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Coupled fission fragment angular momenta

Jørgen Randrup1
1Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: August 20, 2022)

Nuclear fission produces fragments whose spins are coupled to the relative angular motion via
angular momentum conservation. It is shown how ensembles of such spins can readily be obained
by either direct microcanonical sampling or by sampling of the associated normal modes of rotation.
The resulting distribution of the spin-spin opening angle is illustrated in various three- and two-
dimensional scenarios and it is demonstrated how recent mutually conflicting model calculations can
be well reproduced with different assumptions about the scission geometry.

I. INTRODUCTION

Nuclear fission has become a very active topic, both ex-
perimentally [1, 2] and theoretically [2, 3]. In partiucular,
there has recently been considerable interest in the calcu-
lation of the correlations between the angular momenta
of the fragments and a number of mutually contradictory
predictions have been made about the distribution of the
spin-spin opening angle, P12(ψ).

The first calculations of P12(ψ) were made with the
fission event generator FREYA which assumes that the
fragment spins are perpendicular to the fission axis. It
was found that, apart from the restriction of being two-
dimensional, the spins were nearly independent, in mag-
nitude as well as direction [4, 5]. Accordingly, P12(ψ)
exhibited only a small undulation away from constancy.

Subsequently, using time-dependent density functional
theory with various energy-density functionals, Bulgac et
al. [6] found that P12(ψ) exhibits a large angular variation
and peaks around ψ ≈ 130◦.

Very recently, dynamical calculations with Antisym-
metrized Molecular Dynamics have yielded a nearly sym-
metric distribution that peaks slightly above 90◦ [7].

The present situation is thus rather unclear and it is
the purpose of this paper to provide a framework within
which it can be understood how such widely different
results can emerge when the coupled spins are sampled
under different assumptions.

We start by describing two (different but equivalent)
general techniques for sampling angular momenta that
are subject to conservation relations that render them
correlated. Though the methods are applicable generally,
we concentrate here on the sampling of the two fragment
spins S1 and S2 together with the angular momentum
associated with the relative fragment motion, S0.

Then these methods are applied to the sampling of the
three angular momenta, {Si}, demonstrating that the
two methods do indeed yield identical results. We first
consider the more general scenario in which the angu-
lar momenta are three-dimensional vectors that are con-
strained only by the conservation laws. Subsequently, we
address the scenario in which the angular momenta must
also be perpendicular to the fission axis (as certainly S0

must be by definition), a requirement that effectively re-
duces the spins to being two-dimensional.

II. SAMPLING METHODS

Generally, the rotational degrees of freedom of the
fledging fragments can exchange energy with the remain-
der of the system. Because the associated rotational en-
ergies are typically relatively small in comparison with
the internal excitation energy, the nuclear complex ef-
fectively acts as an energy reservoir. Therefore, in the
present study where the energy is not important, we shall
assume that the rotational energies have canonical distri-
butions characterized by the prevailing temperature in
the system at scission. By contrast, because no exter-
nal torques are acting on the fissioning system, its over-
all angular momentum is conserved. For simplicity and
with no bearing on the results, it is assumed that the to-
tal angular momentum vanishes, so angular momentum
conservation requires S1 + S2 + S0 = 0.
We describe below two different but equivalent meth-

ods for sampling the microcanonical ensemble of the
three coupled angular momenta {Si}.
An important role is played by the moments of iner-

tia whose relative magnitudes influence the appearance
of P12(ψ). For simplicity we treat the two fragments as
solid spheres. Their moments of inertia are denoted by I1
and I2 and the numerical calculations use Ii =

2
5MiR

2
i

where Mi is the fragment mass and Ri is its radius. Fur-
thermore, I0 = µR2 is the moment of inertia associ-
ated with the relative motion where R = R1 + R2 + d
is the distance between the two fragment centers and
µ =M1M2/(M1 +M2) is the reduced mass.

A. Direct microcanonical sampling

The perhaps conceptually simplest method makes a
direct sampling of the microcanonical ensemble defined
by the total energy E and the total angular momentum.
The expectation value of any spin-dependent “observ-

able”, F{Si}, is then given by

〈F{Si}〉 =
!

