
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Interactions of Microbes in Communities

Permalink
https://escholarship.org/uc/item/2hg5h7k6

Author
Sczesnak, Andrew

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hg5h7k6
https://escholarship.org
http://www.cdlib.org/


 

Interactions of Microbes in Communities 
 
 

By 
 

Andrew Sczesnak 
 
 

A dissertation submitted in partial satisfaction of the 
 

requirements for the degree of 
 

Joint Doctor of Philosophy 
 

with University of California, San Francisco 
 
 

in 
 

Bioengineering 
 

in the 
 

Graduate Division 
 

of the 
 

University of California, Berkeley 
 
 
 
 
 

Committee in charge: 
 

Professor Adam P. Arkin, Chair 
 

Professor Matthew Traxler 
 

Professor Michael Fischbach 
 
 
 
 
 
 

Fall 2018 
 
 



 



 1 

Abstract 
 

Interactions of Microbes in Communities 
 

By 
 

Andrew Sczesnak 
 

Joint Doctor of Philosophy 
 

with University of California, San Francisco 
 

in Bioengineering 
 

University of California, Berkeley 
 

Professor Adam P. Arkin, Chair 
 
 

 
Groups of microorganisms sharing an environment (microbial communities) are 

ubiquitous in nature. Microbial communities provide essential ecosystem services to 
other life on Earth by e.g., participating in global biogeochemical processes or 
interacting with a host’s immune system. Such microbes compete for scarce resources, 
modify an environment for their own purposes, actively war, and occasionally 
cooperate. Though numerous studies have surveyed the diversity of microbial life in 
different environments, few have determined the ways in which members of microbial 
communities interact with one another. Understanding the ways and means by which 
microbes interact is essential if we are to understand how microbial communities form, 
persist, and change over time. Knowledge of these processes will allow us to rationally 
design microbial communities to perform useful functions and predict how our actions 
might shift the balance of microbes in a community, and thus affect its function. In this 
work, we develop and apply novel methods for understanding microbial interactions. 
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Chapter 1. Introduction 
 
1.1. Diverse bacteria co-occur in communities throughout nature 
 

It has been known for some time that diverse bacteria are found in a wide variety of 
environments. Before the discovery of DNA, biologists devised many ways of 
categorizing microbial life, such as cellular morphology, staining, and growth assays in 
different media. Using these classic methods, it was determined that soil, feces, and 
wounds, among other environments, harbor microbes that look and act differently from 
one another. 

With the discovery of DNA and the advent of low-cost DNA sequencing, it became 
possible to quantify the relative abundance of all bacterial taxa in a sample by using the 
16S ribosomal gene, and others, as taxonomic markers. Predicated on the theory that all 
Earthly life shares a common ancestor, the 16S rRNA gene is well-conserved across all 
bacteria (Cole et al. 2014). Despite high levels of conservation, several “hyper-variable” 
regions of this gene have accumulated mutations over time, such that the phylogenetic 
distance of two organisms can be inferred from the similarity of their 16S hyper-
variable regions using one of many distance calculations (Schloss 2010). 

Applying the technique of 16S sequencing, at first using Sanger’s method, and later 
using short-read sequencers from Illumina and others, biologists have cataloged 
microbial life in samples as diverse as an acid mine drainage (Bond et al. 2000), a coral 
reef (Fernando et al. 2015), hyena guts (Heitlinger et al. 2017), smart phones (Lax et al. 
2015), and a nuclear waste site at Oak Ridge National Lab (Christensen et al. 2018). 
These efforts have generated billions of sequences, the analysis of which suggests which 
bacteria co-occur and in which environments. Though these catalogs have been highly 
informative as to what bacteria are present in an environment, they provide little 
information as to why they are present together. What are the genetic and 
environmental factors that cause some bacteria to thrive in one community but not 
another? Among all environmental factors, to what extent do microbe-microbe 
interactions play a role in community assembly, stability, and diversity? 
 
1.2. Microbial interactions can be computationally predicted 
 

Before asking why bacteria co-occur, it is useful to know with some degree of 
statistical certainty which bacteria co-occur. Taking advantage of the enormous amount 
of available 16S sequencing data, methods have been developed which infer microbial 
interactions based on co-occurrence across many environments. Though computational 
methods can’t tell us with absolute certainty that two bacteria interact, their results are 
useful starting points for follow-up experiments. 

In recent work, Friedman et al. developed a method to infer correlations between 
taxa in microbial communities from marker gene sequencing data: SparCC (Friedman & 
Alm 2012). An important and often overlooked aspect of marker gene (e.g., 16S rRNA) 
sequencing is that the resulting read count data is compositional, rather than absolute: 
the relative abundance of all taxa in a sample must sum to 1.0. Intuitively, if the relative 
abundance of one taxon increases, there must be a concomitant decrease in the relative 
abundance of other taxa such that the total remains unchanged. If correlations between 
taxa are calculated without accounting for this fact, they will tend to have negative 
correlations, “regardless of the true correlation between the underlying absolute 
abundances” (Friedman & Alm 2012). SparCC estimates the pairwise correlation 
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between taxa, accounting for compositional effects, by assuming the number of taxa in a 
dataset is large and the number of true correlations is small. 

Improving on this work, Kurtz et al. developed SPIEC-EASI, which additionally 
accounts for a variety of correlation network topologies (Kurtz et al. 2015). The authors 
used synthetic data to validate their approach, given the current lack of gold standard 
microbial interaction networks. Both methods have been successfully applied to predict 
interactions between microbes in diverse communities. However, they do not address 
the mechanisms underlying these inferred interactions or whether the interactions affect 
community function. 
 
1.3. Mechanisms of microbial interactions 
 

Interactions between organisms are thought to take many forms. Perhaps the most 
intuitive interaction paradigms are competition, where both organisms require a single 
resource to grow, and cooperation, where both organisms experience a growth benefit 
in each other’s presence (Figure 1.1). Other modes of interaction include commensalism, 
where one organism provides a growth benefit without itself being affected, and 
predation, where one organism benefits by harming another (Grosskopf & Soyer 2014). 

Computational methods, such as those in 1.2, are only able to label putative 
interactions as “positive” or “negative.” Though we know there are multiple interaction 
types that fall under either category, such methods are unable to achieve that level of 
granularity. In addition, computationally inferred interactions lack a time component: 
they represent only a single snapshot of what is an inherently dynamic process. Though 
dissecting interactions over time is difficult with current methods, it was attempted in 
recent work by Venturelli et al. The authors selected a panel of organisms highly 
abundant in the human gut and subjected them to pairwise co-culture, reading out their 
relative abundances over time by 16S sequencing. Using this pairwise interaction data, a 
model was built that predicts the structure and dynamics of communities assembled 
from subsets of the panel of organisms under study. One interesting finding of this 
work is that pairwise interactions explain most observed community structure. For 
example, if organism X interacts with organism Y, and organism Y interacts with 
organism Z, the influence of X on Z via X à Y à Z is far less important than the direct 
influence of X on Y, or Y on Z (Venturelli et al. 2018). This has important implications 
for understanding microbial communities, where the complexity assumed to exist via 
these “indirect” interactions may be overstated. 
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Figure 1.1. The six basic motifs of microbial interactions. Blue and yellow circles denote different 
microbial strains respectively, while boxes represent metabolites. Stimulating and inhibitory 
interactions mediated by taxon-specific traits or metabolites are indicated with red and green arrows 
respectively. In case of a syntrophy, the first microbe in the food chain (blue circle) is inhibited by the 
accumulation of its own waste product in the environment (mainly via thermodynamic limitations). 
This inhibition is relieved by the second microbe (yellow organism), which uses the waste product of 
the first microbe as a food source. Hence, both organisms benefit from the presence of the other. 
(Figure and caption adapted from Grosskopf et al., 2014) 

 
Among microbes, competition for resources (e.g., iron or a carbon source) is likely 

the most common mode of interaction. It is assumed to occur between any arbitrarily 
chosen pair of taxa that occupy the same or similar ecological niche. Perhaps more 
interesting than instances of direct competition, however, are cases where one microbe 
has figured out how to get a leg up on its competitors. 

