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Highlights Lay summary

� Human liver chimeric mice fed a western diet

develop NAFLD.

� Within the same chimeric liver, human hepatocytes
developed pronounced steatosis while murine he-
patocytes remained normal.

� Unbiased metabolomics and lipidomics of fatty
humanised mouse livers revealed signatures of
clinical NAFLD.

� Transcriptomic analyses showed that molecular
responses diverged sharply between murine and
human hepatocytes.

� This humanised NAFLD model is a physiologically
relevant, experimentally tractable model for the
study of steatosis.
https://doi.org/10.1016/j.jhepr.2021.100281
Fatty liver disease is an emerging health problem, and
as there are no good experimental animal models, our
understanding of the condition is poor. We here
describe a novel humanised mouse system and
compare it with clinical data. The results reveal that
the human cells in the mouse liver develop fatty liver
disease upon a Western-style fatty diet, whereas the
mouse cells appear normal. The molecular signature
(expression profiles) of the human cells are distinct
from the mouse cells and metabolic analysis of the
humanised livers mimic the ones observed in humans
with fatty liver. This novel humanised mouse system
can be used to study human fatty liver disease.
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Background & Aims: The accumulation of neutral lipids within hepatocytes underlies non-alcoholic fatty liver disease
(NAFLD), which affects a quarter of the world’s population and is associated with hepatitis, cirrhosis, and hepatocellular
carcinoma. Despite insights gained from both human and animal studies, our understanding of NAFLD pathogenesis remains
limited. To better study the molecular changes driving the condition we aimed to generate a humanised NAFLD mouse model.
Methods: We generated TIRF (transgene-free Il2rg-/-/Rag2-/-/Fah-/-) mice, populated their livers with human hepatocytes, and
fed them a Western-type diet for 12 weeks.
Results: Within the same chimeric liver, human hepatocytes developed pronounced steatosis whereas murine hepatocytes
remained normal. Unbiased metabolomics and lipidomics revealed signatures of clinical NAFLD. Transcriptomic analyses
showed that molecular responses diverged sharply between murine and human hepatocytes, demonstrating stark species
differences in liver function. Regulatory network analysis indicated close agreement between our model and clinical NAFLD
with respect to transcriptional control of cholesterol biosynthesis.
Conclusions: These NAFLD xenograft mice reveal an unexpected degree of evolutionary divergence in food metabolism and
offer a physiologically relevant, experimentally tractable model for studying the pathogenic changes invoked by steatosis.
Lay summary: Fatty liver disease is an emerging health problem, and as there are no good experimental animal models, our
understanding of the condition is poor. We here describe a novel humanised mouse system and compare it with clinical data.
The results reveal that the human cells in the mouse liver develop fatty liver disease upon a Western-style fatty diet, whereas
the mouse cells appear normal. The molecular signature (expression profiles) of the human cells are distinct from the mouse
cells and metabolic analysis of the humanised livers mimic the ones observed in humans with fatty liver. This novel
humanised mouse system can be used to study human fatty liver disease.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
The global spread of high-fat, high-sugar diets and sedentary
lifestyles carries with it a sharp rise in non-alcoholic fatty liver
disease (NAFLD).1 Hepatic steatosis is considered problematic
because it leads to inflammation and fibrosis, creating the more
serious condition known as non-alcoholic steatohepatitis
Keywords: Non-alcoholic fatty liver disease; Steatosis; Lipid metabolism; Human
disease modelling; Humanised mice.
Received 9 September 2020; received in revised form 3 March 2021; accepted 9 March
2021; available online 21 March 2021
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(NASH).2,3 NASH in turn triggers compensatory cell proliferation,
increasing the risk of hepatocellular carcinoma (HCC), which has
become the second leading cause of cancer deaths.4 Given that
steatosis seems to drive pathogenesis in all these major diseases,
there is a pressing need to understand how it changes liver
function.

NAFLD has been extremely difficult to study in either human
patients or mice. Although transcriptomic, lipidomic, and
metabolic profiling studies of human livers are numerous, clin-
ical approaches are generally retrospective and human partici-
pants are not experimentally tractable. Studies using murine
models present different limitations: genetic models of NAFLD
based on single-gene alterations, such as the ob/ob or db/db
obese mouse strains, may not accurately reflect the typically
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polygenic human situation.5 Dietary models gain weight,
develop steatosis, and become insulin-resistant, but exhibit
much less liver injury than human NASH patients, suggesting
fundamental differences in rodent and human livers.5,48 Indeed,
metabolic profiling of rats fed a methionine-choline-deficient
diet—which inhibits fatty acid oxidation, thereby leading to
NASH—identified species differences in bile acid, insulin, and
leptin levels,6 limiting this model’s utility for studies of bio-
markers or disease progression.

Having recently developed human liver chimeric mice to
study human drug metabolism,7 we took a similar approach here
to study NAFLD. We demonstrate that humanised TIRF (tran-
gene-free, Il2rg-/-, Rag2-/-, Fah-/-) mice develop NAFLD when fed a
Western-type high fat/high sucrose diet (WD). Metabolic and
histological changes of human hepatocytes in xenograft mice
resemble those found in human NAFLD, whereas the molecular
signatures of the human and murine hepatocytes within the
same chimeric livers differ greatly. This chimeric mouse model
therefore offers an ideal platform for studying the response of
human hepatocytes to diet-induced NAFLD.
Materials and methods
Animals and diets
The TIRF strain was generated by CRISPR/Cas9 deletion of the 3
genes in mouse zygotes as we described previously7 and crossing
out the P450 oxidoreductase (Por) gene from the PIRF (Por-/-

Il2rg-/-, Rag2-/-, Fah-/-) strain.7

Human hepatocytes (1 × 106 per mouse) were transplanted by
splenic injection into the livers of 3-week-old male and female
TIRF mice maintained on the drug nitisinone (NTBC) from the
drinking water as previously described.7,8 Immediately after
transplantation, we applied selection pressure toward trans-
planted chimeric human hepatocytes (CHHs) by step-wise
reduction and withdrawal of NTBC.7,8 human albumin (hALB)
levels (ELISA, Bethyl Laboratories, Inc., Montgomery, TX, USA) in
the plasma of transplanted mice was measured to gauge the
extent of chimerism.9 Only mice with >70% human liver chime-
rism were used and put on NTBC (no tyrosinemic stress of mu-
rine hepatocytes) for the remainder of the study.

Humanised mice were fed normal chow (NC) (2019 Teklad
global 19% protein extruded rodent diet, Envigo, Madison, Wis-
consin USA) or WD (D12079B, RD Western Diet, Research Diets,
New Brunswick, New Jersey, USA) for 12 weeks. Mice were
euthanised after a 6-h fast and plasma was collected. Livers were
then harvested and snap-frozen in liquid nitrogen and stored at
-80�C. All animal experiments were approved by the Institutional
Animal Care and Use Committee. Animals received humane care
according to the criteria outlined in the NIH Guide for the Care
and Use of Laboratory Animals.

Metabolomic and lipidomic analyses
Sample preparation and analysis for global metabolomics was
carried out at Metabolon Inc. (Durham, NC, USA) as described by
Hatori et al.,10 with modifications (see Supplementary Methods).

Lipids for untargeted lipidomics were extracted from snap-
frozen liver samples at Metabolon Inc. using dichloromethane
and methanol in the presence of deuterated internal standards.
Details for extraction and analysis can be found in the
Supplementary Methods.
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RNA-sequencing, data processing, and NAFLD consensome
analysis
Whole-transcriptome RNA-sequencing (RNA-Seq) was performed
using total RNA isolated using a Purelink RNA mini kit (Invitrogen
PureLink RNA Mini Kit, ThermoFisher Scientific, USA). RNA-seq
read pairs were aligned to a combined human (hg38) and mu-
rine (mm10) genome using STAR version 2.7.1a. RNA-Seq data is
available from European Nucleotide Archive, ENA accession code
(PRJEB35014). See Supplementary Methods for details of library
generation and gene expression quantification.

