UC Berkeley UC Berkeley Previously Published Works

Title

Escherichia coli Attenuation by Fe Electrocoagulation in Synthetic Bengal Groundwater: Effect of pH and Natural Organic Matter

Permalink https://escholarship.org/uc/item/2hh5s352

Journal Environmental Science and Technology, 49(16)

0013-936X

Authors

ISSN

Delaire, Caroline van Genuchten, Case M Nelson, Kara L <u>et al.</u>

Publication Date

2015-08-18

DOI

10.1021/acs.est.5b01696

Peer reviewed

1 2	<i>E. coli</i> Attenuation by Fe Electrocoagulation in Synthetic Bengal Groundwater: Effect of pH and Natural Organic Matter
3	II
4 5	Caroline Delaire ^{a,*} , Case M. van Genuchten ^{a,†} , Kara L. Nelson ^a , Susan E. Amrose ^a , Ashok J. Gadgil ^{a,b}
6	
7 8 9	^a Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA, 94720-1710
10 11	^b Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
12 13 14	[†] Current affiliation: Institut de Dynamiques de la Surface Terrestre, University of Lausanne, Lausanne, Switzerland
15 16 17	*Corresponding author: caroline.delaire@orange.fr
18	Abstract
19	
20	Drinking water treatment technologies addressing both arsenic and microbial
21	contamination of Bengal groundwater are needed. Fe electrocoagulation (Fe-EC), a
22	simple process relying on the dissolution of an Fe(0) anode to produce Fe(III)
23	precipitates, has been shown to efficiently remove arsenic from contaminated
24	groundwater. We investigated E. coli attenuation by Fe-EC in synthetic Bengal
25	groundwater as a function of Fe dosage rate, total Fe dosed, pH, and presence of natural
26	organic matter (NOM). We demonstrated concurrent E. coli and arsenic attenuation, with
27	a 2.5 mM Fe dosage achieving over 4-log E. coli attenuation and arsenic removal from
28	450 to below 10 μ g/L. E. coli reduction was significantly enhanced at pH 6.6 compared
29	to pH 7.5 (4.0 and 1.9 log respectively for a 0.5 mM Fe dosage), which we linked to the
30	decreased rate of Fe(II) oxidation at lower pH. The presence of 3 mg/L-C of NOM
31	(Suwanee River Fulvic Acid) did not significantly interfere with E. coli attenuation by
32	Fe-EC. Based on live-dead staining, as well as on comparisons of E. coli reduction by Fe-
33	EC and by coagulation with a ferric salt, we propose that the primary mechanism of E .

34 *coli* attenuation by Fe-EC is physical removal with Fe(III) precipitate flocs, with

- 35 inactivation likely contributing as well at lower pH. Transmission electron microscopy
- 36 images showed that EC precipitates adhere to and bridge individual *E. coli* cells, resulting
- 37 in large bacteria-Fe aggregates that can be removed by gravitational settling. Our results
- 38 point to the unique ability of Fe-EC to treat a diverse range of chemical and biological
- 39 contaminants simultaneously and suggest that groundwater remediation with Fe-EC in
- 40 arsenic-affected areas may not need to be followed by a disinfection step.
- 41

42 Abstract Art

43

- 44 45
- 46

47 **1. Introduction**

48 Arsenic-contaminated groundwater serves as the primary drinking water source 49 for tens of millions of people in Bangladesh and India¹. Previous research aiming to 50 improve the quality of arsenic-contaminated groundwater in the Bengal Basin has

51	focused on arsenic removal alone, largely ignoring possible concurrent microbial
52	contamination of shallow aquifers. However, recent studies have reported the presence of
53	fecal indicators and pathogens (rotavirus, Shigella, Vibrio cholera, pathogenic E. coli and
54	adenovirus) in shallow tubewell water in Bangladesh ²⁻⁴ . A study of 125 tubewells in rural
55	Bangladesh found that 30% of wells with arsenic levels above 50 μ g/L had detectable
56	levels of E. coli ² , indicating significant concurrent arsenic and fecal contamination.
57	Although fecal contamination of groundwater is typically lower than that of surface water
58	(fecal coliform concentrations in tubewells < 10^{1} - 10^{2} CFU/100 mL ²⁻⁷ compared to 10^{2} -
59	10^4 CFU/100 mL in ponds and dug wells ^{5,8} and up to 200,000 CFU/100 mL in Ganga
60	river ⁹), it is suspected to contribute to the sustained prevalence of diarrheal diseases in the
61	region ^{10,11} . These studies demonstrate the need for safe water solutions capable of
62	addressing arsenic and microbial contamination simultaneously.
63	Iron electrocoagulation (Fe-EC) is a simple process that has been used to
64	effectively remove arsenic from South Asian groundwater ^{12,13} . Fe-EC relies on the rapid
65	dissolution of a sacrificial Fe(0) anode to produce Fe(II), which then oxidizes in the
66	presence of dissolved oxygen to form Fe(III) precipitates with high specific surface area
67	and a high affinity for arsenic adsorption ¹⁴ . Arsenic-laden precipitates can be removed
68	subsequently by gravitational settling. In the EC process, strong oxidants generated in
69	Fenton-type reactions convert As(III) into As(V), which is easier to remove at
70	circumneutral pH ¹⁵ . Fe-EC effectively removes arsenic at low cost and is a realistic
71	option for sustainable groundwater remediation in Bengal ¹⁶ . However, this technique has
72	not been examined as a strategy for reducing the bacterial load in arsenic-contaminated

73 water. Such examination is necessary to understand the potential of Fe-EC to treat

74 chemical and microbial contamination concurrently.

Two processes in the Fe-EC system may contribute to microbe attenuation. The 75 76 first process is the production of Fe(III) precipitates with an affinity for the surface of microorganisms, leading to their encapsulation in flocs and physical removal by settling. 77 78 In many natural environments, Fe oxides are found in close association with bacterial 79 cells or exopolymers¹⁷⁻¹⁹, which suggests strong sorption affinities and has prompted the use of Fe oxides to remove bacteria $^{20-22}$ and viruses 23,24 in engineered systems. The second 80 81 process is the transient presence of Fe(II) that can lead to oxidative stress and 82 inactivation. Fe(II) oxidation in Fenton-type reactions produces strong oxidants (Fe(IV), OH[·]) that can inactivate bacteria²⁵ and viruses²⁶. The processes leading to both physical 83 84 removal with flocs and inactivation are largely governed by electrolyte composition, which can impact the phase, size and surface charge of EC precipitates^{27,28}, the rate of 85 Fe(II) oxidation²⁹ and the lifetime of strong oxidants (HCO₃⁻, Cl⁻, As(III) and natural 86 87 organic matter can quench Fe(IV) and OH). Although some Fe-EC research has focused 88 on microbe attenuation, the electrolytes used in these studies were designed to replicate contaminated surface water^{24,30}. Therefore, the extent and mechanism of microbe 89 90 attenuation by Fe-EC in electrolytes representative of Bengal groundwater, which is 91 richer in oxyanions and bivalent cations than surface water, remain unexplored. 92 In addition to electrolyte composition, solution pH is likely to be a key factor affecting Fe-EC performance because it controls (1) the rate of Fe(II) oxidation²⁹ and 93 94 thereby the residence time of potentially germicidal Fe(II) as well as the rate at which 95 Fe(III) precipitates are generated, and (2) the surface charge of Fe(III) precipitates and

