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ABSTRACT Geothermal systems emit substantial amounts of aqueous, gaseous, and
methylated mercury, but little is known about microbial influences on mercury spe-
ciation. Here, we report results from genome-resolved metagenomics and mercury
speciation analysis of acidic warm springs in the Ngawha Geothermal Field (�55°C,
pH �4.5), Northland Region, Aotearoa New Zealand. Our aim was to identify the mi-
croorganisms genetically equipped for mercury methylation, demethylation, or Hg(II)
reduction to volatile Hg(0) in these springs. Dissolved total and methylated mercury
concentrations in two adjacent springs with different mercury speciation ranked
among the highest reported from natural sources (250 to 16,000 ng liter�1 and 0.5
to 13.9 ng liter�1, respectively). Total solid mercury concentrations in spring sedi-
ments ranged from 1,274 to 7,000 �g g�1. In the context of such ultrahigh mercury
levels, the geothermal microbiome was unexpectedly diverse and dominated by aci-
dophilic and mesophilic sulfur- and iron-cycling bacteria, mercury- and arsenic-
resistant bacteria, and thermophilic and acidophilic archaea. By integrating micro-
biome structure and metagenomic potential with geochemical constraints, we
constructed a conceptual model for biogeochemical mercury cycling in geothermal
springs. The model includes abiotic and biotic controls on mercury speciation and il-
lustrates how geothermal mercury cycling may couple to microbial community dy-
namics and sulfur and iron biogeochemistry.

IMPORTANCE Little is currently known about biogeochemical mercury cycling in
geothermal systems. The manuscript presents a new conceptual model, supported
by genome-resolved metagenomic analysis and detailed geochemical measure-
ments. The model illustrates environmental factors that influence mercury cycling in
acidic springs, including transitions between solid (mineral) and aqueous phases of
mercury, as well as the interconnections among mercury, sulfur, and iron cycles. This
work provides a framework for studying natural geothermal mercury emissions glob-
ally. Specifically, our findings have implications for mercury speciation in wastewa-
ters from geothermal power plants and the potential environmental impacts of mi-
crobially and abiotically formed mercury species, particularly where they are
mobilized in spring waters that mix with surface or groundwaters. Furthermore, in
the context of thermophilic origins for microbial mercury volatilization, this report
yields new insights into how such processes may have evolved alongside microbial
mercury methylation/demethylation and the environmental constraints imposed by
the geochemistry and mineralogy of geothermal systems.
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Geothermal springs and fumaroles emit substantial amounts of aqueous and gas-
eous mercury (Hg) (1). Aqueous Hg concentrations in these systems often exceed

100 ng liter�1, and total Hg levels can approach 25 �g liter�1 (2–4). Despite these
ultrahigh mercury levels, few studies have examined biotic and abiotic mechanisms for
Hg transformations or Hg speciation in geothermal springs. Specifically, the potential
for native thermophiles to mediate mercury transformations, i.e., reduction of Hg(II) to
Hg(0) or methylation/demethylation of mercury (to CH3Hg� [MeHg] or to Hg[II],
respectively) (5–7), remains poorly understood.

Hg species have a high binding affinity to thiols and lipids, causing damage to
proteins, enzymes, and nucleic acids. They can inhibit microorganisms at submicromo-
lar concentrations (8). Microorganisms living in environments with elevated Hg
(�100 ng liter�1) commonly possess genes encoding Hg resistance (9, 10). The mer
operon is used by many bacteria and archaea to detoxify Hg(II), by converting it to
volatile Hg(0) (7, 10, 11). Interestingly, mer has a phylogenetic origin in the thermo-
philes (12, 13). Additionally, microbes carrying the organomercurial lyase-encoding
merB gene as part of the mer operon are able to detoxify organic Hg compounds, in
tandem with mercuric reductase (MerA), to produce methane (CH4) and Hg(0) (9, 14).
Finally, some anaerobic bacteria are suspected to oxidatively demethylate Hg species
independent of the mer pathway, producing carbon dioxide (CO2) and Hg(II) (15),
although a biochemical pathway has not been identified for mer-independent dem-
ethylation.

The efficiency of microbial methylation of Hg(II) to MeHg is still largely unknown in
geothermal spring ecosystems, particularly under acidic conditions (�55°C, pH �4.5)
(4, 5, 16). However, the hgcAB genes required by microorganisms to methylate Hg (17)
have been reported from many environments, including wetland sediments, rice paddy
soils, thawing permafrost, hypersaline and hypersulfidic waters, soda lakes, and geo-
thermal systems (16, 18–20). These environments typically host abundant sulfate- and
iron-reducing bacteria (Deltaproteobacteria), as well as methanogenic and acetogenic
Methanomicrobia (Euryarchaeota), Chloroflexi, and Firmicutes, all of which contain spe-
cies capable of Hg methylation (18, 21–23). Metagenomic analyses have also identified
hgcAB genes in Chrysiogenetes, “Candidatus Atribacteria” (candidate phylum OP9), and
candidate phylum ACD79 (16). Although Hg methylation is most often associated with
sulfate reduction, the existence of environmental triggers or controls on Hg methyl-
ation remains poorly understood as does the evolution and phylogenetic distribution
of hgcAB genes.

By comparison, in nongeothermal environments, elevated Hg concentrations can
inhibit microbial Hg methylation (24) and lead to conditions favoring MeHg demethy-
lation (25) or methylation-demethylation cycles (26–28). However, in-depth under-
standing of Hg methylation in geothermal springs, similarly to acid mine drainage
(AMD) (29), has not been established. Conversely, acidophiles in AMD systems have
been well studied with respect to potential for metal and sulfur cycling (30), but with
less focus on Hg speciation and methylation. Here, we combined metagenomic and
geochemical speciation analyses to understand Hg transformations in the context of
biogeochemical cycling (e.g., S and Fe) in an acidic warm spring microbiome. To
understand physicochemical constraints on microbial Hg transformations, we studied
Hg speciation across a gradient of environmental factors that can influence microbiome
composition and activity. We compare our findings to those of previous geothermal
spring studies to refine the conceptual model for geothermal Hg cycling.

RESULTS
Water and sediment chemistry. Chemical and physical data for each spring are

shown in Tables 1 and 2. Chloride concentrations exceeded 400 mg liter�1 in all springs
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except Cub Bath (TS2) at 29.8 mg liter�1. Across the Ngawha Geothermal Field (NGF),
sulfate concentrations varied from 9.3 to 1,200 mg liter�1, with the highest concentra-
tions found in springs of pH �4 (Table 1). In Tiger Springs (TS), Cub Bath had the lowest
sulfate concentration (319 mg liter�1), while those at the other TS sites were �1,000 mg
liter�1. Sulfide concentrations were nearly 3.5� higher in Cub Bath (6.45 mg liter�1)
than in Tiger Bath (TS1) (1.82 mg liter�1). The total iron concentration in Tiger Bath
(12.7 mg liter�1) in October 2011 was twice that of Cub Bath (6.06 mg liter�1).

Total Hg (HgT) and total MeHg (MeHgT) measurements of filtered waters from NGF
hot springs sampled in April 2011 are shown in Table 2. In comparison to background
levels for freshwater systems, HgT was relatively high at �250 to 16,000 ng liter�1

compared to 0.4 to 74 ng liter�1 for nongeothermal lakes and 1 to 7 ng liter�1 for rivers
and streams (31). Nonthermal waters in the Ngawha region are reported to contain 300
to 500 ng liter�1 Hg (32). Previously reported values for dissolved Hg in NGF thermal
waters range from 1,000 to 350,000 ng liter�1 (32). In this study, the highest levels of
HgT were found in the Tiger Springs region (all �1,000 ng liter�1) and from Cinnabar
Bath (GN1) in the Ginn Ngawha Spa (1,460 ng liter�1) (see Fig. S3 in the supplemental
material). Methylmercury levels ranged from 0.5 to 14.0 ng liter�1; however, elevated
concentrations of MeHgT did not correlate with higher HgT concentrations. Concentra-
tions of HgT and MeHgT in filtered water samples from NGF were compared to
reference values (Table 2). MeHg levels in filtered water samples from Yellowstone
National Park (YNP) were substantially lower than those observed at NGF, with most
YNP springs having concentrations below the detection limit (0.013 ng liter�1). Those
with detectable MeHg were still relatively low at 0.026 to 0.080 ng liter�1 (5). Only three
sites sampled in the NGF exhibited a significant proportion of HgT as MeHg (�1%
[vol/vol]): Cub Bath (TS2), Kotanitanga Bath (NS1B), and a drainage pool adjacent to
Favourite Bath (NS3B). Methylmercury levels were nearly an order of magnitude greater
in Cub Bath (TS2) than in Tiger Bath (TS1), even though the total mercury levels were
roughly the same (�1,000 ng liter�1).

