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Abstract

A Systems-Centric Approach for Improving Scientific Simulation Performance

by

Nilesh M Negi

Easy access to powerful computational resources (cloud platforms and supercomputers)

has revolutionized scientific research in the 21st century. However, these resources are

often under-utilized, resulting in sub-optimal performance and increased operational

costs. But, improving application performance is a complex task, as various factors

such as mismatch between hardware configuration, runtime environment, and source

code can contribute to sub-optimal performance.

To address these challenges, our study describes a ‘profile-and-optimize’ ap-

proach that leverages profiling data obtained by running applications on supercomputing

systems. By systemically analyzing this data and modifying both the runtime environ-

ment and source code, we aim to improve application performance and scalability. We

apply our methodology to four case studies and showcase performance improvements

by comparing baseline results with optimized results obtained through our approach.

Through our methods and the insights gained from the case studies, we provide a valu-

able resource for optimizing similar applications. By following our process, researchers

and developers can reduce application runtime, maximize the utilization of computa-

tional resources, and run finer-grained simulations.
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Chapter 1

Introduction

1.1 Need for Application Profiling

In the past ten years, the fields of Scientific Computing and Machine Learning

have made significant advancements in various domains by improving algorithm/model

design, generating and ingesting larger input datasets, using fine-grained sampling,

and increasing computational capacity[30]. These workloads are compute-intensive

and require substantial resources[11], often run for many hours, and cost millions of

dollars[42][69] to operate. Therefore, it is crucial to identify and optimize sub-optimal

software implementations and inefficient use of hardware resources.

Traditionally, hardware and software design have been treated as separate

processes, with hardware engineers designing the physical components of a system and

software engineers developing the programs that run on that hardware. As a result

of these siloed development efforts, we often observe inefficient utilization of resources
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and poor application performance on modern computing systems. However, with the

growing need for computing power to support finer-grained scientific simulations, very

large input datasets, and the latest algorithmic innovations[51], the boundaries between

hardware and software are blurring, necessitating a more integrated and collaborative

approach, termed hardware-software co-design[60]. In hardware-software co-design,

the design process is driven by both hardware and software constraints and requirements.

This approach recognizes that the performance and efficiency of a system depend not

only on the capabilities of the hardware but also on how the software utilizes these

hardware capabilities.

Program analysis and profiling tools play a vital role in helping understand

the intended program behavior and unintended side effects. These tools are essential

for computer architects to evaluate the performance of programs on new architectures.

Likewise, software developers rely on these tools to analyze their programs and iden-

tify critical sections of code. Understanding these interactions and optimizing these

dependencies between hardware and software results in higher performance, faster exe-

cution, and more efficient resource utilization, which helps reduce operational costs and

enable larger models and finer granularity simulations. Application Profiling is the

first step in this performance optimization process. It can help identify code hotspots,

communication hotspots, and system bottlenecks. Insights from these profiling results

help improve the application source and runtime environment to enable faster execution

time and more efficient resource utilization. This can, in turn, improve scalability and

work with larger inputs and finer granularity in scientific simulations.
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This study presents a profiling-based methodology for tuning application run-

time and modifying source code to improve performance and demonstrates its effective-

ness using four case studies on diverse supercomputing architectures.

1.2 Thesis Overview

Chapter 2 (Background) provides a brief overview of High-Performance Com-

puting systems, scientific computing applications, and programming models.

Chapter 3 (Methodology) talks about the steps involved in application profiling

and introduces the profiling tools used in this study.

Chapter 4 (Evaluation and Results) describes the scientific computing applica-

tions and supercomputing systems used in this study. We then present baseline results

and profiling data for each case study and showcase the performance improvements

achieved by using insights from profiling.

Chapter 5 (Related Work) talks about related work, draws analogies with

performance optimization in large-scale Machine Learning, and talks about Student

Cluster Competitions.

Finally, Chapter 6 (Conclusion) concludes this study. This includes conclusions

to be drawn as a result of this study and discussions of future applications.
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Chapter 2

Background

This section provides a background on High-Performance Computing (HPC),

the characteristics of HPC systems, and information necessary for understanding appli-

cation profiling.

2.1 High-Performance Computing (HPC) systems

High-Performance Computing (HPC) or Supercomputing refers to the practice

of aggregating computing power in a way that delivers much higher performance than

one could get out of a typical desktop computer or workstation in order to solve large

problems in science, engineering, or business[38].

Traditionally, this aggregation of compute power was achieved with monolithic

systems and a scale-up (vertical scaling) methodology, which involves adding more

resources to a single system to enhance its performance. This typically involves up-

grading or adding components to an existing machine, such as increasing the number of
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processors, increasing processor operating frequency, and increasing memory (DRAM),

etc., on a single system. The idea is to make the existing system more powerful or ca-

pable of handling increased workloads. However, vertical scaling is constrained by the

physical limits on how much the CPU or memory can be expanded, cost considerations,

as well as observational laws like Moore’s Law and Dennard Scaling.

To overcome these limitations of vertical scaling, HPC systems switched to a

scale-out (horizontal scaling) methodology, which involves adding more machines or

nodes to a system to handle larger workloads. Rather than upgrading a single system,

scale-out focuses on distributing the workload across multiple machines and adding more

nodes to form a distributed architecture. This choice was also influenced by the inherent

parallelism of scientific simulations and machine learning workloads - the problem size

can be divided into smaller subsets that can be computed individually. Additionally,

horizontal scaling results in higher fault tolerance and resilience compared to a single

scale-up system. If a single machine fails, it can cause a complete system outage until

the hardware is repaired or replaced. In contrast, scale-out architectures can distribute

workloads across multiple machines, providing better fault tolerance and resilience. This

resulted in the era of parallel processing using multiple nodes.