96	their electrostatic interactions with microorganisms. Because the pH of arsenic-
97	contaminated groundwater (defined as [As] > 10 μ g/L) in Bengal varies between 6.4 and
98	8.4 ³¹ , it is essential to understand the effect of pH on microbe attenuation. Furthermore,
99	since pH controls processes potentially leading to removal and inactivation, varying
100	solution pH can help unravel the mechanisms of microbe attenuation in Fe-EC systems.
101	Natural organic matter (NOM) is present at non-negligible concentrations in
102	arsenic-contaminated groundwater in Bengal (1-5 mg/L-C) ^{31,32} and may interfere with
103	microbe attenuation by Fe-EC in several ways: quenching of strong oxidants,
104	complexation of dissolved $Fe(II)/Fe(III)^{33}$, and alteration of the surface characteristics of
105	Fe(III) precipitates and microorganisms. NOM is known to inhibit microbe-mineral
106	interactions by increasing electrostatic repulsion ^{34,35} , and has been shown to reduce the
107	effectiveness of Fe-based microbe reduction processes ^{20,24,35} . It is therefore important to
108	determine the impact of NOM on E. coli attenuation with Fe-EC.
109	The goals of this study were to: (1) examine the concurrent removal of arsenic
110	and bacteria by Fe-EC in synthetic Bengal groundwater; (2) investigate the effects of pH
111	and NOM on this process; and (3) determine the mechanism of bacteria attenuation.
112	Using Escherichia coli K12 as a model for gram-negative fecal bacteria, we first
113	demonstrate 4-log bacteria attenuation by Fe-EC concurrent with arsenic removal from
114	450 μ g/L to below 10 μ g/L. Next we investigate the pH-dependence of <i>E. coli</i> attenuation
115	in Fe-EC by (1) comparing Fe-EC with Fe chemical coagulation methods, (2) analyzing
116	zetapotential measurements of EC precipitates and E. coli, and (3) varying Fe-EC
117	operating parameters such as iron dosage rate and settling time. We combine these results
118	with live-dead staining and transmission electron microscopy images to propose a

119	mechanism for E. coli attenuation. Lastly, we discuss the effect of NOM on E. coli
120	reduction by Fe-EC. Our results provide insight into the applicability of Fe-EC for
121	concurrent arsenic and bacteria attenuation in contaminated Bengal groundwater.
122	
123	2. Methods
124	2.1 Synthetic Bengal Groundwater Preparation. The procedure to prepare
125	synthetic groundwater (SGW) was similar to Roberts et al ³⁶ (see the Supporting
126	Information for details). Concentrations of HCO_3^- , Ca^{2+} and Mg^{2+} (8.2 mM, 2.6 mM and
127	1.9 mM respectively) reflected average levels in arsenic-contaminated (defined as [As] >
128	10 μ g/L) Bangladesh tubewells according to the British Geological Survey (BGS) ³¹ . Si, P
129	and As concentrations (1.3 mM, 0.16 mM and 6.1 μ M (460 μ g/L) respectively) were
130	significantly higher in SGW than average levels to represent worst-case scenarios for
131	arsenic removal (Table S1). The target pH value (6.6 or 7.5) was maintained throughout
132	experiments by adding drops of 1.1 M HCl as needed. Concentrations of As, Ca, Mg, P
133	and Si were measured by inductively coupled plasma optical emission spectrometry
134	(ICP-OES, PerkinElmer 5300 DV, measurement error typically < 5%). Initial
135	concentrations of all ions varied by less than 10% in replicate batch experiments. ICP-
136	OES with hydride generation was used to measure low (<20 μ g/L) final As
137	concentrations. For NOM experiments, 3 mg/L-C of Suwanee River Fulvic Acid
138	(International Humic Substance Society) was added to SGW. The concentration of NOM
139	was measured with a TOC-V analyzer (Shimadzu).
140	

141	2.2 E. coli Preparation and Enumeration. We used a non-pathogenic and
142	kanamycin-resistant strain of the gram-negative bacterium Escherichia coli (NCM 4236)
143	obtained from the late Dr. Sydney Kustu (UC Berkeley). After three propagations in
144	kanamycin-amended tryptic soy broth, stationary-phase E. coli was rinsed and
145	resuspended in phosphate buffer (see the Supporting Information for details). E. coli was
146	spiked in SGW to achieve initial concentrations of 10 ^{6.1} -10 ^{6.7} CFU/mL. E. coli
147	concentrations were enumerated in duplicate in 100 μ L aliquots as colony forming units
148	(CFU) using the spread plate technique on agar with 0.025 g/L kanamycin.
149	
117	
150	2.3 Electrocoagulation Experiments. All glassware was washed in 10% HNO ₃ ,
150 151	2.3 Electrocoagulation Experiments. All glassware was washed in 10% HNO ₃ , rinsed with 18 M Ω deionized water and autoclaved prior to use. Electrocoagulation
150 151 152	2.3 Electrocoagulation Experiments. All glassware was washed in 10% HNO ₃ , rinsed with 18 M Ω deionized water and autoclaved prior to use. Electrocoagulation experiments were conducted by immersing two 1cm x 8cm Fe(0) electrodes (98% Fe, 0.5
150 151 152 153	2.3 Electrocoagulation Experiments. All glassware was washed in 10% HNO ₃ , rinsed with 18 M Ω deionized water and autoclaved prior to use. Electrocoagulation experiments were conducted by immersing two 1cm x 8cm Fe(0) electrodes (98% Fe, 0.5 mm thick, 0.5 cm apart, anodic submerged area of 3 cm ²) in 200 mL SGW spiked with <i>E</i> .
150 151 152 153 154	2.3 Electrocoagulation Experiments. All glassware was washed in 10% HNO ₃ , rinsed with 18 M Ω deionized water and autoclaved prior to use. Electrocoagulation experiments were conducted by immersing two 1cm x 8cm Fe(0) electrodes (98% Fe, 0.5 mm thick, 0.5 cm apart, anodic submerged area of 3 cm ²) in 200 mL SGW spiked with <i>E.</i> <i>coli</i> . Electrodes were cleaned with sand paper before each experiment to remove any rust
150 151 152 153 154 155	2.3 Electrocoagulation Experiments. All glassware was washed in 10% HNO ₃ , rinsed with 18 M Ω deionized water and autoclaved prior to use. Electrocoagulation experiments were conducted by immersing two 1cm x 8cm Fe(0) electrodes (98% Fe, 0.5 mm thick, 0.5 cm apart, anodic submerged area of 3 cm ²) in 200 mL SGW spiked with <i>E.</i> <i>coli</i> . Electrodes were cleaned with sand paper before each experiment to remove any rust or solid deposits. Within the tested current density range (0.3 to 10 mA/cm ²), the Fe
150 151 152 153 154 155 156	2.3 Electrocoagulation Experiments. All glassware was washed in 10% HNO ₃ , rinsed with 18 M Ω deionized water and autoclaved prior to use. Electrocoagulation experiments were conducted by immersing two 1cm x 8cm Fe(0) electrodes (98% Fe, 0.5 mm thick, 0.5 cm apart, anodic submerged area of 3 cm ²) in 200 mL SGW spiked with <i>E.</i> <i>coli</i> . Electrodes were cleaned with sand paper before each experiment to remove any rust or solid deposits. Within the tested current density range (0.3 to 10 mA/cm ²), the Fe dosage rate <i>D</i> (M Fe/s) is related to the applied current <i>i</i> (A or Coulombs/s) according to

$$D = \frac{i}{V * Z * F}$$

where *V* is the reactor volume (L), *Z* is the number of electrons involved (equivalents/mol) and *F* is Faraday's constant (Coulombs/mol). We assume Z=2 based on Lakshmanan et al.³⁷. Unless specified otherwise, an Fe dosage rate of 46.4 μ M/min was selected (applied current of 30 mA) and the dosage time was adjusted to reach the desired final Fe concentration (varying from 0.1 to 2.5 mM). After dosing, the solution was stirred in