To generate the human NAFLD consensome, we first retrieved
a total of 9 Gene Expression Omnibus clinical NAFLD or NASH
case-control transcriptomics datasets (Table S6, section 3) (see
Supplementary Methods). Differential expression values were
committed to the consensome analysis pipeline as previously
described.11 Panther12 and Reactome pathway13 analysis was
used to evaluate enrichment of biological processes in NAFLD
consensome confidence transcripts (CTs) or H:M>1.2 genes. Node
high confidence transcriptional target (HCT) intersection analysis
was performed as previously described.14

Additional methods are described in the Supplementary
Methods.
Results
Human liver chimeric mice develop steatosis after 12 weeks
on a WD
To evaluate the susceptibility of xenograft mice to diet-induced
NAFLD, we developed the TIRF strain. In contrast to previous
Fah-/-/Rag2-/-/Il2rg-/- mice,15,16 this strain has no neomycin-
resistance cassettes that could confound results in several
ways. The neomycin phosphotransferase gene can influence the
metabolism of transgenic mice17; the transgene can alter gene
expression and has been shown to increase expression of both c-
myc and various liver genes18; and it was shown to reduce
fructose 2,6-bisphosphate and lactate in fibroblasts.18

Three-week-old male and female TIRF mice were humanised
by splenic injection of human hepatocytes from 1 of 3 different
healthy human donors (Fig. 1A). Three to 4 months after trans-
plantation, human chimerism was assessed by measurement of
hALB in the murine plasma and only mice with >70% human
hepatocytes were used in subsequent studies. Mice bearing hu-
man hepatocytes were randomised and fed either WD or NC for
12 weeks (Fig. 1A). To mimic low mitotic index of the human
liver, we removed selection pressure for human hepatocytes in
humanised mice (see Methods for details).

Relative to NC, WD induced no significant change in body or
liver weight (Fig. 1B and C), blood chemistries (alanine amino-
transferase, aspartate aminotransferase, alkaline phosphatase,
and gamma-glutamyl transpeptidase; Fig. 1D) or fasting levels of
plasma triacylglycerols or glucose over the 12-week period.
Plasma cholesterol, however, increased 70% (Fig. 1E). This is
consistent with observations from patients with NAFLD, where
intrahepatic fat accumulation occurs before the development of
obesity or abnormalities in standard liver function tests.19 As no
selection pressure for human hepatocytes was applied, we
compared hALB levels before and after 12 weeks on WD,
respectively, with NC. There was no significant decrease on NC,
but WD decreased the human albumin levels from an average of
4.8 mg/ml to 2.2 mg/ml (Fig. S1).
2vol. 3 j 100281
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Fig 1. Experimental set-up and basic parameters of humanised TIRF mice on Western-type diet (WD). (A) TIRF mice were transplanted with 3 different
samples of human hepatocytes. After reaching high human chimerism, animals were placed on WD or NC for 12 weeks, after which they were euthanised for
transcriptomic, metabolomic, and lipidomic analyses of the human liver cells. (B) Body weights (n = 6–8 per group), (C) liver weights (n = 6–8 per group), and
(D,E) blood chemistry (n = 6–8 per group) after 12 weeks. (E) Plasma concentrations of cholesterol, triacylglycerol, and glucose after 12 weeks of diet. Data are
presented as mean ± SD. *p <0.05 using Student’s t-test. ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-
glutamyl transpeptidase; NAFLD, non-alcoholic fatty liver disease; NC, normal chow; TIRF, transgene-free Il2rg-/-/Rag2-/-/Fah-/-.
We next examined histological changes in livers of human-
ised mice in response to 12 weeks of WD. H&E staining identified
pronounced macrovesicular steatosis with microvesicular com-
ponents (Fig. 2A and B). Immunostaining for fumarylacetoacetate
hydrolase (FAH) confirmed that steatosis was confined to human
hepatocytes, repopulating across the whole liver acinus (Fig. 2A
and C). Oil-Red-O staining further confirmed lipid accumulation
(Fig. S2). Staining for connective tissue (Trichrome Masson) and
the liver-resident macrophages (Kupffer cells, F4/80), did not
show appreciable differences between murine and human re-
gions of the chimeric livers (Fig. 2A).

Collectively, these findings indicate that humanised TIRF mice
develop human hepatocyte-specific steatosis after 12 weeks of
WD, replicating early clinical NAFLD.
Distinct hepatic metabolite profiles between NAFLD and
control xenograft mice
Because livers of patients with NAFLD undergo profound meta-
bolic changes in comparison with livers of patients without
steatotis,3 we searched for similar effects in WD-fed humanised
mice. Using global metabolomic profiling, we found that among
565 identified metabolites, 48 were significantly increased and
59 were significantly decreased in livers of NAFLD chimeric mice
compared with controls (Table 1 and S1). Among metabolites
with the largest increases were cholesterol, 4-cholesten-3-one
(an intermediate in the synthesis of bile acids) and the antioxi-
dant a-tocopherol (Table 1 and S1). Metabolic pathway enrich-
ment analysis showed WD-induced increases in hepatic
concentrations of long-chain and branched free fatty acids
(FFAs), intermediates of endocannabinoid, sphingosine, and acyl-
JHEP Reports 2021
choline metabolism (Fig. 3A and C). In contrast, we observed
WD-induced decreases in levels of metabolites associated with
xenobiotic metabolism, vitamin A, and benzoate (Table 1 and
Fig. 3B and C), which have been previously found to be reduced
in patients with NAFLD.3,20 Similarly, WD decreased levels of
polyunsaturated free fatty acid (PUFA) species (Fig. 3B and C) and
dihydroxy fatty acid (FA) lipid peroxide markers (Table 1 and S1).
Conversely, the WD induced increases in levels of docosa-
trienoate and mead acid (Table 1).
Humanised mouse livers have lipid profiles similar to those of
patients with NAFLD
Accumulating evidence suggests that NAFLD progression is
associated with changes in hepatic lipid species composition and
concentration. The observation that levels of FFA species were
altered in livers of WD-fed humanised mice prompted us to
evaluate whether this would be reflected in changes in the
overall hepatic lipid profile. Although most studies have used
targeted analysis,21–26 we used untargeted lipidomics and found
increased steady-state concentrations of cholesteryl esters (CEs),
diacylglycerols (DAGs), triacylglycerols (TAGs), ceramides (CERs),
and lactosylceramides (LCERs) in livers of WD-fed chimeric mice
in comparison with NC-fed counterparts (Fig. 4A and Table S2).

We next examined the influence of the WD in the composi-
tion of FAs that are esterified to complex lipids in livers of
xenograft mice. The composition of FFAs as well as FAs in DAG,
TAG, and lysophosphatidylethanolamine exhibited increased
odd, saturated, and monounsaturated fatty acid (MUFA) species,
along with decreased PUFAs (Fig. 4B), resembling livers of pa-
tients with NAFLD.22,24,27 In the chimeric mice, hepatic steatosis
3vol. 3 j 100281
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Fig 2. Diet-induced steatosis is associated with human hepatocytes in
NAFLD xenograft mice. Histological analyses were performed in liver sections
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coincided with increases in all analysed FA species esterified to
CE (Fig. 4B). However, monoacylglycerols (MAGs) and glycer-
ophospholipids showed increased esterification of odd FAs and
MUFAs, with an overall decrease in saturated and PUFA species
JHEP Reports 2021
(Fig. 4B), an effect that was more pronounced in n-3 PUFA spe-
cies (Table S2). Sphingolipids reflected a preference for the
esterification of medium- to long-chain saturated FAs and
MUFAs, along with decreased esterification of very long-chain
saturated FAs (Fig. 4B).
Mouse and human hepatocytes of NAFLD xenograft mice
exhibit different transcriptional profiles
To determine whether changes in hepatic metabolites and lipids
could be attributable to altered transcriptional profiles in the
NAFLD model, we performed a transcriptional analysis of CHHs
in NC- and WD-fed chimeric mice. We identified a total of 681
differentially expressed genes (DEGs) when comparing WD-fed
with NC-fed chimeric mice (Fig. 5A and B, Table S3 and S4).
Pathway enrichment analysis revealed that upregulated genes
(52 genes; 7.6% of total DEGs) were predominantly associated
with lipid metabolism and amino acid catabolism, whereas
downregulated genes (629 genes; 92.4% of total DEGs) were
primarily related to cholesterol metabolism, including choles-
terol biosynthesis and sterol regulatory element-binding pro-
teins (SREBP)-regulated genes (Fig. S3, Table S3 and S4).