Sediments collected from the Tiger Springs area in October 2011 were analyzed for
HgT (Table 2). Total Hg concentrations were highest in the hole adjacent to Tiger Bath
(TS3) at �7,000 �g g�1. Tiger Bath (TS1) sediments had approximately one-half the
solid HgT of TS3, at 3,467 �g g�1, and Cub Bath sediments had approximately one-third
the solid HgT of Tiger Bath (1,274 �g g�1). Gaseous Hg(0) emissions were also recorded
from the baths (Table 2). The Hg(0) concentration measured above Tiger Bath (25.0 ng
liter�1) was greater than that of Cub Bath (4.34 ng liter�1) but also varied across the
bath (4.38 to 25.0 ng liter�1). Furthermore, these values are an order of magnitude
lower than previously reported concentrations of fumarolic Hg(0) in the Tiger Springs
area at 13.5 to 276 �g liter�1 and 710 �g liter�1 from Tiger Bath specifically (32).

Microbial diversity from metagenomic data sets. Phylogenetic analysis of ribo-
somal marker protein S3 from assembled Tiger and Cub Bath metagenomes identified
members of Deltaproteobacteria, Gammaproteobacteria, Thermotogae, “Candidatus Mi-

TABLE 1 Anion and cation measurements in filtered water from hot springs in the Ngawha Geothermal Field

Sample site GPS coordinates (lat, long)

Anion or cation (mg liter�1)a

F� Cl� Br� NO3
� SO4

2� S2�b FeT

Tiger Bath (TS1) �35.4075155°, 173.8554535° 2.1 470 2.79 BDL 1217.8 1.82 � 0.13 12.7
Cub Bath (TS2) �35.4075150°, 173.8554755° 1.9 30 0.91 0.74 319.0 6.45 � 0.15 6.06
Hole to right of Tiger Bath (TS3) �35.4075160°, 173.8554315° BDL 395 BDL BDL 1176.9 0.87 � 0.47 NM
Hole 3 m from Tiger Bath (TS4) �35.4075073°, 173.8554202° BDL 591 BDL BDL 1017.0 NM NM
Cinnabar Bath (GN1) �35.4049290°, 173.8600079° BDL 876 BDL BDL 10.2 NM NM
Jubilee Bath (GN2) �35.4049108°, 173.8600182° BDL 1000 BDL BDL 91.9 NM NM
Twin Bath (GN3) �35.4049380°, 173.8600082° 2.6 1073 5.02 BDL 119.9 NM NM
Kotanitanga (NS1B) �35.4056976°, 173.8583837° BDL 661 BDL BDL 155.1 NM NM
Adjacent to Favourite Bath (NS3B) �35.4055000°, 173.8583547° BDL 639 BDL BDL 192.5 NM NM
Waikato Bath (NS4B) �35.4055887°, 173.8584129° BDL 537 BDL BDL 54.1 NM NM
aNM, not measured; BDL, below detection limit (0.0005 mg liter�1).
bS2� is indicative of all reduced sulfide species.
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crarchaeota,” “Candidatus Parvarchaeota,” Thermoplasmata, and other Euryarchaeota
(see Fig. S4 and S5). Furthermore, phylogenetic analysis revealed a greater breadth in
the phyla of genomes resolved from Cub Bath compared to that from Tiger Bath, with
Verrucomicrobia, Acidobacteria, Firmicutes, Planctomycetes, Alphaproteobacteria, and Be-
taproteobacteria identified in Cub Bath only (Fig. S4). Ribosomal proteins from Thermo-
protei were identified only in assembled Tiger Bath metagenomic data (see Fig. S5).
Genome binning resulted in acidophilic and thermophilic bacteria and archaea domi-
nating the Tiger and Cub Bath metagenomic data sets, with the average coverage of
scaffolded contigs within genome bins ranging from 7.1 to 789� (Fig. 1; Table S2). The
highest coverage bins in each bath were related to Acidithiobacillus, Thermotogales, and
Thermoplasma (Fig. 1).

Genome bins were comprised of aerobes as well as obligate and facultative anaer-
obes capable of sulfur oxidation (Acidithiobacillus spp. and Thiomonas), sulfur reduction
(Desulfurella acetivorans and Granulicella mallensis), iron oxidation (Ferroplasma and
Acidithiobacillus ferrivorans), iron reduction (Acidobacterium capsulatum), methane ox-
idization (Methylacidiphilum), and acetate oxidation (Desulfurella acetivorans) (Fig. 2). To
elucidate important biogeochemical links to Hg cycles mediated by these microbial

TABLE 2 Mercury analyses of NGF hot springs

Location (reference)
Water temp
(°C)b pHb

MeHgc

(ng liter�1)
HgT

d

(ng liter�1)
% MeHgT of
HgT

e

THg(s)
f

(�g g�1)
Hg(0)g

(ng liter�1)

NGFa (this study)
Tiger Bath, TS1 35.3–40.5 2.9–3.0 1.56 1,031 0.15 3,467 25
Cub Bath, TS2 24.5–33.4 3.6–3.2 13.9 1,042 1.33 1,274 4.3
Hole to right of Tiger Bath, TS3 35.9–40.3 2.9–3.8 4.33 16,711 0.03 7,000 7.5
Hole 3 m from Tiger Bath, TS4 21.6 3.96 0.53 2,160 0.02
Cinnabar Bath, GN1 40.4 6.72 5.36 1,461 0.37
Jubilee Bath, GN2 38 6.45 1.28 244 0.52
Twin Bath, GN3 34.1 6.44 1.61 722 0.22
Kotanitanga, NS1B 32.4 6.54 4.28 487 0.88
Adjacent to Favourite Bath, NS3B 26.5 7.14 3.57 253 1.41
Waikato Bath, NS4B 45.5 6.7 0.90 326 0.28

Regional valuesh

NGF soils and waters (32) 17,000–710,000 0.017–0.35 2,000–78,500
Tiger Bath (32) 32–57 5–8 710,000
NGF nonthermal waters (32) 300–500
Puhipuhi mine waters (68) 0.61–1.02 69.6–240 0.3–1.6 35–1,748 0.06–0.50
Wairua River, Northland (84) 100–1,000 �100

YNPi

Nymph Lake spring no. 1 (5) 0.026 170 0.02
Nymph Lake spring no. 2 (5) 0.43 520 0.08
Roadside West Spring (5) 65 6.4 0.08 200 0.04
Thermal waters and microbial mats (5) 36.4–80 2.2–8.6 �0.013–0.43 15–520 0.0049–120
Acidic thermal springs (6) �0.025 38–94
Acidophilic microbial mats (6) 0.03–1.62 2–71 0.16–18
Filtered thermal waters and microbial mats (7) 21.9–74.4 1.8–9.3 7.3–144 0.38–20.52

Reference standards and valuesh

North American lakes (31, 85) 0.003–6 0.04–74 8.11
North American rivers and streams (31, 85) 0.078–0.55 1–7 7.86
NZ drinking water standard 7,000
US EPA, acute aquatic life water standard 2,400
US EPA, chronic aquatic life water standard 770

aNGF, Ngawha Geothermal Field.
bMeasurements taken during each sampling campaign are provided as a range.
cMeHg, methylmercury.
dHgT, total mercury.
eThe fraction of total Hg as MeHg (as %) in filtered water samples.
fTHg(s), solid total mercury in hot spring sediments.
gHg(0), gaseous elemental mercury above the springs.
hPublished reference and regional background values are included for comparison.
iYNP, Yellowstone National Park.
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phylotypes, metagenomes were searched for genes encoding Hg, sulfur, sulfate, and
methane cycling (Fig. 2). We note here that genes involved in methanogenesis (notably
mcrA) and methane oxidation (pmoA) were nearly absent from metagenomes (Fig. 2).