Bacteriocins are short, peptide toxins, produced by one taxon to inhibit the growth 
of other, generally closely-related taxa. Given the likelihood that two closely-related 
taxa directly compete for resources, bacteriocins are a means by which one taxon might 
gain a fitness advantage over its relatives. Though the first bacteriocin (colicin) was 
identified in E. coli, similar toxins are broadly found in diverse microbes (Riley & Wertz 
2002). A recent survey of the pan-genome of plant-associated Pseudomonas identified the 
presence of at least 13 bacteriocin and 7 antibiotic biosynthesis gene clusters (Loper et 
al. 2012). The secretion of such molecules can be harnessed to modulate the abundance 
of microbes in a community and modify its function. For example, some strains of 
Pseudomonas are known to protect crops against fungi by secreting toxic molecules 
(Haas & Défago 2005). By inoculating crops with biocontrol strains of Pseudomonas, the 
abundance of fungi decreases, and the microbial community becomes less phytotoxic. 
Methods to identify this type of interaction in a high-throughput way could facilitate 
the discovery of useful microbes or pathways, and are addressed in Chapter 4 of this 
work. 
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Perhaps it is our human bias to think that elements of our culture, like cooperation, 
exist in other more distantly-related lifeforms. Nevertheless, microbiologists have 
looked for examples of cooperation among microbes, and have found them. Whereas 
cooperation between humans is the domain of philosophers, in the study of cooperation 
between microbes, microbiologists have the benefit of statistical and genetic analysis. A 
priori, one might conclude that cooperation between unrelated taxa is unlikely to occur 
in nature: the most foundational premise of evolution is that a gene’s highest purpose is 
to make copies of itself, and itself only. Why would one organism, a collection of genes, 
help an unrelated organism reproduce? How can organisms with a mutualistic 
relationship protect themselves from cheaters who consume a shared resource without 
contributing? 

Recent work has demonstrated that not only does cooperation occur in nature, it can 
spontaneously occur in long-term evolution experiments (Poltak & Cooper 2010). 
Rather than being detrimental to participants, cooperation may lower the overall energy 
expenditure of a community (Morris et al. 2013). One early model based on the iterated 
prisoners’ dilemma demonstrates how mutualism between two non-competing taxa can 
evolve and persist (Doebeli & Knowlton 1998). Another model suggests that 
cooperating communities limit their susceptibility to exploitation by physically 
excluding non-participants (Momeni et al. 2013). Both models rely on spatial structure 
to explain the evolution of mutualism. Supporting this result is the observation that 
microbial communities often form biofilms, which facilitate the exchange of molecules 
and serve to exclude cheaters. 

Instead of observations of human interactions informing our study of microbial 
interactions, perhaps lessons learned from microbes can explain human behavior. Like 
microbial communities, human communities (or biofilms) are defined by the close 
proximity in which their members live, a lack of trust of non-participants who might 
exploit their mutualism, and the resulting ways in which they create barriers to exclude 
non-participants. 
 
1.4. Summary 
 

Methods to study the interactions of microbes in communities have mostly focused 
on surveys of microbial diversity and the development of ecological models. Some 
interactions have been computationally identified from sequencing data, but few 
follow-up studies have been conducted to understand their nature. In general, there has 
been a lack of methods to dissect the mechanisms underlying microbial interactions in a 
high-throughput way. In this work, we develop and apply novel methods for 
understanding microbial interactions. 
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Chapter 2. Developing a high-throughput 16S sequencing and analysis platform 
 
2.1. Introduction 
 

As discussed in Chapter 1, some methods of inferring microbial interactions rely on 
accurate assessment of the presence or absence, and if possible, the abundance of 
microbial taxa in a community. The most common way of obtaining such an assessment 
is by high-throughput sequencing of the 16S rRNA gene. In this assay, the 16S rRNA 
gene is used as a taxonomic marker. Under the assumption that all bacteria share a 
common ancestor, the 16S rRNA gene—which is an essential part of the ribosome and 
hence an essential part of the cell—has highly conserved regions that are required for 
function, and highly variable regions under less selective pressure that differ greatly 
between taxa. The highly variable regions can be used to infer from which taxon a 
sequence has originated. Using PCR and high-throughput DNA sequencing, it is 
possible to count the number of occurrences of a highly variable region. Dividing this 
count by the sum of all such counts yields the relative abundance of a particular highly 
variable region—and therefore a particular taxon—in a given sample. 

In the first half of this chapter, we develop a method of 16S sequencing to suit the 
needs of our laboratory. Published methods are very good at this task, and were the 
basis for this work. It was necessary, however, for us to optimize previously-published 
protocols to reduce cost and increase throughput. In the second half of this chapter, we 
discuss the results of two experiments performed with this platform. 
 
2.2. Primers and PCR conditions for 16S amplification and sequencing 
 

To facilitate the rapid quantification of bacterial taxa in many samples 
simultaneously, we designed and optimized a PCR reaction which yields an Illumina-
tailed amplicon containing the V3/V4 region of the 16S ribosomal gene. This amplicon 
can be sequenced directly on Illumina MiSeq. In our method, each well of a 96-well 
plate contains a different DNA barcode, and the available barcode space allows eight 
plates to be sequenced in a single run. 

 

 

Figure 2.1. Schematic of 16S sequencing primer 
design. (a) A forward and reverse primer 
targeting the V3/V4 region of the 16S gene each 
include a barcode, random phasing sequence, and 
P5 or P7 Illumina adapters. Adapters on both 
ends of the amplicon allow for paired-end 
sequencing. (b) Illumina-tailed primers hybridize 
to 16S rDNA in a sample, generating complete 
barcoded 16S amplicons. (c) These amplicons are 
sequenced directly on Illumina MiSeq, where they 
hybridize directly to the flow cell without further 
manipulation. 
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We optimized this PCR reaction along three axes: number of PCR cycles, primer 
concentration, and amount of input genomic DNA. It is advantageous to minimize the 
number of PCR cycles required, as substantial bias can be introduced with increased 
cycle count (Polz and Cavanaugh 1998). PAGE purified primers such as those used in 
this assay are expensive, and so minimizing the amount of primer used per reaction can 
drastically lower the cost per sample. Additionally, it can be difficult to obtain large 
amounts of genomic DNA from certain samples, and so a protocol which requires a 
small amount of DNA allows greater flexibility in the types of experiments which can 
be performed. For example, microbes contained in groundwater are routinely studied in 
our lab, which are present in concentrations as low as 100,000 cells per liter. The amount 
of DNA that can be extracted from these samples is often low. Similarly, high-
throughput plate-based culture assays in volumes of 100 uL or less can yield little DNA 
when extracted. As such, we sought to minimize the amount of DNA required by our 
16S sequencing protocol while maximizing accuracy. Ultimately, we settled on a 
protocol that required 10 ng of input DNA, 2.5 pmol primer per reaction, and 20 cycles 
of PCR amplification.  

This 16S sequencing approach is substantially the same as other published 
approaches (Kozich et al. 2013; Fadrosh et al. 2014), though we added phasing in both 
the forward and reverse primer. Phasing improves the number of reads which pass 
Illumina’s quality filter by solving the problem of unbalanced base composition at each 
cycle (Wu et al. 2015). This platform gave members of our lab the ability to perform 
hundreds of 16S experiments in a single day, without the need to send samples to a core 
facility and wait weeks for results. 
 
2.3. Bioinformatic analysis of 16S sequencing data 
 

Rather than completely re-implement a 16S analysis pipeline, we chose to perform 
most pre-processing in-house, then pass the resulting reads to well-established tools 
such as UPARSE (Edgar 2013) and QIIME (Caporaso et al. 2010). Briefly, overlapping 
paired-end reads from a 300 or 600 cycle Illumina MiSeq run were first merged using 
PEAR (Zhang et al. 2014). Next, reads were de-multiplexed according to a parameter 
file mapping barcodes to plate well IDs. After quality filtering and trimming, the 
resulting reads were passed to either QIIME or UPARSE for OTU calling and 
abundance quantification. Our in-house tool was written entirely in Python and is 
available at http://github.com/polyatail/arkin. Using this pipeline and analysis tools, 
several 16S experiments were performed, the results of which are briefly discussed in 
the following subchapters. 
 
2.4. Screening for depletion of sulfate-reducing microbes 
 

This section has been adapted, with permission, from Carlson et al., Environmental 
Science and Technology, 2015. 