Horizontal scaling is a better choice than vertical scaling in terms of cost-

effectiveness, scalability, and overcoming hardware limitations. However, using dis-

tributed architectures introduce overheads like synchronization, communication, and

the need for parallel programming frameworks and additional software libraries. HPC

and ML workloads rely on OpenMP for shared memory systems and Message Passing
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Interface (MPI) for distributed memory systems. Additionally, heterogeneous systems

(where programs run on both CPUs and GPUs) require additional parallel program-

ming frameworks like CUDA (NVIDIA GPUs), ROCm (AMD GPUs), and OpenACC

(NVIDIA and AMD GPUs).

There are two types of Shared Memory systems: Uniform Memory Access

(UMA) and Non-Uniform Memory Access (NUMA). UMA systems do not scale-up

reasonably with additional CPUs as the central bus is quickly saturated, so NUMA

systems were introduced where memory is distributed physically but shared logically

and connected via the system bus. Distributed Memory systems consist of NUMA

Shared Memory nodes interconnected via a communication network. Figure 2.1[41]

shows a visual representation of UMA Shared Memory systems, NUMA Shared Memory

systems, and Distributed Memory systems.

(a) UMA Shared Memory (b) NUMA Shared Memory (c) Distributed Memory[41]

Figure 2.1: Memory configurations in HPC systems

OpenMP is a popular parallel programming framework for shared memory

systems (all processors can access system memory as global address space). It provides

an API based on compiler directives and library routines for writing multi-threaded
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applications in C, C++, and Fortran[5]. Message Passing Interface (MPI) is a message-

passing standard for shared and distributed memory systems (processors communicate

over a network to access inter-process memory). This MPI standard defines the syntax

and semantics of library routines that are used for writing message-passing programs in

C, C++, and Fortran[25].

Typically, on HPC systems, OpenMP provides lower overhead than MPI for

shared memory systems (single node). So, hybrid runs, where OpenMP is used for intra-

node parallelism and MPI is used for inter-node parallelism, offer the best performance

and scalability on large-scale HPC systems. On heterogeneous systems (CPU+GPU),

MPI is used for inter-node communication, and GPU programming frameworks (like

CUDA[19] for NVIDIA GPUs, ROCm[33] for AMD GPUs, oneAPI[15] for Intel GPUs)

provide CPU-GPU communication within the node. Figure 2.2[41] shows a visual rep-

resentation of parallel programming paradigms used in homogeneous CPU-only systems

and heterogeneous CPU=GPU systems.

(a) CPU-only systems[41] (b) Heterogeneous (CPU+GPU)[41]

Figure 2.2: Hybrid parallelism using MPI and OpenMP/CUDA
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2.2 High-Performance Computing (HPC) applications

In parallel programs and HPC applications, the initial stage involves dividing

the entire problem into distinct segments of work that can be assigned to multiple pro-

cesses. This is known as decomposition or partitioning and can be accomplished in two

ways: domain decomposition and functional decomposition. By employing these

methods, the computational workload can be effectively distributed among processes,

thus facilitating efficient parallel processing.

In domain decomposition, the data associated with a problem is decomposed

and distributed amongst processes. Each process then works individually on a portion

of the data and communicates intermediate values with other processes if/when needed.

This is sometimes referred to as data parallelism, especially in Data Science and

Distributed Machine Learning. In functional decomposition, the emphasis lies on the

computation itself rather than the data involved in the computation. The problem is

decomposed and distributed based on the specific tasks or computations that need to

be executed. Each individual task is then responsible for executing a portion of the

overall work, contributing to the collective computation. This is sometimes referred to

as model parallelism, especially in Distributed Machine Learning.

For problems that can be decomposed and executed in parallel with virtually

no need for tasks to share data, little or no communication is required. These types

of problems are often called ‘embarrassingly parallel’ or ‘pleasingly parallel’. A com-

mon example of an embarrassingly parallel problem is 3D video rendering handled by
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a Graphics Processing Unit (GPU), where each frame or pixel can be handled with

no inter-dependency. Some other examples would be adding two matrices or vectors,

protein folding software that can run on any computer with each machine doing a

small piece of the work, generation of all subsets, random numbers, and Monte Carlo

simulations[26].

With this background knowledge, we can now discuss application profiling

and performance optimization strategies for scientific computing applications running

on distributed memory HPC systems.
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Chapter 3

Methodology

3.1 Overview of Application Profiling

In High-Performance Computing (HPC), the pursuit of flawless code func-

tionality goes hand in hand with a relentless quest for maximizing performance. To

achieve maximum performance, we not only need to guarantee functional correctness

but also ensure optimal utilization of resources. This demands a meticulous approach

where applications and their software stack are fine-tuned to harmonize with hardware

limitations and operational requirements. By embracing this synergy, HPC develop-

ers and users can achieve maximum application performance, pushing the boundaries

of what’s possible. However, this task becomes particularly challenging as hardware

evolves over time, necessitating further optimization of applications. Also, it is imprac-

tical to account for all real-world use cases. So, in practice, developers create bench-

marks specifically designed to assess the performance, such as execution time, within
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an environment that mimics the real-world environment. These benchmarks serve as

a valuable proxy by providing insights into application characteristics and identifying

potential bottlenecks that may degrade performance during different operational sce-

narios. An effective benchmark should accurately represent the actual workload and

not just rely on synthetic test cases.