Mer operon. Assembled metagenomes were screened for genes belonging to the
mer operon that encode mercuric reductase (merA), organomercurial lyase (merB), a
periplasmic protein (merP), and inner membrane proteins involved in Hg(II) transport
(merT, merC, merE, merF, and merG), as well as one or more regulatory proteins (merR
and merD) (13). At Ngawha, scaffolded mer genes were often encoded in the higher
coverage genome bins of each bath, Acidithiobacillus spp., Thiomonas, and Thermoto-
gae (see Table S5; Fig. 2). The coverage of mer scaffolds ranged from 3.9 to 836�, with
scaffold lengths of 1,021 to 101,352 bp, indicating that a significant number of reads
mapped to each sequence. A high fraction of reads (3.24E�04 to 1.94E�04) (see Table
S1) from each metagenome were predicted to encode mercuric reductase (MerA) using
the hidden Markov model (HMM). BLASTP analysis of HMM search outputs indicated
that the HMM was insufficient for filtering sequences that are predicted to encode

FIG 1 Rank abundance by scaffold coverage of ribosomal protein S3 within binned and unbinned genomes from Tiger (NW1) and Cub (NW2) Bath
metagenomes. Analyses and annotations were performed in ggKbase (https://ggkbase.berkeley.edu/). Genomic bin phylogeny used ribosomal S3 proteins from
genomic bins, while scaffold phylogeny to the lowest common ancestor is given for unbinned ribosomal proteins. When multiple ribosomal protein S3s had
the same taxonomic classification, the average coverage is shown, with error bars representing standard deviations. Values are ranked by NW2 coverage.
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MerA paralogs dihydrolipoamide dehydrogenase and pyridine nucleotide-disulfide
oxidoreductase. Therefore, the HMM likely overestimates MerA abundance encoded by
the raw reads. MerA homologues identified in the assembled Tiger and Cub Bath
metagenomes using ggKbase annotations were related to both Archaea (Euryar-
chaeota) and Bacteria (Proteobacteria and Bacteroidetes) (Fig. 3). Most archaeal MerA
were related to Thermoplasma; however, four MerA homologues branched deeply from
known archaeal homologues and were related (�43%, BLASTP sequence alignment) to
MerA from “Candidatus Methanoperedens nitroreducens” (NW1 scaffolds 675 and 247,
and NW2 scaffolds 1319 and 13696) (Fig. 3). Most MerA homologues from Cub Bath
were related to Acidithiobacillus spp. (Fig. 3). MerA homologues identified in the
metagenomes were from operons also encoding MerP, MerT, and MerR (Table S5).
Several scaffolds related to Euryarchaeota (Thermoplasma) encoded just for MerA and
MerP (NW1_scaffold_26, NW1_scaffold_675, and NW2_scaffold_876) (Table S5), consis-
tent with Thermoplasma mer genes sequenced from acid mine drainage (AMD) (33).

Two similar but distinct merB genes were identified in assembled Tiger and Cub Bath
metagenomes, related to Acidithiobacillus caldus and Thioalkalivibrio spp., respectively
(see Fig. S6). The merB gene from Tiger Bath (NW1_scaffold_113) was linked to a
genome bin identified as Acidithiobacillus caldus, with an average scaffold coverage of
750� (Table S5). The same scaffold (NW1_scaffold_113) contained two merR genes that
were convergent and divergent, respectively, to mer genes that encode MerT, MerP,
and MerA. The merB gene from Cub Bath (NW2_scaffold_17399) was most closely
related to merB from Thioalkavibrio spp.; however, the scaffold itself was unbinned, with
an overall taxonomic identification of Acidithiobacillus ferrivorans (Table S5). The
scaffold also contained merR and merA genes related to Acidithiobacillus ferrivorans
(WP_035195121). The translated organomercurial lyases (MerB) from Tiger and Cub
Baths aligned to conserved cysteines (34), indicative of their true functionality (see
Fig. S7).

Biological Hg methylation. Both Tiger and Cub Bath metagenomic read sets were
searched for sequences sharing homology to Hg methylation genes (hgcA and hgcB)
(17). A small fraction of reads (2.16E�07) were identified as fragments of hgcA se-
quences in the Cub Bath metagenome (Table S1). The nucleotide reads were each
100 bp in length and, when translated, aligned to several regions of HgcA from known
methylators, including the highly conserved G(I/V)NVWC region of the HgcA protein
(17) (see Fig. S8). Several of the reads aligned to one another, and a composite amino
acid sequence (59 amino acids [aa] in length) is shown in Fig. S8. Phylogenetic analyses
of the translated reads revealed two distinct hgcA-like genes in the Cub Bath metag-
enome (Fig. 4). One of the reads closely matched (BLASTP search) to pterin-binding
regions of HgcA-like proteins from marine bacteria Streptomyces sp. CNQ-509 and
Nitrospina spp. (E value, 8E�05; 93% sequence coverage, 55%) and to fused HgcAB
proteins primarily found in thermophilic archaeal and bacterial genomes, Thermococcus
sp. strain EP1, Kosmotoga pacifica, Pyrococcus furiosus, and Methanococcoides methyl-
utens (E values, 3E�06 to 8E�08; 100% sequence coverage, 65% to 75% sequence
identification [ID]). Whether these microbes with genomes encoding an HgcAB fused
protein are capable of Hg methylation is unknown (16). When tested for Hg methyl-
ation capability, both Pyrococcus furiosus and Methanococcoides methylutens were
unable to produce MeHg at levels higher than controls (16, 35).

The second set of hgcA reads from Cub Bath (reads 2 to 7) (Fig. 4), including the
composite sequence, were aligned using BLASTP to the pterin-binding region of HgcA
proteins from known and predicted Hg methylators Desulfosporosinus youngiae, Clos-
tridium cellobioparum, Desulfosporosinus sp. strain Tol-M, and Desulfosporosinus sp.
BRH-c37 (E values, 4E�21 to 7E�22; 100% query cover; 71 to 75% ID). Phylogenetic
analyses (Fig. 4) of the composite sequence revealed homology to HgcA from Nitro-
spirae bacterium HCH-1 (GenBank ID LNQR00000000.1) and to HgcA from hot spring
metagenomes. The Cub Bath hgcA sequences could not be binned; therefore, addi-
tional taxonomic information about hgcA carrying genomes was not obtained. Taxo-
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nomic assignments of Hg methylators from HgcA phylogeny alone are not conclusive.
The hgcA sequences pulled from assembled YNP and British Columbia hot spring
metagenomes from JGI-IMG databases span a wide range of diverse phyla and are
predicted to encode HgcAs that relate closely to those from Deltaproteobacteria,
Firmicutes, Nitrospirae, Planctomycetes, and Euryarchaeota (Methanomicrobia and Ther-
moplasmata) (Fig. 4). BLASTP searches of translated amino acid sequences revealed
common closest matches (�83% ID) to Clostridium straminisolvens, Deltaproteobacte-
rium sp. NaphS2, Nitrospirae bacteria SG8-3 and HCH-1, Phycisphaerae bacterium SG8-4,
Smithella spp., Methanocella arvoryzae, and Thermoplasmatales archaeon DG-70-1. Of
these closest relatives, only Thermoplasmatales archaeon DG-70-1 is from a thermo-
philic phylum (Thermoplasmata); however, this strain was isolated from an anaerobic,
moderately halophilic, and mesophilic aquatic environment (36) rather than a geother-
mal spring.