In numerous industrial applications, production of hydrogen sulfide (H2S) by 
sulfate-reducing microorganisms (SRM) is economically and environmentally costly. 
SRM, and their sulfate substrates, are present in oil and gas pipelines, where corrosive 
H2S is a primary cause of leaks. Specific inhibition of sulfidogenesis could reduce costs, 
and prevent loss of fragile ecosystems by contamination with crude oil and derivatives. 
Despite the industrial need for potent and selective inhibition of SRM, few molecules 
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are available to perform this task. No studies have systematically evaluated the potency 
and selectivity of known SRM inhibitors, such as inorganic oxyanions. 

We designed a 16S-based assay to test a panel of compounds for their ability to 
inhibit the growth of environmental SRM, and hence the production of H2S. Briefly, 
media containing concentration gradients of inhibitory molecules was inoculated with a 
microbial community obtained from the environment. Following incubation, genomic 
DNA was extracted, and the relative abundance of each microbe was determined via 
16S as described in section 2.1 and 2.2. If a molecule inhibited SRM, the relative 
abundance of SRM taxa decreased. Using a concentration gradient allowed us to 
calculate the IC50 of a compound by fitting the relative abundance data to a sigmoidal 
dose-response curve. 

 

Figure 2.2. Dose−response curves of MFP against 
growth, sulfidogenesis, 16S amplicon phylum 
relative abundances, and dsrA copy # in a marine 
enrichment culture grown in the presence of 
varying concentrations of MFP for 48 h. (a) 
Growth (filled symbols) and sulfide (open 
symbols). (b) Phylum level relative abundances 
from 16S amplicon sequencing. 
Desulfovibrionales was the sole Proteobacterium 
observed. (c) Sulfide, DsrA copy number, 
Desulfovibrionales relative abundances. 
 

To test the ability of compounds to inhibit SRM, we derived a marine microbial 
community from sediment obtained from San Francisco By. Sediment was used to 
inoculate an anoxic continuous flow reactor containing Instant Ocean (Thermo Fisher) 
marine mix at 35 g/L containing 2 g/L yeast extract. The resulting enriched community 
was harvested and stored in glycerol stocks at -80 C until use. In one experiment, 
monofluorophosphate (MFP) was serially diluted in microplates and inoculated with 
our enriched community at OD=0.02. Following incubation for 48h, the OD and 
community composition of each well was determined. 

Overall growth of the community was inhibited by MFP at high concentrations 
(Figure 2.2A). However, the reduction in growth was specific to Proteobacteria (Figure 
2.2B), of which Desulfovibrionales was the only taxon observed. A follow-up QPCR 
assay confirmed that copy number of the Desulfovibrionales 16S and dsrA genes 
correlated well with decreased sulfide production, as MFP concentration increased. This 
demonstrates that MFP specifically inhibits sulfide production by SRM. Compared to 
other oxyanions tested with our assay, MFP was among those with the lowest IC50 for 
sulfide production while maintaining high specificity (Table 2.1). This work 
demonstrates the potent and selective inhibition of SRM by MFP (Carlson et al. 2015). 
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Table 2.1. Inhibition by oxyanions of growth and sulfidogenesis in marine enrichment cultures. 

 
2.5. Screening for microbial interactions by dilute enrichment culture 
 

This section has been adapted, with permission, from Justice et al., Applied and 
Environmental Microbiology, 2017. 

As discussed in chapter 1, it is possible to infer interactions between microbial taxa 
by analyzing their relative abundances across different environments. Methods to do so 
are generally applied to marker gene sequencing data post-hoc, rather than to 
sequencing data that has been explicitly obtained for such purposes as part of an 
experiment designed to detect interactions. In this work, we developed a method to 
infer interactions by serially diluting an environmental sample and using it to inoculate 
large numbers of replicate enrichment cultures. Assuming cells in the dilute inoculum 
are thoroughly mixed, randomly distributed into each replicate culture, do not interact, 
and all grow at similar rates, we expect taxa to co-occur at a calculable frequency across 
all replicates (the null model). Differences between observed co-occurrence frequencies 
and the null model suggest that one or more of our assumptions are not true, e.g., the 
taxa interact. 

We obtained an initial environmental community from groundwater, which we 
estimated to have 37,000 cells/mL using the acridine orange direct count (AODC) 
method. This was used to inoculate 960 replicate enrichment cultures, of which 480 
were grown anaerobically in nitrate-reducing conditions, and 480 aerobically. Of these 
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two conditions, both were further subdivided into 96 replicates each of the inoculum 
diluted to 1e-1, 1e-2, 1e-3, 1e-4, and 1e-5. Following incubation, genomic DNA was 
extracted and 16S sequencing performed as described in sections 2.1 and 2.2. 

As expected, based on 16S rRNA gene amplicon sequencing data, enrichment 
cultures started with the highest inoculum concentrations had the highest operational 
taxonomic unit (OTU) richness. The communities receiving the most concentrated 
inoculum had statistically similar numbers of OTUs under nitrate-reducing and aerobic 
conditions (t test, P=0.10), with the nitrate-reducing communities averaging 26.5 OTUs 
(n=94; standard deviation [SD], 11.27 OTUs) and the aerobic communities averaging 
29.2 (n =96; SD, 10.53 OTUs). OTU richness declined in experiments that received less 
concentrated inocula (Figure 2.3). 

 
Figure 2.3. Relative abundance of OTUs from (y axes) across all 
communities (x axes) in the first four dilutions of aerobic enrichments and 
first three dilutions of anaerobic nitrate-reducing enrichments. Only the 
most abundant 11 OTU are shown for clarity. 

In the 1e-2 dilutions, the aerobic communities tended to have higher species richness 
than the nitrate-reducing communities (t test, P=2.09e-6), with nitrate-reducing cultures 
having on average 9.3 OTUs (n=96; SD, 5.7 OTUs) and the aerobically cultivated 
communities with 13.5 OTUs (n =96; SD, 6.4 OTUs). Aerobic communities that received 
the most diluted inoculum had on average only 2.3 OTUs (n=3; SD, 2.31 OTUs), and 
only a single OTU in a single sample was detected in the nitrate-reducing communities 
begun with the most dilute inoculum. In addition to species richness, we quantified 
how evenly communities were structured with Pielou’s index. At all dilutions, the 
anaerobic communities showed significantly reduced evenness, despite being seeded 
from the same populations that seeded the aerobic communities. These results indicate 
that the anaerobic cultivation conditions favor the outgrowth of a smaller number of 
taxa, results consistent with stronger selective forces under the anaerobic conditions. 
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Table 2.2. Summary of pairwise co-occurrence analyses for each condition and dilution. 

Given the probabilistic nature of how we seeded each replicate, we sought to 
identify pairs of taxa that may be interacting by observing if they were found more or 
less frequently together than one would expect by chance. For each condition and 
dilution, the total number of pairwise comparisons, the number of significant positive 
and negative associations, and the median strength of the associations for each 
condition and dilution are shown in Table 2.2. Overall, we identified 115 putative 
interactions (56 negative and 59 positive) among 34 OTU in the nitrate-reducing 
samples and 34 putative interactions (23 positive and 11 negative) among 15 OTU in the 
aerobic samples. There was very little overlap between interaction predictions across 
conditions, with only 14 OTU and 5 predicted interactions shared in the aerobic and 
anaerobic communities. Of those five shared interactions, all were positive associations 
among pairs of closely related OTUs. 
 

 
Figure 2.4. Networks depicting positive and negative associations between pairs of taxa in anaerobic 
nitrate-reducing communities (a) and aerobic communities (b). Graphs were made by the union of 
interaction graphs at each dilution for aerobic and anaerobic samples, respectively. Positive 
associations are shown in blue and negative associations in red. OTUs predicted to be strong 
competitors are indicated with a bold outline. The size of the node for each OTU scales with the 
estimated number of cultivable units of that OTU in the initial inoculum. 
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In the anaerobic samples, OTUs of the Pseudomonadaceae were positively 
associated with members of the Oxalobacteraceae and negatively associated with 
members of the Bacillaceae and Paenibacillaceae. Oxalobacteraceae, on the other hand, 
were positively associated with the Paenibacillaceae and negatively associated with 
members of the Neisseriaceae and Bacillaceae. The Bacillaceae had no positive 
connections to other families and were negatively associated with members of the 
Pseudomonadaceae, Oxalobacteraceae, and Paenibacillaceae. In aerobic samples, some 
positive associations between the Pseudomonadaceae and Oxalobacteraceae were 
identified, and the Neisseriaceae share negative associations with members of both the 
Oxalobacteraceae and Pseudomonadaceae families (Figure 2.4). 