163	open air for 90 to 120 min to allow for Fe(II) oxidation and formation of Fe(III)
164	precipitates (these stages are referred to as "dosing-mixing" hereafter). The suspension
165	was then left to settle overnight. Unfiltered and filtered (0.45 μ m nylon filters) samples
166	were taken before dosing, after dosing-mixing and after overnight settling for
167	measurement of Fe, As, Ca, Mg, P and Si with ICP-OES. All samples were digested with
168	1.1 M HCl prior to ICP-OES analysis. Unfiltered samples were used to measure total Fe
169	(Fe(II) + Fe(III)). Because Fe(III) is insoluble at circumneutral pH, Fe in filtered samples
170	was considered to be Fe(II). Across all experiments, unfiltered Fe in bulk solution after
171	dosing was 95% \pm 7% (n=69) of the Faradic value. Fe in the filtrate (soluble Fe(II)) after
172	dosing-mixing was <0.1% of the total Fe dosed for experiments at pH 7.5, and $19\% \pm 6\%$,
173	(n=18) of the total Fe dosed for experiments at pH 6.6. Although complete (99.9%)
174	oxidation of Fe(II) in our SGW at pH 6.6 requires over 9h (see Figure S1), we chose not
175	to prolong mixing beyond 120 min to remain representative of field conditions. Fe
176	concentrations in the supernatant after overnight settling were typically $<5\%$ of the total
177	dosed Fe. Samples for E. coli enumeration were taken before dosing and after settling
178	(from the supernatant, ~ 3 cm below the surface). E. coli attenuation was calculated as the
179	difference between CFU concentrations in the pre-dosing and post-settling samples.
180	Overnight settling allowed separating individual E. coli cells from cells associated with
181	Fe(III) precipitates, because individual cells do not settle in this time frame (Stokes
182	settling velocity of 1 μ m particles with a density of 1.16 g/cm ³⁽³⁸⁾ is about 1 cm/day). This
183	assumption was verified in preliminary experiments, which showed that: (1)
184	concentrations of E. coli cells suspended in SGW did not change after two days (less than

4.5% change), and (2) *E. coli* CFUs at different depths in the supernatant in EC
experiments varied by less than 0.2 log.

187

188	2.4 Fe-EC Experiments with Alum. To isolate the effects of removal and
189	inactivation on E.coli attenuation during the settling period, several experiments were
190	conducted with $Al_2(SO_4)_3$ coagulant (alum), which made it possible to decrease the time
191	needed for settling of EC precipitates and quickly separate cells associated with flocs
192	from free cells in the supernatant. After dosing-mixing, 0.1 mL of a 370 mM alum
193	solution was added to the suspension, resulting in an Al concentration of 0.19 mM. After
194	rapid mixing (700 rpm, 2 min) and slow mixing (60 rpm, 20 min), large flocs formed that
195	settled in approximately 2h, as opposed to 18h in regular EC experiments (until Fe(III) in
196	supernatant $< 5\%$ of total Fe dosed), allowing us to sample bacteria in the supernatant
197	after 2h, 5h and 24h for culturability testing.
198	
199	2.5 <i>E. coli</i> Attenuation by Coagulation with FeSO ₄ , FeCl ₃ and Pre-
200	Synthesized Ferrihydrite. Stock solutions of FeSO ₄ (100 mM, acidified with 1 mM HCl
201	to avoid premature Fe(II) oxidation), FeCl ₃ (100 mM) and pre-synthesized ferrihydrite
202	(200 mM, see the Supporting Information for details) were prepared. Adequate volumes
203	of these stock solutions were added to 200 mL SGW adjusted to pH 6.6 or 7.5 to achieve
204	Fe concentrations of 0.5 mM. Solutions were stirred open to the atmosphere for 100-130
205	min, then left to settle overnight. Sampling followed the same procedure as in EC
206	experiments.

208	2.6 E. coli Attenuation at Varying Generation Rates of Fe(III) Precipitates. In
209	Fe-EC, the rate at which Fe(III) precipitates are generated is controlled by two processes:
210	(1) Fe(II) production at the anode, and (2) Fe(II) oxidation to Fe(III), which
211	instantaneously (relative to Fe(II) oxidation) precipitates at circumneutral pH. A detailed
212	derivation of the generation rate of Fe(III) precipitates is given in the Supporting
213	Information. At pH 7.5, Fe(II) oxidation is rapid ($t_{1/2}$ = 4.5 min in SGW, see Figure S1b)
214	and the generation rate of precipitates is mainly controlled by the Fe dosage rate. In order
215	to investigate the impact of the generation rate of Fe(III) precipitates on E. coli
216	attenuation, Fe-EC experiments were conducted at pH 7.5 at three different Fe dosage
217	rates (1.1, 2.6 and 46.4 μ M/min, corresponding to currents of 1, 2 and 30 mA
218	respectively) and three different total dosages (0.1, 0.2 and 0.5 mM respectively, see
219	Figure S2). One experiment was carried out with FeCl ₃ at pH 7.5 where 6 μ L of 100 mM
220	FeCl ₃ were added to the reaction beaker every minute in order to mimic a dosage rate of
221	3.1 μ M/min. A reaction time (dosing-mixing) of 100 min was kept constant across all
222	experiments.
223	All E. coli attenuation experiments were conducted in triplicate or more. We
224	report average log attenuations \pm one standard deviation.
225	
226	2.7 Bacterial Viability Tests. Quantifying E. coli inactivation by direct plating
227	would require enumerating viable cells in the supernatant as well as in the settled flocs.
228	However, separating $E. coli$ from Fe(III) precipitates was not possible here (see the
229	Supporting Information for details). Instead, we used the BacLight LIVE-DEAD kit

230 (Invitrogen) to assess the degree of membrane permeabilization, a proxy for *E. coli*