>90%
70-90%
50-70%

<50% not shown

Firmicutes
Deltaproteobacteria
Methanomicrobia

HgcAB fused protein group

Cub Bath metagenomic reads

Paralogs

Yellowstone National Park reads

Bootstrap values

Nitrospirae
Chloroflexi
Other phyla

de
lta

 p
ro

te
ob

ac
te

riu
m

 N
ap

hS
2

Mus
hr

oo
m S

pr
ing

 &

Obis
idi

an
 P

oo
l m

eta
ge

no
mes

Desu
lfo

monile tie
djei

Nitro
spira

 bacte
rium SG8-3

Smithella sp
. F

21

Obsidian Pool metagenome

Smithella sp. SDB

Obsidian Pool metagenome

Octopus Spring metagenome

Acetonema longum

Obsidian Pool metagenome

Desulfosporosinus spp.  
Desulfitobacterium sp PCE1
Desulfosporosinus sp. I2 
Bacteroides cellulosolvens

Desulfosporosinus spp.Obsidian Pool metagenomeOctopus Spring metagenome

Methanocorpusculum bavaricum

Methanomicrobia

Methanocella spp.

Therm
oplasm

atales

Octopus Spring m
etagenom

e

Obsidian Pool m
etagenom

e

Atribacteria bacterium
 

O
bsidian Pool m

etagenom
e

M
ethanofollis lim

inatans

O
bsidian Pool m

etagenom
e

Leptolinea tardivitalis

D
esulfocurvus vexinensis

M
ethanoregula boonei

M
ethanosphaerula palustris

O
ctopus spring m

etagenom
e

N
itr

os
pi

ra
e 

ba
ct

er
iu

m
 H

C
H

-1

O
ct

op
us

 S
pr

in
g 

m
et

ag
en

om
e

Fa
iry

 S
pr

in
g 

m
et

ag
en

om
e

C
ub

 B
at

h 
m

et
ag

en
om

e

Geo
ps

yc
hr

ob
ac

te
r

Octo
pu

s s
pr

ing
 m

eta
ge

no
me

Clos
trid

ium
 ce

llo
bio

pa
rum

Clostr
idium te

rm
itid

is

Acetivi
brio

 ce
llulolyti

cus

Octo
pus s

pring metagenome

Dethiobacter alkaliphilusDehalobacter spp.Desulfovibrio africanus str.
Desulfovibrio putealis
Clostridium cellulosi

Ethanoligenens harbinensebacterium UASB14DesulfitobacteriumDesulfosporosinus orientisObsidian pool metagenome

Chrysiogenes arsenatis

Marine benthic group B archaeon

Streptomyces sp. CNQ-509

Cub Bath metagenome

M
ultispecies: Nitrospina

CO
DH from

 non-Hg-m
ethylators G

eo
ba

ct
er

 s
pp

.

D
ef

er
ris

om
a 

ca
m

in
i

Pe
lo

ba
ct

er
 s

el
en

iig
en

es

un
cu

ltu
re

d 
De

su
lfo

ba
ct

er
iu

m
 s

p.

G
eo

al
ka

lib
ac

te
r f

er
rih

yd
rit

icu
s

O
bsidian Pool m

etagenom
e

Fused HgcAB

I

II

III

IV

V

VI

VII

VIII

IX
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A high fraction of reads from each metagenome aligned to hgcB sequences from
known and predicted methylators (2.08E�06 to 3.02E�06) (Table S1). However, BLAST
analysis of the translated hgcB-like genes resulted in closest matches to ferredoxin-
encoding gene sequences in both Tiger and Cub Bath. To differentiate between other
ferredoxin proteins and HgcB homologues, the translated hgcB-like genes were
searched for the conserved C(M/I)ECGAC site in HgcB (17). A complete hgcB gene was
identified in the assembled Cub Bath metagenome (NW2_scaffold_10600_2) (see sup-
plemental material). A translated BLASTP search of the sequence revealed the closest
matches (E values, 2E�26 to 3E�29; 91% to 98% coverage; 53% to 57% identity) to
HgcB were from predicted Hg methylators Dehalobacter spp., Clostridium straminisol-
vens, Nitrospirae bacterium HCH-1, and Syntrophobotulus glycolicus. Other features on
the assembled contig that contains the hgcB gene (NW2_idba_contig_10600) include a
partial hgcA gene upstream from hgcB, and downstream genes encode a DsrE/DsrF-like
family protein (involved in intracellular sulfur reduction) related to Planctomycetes, a
copper-binding protein related to Aquificae, a putative transcriptional regulator related
to ArsR repressor, and an arsenical pump membrane protein (ArsB), both related to
Firmicutes (see Fig. S9).

Biological sulfur species cycling in Tiger and Cub Baths. The availability and

speciation of sulfur compounds within geothermal environments constrains the strat-
egies employed by microorganisms to deal with Hg in these ecosystems. For example,
Hg methylation is impeded in ecosystems with elevated aqueous sulfide concentra-
tions (37). Conversely, the availability of soluble Hg to microorganisms is limited by the
solubility and/or microbially mediated dissolution of cinnabar/metacinnabar (38). To
elucidate these interactions, the Cub and Tiger Bath metagenomes were searched for
genes related to dissimilatory sulfite/sulfate reduction using dsrAB genes that encode
subunits A and B of the dissimilatory bi(sulfite) reductase enzyme (DsrAB) (39) and the
sox pathway genes [soxR, soxXA, soxYZ, soxB, sox(CD)2, soxG] that encode enzymes used
in hydrogen sulfide and elemental sulfur oxidation (40).

Complete or near complete dsrAB sequences were recovered from assembled Tiger
and Cub Bath metagenomes using ggKbase annotations (see Table S6). The genes were
often present on scaffolds containing other genes encoding proteins involved in
sulfite/sulfate reduction to sulfide. Both dsrC and dsrD genes were present on scaffolds
with dsrAB in NW1_Thaumarchaeota_unknown_1, NW2_Deltaproteobacteria_41_12,
and NW2_Acidobacterium_capsulatum_related. Phylogenetic analyses of the translated
genes indicated six distinct groups of DsrAB sequences in Tiger and Cub Baths (Fig. 5;
Table S6), groups I to VI. Three distinct groups of reductive bacterial type DsrAB groups
(I to III) were identified, most closely related to known thermophilic sulfur-reducing
bacteria such as Desulfurella acetivorans as well as uncultured Gemmatimonas sp. strain
Sg8-17. Groups IV and V contained sequences related to reductive archaeal DsrAB in
genomic bins related to Thermoplasmata, Thermoplasma acidophilum, and Acidu-
liprofundum. Group VI DsrABs contained sequences distantly related to “Candidatus
Rokubacteria” CSP1-6, Caldivirga maquilingensis, and Thermodesulfobacterium spp.
(WP_051754629). Group V DsrABs were likely uncultured reductive archaeal type
DsrABs related to Vulcanisaeta; unbinned sequences were from scaffolds with a
majority of sequences related to Archaea. Group VI DsrABs were most closely
related (�50%) to DsrAB from the sulfate-reducer “Candidatus Rokubacteria” CSP1-6
(41); the sequence was distinct from DsrA of group IV and is from genomic bin
NW2_Planctomycetes_54_12 (Table S6). The DsrAB phylogenies as represented in Fig. 5
agree with the phylogenetic annotations of the scaffolds from which the genes were
obtained (Table S6). Importantly, while there is evidence for bacterial and archaeal
sulfate and sulfur reduction within Tiger and Cub Baths, none of the DsrAB groups
detected (groups I to VI) (Fig. 5) contain known Hg methylators from the primary
sulfate-reducing phyla, Deltaproteobacteria and Firmicutes (18), and there were no
hgcAB genes present in sulfate-reducing genomic bins from Tiger or Cub Bath.
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Genes encoding sulfur oxidation (sox) in acidophilic Betaproteobacteria and Gam-
maproteobacteria were detected in both Tiger and Cub Bath metagenomes and were
related to Acidithiobacillus spp. and Thiomonas spp. (Fig. 2; Table S7). Furthermore,
sequences from archaeal and bacterial sox pathways, including from acidophiles Acid-
iphilium and Acidocella, were present in the unbinned metagenomic data (Table S7).
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FIG 5 Phylogenetic analysis of DsrAB by maximum likelihood method. The 15 DsrAB homologues in this study were pulled from IDBA-UD assembled Tiger and
Cub metagenomes using ggKbase. They were compared to 218 reference DsrAB sequences pulled from the Dome database, including 15 representative DsrAB
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DISCUSSION