At first glance, benchmarking may seem straightforward, often perceived as a

simple comparison of execution times on different machines. However, to extract the

maximum performance from emerging hardware, the application must undergo numer-

ous tuning iterations. It requires more than just measuring raw execution time; it entails

identifying the areas where the application spends the most time and exploring possibil-

ities for further algorithmic improvements. The presence of heterogeneous systems adds

additional complexities, emphasizing the importance of understanding critical paths

and kernel execution. Hence, application profiling and performance tuning become in-

dispensable components of the optimization process.

Application profiling enables developers to gain important insights into how

efficiently their application is utilizing hardware and effectively diagnose potential bot-

tlenecks contributing to poor performance.

3.2 Application Profiling Tools

There are several vendor-specific and third-party application profiling tools

like IPM[47], Intel VTune Profiler[16], AMD µProf[32], NVIDIA Nsight Systems[20],
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HPCToolkit[66], TAU[50], and many more. Most profiling tools operate in two modes:

offline profiling via a command-line interface and online profiling via a GUI. Online

profiling offers real-time profiling data for live runs but requires interactive access to

systems. On the other hand, offline profiling collects and stores profiling data over the

entire application run. This profiling data is then transferred to the local system for

visualization and analysis. HPC systems are typically accessed via a remote connection,

which is not well-suited for visualization tasks, so offline profiling is the preferred choice.

For this study, we have used IPM, Intel VTune, and NVIDIA Nsight. We generate pro-

filing data via the command-line interface that is transferred to the local system for

analysis.

Integrated Performance Monitoring[47] (IPM) is a portable profiling infrastruc-

ture for parallel codes. It provides a low-overhead profile of application performance

and resource utilization in a parallel program. IPM primarily focuses on communica-

tion, computation, and IO. In addition to timings, IPM provides MPI Communication

topology and statistics for each MPI call and buffer size, arithmetic intensity metrics

like Floating Point Operations Per second (FLOPs) via on-chip event counters, memory

usage, network communication volume, and data written to and read from disk.

Intel VTune[16] is a performance analysis framework for serial and parallel

applications. While it was originally intended for x86 architectures, the latest versions

only support Intel CPUs and do not run on AMD CPUs. The first step is to use VTune’s

12



Application Performance Snapshot (APS) for a quick view into various aspects of ap-

plication performance, like MPI and OpenMP usage, CPU utilization, memory access

efficiency, vectorization, I/O, and memory footprint. Apart from displaying key opti-

mization areas, APS also displays potential bottlenecks and problem areas (very high

Elapsed Time, low Instructions Per Cycle (IPC), or remarks on Memory Bound) and

suggests specialized tools for tuning particular performance aspects. The next step is

to identify code hotspots, i.e., the most time-consuming sections, and look into vector

register utilization, memory access patterns, and MPI communication heatmap of these

code hotspots. VTune provides individual components like Intel VTune Profiler for

code hotspot analysis and Intel Trace Analyzer and Collector for identifying MPI load

imbalance and communication hotspots.

NVIDIA Nsight Systems[20] is a system-wide performance analysis and pro-

filing tool from NVIDIA. It is designed to visualize an application’s algorithms, help

identify the largest opportunities to optimize, and tune to scale efficiently across any

quantity or size of CPUs and GPUs. Nsight Systems enables users to visualize CPU

utilization, GPU utilization, CPU-GPU interactions, trace the execution of different

GPU kernels, and network utilization.
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3.3 Getting Started with Profiling

3.3.1 Baseline Single-node Runs

The first step in application profiling should be to build, run, and then profile

out-of-the-box (baseline) single-node runs. For intra-node parallelism in these single-

node runs, it is advisable to verify that the application source code supports using

OpenMP directives and can be built with OpenMP support. Modern-day compilers

like GNU compilers (gcc, g++, gfortran), LLVM (clang, clang++, flang), or vendor-

specific compilers like Intel compilers (icc, icpc, ifortran), AMD compilers (aocc), and

NVIDIA compilers (nvcc, nvc, nvc++, nvfortran), inherently support OpenMP, so it

can be enabled using compiler optimization flags during the build process. As a best

practice, a good starting place is using vendor-specific compilers optimized for target

hardware, like using Intel compilers for Intel CPUs. Once the OpenMP-enabled build

is successful, one can proceed with running and profiling the application. These initial

results give us baseline performance numbers that can serve as the starting point for

run-time optimizations like process pinning, memory pinning, and hybrid parallelism.

3.3.2 Baseline Multi-node Runs

The next step should be to build, run, and then profile out-of-the-box (baseline)

multi-node runs based on pure MPI. For inter-node parallelism using MPI, one can

choose between several open-source (OpenMPI, MVAPICH2, etc.) and vendor-specific

(Intel MPI, NVIDIA NVHPC, HPE Cray MPI, etc.) implementations. Once it is

14



verified that the application source code supports MPI calls, one can use MPI compilers

like mpicc, mpic++, mpifort/mpif90 (OpenMPI) or mpiicc, mpiicpc, mpiifort (Intel

MPI) to build the application. These MPI compilers are simply wrappers that add in

all the relevant compiler/linker flags and then invoke the underlying compiler. As a best

practice, a good starting place is using vendor-specific MPI implementations optimized

for target hardware, like using Intel MPI for Intel CPUs. Once the MPI-enabled build

is successful, one can proceed with running and profiling the application at increasing

node counts by using all processors per node. This method is used to observe strong

scaling behavior where the problem size is fixed as the number of processors is increased

to achieve faster runtime – ideally half the runtime for twice the number of processors.