Next, we analysed the transcriptional profile of chimeric
murine hepatocytes (CMHs) in the same groups of chimeric
mice. Upon WD feeding, mouse hepatocytes exhibited a total of
1,196 DEGs in comparison to NC-fed controls (Fig. 5C, Table S3
and S5). Notably, mouse DEGs showed little overlap with hu-
man DEGs. Among 87 upregulated mouse genes (7.3% of total
DEGs), only 2 were also upregulated in human hepatocytes (Arsb/
ARSB and Fatp2/SLC27A2) (Fig. 5D). Similarly, 1,109 mouse
orthologues were shown to be downregulated (92.7% of total
DEGs), from which only 92 genes were also identified among
downregulated human orthologues (Fig. 5D). These findings
indicate that, in the setting of hepatic steatosis, the mouse he-
patocyte transcriptional signature markedly differs from the
human counterparts.
Alignment of cholesterol biosynthesis transcriptional
networks between xenograft human hepatocytes and clinical
NAFLD
Given the abundant evidence connecting cholesterol metabolism
to NAFLD,28 we next explored transcriptional mechanisms that
might contribute to the marked rise in plasma and hepatic
cholesterol levels observed in chimeric mice upon WD-feeding
(Fig. 1E and Table S1). We generated a list of transcripts that
were differentially expressed (P <0.05) in response to WD in both
CHHs and CMHs, and had relative CHH:CMH expression levels
that exceeded 20% (H:M>1.2; Table S6, section 1). Pathway ana-
lyses of this gene set reflected significant enrichment of genes
mapped to cholesterol biosynthesis and SREBP-regulated gene
expression (Fig. 6A). Closer inspection of the H:M>1.2 transcripts
indicated that 6 represented de novo cholesterol biosynthesis
pathway enzyme genes (CBPEGs; Fig. 6B and Table S6, sections 1
and 2). Notable among these were squalene epoxidase (SQLE),
which catalyses the rate-limiting conversion of squalene to 2,3-
oxidosqualene, and dehydrocholesterol reductase 7 (DHCR7),
the terminal enzyme in the Kandutsch-Russell pathway for
cholesterol synthesis. Although CBPEGs were repressed in both
CMHs and CHHs in response toWD-feeding, this downregulation
was much less efficient in CHHs, such that CBPEGs were
expressed at levels up to 2.4-fold higher in CHHs relative to
CMHs (Fig. 6B and Table S6, section 2).
4vol. 3 j 100281
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We next evaluated the extent to which elevated expression
levels of CBPEGs in the CHHs relative to the CMHs reflected
clinical NAFLD. Using our previously-described consensome al-
gorithm,11 we generated a clinical NAFLD transcriptomic
JHEP Reports 2021
consensome (Fig. 6C), which ranks ~18,100 human genes ac-
cording to the frequency with which they are upregulated or
downregulated across 22 independent published clinical NAFLD
case-control transcriptomic datasets (Table S6, sections 2 and 3).
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Table 1. Top differentially regulated metabolites in NAFLD xenograft mice. *Humanised mice on WD (NAFLD) compared with humanised mice on normal
chow (control). NAFLD, non-alcoholic fatty liver disease; WD, Western-type diet.

Metabolite Pathway p value Fold change
(NAFLD vs. control*)

Increased
Docosatrienoate (22:3n6) Polyunsaturated fatty acid (n3 and n6) 1.12E-02 12.50
Mead acid (20:3n9) Polyunsaturated fatty acid (n3 and n6) 4.56E-04 11.95
(14 or 15)-methylpalmitate (a17:0 or i17:0) Fatty acid, Branched 3.89E-03 10.10
1-oleoyl-GPG (18:1) Lysophospholipid 8.93E-03 9.18
10-heptadecenoate (17:1n7) Long chain fatty acid 1.46E-03 5.44
10-nonadecenoate (19:1n9) Long chain fatty acid 3.41E-06 4.74
Myristoleate (14:1n5) Long chain fatty acid 1.58E-02 4.24
N-oleoyltaurine Endocannabinoid 2.99E-02 3.97
Pentadecanoate (15:0) Long chain fatty acid 1.71E-02 3.76
Eicosenoate (20:1) Long chain fatty acid 1.64E-04 3.53
Oleoylcholine Fatty acid metabolism (acyl choline) 2.68E-02 3.26
(16 or 17)-methylstearate (a19:0 or i19:0) Fatty acid, branched 4.40E-06 3.09
Heptadecasphingosine (d17:1) Sphingosines 1.29E-03 3.02
Palmitoleate (16:1n7) Long chain fatty acid 9.18E-04 2.81
1-oleoyl-GPS (18:1) Lysophospholipid 1.94E-02 2.54

Decreased
Homostachydrine Food component/Plant 3.64E-04 0.01
Stachydrine Food component/Plant 3.99E-04 0.02
Docosatrienoate (22:3n3) Polyunsaturated fatty acid (n3 and n6) 1.46E-05 0.02
Trigonelline (Nʹ-methylnicotinate) Nicotinate and nicotinamide metabolism 1.30E-03 0.03
Histidine betaine (hercynine) Food component/Plant 4.89E-05 0.08
4-guanidinobutanoate Guanidino and acetamido metabolism 9.09E-03 0.10
N,N,N-trimethyl-5-aminovalerate Lysine metabolism 8.95E-03 0.15
Cis-4-decenoate (10:1n6) Medium chain fatty acid 9.88E-06 0.17
Carotene diol (1) Vitamin A metabolism 3.22E-03 0.21
Ergothioneine Food component/plant 7.38E-05 0.21
13-HODE + 9-HODE Fatty acid, monohydroxy 1.65E-02 0.21
3-sulfo-L-alanine Methionine, cysteine, S-adenosylmethionine

and taurine metabolism
1.44E-02 0.22

P-cresol glucuronide Tyrosine metabolism 2.59E-03 0.24
4-hydroxy-nonenal-glutathione Glutathione metabolism 6.13E-03 0.25
Gamma-tocopherol/beta-tocopherol Tocopherol metabolism 5.01E-04 0.27

Research article
Validating the NAFLD consensome, a 25-gene signature recently
published by Govaere et al.29 that predicts clinical NAFLD
severity was robustly enriched among mean FC>1.25 clinical
NAFLD CTs (Q<0.05) in the consensome (GOVAERE: OR = 12.3, p =
2e-9; Fig. 6C and Table S6, section 2). Confirming the xenograft
mouse as an accurate model of clinical NAFLD, we identified a
very strong enrichment of the 6 CBPEGs (Fig. 6B) among the
same set of clinical NAFLD CTs (CPBEGs: OR = 27, p = 4 e-6;
Fig. 6C). Taken together, these data demonstrate a robust
convergence between the elevated expression of CBPEGs in
clinical NAFLD and in steatotic CHHs in the chimeric mice.