231	inactivation. This test relies on two fluorescent nucleic acid stains (PI and SYTO9) to
232	distinguish cells with intact membranes appearing green ("live") from those with
233	damaged membranes appearing red ("dead"). Samples were prepared as described in the
234	Supporting Information and analyzed with a Zeiss AxioImager fluorescent microscope
235	(63x Plan-Apochromat objective, EndoGFP and mCherry filters, UC Berkeley CNR
236	Biological Imaging Facility). Pictures of Fe(III) precipitates and stained E. coli cells were
237	taken in transmission and fluorescent modes respectively, and images were superimposed
238	At least 10 pictures were taken per sample and visually analyzed to produce
239	representative results.
240	We applied this procedure to evaluate E. coli inactivation during the two
241	treatment stages: dosing-mixing and overnight settling. For the former, samples were
242	collected from the mixed suspension at the end of dosing-mixing in EC experiments (at
243	pH 6.6 and 7.5). For the latter, sampling the supernatant after settling did not allow for
244	quantitative fluorescent microscopy analysis because E. coli concentrations were too low.
245	We therefore mimicked supernatant conditions at pH 6.6 with 200 mL solutions of SGW
246	amended with 0.18 mM FeSO ₄ and spiked with $10^{7.5}$ CFU/mL <i>E. coli</i> .
247	
248	2.8 Bacteria and Precipitates Characterization. Transmission electron
249	microscopy was carried out on the precipitate-microorganism aggregates with a FEI
250	Tecnai 12 Transmission Electron Microscope operated at 120 kV (UC Berkeley Electron
251	Microscope Lab). Zetapotential measurements were conducted with a Malvern Zetasizer

252 Nano-ZS at 633 nm for (1) Fe(III) precipitates generated by Fe-EC in SGW with and

without NOM (Fe dosage = 0.5 mM) and (2) *E. coli* suspended in SGW ($10^{6.5} \text{ CFU/mL}$).

Sample preparation and data collection are described in detail in the SupportingInformation.

3. Results and discussion

258	3.1 Concurrent As and <i>E. coli</i> Attenuation. Figure 1 shows concurrent As and
259	E. coli attenuation in SGW at pH 7.5. For Fe dosages of 0.5, 1.5 and 2.5 mM, Fe-EC
260	achieved log attenuations of 1.9, 3.7 and 4.4 respectively. Arsenic was reduced from 450
261	μ g/L to 116 μ g/L at 0.5 mM Fe, and to below the WHO recommended maximum
262	contaminant level (MCL) of 10 μ g/L ³⁹ at Fe dosages > 1.5 mM. Similar arsenic removal
263	in SGW with and without E. coli (Table S2) suggests that Fe-EC can attenuate bacteria
264	without detriment to arsenic remediation. At Fe dosages of more than 2 mM, which are
265	typical of current field operation ¹⁶ , Fe-EC achieved over 4-log attenuation of $E. \ coli$ and
266	thus met the WHO guideline for household drinking water treatment requiring 4-log
267	bacteria reduction ⁴⁰ . This level of treatment is likely sufficient to eliminate the need for
268	an additional disinfection step for most groundwaters as WHO drinking water guidelines
269	characterize waters as low risk if <i>E</i> . <i>coli</i> < 1 CFU/100 mL ³⁹ .

3.2 Surface Charge Characterization of EC precipitates and *E. coli*. Figure 2272shows the zetapotentials of EC precipitates and *E. coli* in SGW between pH 1.5 and 8.5.273The isoelectric point (iep) of *E. coli* was found to be between 2 and 3, which is consistent274with reported iep of gram-negative bacteria⁴¹. Above pH 5, the zetapotential of *E. coli*275cells was less negative than that observed previously in a KCl electrolyte⁴², which could276be due to Ca²⁺ and Mg²⁺ complexation by negatively charged residues on the cell

277	surface ⁴³ . Past studies have shown that Fe-EC in SGW leads to the formation of short-
278	range ordered hydrous ferric oxide ^{14,27} . We found the iep of EC precipitates to be between
279	4 and 5, which is lower than iep values typically reported for poorly ordered Fe(III)
280	precipitates (between 6 and 9) 44,45 . This difference can be attributed to the adsorption of
281	silicate and negatively charged phosphate (Si:Fe and P:Fe of 0.028 ± 0.08 and 0.24 ± 0.02
282	mol:mol, n=7), which are known to decrease the iep of ferrihydrite upon adsorption ^{$45,46$} .
283	Our zetapotential measurements indicate that EC precipitates and E. coli are both
284	negatively charged at circumneutral pH in SGW, and that their surface charge does not
285	significantly vary between pH 5.5 and 8.5.

286

287 3.3 Effect of pH on E. coli Attenuation. In Figure 3, E. coli attenuation at pH 6.6 288 and 7.5 is compared for 4 different scenarios (Fe-EC, chemical coagulation with ferrous 289 and ferric salts, and coagulation with pre-synthesized ferrihydrite) at an Fe dosage of 0.5 290 mM. These 4 scenarios have been shown to generate the same type of precipitates^{14,36,47,48} 291 and only differ by the form and rate with which Fe is released into SGW: as Fe(II) for Fe-292 EC and FeSO₄ (released progressively and in a single dose respectively), as dissolved 293 Fe(III) for FeCl₃, and as colloidal Fe(III) for pre-synthesized ferrihydrite (both released in 294 a single dose). With Fe-EC, E. coli attenuation was significantly higher at lower pH: 4.0 295 log removal at pH 6.6 compared to 1.9 at pH 7.5. A similar trend was observed for FeSO₄ 296 (4.3 log at pH 6.6 and 2.0 log at pH 7.5). Conversely, pH had no significant effect on E. 297 *coli* attenuation with FeCl₃ and with pre-synthesized ferrihydrite, indicating that possible 298 changes in colloid surface charge or SGW chemistry between pH 6.6 and 7.5 have no 299 impact on bacteria-precipitate surface interactions. Consequently, the increased E. coli

300	reduction with Fe-EC and $FeSO_4$ at pH 6.6 cannot be attributed to a difference in colloid
301	surface charge, which is supported by our zetapotential measurements showing that both
302	EC precipitates and E. coli cells have nearly identical net surface charge at pH 6.6 and
303	7.5 (zetapotential \sim -12.0 mV and -13.4 mV respectively, Figure 2).
304	<i>E. coli</i> attenuation with $FeSO_4$ exhibited the same pH dependence as Fe-EC,
305	suggesting that increased attenuation at lower pH is related to the transient presence of
306	Fe(II). The rate of Fe(II) oxidation in SGW at pH 6.6 ($k_{eff} = 0.012 \text{ min}^{-1}$, Figure S1) is
307	significantly slower than at pH 7.5 ($k_{eff} = 0.155 \text{ min}^{-1}$, Figure S1), which leads to: (1) a
308	slower generation rate of Fe(III) precipitates, and (2) an increased residence time of
309	germicidal Fe(II). In the two following sections, we investigate the impacts of these two
310	factors on <i>E. coli</i> attenuation by Fe-EC.
311	
312	3.4 Effect of the Generation Rate of Fe(III) Precipitates on E. coli
313	Attenuation. The generation rate of Fe(III) precipitates controls the rate at which they
314	aggregate into flocs, and may thus affect bacteria-precipitate interactions. To probe the

315 impact of the precipitate generation rate on E. coli attenuation, the Fe dosage rate q,

316 which controls the flux of Fe(II) delivered by the anode, was decreased from 46.4 to 2.6

and 1.1 µM/min at pH 7.5. As calculated by Equations (5) and (6) of the Supporting

318 Information, $q = 2.6 \,\mu$ M/min at pH 7.5 leads to a precipitate generation rate comparable

to that of experiments at pH 6.6 with $q = 46.4 \mu$ M/min (see Figure S2). Figure S3 shows

- 320 that lower dosage rates, resulting in lower precipitate generation rates, did not
- 321 significantly improve E. coli attenuation by Fe-EC at pH 7.5. Similarly, no significant
- 322 difference in *E. coli* attenuation was observed between single dose versus low dosage rate

for chemical coagulation with FeCl_3 at pH 7.5. We concluded that the lower precipitate generation rate at pH 6.6 cannot account for increased *E. coli* attenuation compared to pH 7.5.