ΩD(E)

2
∏

i=0

[
∫

dDSi

]

F{Si}

× δ(E −

2
∑

i=0

S2
i

2Ii
) δ(D)(

2
∑

i=0

Si) , (1)
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where the corresponding microcanonical phase-space vol-
ume for D-dimensional spins is [8]

ΩD(E) ≡

2
∏

i=0

[
∫

dDSi

]

δ(E −

2
∑

i=0

S2
i

2Ii
) δ(D)(

2
∑

i=0

Si)

=
2π

Γ(D)

(

I1I2I0
I

)D/2

[2πE]
D−1

, (2)

with I ≡ I1 + I2 + I0. Although the total rotational
energy E fluctuates in the actual fissioning system, this
has no impact when only directional effects are consid-
ered. The specific value of E is thus immaterial. The
focus is here on the opening angle between the two frag-
ment spins, ψ12, where cosψ12 = S1 · S2/(S1S2), so the
normalized opening-angle distribution P12(ψ) is given by
the expectation value of F{Si} ≡ δ(ψ12 − ψ).
The actual evaluation is carried out by sampling the

microcanonical distribution. Though this may appear to
be a technically demanding task, it can in fact be ac-
complished remarkably easily [8, 9]: first tentative spin
values {S′

i} are sampled independently from Boltzmann
distributions with a common but arbitrary temperature;
then the resulting total angular momentum is calculated,
S

′ = S
′

1 + S
′

2 + S
′

0 and the corresponding rotational
frequency is determined, ω

′ = S
′/I; the overall rota-

tional motion is then removed, yielding S
′′

i = S
′

i − Iiω
′,

and these spins are finally scaled by a common factor
c =

√

E/E′′ to ensure that the specified total energy
E is matched, yielding the spins {Si} = {cS′′

i }. (This
last step is of course superfluous when only directional
effects are of interest.) The resulting spins clearly sat-
isfy the requirements on the total angular momentum
and, crucially, they are distributed according to the cor-
rect microcanionical measure (see Refs. [8, 9] for a proof
of this key feature). This sampling method is efficient

(no rejections are required), robust (no delicate numeri-
cal cancellations occur), and fast (millions of samples can
be obtained in seconds on a typical laptop).

B. Sampling of normal modes

An alternative, equivalent, sampling technique utilizes
the normal spin modes of the system which are obtained
by bringing the rotational energy onto diagonal form,

E =
S2
1

2I1
+

S2
2

2I2
+

|S1+ S2|
2

2I0
=

s2+
2I+

+
s2−
2I−

, (3)

where angular momentum conservation has been used to
replace the angular momentum of the relative motion,
S0, by −S1 −S2. The moments of inertia of the normal
modes are [10]

I−1
+ = [I1 + I2]

−1 + I−1
0 , I−1

− = I−1
1 + I−1

2 , (4)

where it should be noticed that I+ ≈ I1 + I2 when
I0 ≫ I1 + I2. The components of the normal modes

s± may thus be sampled from the respective Boltzmann
distributions and the expectation value of an observable
F{Si} can be evaluated as

〈F{Si}〉 =
!

ΩT

∫

dDs+

∫

dDs− F{Si} e
−E/T , (5)

where E is the rotational energy given in Eq. (3) and the
canonical phase space is ΩT = [(2πI+T )(2πI−T )]

D/2.
Once the normal spins s± have been sampled, the in-

dividual fragment spins can readily be constructed [10],

S1 =
I1

I1 + I2
s+ + s− , S2 =

I2
I1 + I2

s+ − s− , (6)

and the orbital angular momentum is S0 = −s+. Thus
the conservation of angular momentum is built into the
normal modes s±, each of which carries no total angular
momentum. The mode sampling method has the special
advantage that different temperatures can be employed
for different modes, thus making it possible to control
their relative presence, as was recently exploited [10].
The sampling via normal modes is also efficient, ro-

bust, and fast. Importantly, it yields the same en-
semble of spins {Si} as the direct microcanonical sam-
pling described in Sect. II A provided that the energy
E in Eq. (1) is sampled from the appropriate canoni-
cal distribution for three coupled D-dimensional spins,
P (E) ∼ ED−1 exp(−E/T ).

III. SPIN OPENING-ANGLE DISTRIBUTIONS

The above sampling methods are now applied to the
calculation of the distribution of the opening angle be-
tween the fission fragment angular momenta for various
scenarios of current interest.

A. Three-dimensional spins

We consider here the scenario where the three angular
momenta involved are three-dimensional, i.e. D = 3, so
we may write Si = (Sx

i , S
y
i , S

z
i ).

First, to establish a convenient reference scenario, we
assume that the two fragment spins are sampled entirely
independently from isotropic distributions, such as Boltz-
mann distributions, P (Si) ∼ exp(−S2

i /2IiTi), where the
values of the temperature parameters Ti are immaterial.
The directions of the fragment spin vectors are then dis-
tributed uniformly over 4π and it follows that the dis-
tribution of cosψ is constant, equivalent to the opening

angle itself having the distributon P indep
12 (ψ) ∼ sinψ.