We next wished to gain insight into the extent to which
transcriptional drivers of the xenograft model CPBEGs aligned
with those implicated in human clinical NAFLD. To investigate
this, we performed node HCT intersection analysis, which gener-
ates statistical measures of intersections between a given set of
genes and HCTs for cellular signalling pathway nodes.14 For HCT
intersection analysis, we computed intersections between the
CPBEGs and NAFLD consensome case:control FC>1.2 CTs (NAFLD
UP) and a library of signalling pathway node HCTs (Fig. 6D and
Table S6, section 4). We benchmarked this analysis against a study
by Namjou et al.30 that identified PPARG, FLI1, SPI1, and CEBPA as
liver transcriptional drivers of a set of genes that had significant
genome-wide association studies (GWAS) associations with
NAFLD. Validating our HCT intersection analysis, 3 of these 4
nodes had NAFLD UP intersections of Q<1E-3 (NAMJOU: OR =
55.44, p = 7.6e-6; Fig. 6D and Table S6, section 4). We identified 4
nodes that had Q<0.05 intersections with the CPBEGs: SREBF1 (Q
JHEP Reports 2021
= 8e-10), SREBF2 (Q = 1e-4), ETV5 (Q = 8e-3) and RBM25 (Q = 5e-
3). Again, reflecting close agreement between our model and
clinical NAFLD, all 4 also had Q <0.05 intersections with NAFLD UP
gene set (OR = 16.3, p = 1.2e-5, hypergeometric test; Fig. 6D and
Table S6, section 4). SREBF1 and SREBF2 are both connected by
abundant evidence to cholesterol biosynthesis31 and NAFLD
pathogenesis.32 ETV5 is a transcriptional regulator of hepatic
cholesterol transport and biosynthesis33 recently implicated in
hepatic steatosis.34 Finally, a variant of RBM25 has been previously
associated with familial hypercholesterolaemia.35 Collectively, our
reduced-bias, consensus-driven approach reflects close conver-
gence between cholesterol biosynthesis transcriptional regulatory
networks in our xenograft model and those driving clinical NAFLD.
Discussion
Our goal in this study was to establish and characterise a mouse
model that faithfully replicated the pathophysiology of human
NAFLD. Our humanised TIRF mice recapitulate histological,
metabolic and transcriptional features of human NAFLD after 12
weeks on WD, with steatosis being confined in large to the hu-
man hepatocytes.

There were several similarities between lipid profiles in the
NAFLD xenograft mice and patients with NAFLD. Free cholesterol
and triacylglycerol lipid classes are increased both in livers of
patients with NAFLD21,28 and NAFLD xenograft mice, as are he-
patic concentrations of cholesteryl esters, which supports the
role of these lipids in the pathogenesis of NAFLD. Multiple
6vol. 3 j 100281
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Fig 4. Altered lipid profile in livers of NAFLD xenograft mice. Global lipid profiles were determined in livers of 12-week WD or NC chimeric mice (n = 8 per
group). (A) Hepatic levels of lipids. *p <0.05, *p <0.01, and ***p <0.001 using Welch’s t-test. (B) Hepatic fatty acyl composition (relative to NC-fed humanised mice).
Grey boxes, data not available. CE, cholesteryl ester; CER, ceramide; DAG, diacylglycerol; DCER, dihydroceramide; FFA, free fatty acid; HCER, hexosylceramide;
LCER, lactosylceramide; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; MAG, monoacylglycerol; NAFLD, non-alcoholic fatty liver disease; NC,
normal chow; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; TAG, triacylglycerol; WD, Western-type diet.
studies have suggested that PUFA depletion also contributes to
the pathogenesis of human NAFLD.27 Obese NAFLD patients
exhibit marked decreases in hepatic concentrations of n-3
PUFAs,36,37 and two mechanisms have been proposed to explain
this observation: (i) an increased utilisation of n-3 PUFAs owing
to the high oxidative status,27 and (ii) a reduced capacity for
desaturation of a-linoleic acid (18:3n-3; a precursor of n-3
PUFAs) owing to decreases in hepatic activities of D-5 and D-6
desaturases.38 In line with this, livers of chimeric mice showed
lower concentrations of PUFAs along with a trend towards
downregulated expression of FADS1 and FADS2 genes, which
encode human D-5 and D-6 desaturases, respectively. Alterations
in hepatic PUFA content are thought to influence hepatic lipid
homeostasis by regulating transcription factors such as PPARa
and SREBP1c. Under normal circumstances, PUFAs act as acti-
vators of PPARa and inhibitors of SREBP1c, thereby promoting FA
oxidation at the expense of lipogenesis, but in livers of obese
patients with NAFLD, PUFA depletion correlates with reduced
mRNA levels of PPARA and increased SREBP1c, potentially leading
to a pro-lipogenic program that exacerbates the intrahepatic
lipid accumulation in these patients.39 Although PPARA mRNA
JHEP Reports 2021
levels remained unchanged in the conditions tested in the pre-
sent work, human liver chimeric mice recapitulated the increase
in SREBP1c gene expression, further supporting the involvement
of this transcription factor in early stages of human NAFLD.

A unique feature of NAFLD xenograft mice is the ability to
discern transcriptional discrepancies between human and mouse
hepatocytes exposed to identical nutritional challenges within
chimeric livers. Illustrating this, we identified 6 CPBEGs that were
highly repressed in response to WD in CMHs, but to a lesser extent
in CHHs. Using a reduced-bias consensome meta-analysis of pub-
lished NAFLD transcriptomic datasets, we demonstrated that the
elevated expression of CBPEGs in CHHs relative to CMHs closely
reflected the relative expression levels of their human orthologs
between clinical NAFLD and normal livers. The gene with the
highest CHH:CMH ratio (2.4), and the highest ranked CBPEG in the
NAFLD consensome (23rd of 18,162 genes) was SQLE, whose
expression has been connected to the pathogenesis of hepatic
steatosis and its subsequent progression to hepatocellular carci-
noma.40 Indeed, the identification of squalene expoxidase as a
major mediator of increased hepatic biosynthesis of cholesteryl
esters40 represents a plausible explanation for the elevated levels of
7vol. 3 j 100281
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these lipid species in livers of WD-fed chimeric mice. Finally, we
identified robust evidence for convergence between transcriptional
drivers of CPBEG expression and those regulating expression of
genes consistently induced in clinical NAFLD.

In addition to its strengths, our NAFLD xenograft model has
some limitations. Human albumin levels reveal a slight but sig-
nificant decrease in humanisation after 12 weeks of WD feeding.
Although this might constitute an experimental limitation
particularly if animals do not have a high human liver chimerism,
this observation is neither surprising nor diminishing the value of
this NAFLD model. We did not apply selection for human hepa-
tocytes in the murine liver during feeding experiments, and it is
conceivable that steatotic human hepatocytes do not regenerate
as efficiently as non-steatotic human hepatocytes in this chimeric
mouse model. Although we do not provide direct evidence for
this hypothesis, it is well established that liver regeneration is
severely reduced in patients with NAFLD,41,42 which seems to
translate to regeneration during homeostasis in this NAFLD
xenograft model. Further, in the present study we used human
hepatocytes from only three donors and human steaotosis is
likely to depend on patient genotypes. For instance, it has been
shown by GWAS that the single variant (rs738409, C>G, I148M) in
the patatin-like-phospholipase domain-containing protein 3
(PNPLA3) gene is associated with increased liver fat content.43

This variant has a high prevalence in the Hispanic population
and could also be found in 2 of our 3 donors (not shown).
However, the third donor had two wild-type alleles in the
PNPLA3 gene and developed the same degree of steatosis as the
JHEP Reports 2021
PNPLA3 I148M variants. To demonstrate a difference in steatosis
between highly polymorphic human hepatocytes, many more
donors are needed, which is outside of the scope of this study.
However, as shown here this NAFLD xenograft model offers the
possibility to use isogenic controls (same hepatocytes), which can
compensate for the high degree of polymorphism in humans.

Another interesting observation was the lack of increase of
body weight despite 12 weeks of WD feeding. Although we were
unable to detect changes in hepatic markers of energy expen-
diture that could explain this phenotype, it is possible that the
genetic background of mice impacts their susceptibility to diet-
induced obesity.44,45 Nonetheless, NAFLD also occurs in lean in-
dividuals with a global prevalence ranging from 5 to 26%46 and
non-obese patients with NAFLD share metabolic features with
obese patients with NAFLD, including insulin resistance, dysli-
pidaemia, and metabolic syndrome, and there is little appre-
ciable difference in NAFLD progression between those
groups.46,47 Our NAFLD mice are also immunodeficient and are
unlikely to develop the inflammatory changes or fibrosis that
lead to NASH. In addition, current technology does not allow
efficient repopulation of human non-parenchymal cells, which
would be necessary for modelling fibrosis. Notwithstanding, our
humanised NAFLD mice unite the experimental tractabilty of the
mouse with the translational value of human hepatocytes. Our
NAFLD model will be useful for mechanistic studies on the mo-
lecular basis of the disease, as well as preclinical testing of
experimental therapies, thereby enabling the discernment of
cellular processes that are truly relevant to human NAFLD.
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Highlights Lay summary

� Human liver chimeric mice fed a western diet

develop NAFLD.