326

327 **3.5** Evolution of *E. coli* Attenuation during Settling in Experiments with

328 Alum. The use of alum in EC experiments significantly accelerated settling of Fe(III) 329 precipitates and allowed us to quickly separate E. coli cells associated with precipitates 330 from free cells in the supernatant. As a result, this experimental design enabled us to 331 track the viability of suspended E. coli cells in the supernatant during the 24h settling 332 period. We found that the difference in E. coli attenuation between pH 6.6 and pH 7.5 333 increased over the 24h settling period (Figure 4). After 2h settling, E. coli attenuation was 334 only slightly higher at pH 6.6 compared to pH 7.5 (2.5 and 1.8 log respectively). The 335 discrepancy significantly increased over time and was comparable to that of regular EC 336 experiments after 24h settling (5.0 and 2.5 log attenuation at pH 6.6 and 7.5 with alum, 337 compared to 4.0 and 1.9 log attenuation at pH 6.6 and 7.5 in regular EC experiments). In 338 contrast to experiments at pH 7.5, those at pH 6.6 contained a significant concentration of 339 unoxidized Fe(II) at the beginning of settling $(0.10 \pm 0.04 \text{ mM}, \text{ corresponding to } 19\% \pm$ 340 6% of the total Fe dosed, n=9), most of which oxidized during the 24h settling period. 341 Figure 4 shows a correlation at pH 6.6 between the increase of E. coli attenuation during 342 overnight settling and the amount of Fe(II) oxidized in the supernatant. This correlation 343 could point to the bactericidal action of Fe(II) on E. coli in the supernatant. To further 344 investigate this possibility, we conducted live-dead staining of the bacteria.

346	3.6 E. coli Inactivation. Bacterial viability tests conducted immediately after
347	dosing-mixing showed that E. coli inactivation during dosing-mixing was limited, both at
348	pH 6.6 and 7.5, with less than 20% of the cells appearing red on fluorescent microscopy
349	images (representative examples shown in Figure 5a-c). Bacterial viability tests on the
350	supernatant after overnight settling at pH 6.6 showed a majority of red cells (see Figure
351	S4), suggesting <i>E. coli</i> inactivation during the settling period at pH 6.6. However, <i>E. coli</i>
352	concentrations in the supernatant were too low for quantitative fluorescent microscopy
353	analysis. Thus, we mimicked supernatant conditions at pH 6.6 by adding $10^{7.5}$ CFU/mL
354	and 0.18 mM FeSO ₄ to SGW. In images taken after 18h, approximately 50% of the cells
355	appeared red (Figure 5d), suggesting that reactive species produced upon Fe(II) oxidation
356	in the supernatant at pH 6.6 caused significant membrane damage (confirmed by
357	culturability measurements indicating a 0.8 log reduction in CFUs).
358	
359	3.7 Mechanism of <i>E. coli</i> attenuation by Fe-EC. At pH 7.5, all Fe(II) is
360	oxidized by the end of dosing-mixing. Consequently, minimal inactivation at the end of
361	dosing-mixing (<0.1 log as determined on fluorescent microscopy images, Figure 5a)
362	implies that inactivation is overall insignificant and that E. coli attenuation is primarily
363	due to physical removal with flocs by gravitational settling. As shown on Figure 3, E. coli
364	reduction at pH 7.5 with Fe-EC is not significantly different from the attenuation
365	achieved with FeCl_3 (pH 6.6 or 7.5). The latter only removes <i>E. coli</i> via encapsulation in
366	flocs, since inactivation by germicidal Fe(II) can be ruled out in the case of a ferric salt.

367 Consequently, similar *E. coli* reduction with Fe-EC at pH 7.5 and with FeCl₃ further

368 supports that removal with flocs is the primary mechanism of *E. coli* attenuation by Fe-369 EC at pH 7.5.

370 By contrast, our results suggest that both removal and inactivation contribute to E. 371 *coli* reduction at pH 6.6. Inactivation after dosing-mixing at pH 6.6 was insignificant 372 (<0.1 log as determined from fluorescent microscopy images, Figure 5b-c), suggesting 373 that the attenuation observed at the earliest stage of settling (2.5 log after 2h, Figure 4) is 374 mostly due to removal with flocs. The additional $\sim 2 \log$ attenuation occurring in the 375 supernatant during overnight settling is likely attributable to inactivation, supported by 376 the increase in dead cells in the supernatant (Figure S4) and mock supernatant (Figure 377 5d). Note that the live-dead stain is likely a conservative measure of inactivation, as loss of viability may occur well before membranes become permeable to PI⁴⁹. In addition, the 378 379 higher bacteria concentration in the mock supernatant compared to regular supernatant 380 conditions could have lowered the steady-state concentration of reactive oxidants through 381 scavenging, explaining the limited inactivation (0.8-log loss of culturability) in the mock 382 supernatant.

383 We established that the largest fraction of E. coli cells (1.9 log at pH 7.5, ~2 log at 384 pH 6.6, Figures 3 and 4) is physically removed with flocs. Figures 5a-b illustrate the 385 association of *E. coli* cells with large Fe(III) flocs. TEM images provide further insight, 386 illustrating the intimate spatial arrangement between EC precipitates and bacteria 387 surfaces (Figures 6 and S5a). Precipitates bridging individual cells (Figure 6) lead to 388 large precipitate-bacteria networks that can be readily removed by gravitational settling 389 (Figure S5b). Although our zetapotential measurements indicate that EC precipitates and E. coli are both negatively charged at circumneutral pH in SGW (Figure 2), adhesion of 390

391	EC precipitates to <i>E. coli</i> may be enabled by a combination of 1) charge heterogeneities
392	on cell surfaces, 2) hydrophobic interactions, and 3) hydrogen or covalent bonds. Due to
393	their small size relative to E. coli cells (apparent in Figure 6), EC precipitates may be
394	sensitive to heterogeneities in <i>E. coli</i> surface composition, allowing localized adhesion.
395	For example, surface proteins carrying positively charged amine groups could constitute
396	preferential adhesion sites. In addition, phosphate and carboxyl residues, which can form
397	covalent bonds with iron oxides ⁵⁰ , may provide chemical bonding sites for Fe(III)
398	precipitates.
399	
400	3.8 Effect of NOM on <i>E. coli</i> Attenuation. 3 mg/L-C of Suwanee River Fulvic
401	Acid had a minimal impact on <i>E. coli</i> attenuation both at pH 6.6 (0.5 mM Fe) and 7.5
402	(1.5 mM Fe), as illustrated on Figure S6a. The zetapotential of EC precipitates, shown in
403	Figure S6b, was not affected by NOM between pH 5.5 and 8.5. ICP-OES analysis of
404	filtered samples after dosing-mixing indicated that Ca^{2+}/Mg^{2+} uptake did not increase in
405	the presence of NOM (data not shown), ruling out bivalent cation bridging of EC
406	precipitates and NOM. Taken together, these results suggest that NOM did not
407	significantly interact with EC precipitates, and therefore did not interfere with the
408	adhesion of EC precipitates to E. coli cells.
409	These results are unexpected given the accounts of NOM adsorbing to ferric
410	(oxyhydr)oxides ^{34,51} and inhibiting MS2 attenuation by Fe-EC in a $CaCl_2$ electrolyte ²⁴ , but
411	may be explained by the composition of SGW. NOM may not effectively compete with
412	silicate and phosphate for surface sites on EC precipitates: decreased NOM adsorption on
413	Fe oxides in the presence of silicate and phosphate has been observed elsewhere ^{52,53} . In