Geothermal systems provide an environment in which relationships between the
chemical and physical processes controlling Hg speciation and bioavailability and
microbial Hg transformations (4, 7) remain poorly understood. Temperature and pH
constitute major drivers of microbial diversity in geothermal springs, with pH contrib-
uting to a greater extent (42, 43). Indeed, previous studies show that acidic geothermal
spring communities appear quite distinct from those of neutral and alkali springs,
irrespective of temperature (42, 43). In our study, despite their mutual close proximity
and broadly similar physicochemical properties and dissolved total Hg concentrations,
the Tiger and Cub Baths of the NGF hosted very distinct microbiomes (see Fig. S10 in
the supplemental material). The greater diversity in genomic bins representative of the
Cub Bath microbiome than of Tiger Bath (Fig. 1) may have promoted Fe and S redox
cycling to a greater extent, which in turn could facilitate the dissolution of metal
sulfides such as pyrite or cinnabar. Subsequently, this dissolution could have increased
the bioavailability of Hg(II) for hgcAB� equipped microorganisms by oxidizing reduced
S and increasing dissolved Hg(II) (Fig. 6).
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FIG 6 Conceptual model of biogeochemical cycling of mercury (Hg), sulfur (S), and iron (Fe) in Hg-enriched, sulfidic,
low pH mesothermal springs. Gaseous elemental mercury [Hg(0)] [as well as Hg(II)] from deep geological sources
enters the surface waters of the springs where it becomes oxidized to Hg(II) (enhanced by chloride [Cl�]) (32) and
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of all reduced sulfide species. Round icons represent microbially mediated reactions, white are primarily aerobic-
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pathway along with Fe-oxidizing bacteria and archaea (FeOBA) are able to enhance dissolution of metal sulfides,
such as pyrite (silver rhombohedral symbols; FeS2) and HgS(s). Sulfate-reducing bacteria (SRB) and Fe-reducing
bacteria (FeRB) further mediate the redox chemistry of S, Fe, and Hg. As Hg(II) becomes bioavailable to microbes,
it can be reduced to Hg(0) by microbes equipped with mercuric reductase (MerA) or methylated to MeHg by
HgcAB-equipped microbes. MeHg can be demethylated by MerB-equipped microbes to Hg(II) and CH, and then
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Hg(0), as well as the degradation of MeHg. Photolytic oxidation may also counter Hg(0) volatilization from surface
waters, keeping Hg(II) in spring water to be transformed by microbes or partitioned to sulfide minerals. Advective
mixing of spring waters ensures that Hg species travel across the redox boundaries that likely partition the
Mer-equipped microbes to oxic surface waters from the HgcAB-equipped microbes that likely occupy the anaerobic
sediment/water boundary.
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NGF genomes featured similar metabolic capabilities to those recovered from AMD.
The oxidation of reduced sulfur species by both aerobic and anaerobic chemolithotro-
phic microorganisms produces electrons utilized in respiration and CO2 assimilation
(44), critical processes for living in AMD and/or geothermal systems (44, 45). Dominant
members of the Tiger Springs’ communities, Acidithiobacillus spp. and Thiomonas spp.,
can utilize various metal- and sulfur-oxidizing enzymes, pathways, electron transport
mechanisms, and substrates (44) to sustain activity. Acidithiobacillus ferrivorans is an
obligate chemolithoautotroph and facultative anaerobe that oxidizes Fe(II); some
strains are also able to utilize sulfur, thiosulfate, tetrathionate, and pyrite (46). Acidi-
thiobacillus ferrooxidans can utilize metal sulfides to support growth (44), and Acidi-
thiobacillus caldus is also capable of oxidizing reduced inorganic sulfur species, pro-
ducing sulfate via the sox pathway (47). A number of other NGF genome bins, including
several associated with Thermoplasma and Thiomonas spp., were equipped to respire
using either sulfur or organic carbon (30), and Thiomonas can also oxidize arsenite
[As(III)] to arsenate [As(V)] (48). The Thiomonas-like genome bin from Cub Bath showed
evidence for the presence of both sox and arsenite oxidase pathways (see Fig. S2).

The microbiomes of Tiger Springs were also similar to those found in AMD with
respect to stress resistance/response mechanisms for acid and heavy metals (e.g., see
references 30 and 49), featuring mechanisms for pH homeostasis, for example. The
highest genome coverage in each bath was associated with Acidithiobacillus caldus, a
microorganism equipped with multiple heavy metal resistance pathways (ars, mer, czc,
and tellurite resistance). The mer genes in Tiger Spring metagenomes were predomi-
nately found in aerobic bacterial and archaeal genome bins (Fig. 2; Table S5), particu-
larly the mesophilic acidophiles Thermoplasma and Acidithiobacillus (Fig. 3). This finding
was in sharp contrast to the diversity of merA genes in YNP metagenomic data sets,
which were principally from archaeal taxa (e.g., Sulfolobales, Acidilobales, and DPANN).
Based on the observations of Geesey et al. (4) that archaea dominated acid springs with
high Hg content, and given that MerA homologues are often encoded in the genomes
of acidophilic archaea (4, 12, 13), we expected that archaeal MerA would dominate in
Tiger and Cub Baths.

While Tiger and Cub Baths are considered acidic (pH �4), they are substantially
lower in temperature than springs studied in YNP and the western United States; these
different observations may be due to a number of factors. First, Geesey et al. (4) noted
that the number of bacterial MerA homologues detected in acid springs increases with
decreasing temperature (from �73°C to �55°C). Thus, the lower temperatures at NGF
may explain the presence of a larger number of bacterial MerA homologues. Second,
bacterial taxa are also known to be rare in higher temperature (�65 °C) acidic (�pH 4)
geothermal ecosystems (50, 51). Thus, the minimal distribution of bacteria with mer
genes was most likely a function of low thermophilic acidophile diversity rather than
the absence of a taxonomic capacity to transform Hg.

A notable feature of Cub Bath was the higher percentage of HgT present as MeHgT

than in the Tiger Bath. We speculate that this finding reflects a greater degree of
microbially mediated turnover of aqueous Hg(II) to MeHg in the former spring. How-
ever, the difference in MeHg levels between the baths could also be indicative of higher
demethylation rates in Tiger Bath than in Cub Bath. While merB genes were identified
in both baths, the sequencing coverage of merB scaffolds was higher in Tiger Bath
(836�) than in Cub Bath (18�) (Table S5). While abiotic methylation in geothermal
waters is not yet well understood (52), such processes are not likely to account for the
higher MeHg levels in Cub Bath relative to those in Tiger Bath. Furthermore, NGF MeHg
values were 1 to 2 orders of magnitude greater than values recorded at some YNP hot
springs (5, 6). An analysis of NGF metagenomes found that hgcA and hgcB genes were
only detected in Cub Bath and not Tiger Bath.