This work provides a proof-of-concept for detection of interactions between taxa in 
an environmental sample based on their co-occurrence when grown in the laboratory. 
Compared to interactions inferred computationally, as described in section 1.2, these 
interactions can immediately be verified and used as a basis for further experiments: the 
organisms in question are not uncultivable, and the community from which they 
derived has been archived. Further, the data from this experiment required only one 
Illumina MiSeq run and can be obtained in less than a week. Future work surveying 
microbial taxa in environmental samples could benefit from the addition of this method 
to existing 16S pipelines (Justice et al. 2017). 
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Chapter 3. A device for high-throughput enrichment culture in situ 
 
3.1. A culture problem, or microbial dark matter 
 

Many surveys of bacterial life in diverse environments have been performed using 
16S sequencing, such as those discussed in Chapter 2. One astonishing conclusion of 
these studies is that we currently lack the ability to cultivate most microbial life in the 
laboratory. We have obtained countless 16S and other sequences from the environment 
that match no known cultivatable organism, and which suggest the creation of a new 
taxonomic unit (e.g., a candidate phyla). It has been suggested that half of such 
candidate phyla have no cultivated representatives (Rinke et al. 2013). Recent work has 
attempted to fill gaps in our knowledge of so-called “microbial dark matter” by 
algorithmically separating metagenome sequencing reads into bins (Hug et al. 2016), 
obtaining near-complete genomes of single cells obtained from the environment (Rinke 
et al. 2013), and cultivating samples in situ to approximate a cell’s preferred growth 
conditions (Nichols et al. 2010). Such studies have, and continue to, broaden our 
perspective on microbial evolution and diversity. 

The reason most microbial life remains uncultivated may be, in part, for historical 
reasons. For example, E. coli is perhaps the most well-studied bacterial taxon, originally 
isolated from the human gut in 1884 by Theodor Escherich and serving as a model 
bacterium for the next century (Blount 2015). The ease with which E. coli can be isolated 
from the mammalian gut, and stool, suggests that it is highly abundant in those 
environments. Several studies, however, including most recently those performed as 
part of the Human Microbiome Project (Human Microbiome Project Consortium 2012), 
reveal that E. coli is present in extremely low abundance in the human gut. Far more 
prevalent and far more abundant are Bacteroides taxa, such as B. thetaiotamicron. Why, 
then, aren’t we all studying B. theta? It turns out that E. coli is a facultative anaerobe able 
to utilize diverse carbon sources, while B. theta is an obligate (though aero-tolerant) 
anaerobe highly adapted to utilize complex dietary polysaccharides (Aaron G Wexler 
2017). E. coli readily grew on broth available to microbiologists in the late nineteenth 
century, when exposed to air. B. theta was not isolated until 1912—several decades 
later—with improved knowledge of bacterial metabolism and cultivation techniques. 

When cultivating a new organism in the lab, the complexity of the search space of 
media conditions must be considered. Varying only 10 simple parameters (e.g., pH, 
carbon source, amino acids, etc), each with 10 possible choices (e.g., pH range 4-8, skip 
0.4) results in 10 billion possible combinations—far more than can be methodically 
tested in a lifetime. Instead, cultivation of new organisms is first attempted in one of 
many standard media recipes available from e.g., American Type Culture Collection 
(ATCC) or German Collection of Microorganisms and Cell Cultures (DSMZ). 
Parameters of these standard recipes can be varied slightly to optimize growth, but the 
fraction of the search space which can be sampled remains quite limited. Where did 
these media recipes come from, anyway? They were developed and modified to 
cultivate microbes that were isolated without too much difficulty early in the history of 
microbiology—microbes like E. coli. This explains why most cultivated organisms 
belong to only four phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes 
(Rinke et al. 2013). Growth conditions for a handful of organisms in these phyla were 
determined early on—in some cases motivated by the desire to cure a specific disease—
and used to isolate and cultivate their nearest relatives. Had early microbiologists 
stumbled upon a different set of microbes first, perhaps we’d be studying them instead. 
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3.2. Cultivation conditions informed by genomics 
 

One technique which holds promise for the future is the determination of optimal 
culture conditions for a given microbe from its genome sequence. A genome might 
encode the ability to utilize e.g., a carbon source, which might be the optimal carbon 
source to include in a growth medium. Similarly, a genome might not encode the ability 
to synthesize e.g., one or more amino acids, which must then be supplemented in a 
growth medium. 

In one recent study, the authors used the genome and transcriptome of a Rikenella-
like bacterium to rationally design a growth medium. Found in the gut of the medicinal 
leech Hirudo verbana, the genome of their target bacterium encodes enzymes to utilize 
glycans derived from host mucin. By performing in vivo RNA-seq, the authors 
determined that these glycan-utilization enzymes were upregulated by their target 
bacterium when growing in the leech gut. This suggested that host glycans might be an 
ideal carbon source to include in a growth medium. By modifying a standard recipe for 
Eggerth-Gagnon medium to include porcine gastric mucin, the authors were able to 
cultivate their Rikenella-like bacterium in vitro (Bomar et al. 2011). 

While this result is intriguing, it is not the norm: most microbes remain uncultivated, 
and many lack a sequenced genome which can be used to infer cultivation conditions or 
as a reference for RNA-seq analysis. Perhaps most fascinating is the prospect that there 
are factors other than those directly knowable by genomic analysis which contribute to 
the cultivability of an organism. Growth history—the previous conditions in which a 
bacterium grew—may determine their ability (or lack thereof) to thrive in a new 
condition (Wolf et al. 2008). Similarly, interactions between a bacterium and its host or 
other members of a microbial community may be essential (Schnupf et al. 2015). Both 
possibilities are difficult to investigate using current methods of genomic analysis, and 
point to exciting new avenues of research. 

 
3.3 Cultivation of microbes in situ using the iChip 
 

Recently, methods of growing microbes in situ have gained much traction. Rather 
than attempting to isolate microbes by finding ideal growth conditions in the 
laboratory, these methods place uncultured organisms back into their native 
environments where presumably, the conditions are already ideal. Intuitively, this 
makes sense: why spend substantial effort creating something artificial that is, at best, 
an approximation for something abundantly available in nature? It is true that synthetic 
media can allow researchers to carefully control experimental conditions. But the vast 
majority of microbial cultures in the lab are already conducted using complex media 
containing e.g., yeast extract or blood. Do we truly lose that much control over growth 
conditions with in situ culture? Given the huge search space of media conditions that 
goes untested, we are even making use of all that control? 

One method is the isolation chip, or “iChip.” The iChip is a device which provides 
microbes their own micro-growth chambers, separated from each other and the 
environment by porous membranes through which small molecules pass. Each chamber 
is inoculated with, on average, zero or one cells via limiting dilution (Figure 3.1). The 
entire chamber is then e.g., buried in soil, where it is incubated long enough for micro-
colonies to grow. Following incubation, the chamber is retrieved, and its wells analyzed 
for growth.  
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Figure 3.1. Conceptual design of the ichip. (a) A plate 
containing multiple through-holes is dipped into a 
suspension containing microbial cells. (b) The dilution of 
the suspension is such that each hole captures (on 
average) a single cell. (c) The basic assembly of the ichip: 
membranes allowing diffusion cover through-holes on 
each side, and upper and bottom plates containing 
matching holes press the membrane against the center 
loaded plate. Once screwed in place, sufficient pressure is 
applied to seal the contents of each through-hole, which 
becomes a miniature diffusion chamber. (Figure and 
caption reproduced verbatim from Berdy, et al, Nat Protoc 
2017) 

 
 

One reason a microbe may resist cultivation is because it lacks an essential (but 
unknown) growth factor. For example, a culture-resistant Psychrobacter strain can be 
cultured in vitro in the presence of 3.5 nM of a 5-amino acid peptide, LQPEV, which is 
secreted by a “helper” strain found in the same environment. After growth in 
laboratory conditions, it was found that some cells evolved to no longer require LQPEV 
(Nichols et al. 2008). In a later study, the same authors found that many uncultivable 
microbes could be grown in the lab after forming micro-colonies in an iChip (Berdy et 
al. 2017; Nichols et al. 2010), perhaps via mechanisms similar to Psychrobacter. Future 
work will determine the prevalence of such signaling molecules in microbial 
communities, and how they affect community structure and function. 