In reality the fragments are interacting and their spins
are coupled to the angular momentum of their relative
motion, S0. Because the combined system is isolated,
its total angular momentum remains unchanged and so
the appropriate statistical spin distribution has a micro-
canonical form.
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FIG. 1: The distribution of the fragment spin opening angle
ψ obtained by 3D sampling in various scenarios: Touching: A
schematic reference scenario of two touching spheres of equal
size in which case the relative sizes of the moments of in-
ertia are I1 : I2 : I0 = 1 : 1 : 5; Scission: A more realistic
scenario typical of scission for which the moments of iner-
tia have ratios similar to those used in FREYA (see Table I);
and Independent: The limiting scenario for large I0 where the
angular momentum constraint is ineffective and the two frag-
ment spins become independent. Each curve is based on one
million spin triplets, obtained either by direct microcanoni-
cal sampling (Sect. IIA) or by sampling of the normal modes
(Sect. II B).

We first show results for the simple (but unrealistic)
case where the two fragments are equal in size and are
touching; the ratios of their moments of inertia are then
I1 : I2 : I0 = 1 : 1 : 5. The resulting opening-angle distri-
bution, P touch

12 (ψ), is displayed in Fig. 1. The coupling
causes it to be skewed away from symmetry and it peaks
near ψ = 110◦.

The touching-sphere scenario is not realistic because
the fragment formation occurs for elongated scission con-
figurations for which the distance between the fragment
centers considerably exceeds the sum of the two fragment
radii. (In model calculations, the center separation typi-
cally exceeds the sum of the fragment radii by d = 4 fm.)
As a consequence, the moment of inertia for the rela-
tive motion at scission exceeds those of the individual
fragments by over an order of magnitude (whereas the
individual moments of inertia are of comparable size).
In order to approximate such a scenario for illustrative
purposes, we employ moments of inertia that are similar
to those used in FREYA, see Table I, but the present
results are not very sensitive to the precise values. [We
note that 1) the moments of inertia employed in FREYA

lead to a reasonable reproduction of the overall fragment
spin distribution [5] and 2) only the relative sizes of the
moments of inertia are needed for the present study,]

The resulting opening-angle distribution, P sciss
12 (ψ), is

much closer to the limiting uncorrelated form than touch-
ing spheres, reflecting the fact that the coupling to the
relative motion becomes less effective as the associated
moment of inertia I0 is increased.

It is interesting that this distribution quite closely re-

Case I1/Ī I2/Ī I0/Ī

235U(nth,f) 0.71 1.29 16.91
239Pu(nth,f) 0.73 1.27 17.02

252Cf(sf) 0.77 1.23 17.08

This work 0.75 1.25 17

TABLE I: The average values of the moments of inertia used
by the fission event generator FREYA [11], relative to the
mean fragment moment of inertia Ī = (I1 + I2)/2. The last
line shows the ratios used here to illustrate scission.
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FIG. 2: Thw opening-angle distribution obtained by Chen,
Ishizuka, and Chiba [7] with Anti-symmetrized Molecular Dy-
namics for fission of 252Cf are compared with the 3D sampling
results for the scission scenario, P sciss

12 (ψ), shown in Fig. 1.

sembles the one obtained by recent AMD simulations of
fission of 252Cf [7], as shown in Fig. 2. Antisymmetrized
Molecular Dynamics represents the state of the system
by a Slater determinant of Gaussian wave packets whose
centroids are propagated by classical equations of motion
with the potential energy having been augmented by the
repulsive effect of the antisymmetrization. This implies
a short mean free path for the individual centroids and
a rapid local equilibration might therefore be expected.
This appears to be indeed borne out by the AMD results
for the distribution of the spin-spin opening angle which
are consistent with the 3D equilibrium form in Fig. 1.

It is also noteworthy that the results obtained for
P12(ψ) by Bulgac et al. [6] using time-dependent density
functional theory can be well reproduced by 3D sam-
plings that employ the ratios I1 : I2 : I0 = 1 : 1 : 2, as
shown in Fig. 3. It is quite remarkable that such a good
agreement can be obtained by using a moment of inertia
for the relative motion that is just the sum of the two in-
dividual moments of inertia, a value that is only 40% of
that for touching spheres (about an order of magnitude
below those for typical scission configurations) and cor-
responds to the two fragments overlapping significantly.

To provide a sense of how well determined the rela-
tive value of I0 is, Fig. 3 also shows the distributions
obtained with I0 values that are either 50% smaller (i.e.
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FIG. 3: The opening-angle distributions calculated by Bulgac
et al. [6] with time-dependent density functional theory using
either the SkM* or the SeaLL1 energy density functional are
compared with 3D sampling results for a compact scenario for
which I1 : I2 : I0 = 1 : 1 : 2. To illustrate the sensitivity to
I0 are also shown the distributions for a 50% smaller (dots)
or a 50% larger (dot-dash) I0 value.