Cub Bath Hg methylation genes are most likely bacterial, belonging to a sulfate-
reducing clade closely related to Firmicutes and Deltaproteobacteria, possibly from the
Nitrospirae (Fig. S9). Microbial Hg methylation via active sulfate-reducing microorgan-
isms is consistent with the greater observed amount of MeHg (�1.3% of dissolved total
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Hg) alongside higher concentrations of reduced sulfur (3.5�) in Cub Bath. Of particular
note was an hgcAB� bacterium in Cub Bath metagenome (NW2_unbinned) that may
represent a novel acidophilic, possibly sulfate-reducing, Hg methylator equipped with
heavy metal resistance. This genome harbored hgcA and hgcB on a scaffold with a
putative copper chaperone (HMA/CopZ), arsenical resistance operon repressor (ArsR),
and arsenical pump membrane protein (ArsB) (Fig. S9). There are few reports of
arsenate reduction by sulfate-reducing bacteria (53), although putative ars genes have
been found in several species of Desulfovibrio, Desulfosporosinus, Desulfomicrobium, and
Desulfotalea. Genomes of known and predicted Hg-methylating bacteria and archaea,
as well as closely related non-Hg-methylating bacteria and archaea, were searched for
homologous proteins to those encoded on NW2_scaffold_10600 (see Table S8). Nota-
bly, ArsR family transcriptional regulators are encoded directly upstream of the genes
for HgcA in Desulfovibrio desulfuricans ND132 (DND132_1054) and Desulfomicrobium
baculatum (Dbac_0377). While homologous ArsR proteins are common in genomes
containing HgcA (Table S8), no genomes encode all of these proteins, although several
genomes of known and predicted methylators encode copper chaperones and arsenic
resistance proteins, providing a measure of confidence in genome assembly results.
Notably, three homologous proteins are encoded in the genomes of Desulfosporosinus
spp., often found in sulfate-rich, heavy-metal-contaminated low-pH environments (54),
and Desulfosporosinus acidiphilus, with an optimum growth pH of 3.6 to 5.5, was the
first acidophile observed to methylate Hg (18). Therefore, we infer that the Cub Bath
bacterium is likely a similar taxon capable of both Hg methylation and As(V) reduction.

One of the strongest influences on Hg speciation and bioavailability (for methylation
or volatilization) in acidic sulfidic hot springs is the formation and dissolution of
cinnabar (HgS(s)), which in turn is impacted by the activity of sulfur- and iron-oxidizing
microorganisms (5, 32, 37, 55, 56). A previous study (32) identified HgS(s) as the most
abundant and widespread Hg-bearing mineral in the Ngawha region, an observation
we confirmed by X-ray diffraction (XRD) analysis from a topsoil sample in the Tiger
Springs area (Fig. S2). The observed physicochemical conditions in Tiger and Cub Baths
were on the cusp of HgS(s) formation/dissolution, at pH 2 to 3 and pH �4 (57). Thus, the
bioavailability of Hg(II) in the acid warm springs of the NGF reflected Hg solubility in the
context of sulfur speciation and acidic conditions (37, 38). In aerobic sediments, sulfur-
and iron-oxidizing bacteria and archaea may enhance the dissolution of cinnabar and
increase Hg(II) bioavailability. Like sulfide, chloride can also affect Hg bioavailability to
methylating microorganisms; methylation rates have been shown to correlate inversely
with increasing chloride (Cl�) concentration (58, 59). Chloride concentrations in Tiger
Bath (470 mg liter�1) were higher than those of typical freshwaters (47.9 mg liter�1),
and in combination with low pH, could have decreased net Hg methylation rates
without impacting the viability of methylating microorganisms (58). Other factors that
may influence Hg bioavailability include dissolved organic material (DOM), thiol-DOM
interactions (60–62), and turbidity, which likely limits photolytic Hg transformations.

Together, these findings can account for the nearly 10� amount of filtered MeHg
concentrations in Cub Bath, from which hgcAB sequences were recovered, compared to
that in Tiger Bath, despite their near identical HgT concentrations in filtered water
samples and the nearly 3� higher solid Hg content of Tiger Bath. In contrast, no hgcA
reads were detected in the Tiger Bath metagenome at the sequencing depth of our
study. Thus, bioavailable Hg may be getting enzymatically reduced or recomplexed by
Hg-binding ligands (e.g., Cl�, DOM, and S2�). Indeed, the low flux of Hg(0) from the
surface of the bath suggests that most of the microbially reduced Hg(II) remains
dissolved and potentially is continuously cycled between Hg(0) and Hg(II) redox states.
Advective mixing of anoxic and oxic waters would also promote Hg cycling and
exchange between aerobes and anaerobes and, likewise, mer- and hgcAB-carrying
microbes, in the acid warm springs (Fig. 6).

While acidophilic microbial mats in YNP have been shown to accumulate MeHg and
may actively methylate Hg (5, 6), the relative difference in pHs between the two NGF
springs is minimal and therefore unlikely to account for the difference in recovery of
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hgcAB genes. An alternative explanation may be found in the Hg(T) concentration in the
sediments of both springs. The total solid Hg concentration in Tiger Bath was nearly
three times higher than that of Cub Bath (3,467 �g g�1 and 1,274 �g g�1, respectively).
Similarly, a small nascent hot spring located adjacent to Tiger Bath (TS3) had extremely
high concentrations of both total dissolved and solid Hg (16,700 ng liter�1 and
7,000 �g g�1, respectively). Taken together, these observations suggest that the area
immediately adjacent to Tiger Bath is a highly localized Hg “hot spot,” with elevated Hg
levels selecting for microbial genomes encoding Hg resistance. Hg methylation capa-
bility apparently does not confer Hg(II) resistance (63), and with the exception of two
Geobacter spp., mer operon genes appear to be absent in genomes of known hgcAB�

microorganisms (14, 27). These observations are further corroborated by spike-in
experiments in river water sediments that showed microbial Hg methylation was
inhibited by Hg concentrations as low as 15.3 �g g�1 (24). Another plausible control on
Hg methylation in the two baths may have been temperature, which was recorded as
nearly 10°C different between baths during each sampling season (Table 2). Similar
differences in temperature were recorded in the sediments (Tiger Bath at 51.1 to 68.6°C
and Cub Bath at 43.5 to 60.3°C). Principal-component analysis of covariance between
geochemical parameters measured in all springs across the NGF (Tables 1 and 2)
indicates an inverse relationship between MeHg and spring temperature (see Fig. S11).
Previous work shows that known hgcAB� methylators and predicted methylators are
almost exclusively mesophiles with growth optima at �30°C (18). Known exceptions
include the thermophile and known Hg-methylator Desulfacinum hydrothermale (64),
psychrotolerant and psychrophilic predicted methylators Geopsychrobacter electrodiphi-
lus and Methanolobus psychrophilus R15, and a group of hyperthermophiles possessing
a fused hgcAB-like gene of unknown methylation functionality (16).

Conceptual model of Hg speciation in warm acidic hot springs. In the NGF acid
warm springs, Hg biogeochemical cycling reflects the detected or inferred microbially
mediated Hg transformations as well as constraints imposed by metal sulfide solubility
and vigorous microbially mediated reduced S and metal oxidation reactions. The main
abiotic and biotic controls on Hg cycling in acidic mesothermal springs are depicted in
the conceptual model shown in Fig. 6. The bioavailability of Hg to Mer- and HgcAB-
equipped microorganisms is controlled by cinnabar precipitation and dissolution,
which in turn is influenced by pH and the presence of sulfur- and iron-oxidizing and
sulfate- and iron-reducing bacteria and archaea. Bioavailable Hg(II) is methylated to
MeHg by microbes, putatively sulfate-reducing bacteria, equipped with HgcAB. This
process is limited by demethylation of MeHg (via MerB) and reduction (via MerA) of
Hg(II) to Hg(0) by facultative anaerobic and aerobic iron-cycling and sulfur-oxidizing
microorganisms. The volatile Hg(0) may evolve from spring waters or be photooxidized
and recycled to Hg(II). A significant sink for Hg(II) within the springs involves formation
of solid HgS (metacinnabar and cinnabar) and, potentially, the adsorption of MeHg to
sediments or particulate organic matter (which was not assessed here). However, under
the acidic conditions, most MeHg and Hg(II) should remain dissolved and could be
continuously cycled between methylating and demethylating microorganisms. Impor-
tantly, temperature (�50°C) and elevated Hg(T) concentrations will restrict microbial
methylation of bioavailable Hg(II). However, as geothermal inputs mix with cooler
water, the microbial Hg methylation potential increases. Therefore, surface waters and
groundwaters that receive geothermal inputs, such as catchment waterways downgra-
dient from NGF springs and discharges from hydrothermal power plants, may be
important environmental pathways for MeHg mobilization and bioaccumulation.