In a recent study, the authors screened extracts derived from several iChips worth of 
soil bacteria (~10,000) for any which could inhibit the growth of Staphylococcus aureus, a 
common pathobiont. The extract of one microbe, Eleftheria terrae, was found to have 
good activity against S. aureus in their assay. Follow-up experiments were performed to 
find and determine the structure of the inhibitory compound, teixobactin. Genomic 
analysis of E. terrae allowed the authors to find, with high confidence, the non-
ribosomal peptide synthesis gene cluster responsible for teixobactin synthesis. 
Remarkably, they found teixobactin to be active against a broad range of gram positive 
pathogens and were unable to isolate strains of S. aureus or M. tuberculosis with 
appreciable resistance (Ling et al. 2015). Of note is the fact that extracts of 10,000 isolates 
had to be screened to find a single hit. We saw room for improvement by further 
miniaturizing the isolation chambers using droplet microfluidics. 
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3.2. Cultivation of microbes in situ using a novel droplet-based approach 
 

Rather than cultivate microbes in 1mm cylindrical chambers, like the iChip, we 
proposed to increase throughput by encapsulating single cells in 100um diameter 
agarose beads generated with a microfluidic device. By shrinking the effective size of 
the chamber each cell is grown in 1,500-fold, it is possible to incubate approximately 
384,000 beads in a device the same size as an iChip (Figures 3.2, 3.3). 

The workflow for using our device is largely the same as using the iChip. First, an 
environmental sample is diluted such that each chamber/droplet receives on average 0 
or 1 cells. Agarose beads are generated using a microfluidic device, and then incubated 
between two diffusible membranes in situ (Figure 3.4). In addition to dramatically 
increased throughput, our method allows for more rapid screening of micro-colonies in 
beads via flow cytometry, or with an acoustic printer. 

 

  
 
Figure 3.2. A 3D-printed (SLA) model of an iChip 
(Berdy et al, Nature 2017), produced in the Arkin 
lab. 

 
Figure 3.3. A 3D-printed (SLA) model of an in situ 
growth chamber designed to hold micro-scale 
beads, produced in the Arkin lab. 

 
Method 1. To screen micro-colonies in beads for their ability to inhibit the growth of 

another microbe, beads are re-injected into a second microfluidic device. This second 
device generates water-in-oil-in-water (w/o/w) double emulsion droplets which are 
sortable by FACS (Sukovich et al. 2017). These droplets each contain a previously-
incubated bead (which may or may not contain a micro-colony), suspended in media 
inoculated with e.g., S. aureus. After incubation in conditions permissive for S. aureus 
growth, the droplets are sorted via FACS. Droplets in which no S. aureus has grown 
may have contained an antibiotic, presumably produced by a micro-colony embedded 
in an agarose bead. Growth of S. aureus can be read via GFP, if a suitable GFP-
expressing strain is available, or forward- and side-scatter. Droplets negative for S. 
aureus are sorted into plates, with the goal of isolating and identifying the microbe 
present in the agarose bead. 

Method 2. The above method performs the screen in double-emulsion droplets, only 
to sort them into plates at the end of the process. In this method, beads are instead 
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acoustically printed onto standard agar plates, at a density such that use of space on the 
plate is maximized, but the likelihood of cross-contamination between beads is 
minimized. The agar plates can then be overlaid with e.g., S. aureus. Zones of inhibition 
surrounding beads following incubation suggest the presence of a bead harboring a 
micro-colony which produced an antibiotic. Micro-colonies at the center of zones of 
inhibition can be picked by hand or machine for further study. 

 

 

Figure 3.4. Design and operation of a device for in 
situ cultivation of microbes embedded in millions 
of agarose beads. An environmental sample is 
first diluted such that each bead will receive, on 
average, 0 or 1 cells. Beads are collected in a 
chamber which is sandwiched between two 20nm 
filters to allow for passive diffusion. The device is 
then incubated in e.g., soil or water, prior to 
analysis of beads via FACS or other assays.  

The method proposed here drastically increases the throughput of the iChip assay. 
Using Method 1, millions of micro-colonies can be screened in a single day for inhibition 
of a target microbe, like S. aureus. This represents a 1,000-fold increase over a previous 
study, which resulted in the successful isolation of the antibiotic teixobactin (Ling et al. 
2015). We believe our method could be developed to form a core part antibiotic 
discovery pipelines in the future. 
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Chapter 4. Finding genes mediating microbe-microbe interactions 
 
4.1. Introduction 
 

Though many methods have been devised to identify and quantify the abundance of 
microbes in environmental samples, there have been few methods to computationally 
predict their interactions, and even fewer methods to confirm interactions in vitro. This 
has largely been due to the complexity assumed to exist in communities of potentially 
hundreds of co-existing microbes, and an inability to cultivate many environmental 
microbes in the laboratory. 

In one recent study, the authors tested the idea of co-cultivating a cross-feeding pair 
of mutant strains of E. coli within water-in-oil microfluidic droplets. Mutants unable to 
synthesize tryptophan (W-) expressed RFP, while those unable to synthesize tyrosine 
(Y-) expressed GFP. Droplets were generated by encapsulating a very dilute suspension 
of both mutants, such that the assortment of cells into droplets was approximately a 
Poisson process. By setting the Poisson lambda parameter to a low value (e.g., 0.1), the 
authors ensured that most droplets were either empty or contained only a single cell. 
Following incubation, droplets were examined under a microscope. Those which were 
GFP+/RFP-, or GFP-/RFP+, contained only one mutant and appeared to divide slowly 
or not at all over the four day incubation period. Those which were GFP+/RFP+, 
however, contained both mutants and were observed to have robust growth of each 
mutant, which was presumably due to cross-feeding of the essential amino acids each 
auxotrophic mutant was unable to produce on its own (Park et al. 2011). This study 
proves that it is possible to detect cross-feeding interactions using droplet microfluidics. 

In this chapter, we describe a method for detecting cross-feeding and inhibitory 
interactions between mutants in a barcoded library using droplet microfluidics and 
Illumina sequencing. Compared to the aforementioned previous study, this method has 
the advantage of interrogating mutants spanning an entire genome in one experiment, 
rather than cherry-picking single mutants to test for cross-feeding interactions. To test 
our system, we used iron acquisition in E. coli, a well-studied pathway in which cross-
feeding is known to take place (Raymond et al. 2003). 
 
4.2. Pooled fitness assays may obscure interactions between mutants 
 

In bacterial genetics, a forward genetic screen is performed by generating many 
mutants, screening for a desired phenotype, then identifying mutations presumed to be 
causative. Prior to the advent of low-cost, high-throughput DNA sequencing, such a 
screen was rather laborious. Not only would the phenotype screen require isolation of 
individual mutants as colonies, the location of each mutation in the genome could only 
be inferred via conjugation mapping, in situ hybridization, or restriction digestion and 
gel electrophoresis. 

Today, this process requires far less work. Our lab has devised a method for 
simultaneously determining the phenotype of mutants spanning entire bacterial 
genomes in many conditions. Transposons bearing unique barcodes are randomly 
integrated into a genome via the Tn5 or Mariner transposon, generating a library of tens 
of thousands of mutants. The entire library is then inoculated into liquid or solid media 
and left to undergo several rounds of division. After growth, genomic DNA is extracted 
from the resulting cells. PCR with Illumina-tailed primers is used to amplify barcoded 
transposon DNA, which is then sequenced. The abundance of each barcode (i.e., each 
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mutant) before and after growth can be compared to determine how its representation 
has changed upon growing in the condition under test. If a mutant is less abundant, it 
has a growth defect in that condition. If a mutant is more abundant, it thrives in that 
condition (Wetmore et al. 2015). 

One important caveat of this workflow is that interactions between mutants are not 
considered. It may be difficult to observe growth defects of some mutants when they 
are complemented by interactions, such as metabolite exchange or cell-cell contact, with 
other mutants. One such well-studied interaction is iron acquisition in E. coli. 
 