Scalability runs give us some baseline performance numbers and insights into the strong

scalability of the application and the input dataset. Insights from scalability runs and

initial profiling data serve as the starting point for run-time and MPI optimizations like

process placement strategies, MPI communication strategies, and hybrid parallelism.

3.3.3 Analyzing Profiling Results

With most applications and corresponding input datasets, one does not obtain

perfect linear scaling results from baseline single-node and multi-node runs. Typically,

one observes inefficient utilization and bottlenecks in hardware resource utilization and

sub-linear scaling if the input dataset is not large enough to utilize the compute capa-

bilities of higher processor counts or if one encounters bottlenecks where computation is

overshadowed by memory data movement or inter-node communication. To overcome
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these bottlenecks, reducing the number of MPI processes per node or using hybrid runs

(using MPI+OpenMP) is an effective strategy.

For efficient parallelism and utilization of resources in hybrid runs, one needs

to find a good balance between the number of MPI processes and OpenMP threads per

process. Having a large number of MPI processes can lead to inefficient domain decom-

position for relatively small inputs as each MPI process gets a relatively small chunk of

the input, where time spent on computation can be overshadowed by the overhead of

MPI runtime. Additionally, having a large number of MPI processes with large input

datasets can lead to memory imbalance (uneven memory usage across nodes) and mem-

ory bottlenecks (memory traffic due to data movement between processors and memory

saturating bandwidth), resulting in intermittent idle processors during the application

run. This occurs as the critical path in the application execution is influenced by system

RAM speed which is lower than CPU processing speed, also known as memory wall.

Another scenario can be communication imbalance (uneven distribution of MPI pro-

cesses) and communication bottlenecks due to a large number of MPI processes when

the time spent exchanging messages between MPI processes overshadows time spent in

computation.

3.3.4 Optimization Strategies

Profiling insights from baseline single-node and multi-node results can point in

the right direction and help define optimization strategies. One strategy can be using

scaling-up techniques to improve and upgrade system components, like using faster
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(a) Communication/MPI-bound (b) Memory-bound

Figure 3.1: Examples of insights from application profilers

RAM or faster network interconnects. However, this is not always feasible. So, another

strategy is to transform a memory-bound or communication-bound bottleneck into a

compute-bound bottleneck, which can, in turn, be resolved by using OpenMP threads

or by using more nodes. Let’s look at some scenarios:

Memory-bound applications As discussed earlier, when using a large number of

MPI processes with a memory-bound application, performance can be bottlenecked

by memory imbalance or memory bandwidth limitations, where a major portion of the

execution time is spent in moving data between memory and processors while processors

stay idle. For memory imbalance, one can look into profiler insights about memory usage

per node and modify MPI process placement to better balance memory usage. In some

cases, like functional decomposition, MPI process placement may not be sufficient to

resolve memory imbalance, and one has to modify source code to ensure memory usage

across nodes is as homogeneous and balanced as possible.

For memory bandwidth bottlenecks, using fewer MPI processes per node can

be a solution, as it can reduce the overall amount of data moving between memory
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and processors and transform the application to compute-bound. But, one drawback

of reducing the number of MPI processes per node is inefficient usage of hardware

resources as many CPU processors stay idle. This can be resolved in hybrid runs by

using OpenMP threads to overcome the new compute-bound bottleneck, resulting in

improved performance. However, one should ensure that OpenMP threads are placed

on processors close to the processor used by MPI in order to utilize the same cache.

There is a possibility that using additional OpenMP threads can degrade performance if

the additional overhead of threading leads to cache contention (e.g., false sharing where

one thread writes to memory that is very close to where another thread needs to read).

In such a scenario, it is advisable to explore different domain decomposition schemes.

Communication-bound applications As discussed earlier, in a communication-

bound application, performance can be bottlenecked by the network, where a major

portion of the execution time is spent exchanging data between processes while pro-

cessors stay idle. This leads to a poor computation/communication ratio. Profilers

can provide information on the overall time spent in various MPI calls, communication

topology (message sizes and time spent in point-to-point exchanges), and MPI imbal-

ance during the application runtime. Based on these profiling metrics, one can modify

MPI process placement by grouping MPI processes with the maximum number or max-

imum size of message exchanges and placing them on the same node to reduce network

utilization.

Another reason for poor computation/communication ratio can be MPI syn-
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chronization overhead as a result of time spent waiting for straggling MPI processes in

point-to-point communication. This is often caused due to standard MPI calls, which

rely on blocking communication, where the MPI function call does not return control

until the data being sent/received has been copied out/into the buffer. To overcome this

synchronization overhead for small messages, caching can be employed on the destina-

tion process for unmatched messages. Using non-blocking MPI calls is a more general

solution, where the MPI function call immediately returns control and continues com-

putation by asynchronously sending/receiving data. For correctness, one has to ensure

that non-blocking communication calls do not re-use the send/receive buffers until the

destination has been processed.