� Within the same chimeric liver, human hepatocytes
developed pronounced steatosis while murine he-
patocytes remained normal.

� Unbiased metabolomics and lipidomics of fatty
humanised mouse livers revealed signatures of
clinical NAFLD.

� Transcriptomic analyses showed that molecular
responses diverged sharply between murine and
human hepatocytes.

� This humanised NAFLD model is a physiologically
relevant, experimentally tractable model for the
study of steatosis.
https://doi.org/10.1016/j.jhepr.2021.100281
Fatty liver disease is an emerging health problem, and
as there are no good experimental animal models, our
understanding of the condition is poor. We here
describe a novel humanised mouse system and
compare it with clinical data. The results reveal that
the human cells in the mouse liver develop fatty liver
disease upon a Western-style fatty diet, whereas the
mouse cells appear normal. The molecular signature
(expression profiles) of the human cells are distinct
from the mouse cells and metabolic analysis of the
humanised livers mimic the ones observed in humans
with fatty liver. This novel humanised mouse system
can be used to study human fatty liver disease.
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Background & Aims: The accumulation of neutral lipids within hepatocytes underlies non-alcoholic fatty liver disease
(NAFLD), which affects a quarter of the world’s population and is associated with hepatitis, cirrhosis, and hepatocellular
carcinoma. Despite insights gained from both human and animal studies, our understanding of NAFLD pathogenesis remains
limited. To better study the molecular changes driving the condition we aimed to generate a humanised NAFLD mouse model.
Methods: We generated TIRF (transgene-free Il2rg-/-/Rag2-/-/Fah-/-) mice, populated their livers with human hepatocytes, and
fed them a Western-type diet for 12 weeks.
Results: Within the same chimeric liver, human hepatocytes developed pronounced steatosis whereas murine hepatocytes
remained normal. Unbiased metabolomics and lipidomics revealed signatures of clinical NAFLD. Transcriptomic analyses
showed that molecular responses diverged sharply between murine and human hepatocytes, demonstrating stark species
differences in liver function. Regulatory network analysis indicated close agreement between our model and clinical NAFLD
with respect to transcriptional control of cholesterol biosynthesis.
Conclusions: These NAFLD xenograft mice reveal an unexpected degree of evolutionary divergence in food metabolism and
offer a physiologically relevant, experimentally tractable model for studying the pathogenic changes invoked by steatosis.
Lay summary: Fatty liver disease is an emerging health problem, and as there are no good experimental animal models, our
understanding of the condition is poor. We here describe a novel humanised mouse system and compare it with clinical data.
The results reveal that the human cells in the mouse liver develop fatty liver disease upon a Western-style fatty diet, whereas
the mouse cells appear normal. The molecular signature (expression profiles) of the human cells are distinct from the mouse
cells and metabolic analysis of the humanised livers mimic the ones observed in humans with fatty liver. This novel
humanised mouse system can be used to study human fatty liver disease.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
The global spread of high-fat, high-sugar diets and sedentary
lifestyles carries with it a sharp rise in non-alcoholic fatty liver
disease (NAFLD).1 Hepatic steatosis is considered problematic
because it leads to inflammation and fibrosis, creating the more
serious condition known as non-alcoholic steatohepatitis
Keywords: Non-alcoholic fatty liver disease; Steatosis; Lipid metabolism; Human
disease modelling; Humanised mice.
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2021; available online 21 March 2021
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(NASH).2,3 NASH in turn triggers compensatory cell proliferation,
increasing the risk of hepatocellular carcinoma (HCC), which has
become the second leading cause of cancer deaths.4 Given that
steatosis seems to drive pathogenesis in all these major diseases,
there is a pressing need to understand how it changes liver
function.

NAFLD has been extremely difficult to study in either human
patients or mice. Although transcriptomic, lipidomic, and
metabolic profiling studies of human livers are numerous, clin-
ical approaches are generally retrospective and human partici-
pants are not experimentally tractable. Studies using murine
models present different limitations: genetic models of NAFLD
based on single-gene alterations, such as the ob/ob or db/db
obese mouse strains, may not accurately reflect the typically
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polygenic human situation.5 Dietary models gain weight,
develop steatosis, and become insulin-resistant, but exhibit
much less liver injury than human NASH patients, suggesting
fundamental differences in rodent and human livers.5,48 Indeed,
metabolic profiling of rats fed a methionine-choline-deficient
diet—which inhibits fatty acid oxidation, thereby leading to
NASH—identified species differences in bile acid, insulin, and
leptin levels,6 limiting this model’s utility for studies of bio-
markers or disease progression.

Having recently developed human liver chimeric mice to
study human drug metabolism,7 we took a similar approach here
to study NAFLD. We demonstrate that humanised TIRF (tran-
gene-free, Il2rg-/-, Rag2-/-, Fah-/-) mice develop NAFLD when fed a
Western-type high fat/high sucrose diet (WD). Metabolic and
histological changes of human hepatocytes in xenograft mice
resemble those found in human NAFLD, whereas the molecular
signatures of the human and murine hepatocytes within the
same chimeric livers differ greatly. This chimeric mouse model
therefore offers an ideal platform for studying the response of
human hepatocytes to diet-induced NAFLD.
Materials and methods
Animals and diets
The TIRF strain was generated by CRISPR/Cas9 deletion of the 3
genes in mouse zygotes as we described previously7 and crossing
out the P450 oxidoreductase (Por) gene from the PIRF (Por-/-

Il2rg-/-, Rag2-/-, Fah-/-) strain.7

Human hepatocytes (1 × 106 per mouse) were transplanted by
splenic injection into the livers of 3-week-old male and female
TIRF mice maintained on the drug nitisinone (NTBC) from the
drinking water as previously described.7,8 Immediately after
transplantation, we applied selection pressure toward trans-
planted chimeric human hepatocytes (CHHs) by step-wise
reduction and withdrawal of NTBC.7,8 human albumin (hALB)
levels (ELISA, Bethyl Laboratories, Inc., Montgomery, TX, USA) in
the plasma of transplanted mice was measured to gauge the
extent of chimerism.9 Only mice with >70% human liver chime-
rism were used and put on NTBC (no tyrosinemic stress of mu-
rine hepatocytes) for the remainder of the study.

Humanised mice were fed normal chow (NC) (2019 Teklad
global 19% protein extruded rodent diet, Envigo, Madison, Wis-
consin USA) or WD (D12079B, RD Western Diet, Research Diets,
New Brunswick, New Jersey, USA) for 12 weeks. Mice were
euthanised after a 6-h fast and plasma was collected. Livers were
then harvested and snap-frozen in liquid nitrogen and stored at
-80�C. All animal experiments were approved by the Institutional
Animal Care and Use Committee. Animals received humane care
according to the criteria outlined in the NIH Guide for the Care
and Use of Laboratory Animals.

Metabolomic and lipidomic analyses
Sample preparation and analysis for global metabolomics was
carried out at Metabolon Inc. (Durham, NC, USA) as described by
Hatori et al.,10 with modifications (see Supplementary Methods).

Lipids for untargeted lipidomics were extracted from snap-
frozen liver samples at Metabolon Inc. using dichloromethane
and methanol in the presence of deuterated internal standards.
Details for extraction and analysis can be found in the
Supplementary Methods.
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RNA-sequencing, data processing, and NAFLD consensome
analysis
Whole-transcriptome RNA-sequencing (RNA-Seq) was performed
using total RNA isolated using a Purelink RNA mini kit (Invitrogen
PureLink RNA Mini Kit, ThermoFisher Scientific, USA). RNA-seq
read pairs were aligned to a combined human (hg38) and mu-
rine (mm10) genome using STAR version 2.7.1a. RNA-Seq data is
available from European Nucleotide Archive, ENA accession code
(PRJEB35014). See Supplementary Methods for details of library
generation and gene expression quantification.