4.3. Iron acquisition in E. coli is a prototypical positive interaction 
 

Siderophores are small, high-affinity, iron-chelating molecules secreted into the 
environment. There, they bind their substrate and are re-imported into the cell. Among 
known siderophores, enterobactin binds iron with the highest affinity. In iron-limited 
environments, E. coli synthesizes enterobactin molecules via a pathway encoded by the 
genes entABCDEF, imports ferric enterobactin via an ABC transporter encoded by 
fepABCDG, and releases iron from ferric enterobactin via destructive hydrolysis 
catalyzed by ferric enterobactin esterase (fes) (Raymond et al. 2003). 

An enterobactin molecule secreted into the environment by an E. coli cell may be 
taken up by any other cell. This includes other E. coli cells that do not secrete 
enterobactin and cells belonging to other taxa, such as Pseudomonas. In this way, 
siderophores like enterobactin form a “common good” resource for other organisms to 
use. In a mixed culture of ent, fep, and fes mutants, not all cells are able to synthesize or 
utilize enterobactin. These mutants form a prototypical community in which some rely 
on others to survive (Figure 4.1). Detection of phenotypes for these mutants presents a 
problem in pooled fitness assays, as discussed in section 4.2. Strains harboring 
mutations in ent genes cannot synthesize enterobactin, yet have no apparent fitness 
defect in a pooled assay, as they are able to utilize enterobactin molecules secreted by 
other mutants in the pool. 
 

 
 

 
Figure 4.1. Enterobactin cross-feeding in E. coli. 

 
Figure 4.2. Schematic of droplet BarSeq. 
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4.4. A method to identify cross-feeding obscured by pooled fitness assays 
 

One way to solve the problem of microbe-microbe interactions being obscured in 
pooled fitness assays is to revert to earlier, more laborious strategies that required each 
mutant to be isolated and tested alone. Obviously, this is not ideal. Instead, we devised 
a method to test each mutant on its own without sacrificing throughput. By 
encapsulating a mutant library in microfluidic droplets such that each receives only a 
single cell, the effect of growing each mutant in its own test tube (or as a discrete colony 
on a plate) is achieved (Figure 4.2). As a comparator, droplets can be generated such 
that each receives an average of 10 cells. In 10 cell droplets, cross-feeding can occur, 
whereas in single-cell droplets, it cannot. Assuming Poisson statistics, droplets 
receiving an average of 10 cells will occasionally receive only a single cell. However, the 
probability of this occurrence is only 1:10,000—sufficiently low that we reason it will be 
not interfere with the assay. 

Using this method with iron-deficient medium, we expect single cell droplets 
inoculated with fep, ent, or fes mutants to grow poorly, unable to either synthesize or 
utilize enterobactin. In droplets inoculated with an average of 10 cells (i.e., a random 
selection of many mutants), fep and fes mutants will grow poorly, unable to import or 
release iron from enterobactin. In contrast, ent mutants will thrive, acquiring iron via 
enterobactin secreted by other cells in the droplet. By comparing the results of fitness 
experiments in single- and multi-cell droplets, we can detect cross-feeding as an 
increase in mutant fitness when grown in a pool versus a droplet alone. 
 
4.5. Investigating the parameters of iron acquisition in enterobactin mutants 
 

To confirm our expectations of enterobactin-related mutants based on the literature, 
we performed a series of experiments to quantify various aspects of iron acquisition in 
E. coli. All experiments were performed in M9 minimal media with 22.2 mM D-glucose, 
1x Wolfe’s Vitamins, and 1x Wolfe’s Minerals (without iron), unless otherwise 
indicated. Prior to inoculation, cells were washed four times in the final media. Media 
and cultures were stored only in new plastic containers to avoid the unintentional 
addition of iron from material adhered to glass. Cultures were inoculated at OD=0.0005, 
the approximate OD at which 80 um spheres (microfluidic droplets) will contain an 
average of 0.1 cells each (i.e., lambda=0.1, assuming Poisson statistics). Cultures were 
incubated at 37C for 24h with orbital shaking in a Tecan Spark plate reader. 

First, we sought to determine the approximate amount of residual iron left in our 
cultures after washing. This was accomplished by obtaining growth curves for a panel 
of iron-related mutant and wild-type strains in a gradient of ascending iron (III) sulfate 
concentration. Iron (III) was chosen because this is the oxidation state found in aerobic 
aqueous solution. In these conditions, carrying capacity is presumably limited by iron. 
By obtaining a titration curve for iron, we can pinpoint the amount of iron at which the 
carry capacity, as measured by OD, increases. This is related to the amount of iron 
already present in the culture. 

An estimate of the amount of iron present in our washed cultures is between 0.04883 
uM and 0.19531 uM (Figures 4.3 and 4.4). This could be 1) carryover from the original 
rich media, 2) contaminating iron in any component of the media (i.e., vitamins, 
minerals, glucose, M9 salts), or 3) intracellular stored iron within ferritin complexes 
(Andrews et al. 2003; Abdul-Tehrani et al. 1999). While this is a non-negligible amount 
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of iron, it is unlikely to interfere with our experiments, as ent, fep, and fes mutants are 
unaffected by the addition of iron in amounts as high as 10 uM (Figure 4.5). 
Interestingly, it appears that fes and fepB recover, to some extent, in very high (50 uM) 
concentrations of iron. This may be due to leaks in the ferric enterobactin import and 
release pathways, which we discuss later. 
 

 

Figure 4.3. Wild-type E. coli MG1655 was grown 
in minimal media containing various 
concentrations of iron. After 24h, max(OD) begins 
to increase between 0.04883 uM and 0.19531 uM 
added iron, the first statistically significant 
difference (* p < 0.05, ** p < 0.01, Welch’s t-test). 
This provides a range of iron present in culture 
after washing and inoculation.  

 

Figure 4.4. Growth curves of wild-type E. coli 
MG1655 in minimal media with various 
concentrations of added iron (uM) indicated by 
color in legend box. Fitted growth curves show 
similar lag phases and growth rates, but different 
carrying capacities. 
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Figure 4.5. Carrying capacity of media containing 
various concentrations of added iron, for different 
enterobactin-related mutant strains of E. coli 
MG1655. Mutants deficient in enterobactin 
synthesis, uptake, and release are unaffected by 
the addition of iron as high as 10 uM. 

 

 

Figure 4.6. Carrying capacity of media containing 
5 uM ferric sulfate and various concentrations of 
citric acid, for different enterobactin-related 
mutant strains of E. coli MG1655. Mutants 
deficient in the enterobactin pathway recover to 
wild-type growth levels at approximately 50 uM 
citrate. At this concentration, iron is effectively 
chelated to form ferric citrate, which is imported 
via an ABC transporter. 

 
It is known that many E. coli strains have multiple redundant mechanisms for 

acquiring iron. Of the known mechanisms, three do not rely on exogeneously produced 
siderophores: enterobactin, ferric citrate, and direct import of ferrous iron. Our 
experiments are conducted aerobically, where ferrous iron (II) is rapidly oxidized to 
ferric iron (III), and as such, ferrous iron import is not likely to contribute much to iron 
availability. However, strains harboring mutations in the enterobactin pathway can still 
acquire iron via ferric citrate. As such, we sought to determine the extent to which 
uptake via the ferric citrate pathway was likely to occur in our experiments. Strains 
were inoculated in media containing 5 uM iron (III) sulfate in a gradient of ascending 
citric acid concentration. Large amounts of citrate were required to chelate iron such 
that it could be imported by enterobactin pathway mutants (Figure 4.6). As such, we 
concluded that uptake via the ferric citrate pathway was unlikely to occur in our 
experiments, where no citrate or iron is explicitly added to the medium. Mutants 
lacking fecA (Figure 4.6, blue line), the outer membrane component of the ferric citrate 
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transporter, have no phenotype in this assay. This is because our fecA single-gene 
mutant has an intact enterobactin pathway. 