MATERIALS AND METHODS
Site description. The Ngawha Geothermal Field (NGF) constituted the field site for investigating Hg

cycling in a low pH (�4.5), elevated Hg (�100 ng liter�1), and sulfide-rich (�0.1 mg liter�1) environment
(see Fig. S1 in the supplemental material). Mercury ore deposits in the NGF occur as cinnabar,
metacinnabar, and native Hg(0) in association with active hot springs, fumaroles, and mud pools (65).
Elemental Hg [mainly gaseous Hg(0)] travels from deep geological sources to the surface, either in
hydrothermal fluids or geothermal gases, where it reacts with oxygen in the presence of chloride to form
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Hg(II); Hg(II) in turn reacts with dissolved sulfide (biogenic) to precipitate cinnabar (32). Roughly
33,000 kg of cinnabar ore was mined from the Tiger Springs area at Ngawha during the first half of the
20th century (65). Tiger Springs and other areas within the NGF still host an active geothermal system
that releases approximately 530 kg of HgT annually, �44% of which is thought to be emitted to the
atmosphere (32). The remaining Hg resides in the local surficial waters and sediments (32). Cinnabar
precipitation was confirmed by X-ray diffraction analysis of Tiger Springs sediments and nearby topsoil
(Fig. S2).

Sampling techniques. Several springs from three areas, Tiger Springs (TS), Ginn Ngawha Spa (GN),
and Ngawha Springs Baths (NS), were sampled in April and October of 2011. Many of the springs were
edged with boards for use as soaking baths. Water samples for Hg analyses were filtered through
0.45-�m membrane syringe filters, preserved with 1% (vol/vol) reagent-grade HCl, and stored in
acid-washed high-density polyethylene (HDPE) bottles in the dark. Filtered water samples (0.45 �m) for
anion analysis were stored in sterile 50-ml plastic Falcon tubes. All filtered samples were stored at 4°C.
Redox potential (millivolts) and pH measurements were taken at each sampling site using an Orion
Model 250A portable meter with a glass pH electrode; spring water temperature measurements were
also taken at the time of sample collection. Sediment samples were collected from the floor or wall of
each spring, as well as from bulk water samples, in sterile 50-ml Falcon tubes. The use of sediments
collected on the bottom of the boarded spring bath and suspended in water allowed us to capture a mix
of aerobic and anaerobic members of the microbial community as well as those that live across a range
of temperatures, from the cooler waters (�45°C) to the hotter sediments (�55°C). Samples were stored
on ice for �4 days until they could be transferred to laboratory storage at �80°C (i.e., transported from
New Zealand to Melbourne, Australia). Sediment samples were used for HgT analyses and for whole-
community DNA extractions.

Hg and MeHg analyses. Total Hg and MeHg concentrations of filtered waters and freeze-dried
sediments collected in April and October 2011 were measured at the Wisconsin Water Science Center
(WWSC, U.S. Geological Survey, Middleton, Wisconsin) on a Perkin-Elmer Elan 9000 quadrupole induc-
tively coupled plasma mass spectrometer (ICP-MS) and a Brooks Rand atomic fluorescence spectropho-
tometer model III, respectively. Filtered water samples were analyzed within 6 months of sampling at the
Wisconsin Mercury Research Lab (WMRL) of the Wisconsin Water Science Center (USGS, Middleton,
Wisconsin). Filtered water samples analyzed for HgT species were treated with a BrCl solution to ensure
all Hg species in the sample were oxidized to Hg(II). Prior to analysis, SnCl2 solution was added to the
vials, which reduced the Hg(II) species to volatile Hg(0). The samples were then ethylated, purged with
argon gas, and analyzed by gas chromatography (GC) (using Brooks Rand Autosampler and Total-Hg
Purge and Trap system) in tandem with atomic fluorescence spectrometry. Methylmercury analysis of
filtered waters was determined by distillation, gas chromatography separation, and speciated isotope
dilution mass spectrometry using ICP-MS, according to USGS method 01– 445 and WMRL standard
protocols (66). Four blanks and two duplicate spikes were included in each run for quality assurance.
Method detection limits for total and methylated mercury were 0.007 ng and 0.03 to 1.2 ng liter�1,
respectively (depending on the dilution factor required for each sample).

Sediment samples (�5 g [wet weight]) were freeze-dried overnight on a Heto-Drywinner vacuum
system before shipment in sterile glass vials to the WMRL. For solid HgT analysis, freeze-dried samples
were digested with 3:1 HCl/HNO3 overnight in a Teflon vessel. The digested sample was then oxidized
with BrCl solution. Total Hg analysis was then performed by using the same procedure as for filtered
water. The detection limit for the solid HgT analysis was 0.2 ng. Field blanks for Hg analyses were
prepared using ultrapure reaction-grade water spiked with 1% (vol/vol) ultrapure HCl stored in each type
of sampling material until analysis. The HgT and MeHgT values for field blanks were 0.32 ng liter�1 and
0.57 ng liter�1, respectively.

Hg(0) analysis. Vapor samples were collected in October 2011 at a height of 5 to 10 cm over Tiger
and Cub Baths (Tiger Springs area) with SKC Anasorb sorbent tubes (model C300). These sorbent tubes
are typically used to measure passive exposure to mercury in industrial settings (67, 68) as a flow rate of
2 liters min�1. The volume of air sampled was regulated using an SKC sample air pump (PCXR4). Gas
samples were passed through a soda lime trap before collection on the hopcalite sorbent to trap excess
condensation and neutralize acid. Once used for sampling, sorbent tubes were sealed with Teflon tape
and sent to ChemCentre (WA, Australia) to be analyzed per NIOSH method 6009. The sorbent material
was dissolved and oxidized in 1:1 HNO3/HCl. This solution was then diluted with distilled (DI) water, and
immediately before analysis on a cold vapor atomic absorption spectrometer (CVAAS), 10% SnCl2 was
added to reduce all Hg(II) to Hg(0). This Hg(0) was then purged into the CVAAS analyzer (detection
limit 	 0.01 �g) in an argon gas stream. Sampling of Tiger and Cub Baths was performed under similar
conditions. First, a blank Anasorb tube was exposed to ambient levels of Hg (unsealed, with no air
pumped through). An additional blank, that remained sealed, was also included in analyses. Blank
samples were below the method detection limit (�0.01 �g). Samples taken from the same site, with
various pump times (20 to 30 min) did not yield similar adsorbed Hg concentrations. A positive
correlation between total Hg adsorbed versus volume of air pumped through the adsorbent trap (r2 	
0.976, n 	 4), indicated that saturation of the adsorbent was not reached.

Common ion analysis. Common anion concentrations (F�, Cl�, Br�, NO3
�, and SO4

2�) were
measured in unacidified filtered water samples collected in April 2011 using a Dionex DX-120 ion
chromatograph with an IonPAC As14 column (4 mm by 250 mm) in the Department of Chemistry at the
University of Melbourne. Samples were stored in the dark at 4°C for 4 months between sample collection
and analysis. The instrument was set to the following conditions: flow rate, 1.4 ml min�1; eluent, 4.8 mM
sodium carbonate and 0.6 mM sodium bicarbonate; injection volume, 25 �l. Chromatographs were
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viewed on PeakNet Run System I software. The method detection limit for ion chromatography (IC)
analyses was 0.0005 mg liter�1. Concentrations were determined by a five-point calibration curve
generated from Dionex Combined Seven Anion Standard I. The 5� dilution standard was run in
duplicates to ensure precision of the method, and both sample and method blanks were produced using
Milli-Q water at the time of sampling and during analysis, respectively. Determination of sulfide in water
samples was performed on filtered water samples prepared in the field for analysis in October 2011 using
the methylene blue method (69) and a Hach DR 2800 spectrophotometer (method 8131). Sulfide
measurements were performed in triplicates for each sample. Total Fe was measured in filtered acidified
water samples collected in October 2011 using the Ferrozine method (70) with prepared reagents
coordinating with those for Hach method 8147. The method detection limit for sulfide measurements
was 0.02 mg liter�1 and for Fe measurements was 0.5 mg liter�1. The samples had been stored in the
dark at 4°C prior to analysis. Sample blanks were prepared at time of sample collection using Milli-Q
water.