To generate the human NAFLD consensome, we first retrieved
a total of 9 Gene Expression Omnibus clinical NAFLD or NASH
case-control transcriptomics datasets (Table S6, section 3) (see
Supplementary Methods). Differential expression values were
committed to the consensome analysis pipeline as previously
described.11 Panther12 and Reactome pathway13 analysis was
used to evaluate enrichment of biological processes in NAFLD
consensome confidence transcripts (CTs) or H:M>1.2 genes. Node
high confidence transcriptional target (HCT) intersection analysis
was performed as previously described.14

Additional methods are described in the Supplementary
Methods.
Results
Human liver chimeric mice develop steatosis after 12 weeks
on a WD
To evaluate the susceptibility of xenograft mice to diet-induced
NAFLD, we developed the TIRF strain. In contrast to previous
Fah-/-/Rag2-/-/Il2rg-/- mice,15,16 this strain has no neomycin-
resistance cassettes that could confound results in several
ways. The neomycin phosphotransferase gene can influence the
metabolism of transgenic mice17; the transgene can alter gene
expression and has been shown to increase expression of both c-
myc and various liver genes18; and it was shown to reduce
fructose 2,6-bisphosphate and lactate in fibroblasts.18

Three-week-old male and female TIRF mice were humanised
by splenic injection of human hepatocytes from 1 of 3 different
healthy human donors (Fig. 1A). Three to 4 months after trans-
plantation, human chimerism was assessed by measurement of
hALB in the murine plasma and only mice with >70% human
hepatocytes were used in subsequent studies. Mice bearing hu-
man hepatocytes were randomised and fed either WD or NC for
12 weeks (Fig. 1A). To mimic low mitotic index of the human
liver, we removed selection pressure for human hepatocytes in
humanised mice (see Methods for details).

Relative to NC, WD induced no significant change in body or
liver weight (Fig. 1B and C), blood chemistries (alanine amino-
transferase, aspartate aminotransferase, alkaline phosphatase,
and gamma-glutamyl transpeptidase; Fig. 1D) or fasting levels of
plasma triacylglycerols or glucose over the 12-week period.
Plasma cholesterol, however, increased 70% (Fig. 1E). This is
consistent with observations from patients with NAFLD, where
intrahepatic fat accumulation occurs before the development of
obesity or abnormalities in standard liver function tests.19 As no
selection pressure for human hepatocytes was applied, we
compared hALB levels before and after 12 weeks on WD,
respectively, with NC. There was no significant decrease on NC,
but WD decreased the human albumin levels from an average of
4.8 mg/ml to 2.2 mg/ml (Fig. S1).
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Fig 1. Experimental set-up and basic parameters of humanised TIRF mice on Western-type diet (WD). (A) TIRF mice were transplanted with 3 different
samples of human hepatocytes. After reaching high human chimerism, animals were placed on WD or NC for 12 weeks, after which they were euthanised for
transcriptomic, metabolomic, and lipidomic analyses of the human liver cells. (B) Body weights (n = 6–8 per group), (C) liver weights (n = 6–8 per group), and
(D,E) blood chemistry (n = 6–8 per group) after 12 weeks. (E) Plasma concentrations of cholesterol, triacylglycerol, and glucose after 12 weeks of diet. Data are
presented as mean ± SD. *p <0.05 using Student’s t-test. ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-
glutamyl transpeptidase; NAFLD, non-alcoholic fatty liver disease; NC, normal chow; TIRF, transgene-free Il2rg-/-/Rag2-/-/Fah-/-.
We next examined histological changes in livers of human-
ised mice in response to 12 weeks of WD. H&E staining identified
pronounced macrovesicular steatosis with microvesicular com-
ponents (Fig. 2A and B). Immunostaining for fumarylacetoacetate
hydrolase (FAH) confirmed that steatosis was confined to human
hepatocytes, repopulating across the whole liver acinus (Fig. 2A
and C). Oil-Red-O staining further confirmed lipid accumulation
(Fig. S2). Staining for connective tissue (Trichrome Masson) and
the liver-resident macrophages (Kupffer cells, F4/80), did not
show appreciable differences between murine and human re-
gions of the chimeric livers (Fig. 2A).

Collectively, these findings indicate that humanised TIRF mice
develop human hepatocyte-specific steatosis after 12 weeks of
WD, replicating early clinical NAFLD.
Distinct hepatic metabolite profiles between NAFLD and
control xenograft mice
Because livers of patients with NAFLD undergo profound meta-
bolic changes in comparison with livers of patients without
steatotis,3 we searched for similar effects in WD-fed humanised
mice. Using global metabolomic profiling, we found that among
565 identified metabolites, 48 were significantly increased and
59 were significantly decreased in livers of NAFLD chimeric mice
compared with controls (Table 1 and S1). Among metabolites
with the largest increases were cholesterol, 4-cholesten-3-one
(an intermediate in the synthesis of bile acids) and the antioxi-
dant a-tocopherol (Table 1 and S1). Metabolic pathway enrich-
ment analysis showed WD-induced increases in hepatic
concentrations of long-chain and branched free fatty acids
(FFAs), intermediates of endocannabinoid, sphingosine, and acyl-
JHEP Reports 2021
choline metabolism (Fig. 3A and C). In contrast, we observed
WD-induced decreases in levels of metabolites associated with
xenobiotic metabolism, vitamin A, and benzoate (Table 1 and
Fig. 3B and C), which have been previously found to be reduced
in patients with NAFLD.3,20 Similarly, WD decreased levels of
polyunsaturated free fatty acid (PUFA) species (Fig. 3B and C) and
dihydroxy fatty acid (FA) lipid peroxide markers (Table 1 and S1).
Conversely, the WD induced increases in levels of docosa-
trienoate and mead acid (Table 1).
Humanised mouse livers have lipid profiles similar to those of
patients with NAFLD
Accumulating evidence suggests that NAFLD progression is
associated with changes in hepatic lipid species composition and
concentration. The observation that levels of FFA species were
altered in livers of WD-fed humanised mice prompted us to
evaluate whether this would be reflected in changes in the
overall hepatic lipid profile. Although most studies have used
targeted analysis,21–26 we used untargeted lipidomics and found
increased steady-state concentrations of cholesteryl esters (CEs),
diacylglycerols (DAGs), triacylglycerols (TAGs), ceramides (CERs),
and lactosylceramides (LCERs) in livers of WD-fed chimeric mice
in comparison with NC-fed counterparts (Fig. 4A and Table S2).

We next examined the influence of the WD in the composi-
tion of FAs that are esterified to complex lipids in livers of
xenograft mice. The composition of FFAs as well as FAs in DAG,
TAG, and lysophosphatidylethanolamine exhibited increased
odd, saturated, and monounsaturated fatty acid (MUFA) species,
along with decreased PUFAs (Fig. 4B), resembling livers of pa-
tients with NAFLD.22,24,27 In the chimeric mice, hepatic steatosis
3vol. 3 j 100281
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coincided with increases in all analysed FA species esterified to
CE (Fig. 4B). However, monoacylglycerols (MAGs) and glycer-
ophospholipids showed increased esterification of odd FAs and
MUFAs, with an overall decrease in saturated and PUFA species
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(Fig. 4B), an effect that was more pronounced in n-3 PUFA spe-
cies (Table S2). Sphingolipids reflected a preference for the
esterification of medium- to long-chain saturated FAs and
MUFAs, along with decreased esterification of very long-chain
saturated FAs (Fig. 4B).
Mouse and human hepatocytes of NAFLD xenograft mice
exhibit different transcriptional profiles
To determine whether changes in hepatic metabolites and lipids
could be attributable to altered transcriptional profiles in the
NAFLD model, we performed a transcriptional analysis of CHHs
in NC- and WD-fed chimeric mice. We identified a total of 681
differentially expressed genes (DEGs) when comparing WD-fed
with NC-fed chimeric mice (Fig. 5A and B, Table S3 and S4).
Pathway enrichment analysis revealed that upregulated genes
(52 genes; 7.6% of total DEGs) were predominantly associated
with lipid metabolism and amino acid catabolism, whereas
downregulated genes (629 genes; 92.4% of total DEGs) were
primarily related to cholesterol metabolism, including choles-
terol biosynthesis and sterol regulatory element-binding pro-
teins (SREBP)-regulated genes (Fig. S3, Table S3 and S4).