In E. coli, transcription of genes related to iron acquisition is regulated by Fur (ferric 
uptake regulation). Iron-bound Fur represses transcription of gltA (citrate synthase, 
part of the TCA cycle) and induces transcription of acnA (aconitase A, which converts 
citrate to isocitrate) during times of iron abundance. In times of scarcity, Fur is unbound 
by iron, resulting in increased transcription of gltA and the accumulation of citrate. 
Though this suggests E. coli may produce citrate to chelate iron, this phenomenon has 
not yet been experimentally observed (McHugh et al. 2003). Still, given the large 
amount of citrate required to chelate iron, we believe it is unlikely for iron-starved cells 
inoculated at low OD to produce enough within the 24h duration of our experiments. 

Stored iron in ferritin complexes accounts for much of the iron in an E. coli cell. As 
such, we sought to determine how much growth could be expected from this source of 
iron alone. We obtained growth curves of our panel of strains in media with no iron 
added, at various starting ODs spanning several orders of magnitude. If stored iron is 
contributing to growth, there should be a fixed number of generations that each 
enterobactin-deficient strain can complete before intracellular iron stores are exhausted. 
This will manifest as a direct correlation of starting OD and final OD, where the only 
parameters determining the final OD of the culture are 1) the starting OD and 2) the 
number of generations completed on stored iron reserves. 

 

Figure 4.7. Carrying capacity of media with no 
added iron, for different enterobactin-related 
mutants. WT requires fewer doublings at higher 
starting ODs and more doublings at lower 
starting ODs, to reach the same maximum 
density. In comparison, ent and fep mutants are 
unable to acquire environmental iron and 
undergo a fixed number of doublings on 
intracellular iron reserves, reaching densities that 
depend on starting OD. 

Stored iron accounts for 5-6 doublings of enterobactin-related mutants in media 
with no added iron or citrate (Figure 4.7), as calculated by the log2 ratio of final OD to 
starting OD. After pre-growth for 24h, at which point stored iron should be depleted, 
entA and entB can no longer divide (Figure 4.8), lacking the ability to acquire iron from 
the environment. This number of doublings is highly plausible, given previously 
published data quantifying the amount of iron stored by a stationary phase culture 
grown in iron-rich medium (~0.025% of dry weight) versus the amount of iron stored 
by a culture grown in iron deficient medium (~0.005% of dry weight) (Abdul-Tehrani et 
al. 1999). Dividing these two quantities (0.025 and 0.005) suggests that stored iron 
allows ~5 doublings before reaching an iron-starved state. 
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Figure 4.8. After pre-growth for 24h, stored iron is 
depleted. This results in a de-correlation of 
starting OD and final OD as compared to Figure 
4.7. Strains lacking ent and fep genes do not 
divide, unable to acquire environmental iron and 
lacking stored iron. 

Interestingly, fes and fepB are less affected by the depletion of stored iron than entA 
and entB. This may be due to the off-target esterase activity of another enzyme (other 
than Fes) that can release iron from enterobactin after import. For fepB, it seems that 
import of ferric enterobactin does not strictly depend on all the components of the Fep 
ABC transporter. In Figures 4.5 to 4.8, fepA has little to no fitness defect compared to 
other mutants. FepA is the outer membrane substrate-binding component of the 
transporter and is perhaps dispensable when there is no competition for ferric 
enterobactin. Similarly, FepB is the periplasmic substrate-binding component and its 
function may be somewhat redundant with FepA—both bind ferric enterobactin with 
high affinity. Our fepB mutant has a substantially greater fitness defect in our 
experiments, however, suggesting FepB’s more essential role in ferric enterobactin 
uptake. For either the fes or fepB mutant, if the ability to acquire iron is even marginally 
intact during pre-growth to deplete stored iron, newly imported iron will offset some of 
the depletion. This explains the partial correlation between starting and ending OD we 
observe in Figure 4.8. 

Finally, we wanted to be sure that our ent mutants would respond to the addition 
of enterobactin, as expected. Strains were grown in media containing an ascending 
concentration gradient of purified, non-ferric enterobactin. As expected, ent mutants 
exhibited a dose-dependent increase in carry capacity (as measured by OD), while fepB 
did not (Figure 4.9). 
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Figure 4.9. Carrying capacity of media containing 
5 uM ferric sulfate and various concentrations of 
enterobactin, for different enterobactin-related 
mutant strains of E. coli MG1655. Mutants 
deficient in the enterobactin pathway recover to 
wild-type growth levels at approximately 0.5 uM 
enterobactin. 

In conclusion, we have shown 1) that enterobactin is necessary and sufficient for 
aerobic growth in iron-limited media in the absence of citrate, 2) that citrate is unlikely 
to contribute to iron acquisition unless explicitly added to the medium, and 3) residual 
iron in our cultures is likely intracellular stored iron, which can be depleted by pre-
growth for 24h in media without added iron. 
 
4.6. Screening an E. coli mutant library for interactions between mutants 
 

To test the method in 4.4, we used a barcoded transposon mutant library generated 
from E. coli BW25113, a strain nearly identical to E. coli MG1655. A frozen aliquot of the 
library was recovered in LB for 4h, then washed four times in M9-Glucose with no 
added iron. The washed culture was diluted such that an 80 um diameter sphere of the 
resulting dilution would, on average, contain 0.1 cells. The washed and diluted culture 
was then used to generate 80 um diameter microfluidic droplets in a T-junction PDMS 
device, using 2% RAN-008 surfactant (RAN Biotechnologies) in HFE-7500 (3M). HFE-
7500 is preferred to FC-40 (3M) as it is far less susceptible to electrostatic coalescence. 
The device was run for approximately 60 minutes, until 10 million droplets were 
collected. Assuming 10% of droplets receive one or more cells and that randomly 
inserted transposon mutants evenly cover all 3,789 non-essential genes represented in 
the library, 10 million droplets will represent each E. coli gene an average of 264 times in 
our assay. The resulting droplets were incubated for 24h in round-bottom 7 mL 
polypropylene tubes, at 37C, with shaking at 250 rpm. Tubes must be round-bottomed, 
and securely attached to the shaker, to reduce mechanical coalescence. Following 
incubation, 1 uL of droplets were suspended in 50 uL HFE-7500 on a slide and 
examined for growth under phase contrast. 
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Figure 4.10. Microfluidic droplets containing an E. 
coli BW25113 library, after 24h of growth. 100x 
magnification, Ph3. Full-color original photo was 
desaturated, inverted, and auto-contrast was 
applied in Adobe Photoshop. Arrows indicate 
droplets with detectable growth. White droplets 
are presumed empty. 

 
Four random frames like Figure 4.10, though larger and containing around 300 

droplets each, were used to calculate the percentage of droplets with growth. In total, 84 
of 1265 counted droplets grew, or 6.64% (target was 10%). We assumed that cells were 
distributed into droplets as a Poisson process, and that most droplets encapsulating at 
least one cell had detectable growth. Given those assumptions, in this experiment 93.6% 
of droplets received zero cells, 6.2% received one cell, and 0.2% received more than one 
cell. This represents a 31-fold enrichment of single-cell droplets to multi-cell droplets. 
The experiment was then repeated, pre-growing the mutant library for 24h to deplete 
stored iron reserves. In this experiment, 124 of 1319 counted droplets grew, or 9.4% 
(Figure 4.11). Therefore, 91% of droplets received zero cells, 8.6% received one cell, and 
0.4% received more than one cell, for a 21.5-fold enrichment of single-cell to multi-cell 
droplets. 

 

 

Figure 4.11. Microfluidic droplets containing an E. 
coli BW25113 library, after 24h of growth in 
droplets following 24h pre-growth in media with 
no added iron. 100x magnification, Ph3. Full-color 
original photo was desaturated, inverted, and 
auto-contrast was applied in Adobe Photoshop. 
Arrows indicate droplets with detectable growth. 
White droplets are presumed empty. 
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After growth, the droplet emulsion was chemically broken. First, 2 mL perfluoro-1-
octanol (Sigma, 370533-25G) was added to each sample and left to settle for several 
minutes until an aqueous (upper) and organic (lower) phase were visibly separate. 
Next, the aqueous phase was carefully removed and transferred to a 15 mL tube. To 
further separate the phases, each sample was spun briefly and slowly at 100 x g for 1 m 
such that the cells remained in suspension. The aqueous phase was again carefully 
removed, placed in a 15 mL tube, and spun at 3.2k x g for 10m to pellet the cells. The 
cells were then washed in 1mL PBS to remove any residual organic phase and 
transferred to a 1.5 mL tube. Finally, the cells were pelleted in a micro-centrifuge at 10k 
x g for 1m, the supernatant was removed, and the samples were kept at -20C until ready 
to process. Genomic DNA was obtained from each sample using the DNeasy Blood & 
Tissue Kit (Qiagen, 69506). BarSeq PCR, sequencing, and data analysis were performed 
as previously described (Wetmore et al. 2015; Price et al. 2018). 