DNA extraction. DNA was extracted from sediments collected from Tiger (TS1) and Cub (TS2) Baths
and surrounding sites (TS3 and TS4) in October 2011 using the MO-BIO PowerMax DNA isolation kit,
using an alteration to the manufacturer’s protocol. Approximately 5 g of sediment was used for
extraction. Sediments were first treated with 5 ml of 10 mM Tris-Cl (solution C6), the samples were then
centrifuged at 6,000 � g for 5 min, and the supernatant was decanted. Then, bead solution C1 was
added, and the alternative lysis method in the protocol was followed, which replaces the 10-min
bead-beating step with incubation in a water bath at 65°C for 30 min, followed by vortexing the sample
for 1 min (71). This alternative lysis method was used to reduce shearing of the DNA. Duplicate DNA
extractions were performed to ensure a sufficient mass of DNA was extracted for each sample. Replicate
DNA extractions were concentrated onto the same spin filter and cleaned using a QIAquick PCR
purification kit (Qiagen, California).

Metagenomic analysis. Approximately 113 to 216 ng of genomic DNA extracted from samples
collected in October 2011 (TS1A and TS2A) was barcoded by sample and prepared for sequencing with
the NexteraXT kit, and ten samples were run on a single lane of an Illumina HiSeq 2500 with 2 � 100-bp
paired-end sequencing (Australian Genome Research Facility, Melbourne, AU). This produced �9 Gbp of
sequence data for two Ngawha metagenomes, Tiger Bath (NW1) and Cub Bath (NW2), and 43 Gbp for
all ten samples (Table S1). Sequences were binned by bar code, quality filtered, and trimmed to remove
Illumina adapters using Trimmomatic (72). Metagenomes were examined after assembling short reads
into longer contigs with IDBA-UD (73). Assembled contigs were uploaded and binned for analysis using
ggKbase and have been made publicly available (http://ggkbase.berkeley.edu/).

Detection of Hg cycling genes in metagenomes. The metagenomic read sets were screened
directly for sequences sharing homology with hgcA and hgcB using a hidden Markov model (HMM)
method described previously (74). Metagenomic read sets were also screened directly for sequence
homology with merA using an HMM search built previously (74). Assembled metagenomic sequences
were searched for mer operon, hgcA, and hgcB genes using ggKbase. Genes were annotated in ggKbase
by BLAST searches against the NCBI database (75). Multiple merA sequences were extracted from
ggKbase, translated to amino acids using the bacterial translation table, and aligned using ClustalW (76)
in MEGA6 (77) with MerA reference sequences from confirmed mer operon-possessing microorganisms
(13).

Genomic binning and phylogenetic analyses. Genomic binning of metagenomic data was per-
formed using ggKbase, based on scaffold coverage, GC content of scaffold sequences, and common
taxonomy of the contigs. Bins were further refined with emergent self-organizing mapping (ESOM) (78).
Scaffold coverage was calculated using Bowtie2 to map reads to the assembled sequences (79). Genome
completeness was estimated from the presence of bacterial single-copy genes (51 in total) or archaeal
single-copy genes (38 in total) (Table S2). Several bins, namely, NW1_Thermoplasmata_unknown_1,
NW2_Desulfurella_acetivorans_33_49, and NW2_Rhodospirillales_68_7, are likely multigenome bins that
could not be refined to single genomes from coverage and average GC splits. Information regarding
genomic bins for each metagenome, as well as unbinned scaffolds, is provided in Table S2. Taxonomy
was assigned to the metagenome-assembled genomes based on consensus classification of contigs.
There are 34 ribosomal proteins considered universal among bacteria, archaea, and eukaryotes and
which can be used to infer phylogeny (80). In this study, we used ribosomal protein S3, a single-copy
gene present in every genomic bin from this study, to compare phylogenies and coverage across each
metagenome-assembled genome. Ribosomal protein sequences were pulled from ggKbase and then
aligned to translated ribosomal protein S3 sequences from the NCBI nonredundant protein database.

Hg cycling genes from publicly available hot spring metagenomes. To compare Hg cycling genes
from NGF to those of other geothermal settings, assembled metagenomes from Yellowstone National
Park (YNP) were searched for hgcA (Table S3) and merA genes (Table S4). Included in the phylogenetic
analysis were HgcA protein sequences extracted from YNP metagenomic data sets (https://img.jgi.doe
.gov) (Table S3). Sequences were obtained by querying all assembled hot spring metagenomic data sets
for sequences sharing homology to carbon monoxide dehydrogenase (pfam03599). HgcA proteins share
homology with carbon monoxide dehydrogenases and are often misannotated as such in microbial
genomes (17). HgcA sequences were differentiated from carbon monoxide dehydrogenases using the
HMM described above, with an inclusion value cutoff of 1E�7, and only sequences that included the
conserved cap-helix region of HgcA were kept for analyses. Of a total of 234 hot spring metagenomes
(of which 216 were from YNP springs) searched (as of July 2016), there were 4,520 matches to sequences
annotated as carbon monoxide dehydrogenases (pfam03599) (2,148 in YNP metagenomes). Of these
sequences, 102 were identified as HgcA sequences from 18 different metagenomes (Table S3). Included
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in the phylogenetic analyses were 65 HgcA sequences found in 15 YNP metagenomes. The hgcA genes
were found in YNP metagenomes sampled from four sites: Mushroom Springs (Gp0111644 – 45 and
Gp0057794), Octopus Springs (Gp0057360, Gp0057796, Gp00111632, Gp0111634, Gp0111638,
Gp0111642, and Gp0111646), Obsidian Pool (Gp0056876), and Fairy Spring (Gp0051404). Environmental
metadata were only provided for a small number of these metagenomes. Sequences from Fairy Geyser
Spring (Gp0051404) are from an alkaline (pH 9 to 9.2) and mesophilic (33.3 to 36°C) phototroph-
dominated mat, while sequences from Mushroom Spring (Gp0111644 – 45 and Gp0057794) were from
the undermat layer (�3 to 5 mm) of an anoxygenic and phototrophic microbial mat in an effluent
channel of the alkaline bath. The water above the mat had a recorded temperature of 60°C (81). A
separate metagenomic study has reported temperature and pH measurements for Mushroom Spring
(60°C, pH 8.2), Obsidian Pool (56°C, pH 5.7), and Octopus Spring (80 to 82°C, pH 7.9) (82). The additional
37 hgcA sequences were from assembled metagenomes sequenced from Dewar Creek Spring (77°C, pH
8.0) and Larsen North Spring, in British Columbia, Canada (83).

Data availability. The unassembled raw metagenomic sequencing data from this study are publicly
available from the NCBI Sequence Read Archive (SRA). The assembled (IDBA-UD) metagenomic contigs
from this study are publicly available from the NCBI Whole Genome Shotgun (WGS) project. The
sequencing data can be found under the BioProject accession number PRJNA622280, with the BioSample
accession numbers SAMN14506364 for the Tiger Bath and SAMN14506365 for Cub Bath metagenomes.
This WGS project has been deposited at DDBJ/ENA/GenBank under the accession numbers
JABEBW000000000 and JABEBX000000000.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 7.8 MB.
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