MPI collective calls, like Broadcast, Scatter, Gather, AllReduce, and AlltoAll,

use blocking communication but enable higher efficiency due to their multi-cast messag-

ing. To improve the computation/communication ratio, one can use the non-blocking

variations of MPI collective calls, but this requires source code modifications. Al-

ternatively, several MPI implementations offer different algorithmic choices for MPI

collectives[54]. These algorithms can be chosen via runtime environment variables de-

pending on insights gained from MPI profiling, network configuration, and application

requirements.

In the following chapter, we introduce the scientific computing applications

used in this study, talk about the hardware configuration of the testing environment,

and present performance analysis and results based on the aforementioned profiling
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methodology and optimization strategies.
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Chapter 4

Evaluation and Results

In this study, we use four scientific computing applications: XCompact3D,

Quantum ESPRESSO (QE), FluTAS, and POT3D. These are popular applications

heavily used in computational fluid dynamics and molecular dynamics.

First, we introduce the testing environment used for running, profiling, and

optimizing these applications. After a brief description of the supercomputing archi-

tecture, we introduce each of these four applications, present out-of-the-box baseline

results, profiling analysis, and optimized results obtained from runtime and code mod-

ifications based on profiling data. For two applications (Quantum ESPRESSO and

POT3D), we also conducted a CPU vs. GPU comparison, which shows the advantages

of GPU acceleration for application performance.
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4.1 Testing Environment

For this study, simulations and performance profiling are conducted on the

following supercomputing clusters:

• Pittsburgh Supercomputing Center (PSC) Bridges-2

• University of Toronto’s Niagara

• Erlangen National High-Performance Computing Center (FAU) Fritz

Bridges-2[7] is the largest supercomputer deployed at the Pittsburgh Super-

computing Center (PSC). It is intended for rapidly evolving and data-intensive research

domains like AI/ML, data analytics, biomedical applications[8], and advanced network-

ing. It is supported by the National Science Foundation (NSF) and is available at no

cost for research and education through the NSF ACCESS/XSEDE program. Archi-

tecturally, Bridges-2 is a heterogeneous computing platform consisting predominantly

of CPU-only nodes (based on AMD EPYC CPUs) and some GPU-accelerated nodes

(based on NVIDIA Tesla V100 GPUs + Intel CascadeLake CPUs). It is interconnected

by a novel Fat tree Clos topology with a modest 2.3:1 over-subscription using NVIDIA

Mellanox Infiniband HDR-200Gbps adapters. Figure 4.1 shows the processor architec-

ture and memory organization for Bridges-2 nodes.

Niagara is a homogeneous supercomputing cluster owned by the University of

Toronto, and it has been optimized for throughput, ensuring efficient scaling, energy

utilization, as well as network and storage capabilities for handling a variety of scientific
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(a) Node configuration[28] (b) Cache and Memory grouping

Figure 4.1: Bridges-2 AMD EPYC

workloads at large scales. It was the 53rd fastest supercomputer on the TOP500 list of

June 2018 and occupies 177[65] on the (current) June 2023 Top500 list. Niagara uses

Intel Skylake CPUs connected via NVIDIA Mellanox EDR-100Gbps Infiniband network

in a Dragonfly+ topology.

(a) Node configuration[29] (b) Cache and Memory grouping[14]

Figure 4.2: Niagara Intel SkyLake

FAU’s Fritz is a homogeneous supercomputing cluster, named after FAU’s

founder Friedrich, Margrave of Brandenburg-Bayreuth. Financed by the German Re-
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search Foundation (DFG), it placed 178[64] on the (current) June 2023 Top500 list

and is used for research areas such as node-level performance engineering, performance

modeling and tooling, numerical algorithms for sparse operations, and atomic struc-

ture simulations. Fritz is based on liquid-cooled Intel IceLake CPUs[63] connected via

NVIDIA Mellanox HDR Infiniband network in a 1:4 blocking Fat tree topology.

(a) Node configuration[63] (b) Cache and Memory grouping

Figure 4.3: Fritz Intel IceLake

In this study, Bridges-2 and Niagara were used for the performance analysis

of CPU-only runs of XCompact3D. Bridges-2 and Fritz were used for the performance

analysis of CPU-only runs of QE, FluTAS, and POT3D. In addition, QE and POT3D

were evaluated on Bridges-2 GPU nodes.
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4.2 XCompact3D

4.2.1 Introduction

XCompact3D is a free, open-source Fortran90 framework consisting of high-

order finite-difference flow solvers[3]. These solvers target Direct and Large Eddy Simu-

lations (DNS/LES) to investigate turbulence and heat transfer problems. XCompact3D

is currently able to solve the incompressible and low-Mach number variable density

Navier-Stokes equations using sixth-order compact finite-difference schemes on a Carte-

sian mesh. Figure 4.4 shows the software architecture of XCompact3D and the visual-

ization of wind-flow simulation in this study generated using ParaView.

(a) XCompact3D subroutines[3] (b) Simulation visualization

Figure 4.4: XCompact3D Software Architecture

Theoretically, XCompact3d can efficiently scale up to hundreds of thousands

of CPU cores. It uses the open-source library 2DECOMP&FFT, a 2-dimensional pencil
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decomposition and Fast Fourier Transform (FFT) framework that supports building

large-scale parallel applications on distributed memory systems using MPI. For XCom-

pact3D, the Poisson equation is solved in spectral space using modified wave numbers[43]

and Dirichlet boundary conditions with high-order finite-difference schemes and FFT

routines.

2D FFT operations are usually communication-bound (performance is bottle-

necked by the network, where a major portion of the execution time is spent exchanging

data between processes while processors stay idle). One of the reasons is that 2D FFT

operations are based on a multi-dimensional (2D) global transpose of large matrices.