 
Figure 4.12. Comparison mutant fitness when grown alone and in co-culture confirms cross-feeding of 
enterobactin by ent mutants, but not fep mutants. Fitness scores of each gene when grown alone 
(vertical axis) and in co-culture (horizontal axis) are reported as points. The dashed lines (y = x +/- 1) 
highlight positive (below the line) and negative (above the line) interactions, respectively. In iron 
deficient conditions, enterobactin synthesis mutants (entABCDEF, red points) grow poorly alone, but 
have no fitness defect in co-culture when able to obtain enterobactin secreted by other mutants. In 
contrast, enterobactin uptake mutants (fepBCDG, blue points) grow poorly both alone and in co-
culture, able to secrete enterobactin but not import it to acquire iron. Cross-feeding of some amino acid 
auxotrophs (green, purple, orange, and brown points) was observed in this assay. 
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Figure 4.13. Droplet BarSeq with 24h pre-growth to deplete stored iron reserves. Though cross-feeding 
of enterobactin by ent mutants is robustly recovered, potential amino acid auxotroph cross-feeding 
seen in Figure 4.12, is not. 

 
As expected, ent mutants had severe fitness defects (< -2) when grown alone in 

single-cell microfluidic droplets. When grown in a pooled culture, however, they had 
fitness values near zero, indicating no growth deficit (Figure 4.12). This confirms that 
previously reported cross-feeding of enterobactin by E. coli can be observed in our high-
throughput droplet BarSeq assay. In contrast, fep mutants had severe fitness defects in 
both conditions, as they are unable to import ferric enterobactin. Confirming our own 
results, fepA, which seems to suffer little from iron limitation, had no fitness defect. 
Other known cross-feeding interactions, such as previously-reported cross-feeding by 
amino acid auxotrophs, were not robustly observed in this assay. This is likely due to 
slower growth of auxotrophs in minimal media, even when cross-fed. Prototrophs 
handily out-compete auxotrophs in the race to divide and consume glucose. Though 
auxotrophs can grow in the pooled culture—and not in single-cell droplets—they are 
not able to grow fast enough to have a substantially different relative abundance in our 
droplet BarSeq assay. Supporting the lack of robust recovery, most amino acid 
auxotroph cross-feeding interactions seen in Figure 4.12 are not substantial enough to 
be seen after pre-growth for 24h (Figure 4.13). Further, fitness values less than -4 are 
mostly indistinguishable from each other due to low read counts. As such, genes which 
have, for example, a fitness value of -6 in single-cell droplets and a higher fitness value 
of -4 in pooled culture, are not examples of robust cross-feeding. 
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4.7. Discussion and future directions 
 

The experiments in this chapter demonstrate that it is possible to screen for positive 
interactions between microbes in a library using droplet microfluidics. Mutants unable 
to synthesize enterobactin grew poorly alone in droplets but recovered to wild-type 
growth levels when enterobactin-producing cells were present. Though amino acid 
auxotrophs appeared in area of the plot where positive cross-feeding interactions ought 
to be found (Figure 4.12), their growth rates were not observed to recover to wild-type 
levels, and did not persist when grown for an additional 24h (Figure 4.13). We believe 
that amino acid auxotrophs, even if cross-fed, do not double fast enough to maintain a 
presence in the pooled culture. Were the pooled culture passaged several times, the 
auxotrophs would likely be lost completely. 

One caveat of this assay, which has largely gone unaddressed in microfluidics 
experiments, is that organic compounds may diffuse out of one droplet, through the 
continuous phase, and into another droplet. This occurrence breaks the assumption that 
each droplet is its own isolated micro-reactor. One recent study attempted to quantify 
this occurrence, finding that fluorescein diffused between droplets on the order of days, 
while rhodamine diffusion could be detected in as few as 15 minutes (Gruner et al. 
2016). Importantly, the authors found that diffusion exponentially decreases with 
increasing distance between droplets. This suggests that an effective strategy to mitigate 
droplet cross-talk to is to increase the fraction of continuous phase in an emulsion (i.e., 
more oil, fewer droplets). 

Diffusion across the continuous phase is largely dependent on the surfactant used. 
Unfortunately, there have been no studies on the widely-used RAN-008 surfactant, the 
structure of which is proprietary and unpublished. Given the increased stability of 
droplets generated with this surfactant, we expect it to perform at least as well as 
common fluorinated PEG surfactants. In our experiments, droplets were thoroughly 
mixed during incubation in an excess volume of HFE-7500, and around 10% of droplets 
encapsulated viable cells. The volume of each droplet was around 268 pL, and the total 
volume of emulsion and excess HFE-7500 was 7 mL. The approximately 1 million 
droplets encapsulating a viable cell, it follows, made up 3.8% of the emulsion volume. If 
all such droplets produced a molecule which diffused into the continuous phase, it 
would effectively be diluted 26-fold. Further, the excess volume of HFE-7500 used 
places droplets an average of 1.6 droplet-widths apart during incubation. At this 
distance, we expect diffusion between droplets to proceed 100-fold more slowly than if 
droplets were packed (Gruner et al. 2016). If rhodamine cross-talk is the upper bound 
for rate of diffusion, the droplet spacing in our assay would produce detectable effects 
after 25 hours, at which point our experiments would have been concluded. While we 
cannot exclude the possibility that cross-talk occurs in our assay, a molecule would 
have to accumulate quickly in a droplet, diffuse more rapidly through the continuous 
phase than rhodamine, and be active in target droplets after a 26-fold dilution. Notably, 
we did not observe cross-talk of enterobactin the continuous phase, which would have 
resulted in no fitness defect of ent mutants in droplets. 

Cross-feeding of intermediates of tryptophan biosynthesis is known to occur in E. 
coli. In our assay, we observed a dramatic increase in fitness of trpD when grown in a 
pool, as compared to growth in single cell droplets. Similarly, trpE and trpC recovered 
slightly in pooled culture. However, the two final steps in tryptophan biosynthesis, 
catalyzed by trpA and trpB, grew poorly in both conditions. Since there are fewer 
potential cross-feeding intermediates for steps later in the pathway, this is to be 
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expected. These results suggest that other cross-feeding interactions are detectable 
using this assay. In this demonstration, conditions were chosen to detect cross-feeding 
of enterobactin. In future work, conditions might be chosen to detect cross-feeding of 
amino acids, or resistance to stressors (e.g., antibiotics). 
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Chapter 5. Concluding remarks 
 

In this work, we discussed current methods for inferring interactions between 
microbes, developed a method for 16S sequencing and applied it in two separate 
experiments, outlined a method for high-throughput cultivation of microbes in situ, and 
developed and tested a method for detecting interactions between E. coli mutant strains 
in droplets. We demonstrated how throughput can be increased by decreasing the size 
of bacterial cultures using microfluidic droplets, and how this increased throughput 
facilitates the detection of microbial interactions between members of a large library. 

While much effort up to now has been focused on determining what microbes are 
present in environmental samples and computationally inferring how those microbes 
interact, there is a lack of methods to determine interaction mechanisms. In this work, 
we outlined two methods using droplet microfluidics that can (1) increase the 
throughput of isolating uncultured microbes from the environment, and (2) reveal the 
genetics underlying microbial interactions. We discussed how isolation of uncultured 
microbes has led to the isolation and development of novel antibiotics, and will lead to 
the development of more useful therapeutics in the future. We discussed how, by 
uncovering genes responsible for microbial interactions, those genes might be 
harnessed to manipulate microbial communities and change community function. 

The application of controlled culture of microbes inside microfluidic droplets will 
reveal deeper insights into the structure, function, and assembly of microbial 
communities going forward. In the future, the assay we developed in chapter 4 will be 
used to identify microbial interactions in bulk, in a variety of conditions. By carefully 
choosing which culture conditions and microbes to study, genes and pathways with 
immediate applications in health, agriculture, and environmental remediation will be 
revealed. 
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