Next, we analysed the transcriptional profile of chimeric
murine hepatocytes (CMHs) in the same groups of chimeric
mice. Upon WD feeding, mouse hepatocytes exhibited a total of
1,196 DEGs in comparison to NC-fed controls (Fig. 5C, Table S3
and S5). Notably, mouse DEGs showed little overlap with hu-
man DEGs. Among 87 upregulated mouse genes (7.3% of total
DEGs), only 2 were also upregulated in human hepatocytes (Arsb/
ARSB and Fatp2/SLC27A2) (Fig. 5D). Similarly, 1,109 mouse
orthologues were shown to be downregulated (92.7% of total
DEGs), from which only 92 genes were also identified among
downregulated human orthologues (Fig. 5D). These findings
indicate that, in the setting of hepatic steatosis, the mouse he-
patocyte transcriptional signature markedly differs from the
human counterparts.
Alignment of cholesterol biosynthesis transcriptional
networks between xenograft human hepatocytes and clinical
NAFLD
Given the abundant evidence connecting cholesterol metabolism
to NAFLD,28 we next explored transcriptional mechanisms that
might contribute to the marked rise in plasma and hepatic
cholesterol levels observed in chimeric mice upon WD-feeding
(Fig. 1E and Table S1). We generated a list of transcripts that
were differentially expressed (P <0.05) in response to WD in both
CHHs and CMHs, and had relative CHH:CMH expression levels
that exceeded 20% (H:M>1.2; Table S6, section 1). Pathway ana-
lyses of this gene set reflected significant enrichment of genes
mapped to cholesterol biosynthesis and SREBP-regulated gene
expression (Fig. 6A). Closer inspection of the H:M>1.2 transcripts
indicated that 6 represented de novo cholesterol biosynthesis
pathway enzyme genes (CBPEGs; Fig. 6B and Table S6, sections 1
and 2). Notable among these were squalene epoxidase (SQLE),
which catalyses the rate-limiting conversion of squalene to 2,3-
oxidosqualene, and dehydrocholesterol reductase 7 (DHCR7),
the terminal enzyme in the Kandutsch-Russell pathway for
cholesterol synthesis. Although CBPEGs were repressed in both
CMHs and CHHs in response toWD-feeding, this downregulation
was much less efficient in CHHs, such that CBPEGs were
expressed at levels up to 2.4-fold higher in CHHs relative to
CMHs (Fig. 6B and Table S6, section 2).
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Fig 3. NAFLD xenograft mouse livers show altered metabolic profile after 12 weeks on WD. Global metabolic profiles were determined in livers of 12 week
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We next evaluated the extent to which elevated expression
levels of CBPEGs in the CHHs relative to the CMHs reflected
clinical NAFLD. Using our previously-described consensome al-
gorithm,11 we generated a clinical NAFLD transcriptomic
JHEP Reports 2021
consensome (Fig. 6C), which ranks ~18,100 human genes ac-
cording to the frequency with which they are upregulated or
downregulated across 22 independent published clinical NAFLD
case-control transcriptomic datasets (Table S6, sections 2 and 3).
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Table 1. Top differentially regulated metabolites in NAFLD xenograft mice. *Humanised mice on WD (NAFLD) compared with humanised mice on normal
chow (control). NAFLD, non-alcoholic fatty liver disease; WD, Western-type diet.

Metabolite Pathway p value Fold change
(NAFLD vs. control*)

Increased
Docosatrienoate (22:3n6) Polyunsaturated fatty acid (n3 and n6) 1.12E-02 12.50
Mead acid (20:3n9) Polyunsaturated fatty acid (n3 and n6) 4.56E-04 11.95
(14 or 15)-methylpalmitate (a17:0 or i17:0) Fatty acid, Branched 3.89E-03 10.10
1-oleoyl-GPG (18:1) Lysophospholipid 8.93E-03 9.18
10-heptadecenoate (17:1n7) Long chain fatty acid 1.46E-03 5.44
10-nonadecenoate (19:1n9) Long chain fatty acid 3.41E-06 4.74
Myristoleate (14:1n5) Long chain fatty acid 1.58E-02 4.24
N-oleoyltaurine Endocannabinoid 2.99E-02 3.97
Pentadecanoate (15:0) Long chain fatty acid 1.71E-02 3.76
Eicosenoate (20:1) Long chain fatty acid 1.64E-04 3.53
Oleoylcholine Fatty acid metabolism (acyl choline) 2.68E-02 3.26
(16 or 17)-methylstearate (a19:0 or i19:0) Fatty acid, branched 4.40E-06 3.09
Heptadecasphingosine (d17:1) Sphingosines 1.29E-03 3.02
Palmitoleate (16:1n7) Long chain fatty acid 9.18E-04 2.81
1-oleoyl-GPS (18:1) Lysophospholipid 1.94E-02 2.54

Decreased
Homostachydrine Food component/Plant 3.64E-04 0.01
Stachydrine Food component/Plant 3.99E-04 0.02
Docosatrienoate (22:3n3) Polyunsaturated fatty acid (n3 and n6) 1.46E-05 0.02
Trigonelline (Nʹ-methylnicotinate) Nicotinate and nicotinamide metabolism 1.30E-03 0.03
Histidine betaine (hercynine) Food component/Plant 4.89E-05 0.08
4-guanidinobutanoate Guanidino and acetamido metabolism 9.09E-03 0.10
N,N,N-trimethyl-5-aminovalerate Lysine metabolism 8.95E-03 0.15
Cis-4-decenoate (10:1n6) Medium chain fatty acid 9.88E-06 0.17
Carotene diol (1) Vitamin A metabolism 3.22E-03 0.21
Ergothioneine Food component/plant 7.38E-05 0.21
13-HODE + 9-HODE Fatty acid, monohydroxy 1.65E-02 0.21
3-sulfo-L-alanine Methionine, cysteine, S-adenosylmethionine

and taurine metabolism
1.44E-02 0.22

P-cresol glucuronide Tyrosine metabolism 2.59E-03 0.24
4-hydroxy-nonenal-glutathione Glutathione metabolism 6.13E-03 0.25
Gamma-tocopherol/beta-tocopherol Tocopherol metabolism 5.01E-04 0.27
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Validating the NAFLD consensome, a 25-gene signature recently
published by Govaere et al.29 that predicts clinical NAFLD
severity was robustly enriched among mean FC>1.25 clinical
NAFLD CTs (Q<0.05) in the consensome (GOVAERE: OR = 12.3, p =
2e-9; Fig. 6C and Table S6, section 2). Confirming the xenograft
mouse as an accurate model of clinical NAFLD, we identified a
very strong enrichment of the 6 CBPEGs (Fig. 6B) among the
same set of clinical NAFLD CTs (CPBEGs: OR = 27, p = 4 e-6;
Fig. 6C). Taken together, these data demonstrate a robust
convergence between the elevated expression of CBPEGs in
clinical NAFLD and in steatotic CHHs in the chimeric mice.