From an MPI and domain decomposition perspective, this involves MPI AlltoAll com-

munication, where all processes exchange data with each other via multi-casting, result-

ing in O(P ∗ log2P ) message exchanges[49], where P is the number of MPI processes.

For this study, we use the open-source implementation of XCompact3D v4.0,

available on GitHub, under the BSD 3-Clause license.

4.2.2 Build and Input description

XCompact3D does not require external software libraries and can be built

by using only the Fortran compiler and MPI. But it supports using an external FFT

library. Its source code includes the 2DECOMP&FFT library (generates generic FFT

subroutines), which is used by default if an external library is not used during the build

process.

The input dataset is a wind turbine benchmark where two generic wind tur-
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bines are aligned and subject to an incoming uniform wind[4]. These model wind tur-

bines have a three-bladed rotor with diameters of DT1=0.944m and DT2=0.894m. The

small difference in rotor diameter stems from a slightly different hub geometry of the

rigs. Apart from that, the blade geometry is exactly the same. Both turbines rotate

counter-clockwise when observed from an upstream point of view. This experimen-

tal data was measured in the closed-loop wind tunnel at the Norwegian University of

Science and Technology (NTNU), Trondheim.

4.2.3 Results

Cores MPI ranks Time (s)

128 128 3202.06
256 256 2310.95
512 512 1675.46

(a) Bridges-2

Cores MPI ranks Time (s)

40 40 16863.16
80 80 8361.69
160 160 5168.16

(b) Niagara

Table 4.1: XCompact3D Baseline results

Baseline XCompact3D results on Bridges-2 and Niagara are in Table 4.1. Pro-

filing data from the baseline results shows that XCompact3D is communication-

bound. We observe that XCompact3D spends 40% of its runtime in MPI communica-

tion and 60% in computation. MPI communication is dominated by AlltoAllv (80% of

MPI WallTime) and AllReduce (19.25% of MPI WallTime) calls, as seen in Figure 4.5.

Tracing the code execution shows that the bulk of this MPI communication oc-

27



(a) MPI calls (b) MPI topology

(c) MPI imbalance

Figure 4.5: XCompact3D Profiling data

curs in the decomp2d subroutines that use MPI ALLTOALLV for matrix transposition from

X-axis to Y-axis, Y-axis to X-axis, Y-axis to Z-axis, and Z-axis to Y-axis. This blocking

MPI communication requires synchronous pairwise exchanges of messages. Converting
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these calls to non-blocking can improve the computation/communication ratio by us-

ing asynchronous MPI IALLTOALLV, as it allows threads to continue doing computations

while communication with another thread is pending. Using external FFT libraries like

FFTW3, AMD-FFTW3, or Intel MKL that can generate non-blocking FFT routines

optimized for the target hardware can also help improve performance.

Based on the hardware configuration, we choose gfortran+HPC-X Open-

MPI +AMD-FFTW3 for the optimized build on Bridges-2 (AMD), and Intel For-

tran+Intel MPI+Intel MKL for the optimized build on Niagara (Intel). Addition-

ally, we modify Fortran compiler flags in the Makefile to enable loop and math optimiza-

tions using -Ofast -funroll-loops on GNU Fortran (Bridges-2) and -O3 -fp-model

fast=2 on Intel Fortran (Niagara). To enable and optimize vector instructions for the

target CPU, we use -march=znver2 on Bridges-2 to target AMD’s Zen2 microarchitec-

ture, and -xCORE-AVX512 on Niagara to target Intel’s Skylake microarchitecture.

Vendor-specific MPI implementations like HPC-X OpenMPI and Intel MPI

support specialized transport-layer protocols for intra-node and inter-node communi-

cation. The Mellanox Infiniband network can be tuned to use Scalable Hierarchical

Aggregation and Reduction Protocol (SHARP) capabilities[55] that can offload collec-

tive communication to the network and reduce CPU involvement. To further reduce the

impact of network congestion in this communication-bound application, we instruct the

SLURM HPC scheduler to allocate nodes close to each other using the --contiguous

directive.

Optimized XCompact3D results on Bridges-2 and Niagara are in Table 4.2.
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Cores MPI ranks Optimized Time (s) Baseline Time (s) Speedup

128 128 2585.56 3202.06 1.23
256 256 1787.65 2310.95 1.29
512 512 1162.71 1675.46 1.44

Average Speedup 1.32

(a) Bridges-2

Cores MPI ranks Optimized Time (s) Baseline Time (s) Speedup

40 40 4208.73 16863.16 4.01
80 80 1975.51 8361.69 4.23
160 160 1125.31 5168.16 4.59

Average Speedup 4.27

(b) Niagara

Table 4.2: XCompact3D Optimization results

Using third-party FFT implementations that generate tuned FFT subroutines,

compiler optimizations to increase CPU resource utilization, and vendor-specific MPI

features like SHARP to streamline communication over the Infiniband network improve

the performance of XCompact3D by 32% on Bridges-2 and 4.27x on Niagara. This

performance improvement on Niagara is largely due to using AVX-512 on Intel Skylake

CPUs.

4.3 Quantum ESPRESSO (QE)

4.3.1 Introduction

Quantum ESPRESSO (QE), where ESPRESSO stands for ”opEn Source Pack-

age for Research in Electronic Structure, Simulation, and Optimization”, is a suite of
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Fortran90 and C code for electronic-structure calculations and materials modeling based

on density-functional theory, plane waves, and pseudopotentials[27].