414	addition, EC precipitates have a net negative charge in SGW, and electrostatic repulsion
415	may inhibit interactions with NOM. Conversely, EC precipitates formed in $CaCl_2$ are
416	expected to be positively charged at circumneutral pH and more prone to interact with
417	NOM, likely explaining the results of Tanneru and Chellam ²⁴ . In their paper, they also
418	proposed that quenching of OH ⁻ and Fe(IV) by NOM may inhibit inactivation of MS2 ²⁴ .
419	In our system, 3 mg/L-C of NOM did not have a significant effect on overall attenuation
420	at pH 6.6, possibly because NOM concentrations were lower (C:Fe mass ratios of 0.03-
421	0.1 in our experiments, compared to 0.5 in Tanneru and Chellam ²⁴). It is possible that
422	higher NOM concentrations would cause a larger decrease in <i>E. coli</i> attenuation at pH 6.6
423	due to greater quenching of reactive oxidants.
424	

425 3.9 Implications for Water Treatment. In this work, we show that Fe-EC can 426 adequately reduce bacterial contamination from synthetic Bengal groundwater, even in 427 the presence of 3 mg/L-C NOM, and without detriment to arsenic removal. Groundwater 428 remediation with Fe-EC in arsenic-affected areas may therefore not need to be followed 429 by chlorination or UV disinfection. However, more research on virus attenuation by Fe-430 EC is needed to reinforce this claim. Because bacterial inactivation during dosing-mixing 431 was limited, settled flocs may contain viable pathogens, presenting a risk if sludge is not 432 handled properly. Consequently, adequate sludge treatment such as high-temperature drying (70 C for 30 min⁵⁴) should be applied to ensure sludge sterilization. Finally, we 433 434 found that the longer lifetime of Fe(II) at lower pH led to increased attenuation, 435 suggesting that the use of ferrous salts (as opposed to ferric salts) in primary water and 436 wastewater treatment might improve microbe reduction when the pH of the influent is

- 437 acidic. More generally, our results suggest that conditions promoting Fe(II) build-up in
- the Fe-EC process, such as a low pH, a short post-EC mixing time, or a very high dosage
- 439 rate causing O_2 depletion, may lead to increased bacteria reduction.

440

441 <u>Supporting Information</u>

- 442 Detailed methodology and supporting figures referenced in the text are provided in the
- 443 Supporting Information. This material is available free of charge via the Internet at
- 444 <u>http://pubs.acs.org</u>.

445

446 Acknowledgements

- 447 This work was supported by the Development Impact Lab (USAID Cooperative
- 448 Agreement AID-OAA-A-13-00002), part of the USAID Higher Education Solutions
- 449 Network, and by the Andrew and Virginia Rudd Family Foundation. This work would
- 450 not have been possible without the generous assistance from David Sedlak, Andrew
- 451 Torkelson, Andrea Silverman, Samantha Beardsley, Jannis Wenk, Denise Schichnes and
- 452 Reena Zalpouri. We are grateful to James Britt Abrahamson for conducting zetapotential
- 453 measurements. We thank the CNR Biological Imaging Facility and the Electron
- 454 Microscope Lab at UC Berkeley. Work at the Molecular Foundry (zetapotential
- 455 measurements) was supported by the Office of Basic Energy Sciences of the U.S.
- 456 Department of Energy under Contract No. DE-AC02-05CH11231.

457

458

<u>References</u>

461 462 463	(1)	Rahman, M. M.; Naidu, R.; Bhattacharya, P. Arsenic contamination in groundwater in the Southeast Asia region. <i>Environ. Geochem. Health</i> 2009 , <i>31 Suppl 1</i> , 9–21.		
464 465 466 467	(2)	Van Geen, A.; Ahmed, K. M.; Akita, Y.; Alam, M. J.; Culligan, P. J.; Emch, M. Escamilla, V.; Feighery, J.; Ferguson, A. S.; Knappett, P.; et al. Fecal contamination of shallow tubewells in bangladesh inversely related to arsenic. <i>Environ. Sci. Technol.</i> 2011 , <i>45</i> , 1199–1205.		
468 469 470 471	(3)	Ferguson, A. S.; Layton, A. C.; Mailloux, B. J.; Culligan, P. J.; Williams, D. E.; Smartt, A. E.; Sayler, G. S.; Feighery, J.; McKay, L. D.; Knappett, P. S. K.; et al Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater. <i>Sci. Total Environ.</i> 2012 , <i>431</i> , 314–322.		
472 473 474 475	(4)	Knappett, P. S. K.; McKay, L. D.; Layton, A.; Williams, D. E.; Alam, M. J.; Mailloux, B. J.; Ferguson, A. S.; Culligan, P. J.; Serre, M. L.; Emch, M.; et al. Unsealed tubewells lead to increased fecal contamination of drinking water. <i>J.</i> <i>Water Health</i> 2012 , <i>10</i> , 565–578.		
476 477 478	(5)	Leber, J.; Rahman, M. M.; Ahmed, K. M.; Mailloux, B.; van Geen, A. Contrastin influence of geology on E. coli and arsenic in aquifers of Bangladesh. <i>Ground</i> <i>Water</i> 49, 111–123.		
479 480 481	(6)	Islam, M. S.; Siddika, A.; Khan, M. N.; Goldar, M. M.; Sadique, M. A.; Kabir, A. N.; Huq, A.; Colwell, R. R. Microbiological analysis of tube-well water in a rural area of Bangladesh. <i>Appl. Environ. Microbiol.</i> 2001 , <i>67</i> , 3328–3330.		
482 483 484	(7)	Luby, S. P.; Gupta, S. K.; Sheikh, M. A.; Johnston, R. B.; Ram, P. K.; Islam, M. Tubewell water quality and predictors of contamination in three flood-prone area in Bangladesh. <i>J. Appl. Microbiol.</i> 2008 , <i>105</i> , 1002–1008.		
485 486 487 488 489	(8)	Hira-Smith, M. M.; Yuan, Y.; Savarimuthu, X.; Liaw, J.; Hira, A.; Green, C.; Hore, T.; Chakraborty, P.; von Ehrenstein, O. S.; Smith, A. H. Arsenic concentrations and bacterial contamination in a pilot shallow dugwell program in West Bengal, India. <i>J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng.</i> 2007 , <i>42</i> , 89–95.		
490 491 492	(9)	Sengupta, C.; Sukumaran, D.; Barui, D.; Saha, R.; Chattopadhyay, A.; Naskar, A.; Dave, S. Water Health Status in Lower Reaches of River Ganga, India. <i>Appl. Ecol. Environ. Sci.</i> 2014 , <i>2</i> , 20–24.		

