other CRH-responsive elements may also be deranged,
some permanently (via GC receptor alteration?), others transiently (REM sleep). ACTH and
GCs suppress CRH synthesis when given to infants with MIS, eliminating spasms,
normalizing cortical EEG, but not reversing permanent neuronal alterations.

This hypothesis explains the multitude of MIS causes, and the therapeutic efficacy of
ACTH/GC and of strategies for elimination of focal lesions. The hypothesis predicts that
compounds blocking CRH receptors, such as α-helical (9-4l)-CRH, may be useful for the
therapy of MIS. Finally, though sketchily documented at present, the proposed mechanism
provides a testable working hypothesis for MIS, promoting further studies of this unique
infantile seizure disorder.
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Fig 1.
Schematic of the interactions among the components of the corticotropin-releasing
hormone-adrenocorticotropic hormone-glucocorticoid loop. Arrows denote increased
synthesis and secretion. Blunt-ended lines denote a suppression of synthesis, release, or
both. Broken line implies a putative effect.

Baram Page 10

Ann Neurol. Author manuscript; available in PMC 2013 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 2.
Graphic illustration of the ontogeny of corticotropin-releasing hormone mRNA (CRH-
mRNA) in the hypothalamic paraventricular nucleus in the rat (from {34}). Superimposed is
a quantitative analysis of the ontogeny of CRH receptors in rat brain (from {35}, with
permission). The top panel demonstrates the observed data. The bottom panel shows the
hypothetical effect of stress during late gestation on CRH-mRNA. Birth occurs on the 21st
day of gestation. Shaded area = unoccupied CRH receptors.
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