For this study, we rely on Quantum ESPRESSO’s Car-Parrinello (CP) package.

CP is a type of computational method for ab-initio molecular dynamics that uses the

fundamental laws of nature to simulate the motion of atoms in a system. This type of

molecular dynamics simulation does not rely on empirical potentials or force fields to

describe the interactions between atoms but rather calculates these interactions directly

from the electronic structure of the system using quantum mechanics.

Figure 4.6: Visualization of a 1500-atom carbon nanotube system using QE[53]

QE typically consists of force calculations and FFT operations. It supports

both 1D domain decomposition (slab decomposition) and 2D domain decomposition

(pencil decomposition). By default, QE uses 1D slab decomposition, as 2D pencil

decomposition is convenient and faster only when FFT operations are parallelized over

a very large number of MPI processes. For example, the two input datasets used for
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QE in this study have array dimensions 200 × 200 × 200 and 180 × 192 × 240, so the

scalability of 1D slab decomposition flattens out when the number of MPI processes used

for FFT parallelization exceeds the third FFT dimension (i.e. 200 and 240 respectively).

2D pencil decomposition is more communication-intensive than 1D slab decomposition,

but it scales better. Note that the choice of the total number of MPI ranks is also

influenced by memory usage during force calculations, so 2D pencil decomposition is

not necessarily the clear-cut choice for a large number of MPI ranks.

For this study, we use the open-source implementation of Quantum ESPRESSO

v7.1, available on GitHub, under the GPL-2.0 license.

4.3.2 Build and Input description

Quantum ESPRESSO does not require external software libraries and can be

built with only a C compiler, a Fortran compiler (compliant with the F2008 standard),

and MPI. But QE documentation recommends using an external Linear Algebra library

(for BLAS and LAPACK subroutines) and an FFT library.

We use two input datasets for the Car-Parinello (cp) molecular dynamics simu-

lation: CP-W256 and supercell 11layer. CP-W256 is a small-size benchmark based

on 256 H2O (Water) molecules consisting of Hydrogen (H) and Oxygen (O) atoms. su-

percell 11layer is a medium-size benchmark based on 264 ZrO2 molecules consisting of

Zirconium (Zr) and Oxygen (O) atoms. The simulation starts ‘from scratch’ and runs

for 10 Car-Parinello steps with a time step of 2.4189× 10−17 seconds.
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4.3.3 Results

Cores MPI ranks Baseline Time (s) Comments

128 128 158.41 Runs with 1D slab decomposition
256 256 – Fails with 1D slab decomposition
256 256 558.34 Runs with 2D pencil decomposition
512 512 – Fails with 1D slab decomposition
512 512 760.50 Runs with 2D pencil decomposition

(a) CP-W256 on Bridges-2

Cores MPI ranks Baseline Time (s) Comments

128 128 3204.00 Runs with 1D slab decomposition
256 256 – Fails with 1D slab decomposition
256 256 2508.96 Runs with 2D pencil decomposition
512 512 – Fails with 1D slab decomposition
512 512 1492.09 Runs with 2D pencil decomposition

(b) supercell 11layer on Bridges-2

Cores MPI ranks Baseline Time (s) Comments

72 72 111.52 Runs with 1D slab decomposition
144 144 71.7 Runs with 1D slab decomposition
288 288 – Fails with 1D slab decomposition
288 288 56.05 Runs with 2D pencil decomposition

(c) CP-W256 on Fritz

Cores MPI ranks Baseline Time (s) Comments

72 72 2390.00 Runs with 1D slab decomposition
144 144 1328.12 Runs with 1D slab decomposition
288 288 – Fails with 1D slab decomposition
288 288 816.30 Runs with 2D pencil decomposition

(d) supercell 11layer on Fritz

Table 4.3: Quantum ESPRESSO (QE) Baseline results
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Baseline QE results on Bridges-2 and Fritz are in Table 4.3. We can observe

that QE runs with a large number of MPI ranks fail to run with (default) 1D slab domain

decomposition, as the number of CPUs used in these runs exceeds the number of planes

of charge density along the 3rd dimension of the FFT grid – 200 × 200 × 200 for CP-

W256 and 180× 192× 240 for supercell 11layer. This is a limitation of the benchmark.

Using the runtime parameter .pd. true enables the 2D pencil decomposition scheme.

Runs with 200 MPI ranks are successful, but performance and scalability degrade with

respect to lower MPI process counts. Also, as the number of MPI ranks increases,

the communication overhead of 2D pencil decomposition exceeds the time spent on

computation. This difference is exacerbated when using the medium-size CP-W256

benchmark.

Profiling data from QE baseline results on Bridges-2 and Fritz (Figure 4.7 show

that QE is communication-bound especially with 2D pencil domain decomposition.

CP-W256 spends 89.54% of its runtime in MPI communication and 10.44% in computa-

tion. supercell 11layer spends 65.76% of its runtime in MPI communication and 34.21%

in computation. For both, MPI communication is dominated by AlltoAll (90% of MPI

WallTime for CP-W256 and 55% of MPI WallTime for supercell 11layer). Interestingly,

supercell 11layer also shows 25% of MPI WallTime spent in MPI Barrier calls. This

is a synchronization mechanism to ensure that all MPI calls reach a certain stage in

communication before proceeding. Since supercell 11layer does not show any stark MPI

Imbalance, this can be credited to memory stalls due to memory bottlenecks.