493 494 495	(10)	Escamilla, V.; Knappett, P. S. K.; Yunus, M.; Streatfield, P. K.; Emch, M. Influence of Latrine Proximity and Type on Tubewell Water Quality and Diarrheal Disease in Bangladesh. <i>Ann. Assoc. Am. Geogr.</i> 2013 , <i>103</i> , 299–308.	
496 497 498 499	(11)	Wu, J.; van Geen, A.; Ahmed, K. M.; Alam, Y. A. J.; Culligan, P. J.; Escamilla, V.; Feighery, J.; Ferguson, A. S.; Knappett, P.; Mailloux, B. J.; et al. Increase in diarrheal disease associated with arsenic mitigation in Bangladesh. <i>PLoS One</i> 2011 , <i>6</i> , e29593.	
500 501 502 503	(12)	Amrose, S.; Gadgil, A.; Srinivasan, V.; Kowolik, K.; Muller, M.; Huang, J.; Kostecki, R. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate. <i>J. Environ. Sci. Health. A. Tox. Hazard. Subst.</i> <i>Environ. Eng.</i> 2013 , <i>48</i> , 1019–1030.	
504 505 506 507	(13)	Amrose, S. E.; Bandaru, S. R. S.; Delaire, C.; van Genuchten, C. M.; Dutta, A.; DebSarkar, A.; Orr, C.; Roy, J.; Das, A.; Gadgil, A. J. Electro-chemical arsenic remediation: field trials in West Bengal. <i>Sci. Total Environ.</i> 2014 , <i>488-489</i> , 539–546.	
508 509 510	(14)	Van Genuchten, C. M.; Addy, S. E. A.; Peña, J.; Gadgil, A. J. Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study. <i>Environ. Sci. Technol.</i> 2012 , <i>46</i> , 986–994.	
511 512 513	(15)	Li, L.; van Genuchten, C. M.; Addy, S. E. A.; Yao, J.; Gao, N.; Gadgil, A. J. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater. <i>Environ. Sci. Technol.</i> 2012 , <i>46</i> , 12038–12045.	
514 515 516	(16)	Amrose, S. E.; Bandaru, S. R. S.; Delaire, C.; van Genuchten, C. M.; Dutta, A.; Debsarkar, A.; Orr, C.; Das, A.; Roy, J.; Gadgil, A. Electro-chemical arsenic remediation: field trials in West Bengal. <i>Sci. Total Environ.</i> 2013 , <i>in press</i> .	
517 518	(17)	Fortin, D.; Ferris, F. G. Precipitation of iron, silica, and sulfate on bacterial cell surfaces. <i>Geomicrobiol</i> . J. 1998 , 15, 309–324.	
519 520	(18)	Ferris, F. G.; Beveridge, T. J.; Fyfe, W. S. Iron-silica crystallite nucleation by bacteria in a geothermal sediment. <i>Nature</i> 1986 , <i>320</i> , 609–611.	
521 522 523	(19)	Cowen, J. P.; Bruland, K. W. Metal deposits associated with bacteria: implications for Fe and Mn marine biogeochemistry. <i>Deep Sea Res. Part A. Oceanogr. Res. Pap.</i> 1985 , <i>32</i> , 253–272.	
524 525 526 527	(20)	Mohanty, S. K.; Torkelson, A. A.; Dodd, H.; Nelson, K. L.; Boehm, A. B. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater. <i>Environ. Sci.</i> <i>Technol.</i> 2013 , <i>47</i> , 10791–10798.	

528 529 530	(21)	Zhang, L.; Seagren, E. A.; Davis, A. P.; Karns, J. S. The capture and destruction of Escherichia coli from simulated urban runoff using conventional bioretention media and iron oxide-coated sand. <i>Water Environ. Res.</i> 2010 , <i>82</i> , 701–714.	
531 532 533	(22)	Zhuang, J.; Jin, Y. Interactions between viruses and goethite during saturated flow: effects of solution pH, carbonate, and phosphate. <i>J. Contam. Hydrol.</i> 2008 , <i>98</i> , 15–21.	
534 535	(23)	Zhu, B.; Clifford, D. A.; Chellam, S. Virus removal by iron coagulation- microfiltration. <i>Water Res.</i> 2005 , <i>39</i> , 5153–5161.	
536 537 538	(24)	Tanneru, C. T.; Chellam, S. Mechanisms of virus control during iron electrocoagulationmicrofiltration of surface water. <i>Water Res.</i> 2012 , <i>46</i> , 2111–2120.	
539 540 541	(25)	Kim, J. Y.; Park, HJ.; Lee, C.; Nelson, K. L.; Sedlak, D. L.; Yoon, J. Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. <i>Appl. Environ. Microbiol.</i> 2010 , <i>76</i> , 7668–7670.	
542 543 544	(26)	Kim, J. Y.; Lee, C.; Love, D. C.; Sedlak, D. L.; Yoon, J.; Nelson, K. L. Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. <i>Environ. Sci. Technol.</i> 2011 , <i>45</i> , 6978–6984.	
545 546 547	(27)	Van Genuchten, C. M.; Peña, J.; Amrose, S. E.; Gadgil, A. J. Structure of Fe(III) precipitates generated by the electrolytic dissolution of Fe(0) in the presence of groundwater ions. <i>Geochim. Cosmochim. Acta</i> 2014 , <i>127</i> , 285–304.	
548 549 550	(28)	Van Genuchten, C. M.; Gadgil, A. J.; Peña, J. Fe(III) nucleation in the presence of bivalent cations and oxyanions leads to subnanoscale 7 Å polymers. <i>Environ. Sci. Technol.</i> 2014 , <i>48</i> , 11828–11836.	
551 552	(29)	King, D. W. Role of Carbonate Speciation on the Oxidation Rate of Fe(II) in Aquatic Systems. <i>Environ. Sci. Technol.</i> 1998 , <i>32</i> , 2997–3003.	
553 554 555	(30)	Ghernaout, D.; Badis, A.; Kellil, A.; Ghernaout, B. Application of electrocoagulation in Escherichia coli culture and two surface waters. <i>Desalination</i> 2008 , <i>219</i> , 118–125.	
556 557	(31)	BGS. Arsenic contamination of groundwater in Bangladesh. Arsen. Contam. Groundw. Bangladesh 2001.	
558 559 560	(32)	Tareq, S. M.; Maruo, M.; Ohta, K. Characteristics and role of groundwater dissolved organic matter on arsenic mobilization and poisoning in Bangladesh. <i>Phys. Chem. Earth, Parts A/B/C</i> 2013 , <i>58-60</i> , 77–84.	