We next wished to gain insight into the extent to which
transcriptional drivers of the xenograft model CPBEGs aligned
with those implicated in human clinical NAFLD. To investigate
this, we performed node HCT intersection analysis, which gener-
ates statistical measures of intersections between a given set of
genes and HCTs for cellular signalling pathway nodes.14 For HCT
intersection analysis, we computed intersections between the
CPBEGs and NAFLD consensome case:control FC>1.2 CTs (NAFLD
UP) and a library of signalling pathway node HCTs (Fig. 6D and
Table S6, section 4). We benchmarked this analysis against a study
by Namjou et al.30 that identified PPARG, FLI1, SPI1, and CEBPA as
liver transcriptional drivers of a set of genes that had significant
genome-wide association studies (GWAS) associations with
NAFLD. Validating our HCT intersection analysis, 3 of these 4
nodes had NAFLD UP intersections of Q<1E-3 (NAMJOU: OR =
55.44, p = 7.6e-6; Fig. 6D and Table S6, section 4). We identified 4
nodes that had Q<0.05 intersections with the CPBEGs: SREBF1 (Q
JHEP Reports 2021
= 8e-10), SREBF2 (Q = 1e-4), ETV5 (Q = 8e-3) and RBM25 (Q = 5e-
3). Again, reflecting close agreement between our model and
clinical NAFLD, all 4 also had Q <0.05 intersections with NAFLD UP
gene set (OR = 16.3, p = 1.2e-5, hypergeometric test; Fig. 6D and
Table S6, section 4). SREBF1 and SREBF2 are both connected by
abundant evidence to cholesterol biosynthesis31 and NAFLD
pathogenesis.32 ETV5 is a transcriptional regulator of hepatic
cholesterol transport and biosynthesis33 recently implicated in
hepatic steatosis.34 Finally, a variant of RBM25 has been previously
associated with familial hypercholesterolaemia.35 Collectively, our
reduced-bias, consensus-driven approach reflects close conver-
gence between cholesterol biosynthesis transcriptional regulatory
networks in our xenograft model and those driving clinical NAFLD.
Discussion
Our goal in this study was to establish and characterise a mouse
model that faithfully replicated the pathophysiology of human
NAFLD. Our humanised TIRF mice recapitulate histological,
metabolic and transcriptional features of human NAFLD after 12
weeks on WD, with steatosis being confined in large to the hu-
man hepatocytes.

There were several similarities between lipid profiles in the
NAFLD xenograft mice and patients with NAFLD. Free cholesterol
and triacylglycerol lipid classes are increased both in livers of
patients with NAFLD21,28 and NAFLD xenograft mice, as are he-
patic concentrations of cholesteryl esters, which supports the
role of these lipids in the pathogenesis of NAFLD. Multiple
6vol. 3 j 100281
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studies have suggested that PUFA depletion also contributes to
the pathogenesis of human NAFLD.27 Obese NAFLD patients
exhibit marked decreases in hepatic concentrations of n-3
PUFAs,36,37 and two mechanisms have been proposed to explain
this observation: (i) an increased utilisation of n-3 PUFAs owing
to the high oxidative status,27 and (ii) a reduced capacity for
desaturation of a-linoleic acid (18:3n-3; a precursor of n-3
PUFAs) owing to decreases in hepatic activities of D-5 and D-6
desaturases.38 In line with this, livers of chimeric mice showed
lower concentrations of PUFAs along with a trend towards
downregulated expression of FADS1 and FADS2 genes, which
encode human D-5 and D-6 desaturases, respectively. Alterations
in hepatic PUFA content are thought to influence hepatic lipid
homeostasis by regulating transcription factors such as PPARa
and SREBP1c. Under normal circumstances, PUFAs act as acti-
vators of PPARa and inhibitors of SREBP1c, thereby promoting FA
oxidation at the expense of lipogenesis, but in livers of obese
patients with NAFLD, PUFA depletion correlates with reduced
mRNA levels of PPARA and increased SREBP1c, potentially leading
to a pro-lipogenic program that exacerbates the intrahepatic
lipid accumulation in these patients.39 Although PPARA mRNA
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levels remained unchanged in the conditions tested in the pre-
sent work, human liver chimeric mice recapitulated the increase
in SREBP1c gene expression, further supporting the involvement
of this transcription factor in early stages of human NAFLD.

A unique feature of NAFLD xenograft mice is the ability to
discern transcriptional discrepancies between human and mouse
hepatocytes exposed to identical nutritional challenges within
chimeric livers. Illustrating this, we identified 6 CPBEGs that were
highly repressed in response to WD in CMHs, but to a lesser extent
in CHHs. Using a reduced-bias consensome meta-analysis of pub-
lished NAFLD transcriptomic datasets, we demonstrated that the
elevated expression of CBPEGs in CHHs relative to CMHs closely
reflected the relative expression levels of their human orthologs
between clinical NAFLD and normal livers. The gene with the
highest CHH:CMH ratio (2.4), and the highest ranked CBPEG in the
NAFLD consensome (23rd of 18,162 genes) was SQLE, whose
expression has been connected to the pathogenesis of hepatic
steatosis and its subsequent progression to hepatocellular carci-
noma.40 Indeed, the identification of squalene expoxidase as a
major mediator of increased hepatic biosynthesis of cholesteryl
esters40 represents a plausible explanation for the elevated levels of
7vol. 3 j 100281
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these lipid species in livers of WD-fed chimeric mice. Finally, we
identified robust evidence for convergence between transcriptional
drivers of CPBEG expression and those regulating expression of
genes consistently induced in clinical NAFLD.

In addition to its strengths, our NAFLD xenograft model has
some limitations. Human albumin levels reveal a slight but sig-
nificant decrease in humanisation after 12 weeks of WD feeding.
Although this might constitute an experimental limitation
particularly if animals do not have a high human liver chimerism,
this observation is neither surprising nor diminishing the value of
this NAFLD model. We did not apply selection for human hepa-
tocytes in the murine liver during feeding experiments, and it is
conceivable that steatotic human hepatocytes do not regenerate
as efficiently as non-steatotic human hepatocytes in this chimeric
mouse model. Although we do not provide direct evidence for
this hypothesis, it is well established that liver regeneration is
severely reduced in patients with NAFLD,41,42 which seems to
translate to regeneration during homeostasis in this NAFLD
xenograft model. Further, in the present study we used human
hepatocytes from only three donors and human steaotosis is
likely to depend on patient genotypes. For instance, it has been
shown by GWAS that the single variant (rs738409, C>G, I148M) in
the patatin-like-phospholipase domain-containing protein 3
(PNPLA3) gene is associated with increased liver fat content.43

This variant has a high prevalence in the Hispanic population
and could also be found in 2 of our 3 donors (not shown).
However, the third donor had two wild-type alleles in the
PNPLA3 gene and developed the same degree of steatosis as the
JHEP Reports 2021
PNPLA3 I148M variants. To demonstrate a difference in steatosis
between highly polymorphic human hepatocytes, many more
donors are needed, which is outside of the scope of this study.
However, as shown here this NAFLD xenograft model offers the
possibility to use isogenic controls (same hepatocytes), which can
compensate for the high degree of polymorphism in humans.

Another interesting observation was the lack of increase of
body weight despite 12 weeks of WD feeding. Although we were
unable to detect changes in hepatic markers of energy expen-
diture that could explain this phenotype, it is possible that the
genetic background of mice impacts their susceptibility to diet-
induced obesity.44,45 Nonetheless, NAFLD also occurs in lean in-
dividuals with a global prevalence ranging from 5 to 26%46 and
non-obese patients with NAFLD share metabolic features with
obese patients with NAFLD, including insulin resistance, dysli-
pidaemia, and metabolic syndrome, and there is little appre-
ciable difference in NAFLD progression between those
groups.46,47 Our NAFLD mice are also immunodeficient and are
unlikely to develop the inflammatory changes or fibrosis that
lead to NASH. In addition, current technology does not allow
efficient repopulation of human non-parenchymal cells, which
would be necessary for modelling fibrosis. Notwithstanding, our
humanised NAFLD mice unite the experimental tractabilty of the
mouse with the translational value of human hepatocytes. Our
NAFLD model will be useful for mechanistic studies on the mo-
lecular basis of the disease, as well as preclinical testing of
experimental therapies, thereby enabling the discernment of
cellular processes that are truly relevant to human NAFLD.
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