1:1:1) or 50% larger (i.e. 1:1:3). Neither one of those
distributions comes close to reproducing the results from
Ref. [6]. Thus it appears that the optimal value is rather
narrowly determined to be I0 ≈ I1 + I2.

B. Two-dimensional spins

It is theoretically expected [10, 12], as well as experi-
mentally indicated [13, 14], that the fission fragment an-
gular momenta are predominantly perpendicular to the
fission axis. It is therefore of interest to also analyze ide-
alized scenarios where the fragment spins are perfectly
perpendicular to the fission axis. Such a situation is
analogous to the above case (Sect. III A), except that the
dimensionality is now only D = 2, so Si = (Sx

i , S
y
i , 0).

Figure 4 shows the spin-spin opening angle distribution
for the same instructive 2D scenarios as shown in Fig. 1.
In the reference scenario of totally independent spins,

I0/Ī → ∞, the directions of the fragment spin vectors
are distributed uniformly in the perpendicular plane and
it follows that the distribution of the opening angle ψ is
constant.
When the coupling to the orbital motion is taken into

account in the sampling, the two fragment spins have
a slight preference for being directed oppositely, The
opening-angle distribution is typically well represented
by the lowest-order Fourier approximation, P12(ψ) ∼ 1+
f1 cosψ. When scission moments of inertia are used the
deviation from uniformity is fairly small, f1 = −0.086.
As was the case in 3D, the touching-sphere configura-

tion, with its considerably smaller I0, leads to larger devi-
ations of P12(ψ) from the independent scenario, namely
f1 = −0.264, and so the second-order Fourier term is
required for an accurate representation, P touch

12 (ψ) ∼
1 + f1 cosψ + f2 cos 2ψ, with f2 = 0.028, as is apparent
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1+f1cosψ+f2cos2ψ

FIG. 4: The distribution of the fragment spin opening angle ψ
obtained by 2D sampling of the three angular momenta, using
moments of inertia corresponding either to touching (I1 : I2 :
I0 = 1 : 1 : 5) or to scission (I1 : I2 : I0 = 0.75 : 1.25 : 17).
The samplings were done either microcanonically (Sect. II A)
or via the normal modes (Sect. II B). The two dashed curves
are the corresponding first-order Fourier fits, while the dot-
dashed curve is the second-order Fourier fit to the touching-
sphere distribution which has a larger amplitude.

from Fig. 4.
The standard version of the fission model FREYA [15]

assumes that the fission fragments emerge with angular
momenta that are perpendicular to the fission axis and
they are therefore sampled from the corresponding 2D
distribution. The resulting spin-spin opening-angle dis-
tribution [4] is then in accordance with the results sam-
pled here, as shown in Fig. 5.
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FIG. 5: The distribution of the fragment spin opening angle ψ
obtained with FREYA for 235U(n,f) [4] is compared with the
2D sampling results for the scission scenario shown in Fig. 4.

IV. CONCLUDING REMARKS

This study describes two different but equivalent meth-
ods for sampling angular momenta that are correlated
due to conservation laws. These methods were applied
to sampling the angular momenta of fission fragments
in either three or two dimensions. With a focus on the
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distribution of the spin-spin opening angle ψ, it was il-
lustrated how the magnitude of the moment of inertia for
the relative motion influences P12(ψ) significantly.
Comparisons with recent model calculations of the

opening-angle distribution showed that the result ob-
tained with Antisymmetrized Molecular Dynamics [7]
agrees well with the statistical form pertaining to 3D
spins with moments of inertia typiocal of scission, as
might be expected. On the other hand, it is puzzling that
results obtained with microscopic time-dependent func-
tional theory [6] can be reproduced with the 3D equlib-
rium distribution using a relative moment of inertia that
corresponds to a shape that is significantly more com-
pact than touching spheres. It may be noted that the 3D
samplings do not invoke the scission geometry and thus
ignores the basic geometric requirement that the relative
angular momentum be perpendicular to the fission axis.
Finally, it was shown that the 2D equilibrium form

with scission moments of inertia reproduces the results
of fission simulations with the FREYA code [4, 5] which
does take account of the specific scission geometry and
generates fragment spins that are perpendicular to the
fission axis.
The present analysis brings out an important feature of

the coupled angular momenta appearing in fission: The
relative motion, due to the large size of the associated

moment of inertia in comparison with those of the indi-
vidual fragments, effectively acts as a reservoir of angular
momentum. Then the conservation of angular momen-
tum has little effect on the fragment spins and they be-
come nearly independent. Indeed, the angular momenta
generated by FREYA are only slightly correlated with re-
gard to both their directions and their magnitudes. The
latter feature was recently observed experimentally [16].

In view of the large differences between the model cal-
culations of the spin-spin opening angle distribution, ex-
perimental information on this observable is highly de-
sirable as it could help to clarify the scission physics.
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