561 562 563 564	(33)	Fujii, S.; Dupin, D.; Araki, T.; Armes, S. P.; Ade, H. First direct imaging of electrolyte-induced deswelling behavior of pH-responsive microgels in aqueous media using scanning transmission X-ray microscopy. <i>Langmuir</i> 2009 , <i>25</i> , 2588–2592.		
565 566 567 568	(34)	Abudalo, R. A.; Ryan, J. N.; Harvey, R. W.; Metge, D. W.; Landkamer, L. Influence of organic matter on the transport of Cryptosporidium parvum oocysts a ferric oxyhydroxide-coated quartz sand saturated porous medium. <i>Water Res.</i> 2010 , <i>44</i> , 1104–1113.		
569 570 571	(35)	Li, Z.; Greden, K.; Alvarez, P. J. J.; Gregory, K. B.; Lowry, G. V. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to coli. <i>Environ. Sci. Technol.</i> 2010 , <i>44</i> , 3462–3467.		
572 573 574	(36)	Roberts, L. C.; Hug, S. J.; Ruettimann, T.; Billah, M. M.; Khan, A. W.; Rahman, M. T. Arsenic Removal with Iron(II) and Iron(III) in Waters with High Silicate and Phosphate Concentrations. <i>Environ. Sci. Technol.</i> 2004 , <i>38</i> , 307–315.		
575 576	(37)	Lakshmanan, D.; Clifford, D. A.; Samanta, G. Ferrous and Ferric Ion Generatio During Iron Electrocoagulation. <i>Environ. Sci. Technol.</i> 2009 , <i>43</i> , 3853–3859.		
577 578 579	(38)	Godin, M.; Bryan, A. K.; Burg, T. P.; Babcock, K.; Manalis, S. R. Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. <i>Appl. Phys. Lett.</i> 2007 , <i>91</i> , 123121.		
580	(39)	WHO Guidelines for drinking-water quality, fourth edition. 2011.		
581	(40)	WHO Evaluating household water treatment options. 2011.		
582 583 584	(41)	Rijnaarts, H. H. M.; Norde, W.; Lyklema, J.; Zehnder, A. J. B. The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. <i>Colloids Surfaces B Biointerfaces</i> 1995 , <i>4</i> , 191–197.		
585 586 587	(42)	Walker, S. L.; Redman, J. A.; Elimelech, M. Role of Cell Surface Lipopolysaccharides in Escherichia coli K12 adhesion and transport. <i>Langmuir</i> 2004 , <i>20</i> , 7736–7746.		
588 589 590	(43)	Fowle, D. A.; Fein, J. B. Competitive adsorption of metal cations onto two gram positive bacteria: testing the chemical equilibrium model. <i>Geochim. Cosmochim. Acta</i> 1999 , <i>63</i> , 3059–3067.		
591 592	(44)	Kosmulski, M. The pH-dependent surface charging and the points of zero charge. <i>J. Colloid Interface Sci.</i> 2002 , <i>253</i> , 77–87.		

- 593 (45) Appenzeller, B. M. R.; Duval, Y. B.; Thomas, F.; Block, J.-C. Influence of
 594 Phosphate on Bacterial Adhesion onto Iron Oxyhydroxide in Drinking Water.
 595 Environ. Sci. Technol. 2002, 36, 646–652.
- (46) Hamid, R. D.; Swedlund, P. J.; Song, Y.; Miskelly, G. M. Ionic strength effects on silicic acid (H4SiO4) sorption and oligomerization on an iron oxide surface: an interesting interplay between electrostatic and chemical forces. *Langmuir* 2011, 27, 12930–12937.
- 600 (47) Wan, W.; Pepping, T. J.; Banerji, T.; Chaudhari, S.; Giammar, D. E. Effects of
 601 water chemistry on arsenic removal from drinking water by electrocoagulation.
 602 Water Res. 2011, 45, 384–392.
- 603 (48) Li, L.; Li, J.; Shao, C.; Zhang, K.; Yu, S.; Gao, N.; Deng, Y.; Yin, D. Arsenic
 604 removal in synthetic ground water using iron electrolysis. *Sep. Purif. Technol.*605 2014, 122, 225–230.
- 606 (49) Joux, F.; Lebaron, P. Use of fluorescent probes to assess physiological functions of
 607 bacteriaat single-cell level. *Microbes Infect*. 2000, 2, 1523–1535.
- 608 (50) Parikh, S. J.; Chorover, J. ATR-FTIR spectroscopy reveals bond formation during
 609 bacterial adhesion to iron oxide. *Langmuir* 2006, 22, 8492–8500.
- 610 (51) Gu, B.; Schmitt, J.; Chen, Z.; Liang, L.; McCarthy, J. F. Adsorption and desorption
 611 of natural organic matter on iron oxide: mechanisms and models. *Environ. Sci.*612 *Technol.* 1994, 28, 38–46.
- 613 (52) Giasuddin, A. B. M.; Kanel, S. R.; Choi, H. Adsorption of Humic Acid onto
 614 Nanoscale Zerovalent Iron and Its Effect on Arsenic Removal. *Environ. Sci.*615 *Technol.* 2007, 41, 2022–2027.
- 616 (53) Jiang, L.; Zhu, J.; Wang, H.; Fu, Q.; Hu, H.; Huang, Q.; Violante, A.; Huang, L.
 617 Sorption of humic acid on Fe oxides, bacteria, and Fe oxide-bacteria composites. *J.*618 Soils Sediments 2014, 14, 1378–1384.
- 619 (54) Feachem, R. G. *Bradley. D. J. *Garelick. H. D. D. Sanitation and disease : health aspects of excreta and wastewater management. 1983, 1–534.
- 621
- 622

624

Figure 1: Concurrent As and E. coli attenuation by Fe-EC in SGW at pH 7.5 for Fe 625 dosages of 0.5, 1.5 and 2.5 mM. The initial As concentration was 450 µg/L as As(III). 626 627 The columns represent *E. coli* log attenuation, whereas the diamonds indicate dissolved arsenic concentrations. The solid red line indicates WHO recommended maximum

628 629

631 Figure 2: Zetapotential of Fe-EC precipitates (0.5 mM Fe) and E. coli in SGW measured

632 by dynamic light scattering (633 nm).

Figure 3: Effect of pH on *E. coli* attenuation by Fe-EC and chemical coagulation with

635 FeSO₄ salt, FeCl₃ salt and pre-synthesized ferrihydrite (FH). The Fe dosage for all

636	experiments was	s 0.5	mM.
	1		

637

Figure 4: *E. coli* attenuation by Fe-EC as a function of settling time in experiments with
alum, at pH 6.6 and 7.5 (bars). Diamonds indicate the amount of Fe(II) oxidized during
the 24h settling period at pH 6.6. For comparison, results for regular Fe-EC experiments
(without alum) are given on the left. The Fe dosage for all experiments was 0.5 mM.

644

645Figure 5: Fluorescent microscopy images of live-dead stained *E. coli* cells (green=live,646red=dead) after dosing-mixing before settling (a, b and c). On a) and b), EC precipitate647flocs are visible in grey, surrounding *E. coli* cells. a) *E. coli* counts: $10^{6.3}$ CFU/mL, pH6487.5, Fe dosage=1.5 mM. b) *E. coli* counts: $10^{6.5}$ CFU/mL, pH 6.6, Fe dosage=0.5 mM. c)649*E. coli* counts: $10^{7.2}$ CFU/mL, pH 6.6, Fe dosage=0.5 mM. Figure 5d shows live-dead

- 650 staining of $10^{7.6}$ CFU/mL *E. coli* left overnight at pH 6.6 with 0.18 mM FeSO₄ to mimic
- 651 supernatant conditions.

- 653 654
 - <u>Figure 6</u>: Transmission electron microscopy image illustrating the intimate association of EC precipitates and bacteria surfaces, with precipitates bridging two *E. coli* cells. *E. coli* counts: $10^{7.2}$ CFU/mL, Fe dosage=0.5 mM, pH 6.6.
- 655
- 656