Since QE relies on dense matrices and FFT operations, it is recommended to
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(a) MPI calls CP-W256 (b) MPI calls supercell 11layer

(c) MPI imbalance CP-W256

(d) MPI imbalance supercell 11layer

Figure 4.7: Quantum ESPRESSO (QE) Profiling data
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use the Eigenvalue Solvers for Petaflop Applications (ELPA)[2] package, a specialized

scientific library for electronic structure simulations that supports efficient and scalable

direct eigensolvers for symmetric (hermitian) matrices.

Based on the hardware configuration and ELPA compatibility, we choose In-

tel compilers+Intel MPI+Intel MKL+ELPA for the optimized build on both

Bridges-2 (AMD) and on Fritz (Intel). Additionally, we modify the Makefile to en-

able loop and math optimizations using -O3 -fp-model fast=2, enable the use of

OpenMP using -qopenmp, and link the correct BLAS, LAPACK, and ScaLAPACK

libraries from Intel MKL. To enable vector instructions optimized for the target CPU,

we use -march=core-avx2 on Bridges-2 to target AMD’s Zen2 microarchitecture, and

-xCORE-AVX512 on Fritz to target Intel’s Skylake microarchitecture.

QE performs better with 1D slab domain decomposition, so we use hybrid

runs (MPI +OpenMP) to reduce the MPI communication bottleneck. Additionally, to

reduce the impact of network congestion in this communication-bound application, we

instruct the SLURM HPC scheduler to allocate nodes close to each other using the

--contiguous directive.

Optimized QE results on Bridges-2 and Fritz are in Table 4.4. Using hybrid

runs (MPI+OpenMP) to reduce MPI communication overhead without idling compute

resources and building with the ELPA library to improve FFT computation improves

the performance of QE by 5.53x for CP-W256 and by 44% for supercell 11layer on

Bridges-2, and by 13% for CP-W256 and 8% for supercell 11layer on Fritz. We observe

a larger performance delta on Bridges-2 as AMD CPUs typically have a larger core count
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Cores MPI ranks Threads/rank Optimized Time (s) Baseline Time (s) Speedup

128 128 1 143.31 158.41 1.10
256 128 2 108.32 558.34 5.15
512 128 4 73.43 760.50 10.35

Average Speedup 5.53

(a) CP-W256 on Bridges-2

Cores MPI ranks Threads/rank Optimized Time (s) Baseline Time (s) Speedup

128 32 4 3062.54 3204.00 1.05
256 64 4 1531.70 2508.96 1.63
512 128 4 898.92 1492.09 1.65

Average Speedup 1.44

(b) supercell 11layer on Bridges-2

Cores MPI ranks Threads/rank Optimized Time (s) Baseline Time (s) Speedup

72 72 1 109.74 111.52 1.02
144 72 2 66.46 71.7 1.08
288 72 4 43.58 56.05 1.29

Average Speedup 1.13

(c) CP-W256 on Fritz

Cores MPI ranks Threads/rank Optimized Time (s) Baseline Time (s) Speedup

72 36 2 2366.49 2390.00 1.01
144 72 2 1257.79 1 1328.12 1.06
288 72 4 701.90 816.30 1.16

Average Speedup 1.08

(d) supercell 11layer on Fritz

Table 4.4: Quantum ESPRESSO (QE) Optimization results

than Intel CPUs, so the baseline runs use more MPI ranks on Bridges-2, which leads

to higher MPI communication overhead when using 2D pencil decomposition for the

baseline runs.
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4.3.4 CPU vs GPU comparison

QE also supports GPU-enabled runs. Based on experiments, QE v7.1 does not

support CUDA-aware MPI but QE v7.2 support CUDA-aware MPI. Table 4.5 compares

the performance of CPU-only runs vs. GPU-accelerated QE runs on Bridges-2.

Configuration CPUs GPUs MPI ranks Threads/rank Time (s) Speedup

CPU 512 0 128 4 73.43 1.00
GPU 40 4 4 10 80.31 0.91

GPU (CUDA-MPI) 40 4 8 5 60.27 1.22

(a) CP-W256

Configuration CPUs GPUs MPI ranks Threads/rank Time (s) Speedup

CPU 512 0 128 4 898.92 1.00
GPU 40 4 4 10 264.89 3.39

GPU (CUDA-MPI) 40 4 4 10 Ran out of memory

(b) supercell 11layer

Table 4.5: Quantum ESPRESSO (QE) CPU-only vs GPU-accelerated comparison

GPU-accelerated QE using 4 NVIDIA V100 GPUs for the CP-W256 bench-

mark does not outperform the CPU-only runs, and performance degrades by 10%. Using

CUDA-aware MPI improves performance, and QE runs 22% faster than 4 CPU-only

Bridges-2 nodes. This can be attributed to the small-size CP-W256 benchmark, as

the cost of data movement between CPU-GPU overshadows acceleration on the GPUs.

GPU-accelerated QE using 4 NVIDIA V100 GPUs for the supercell 11layer benchmark

improves performance significantly by 3.39x.
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4.4 FluTAS

4.4.1 Introduction

FluTAS (Fluid Transport Accelerated Solver) is an open-source code tar-

geting multi-phase fluid dynamics simulations. It uses a numerical method for fast,

massively-parallel numerical simulations of turbulent flows. The corresponding code,

CaNS (Canonical Navier–Stokes), benefits from the efficiency of the FFT for the finite-

difference discretization of the pressure Poisson equation and allows for simulating a wide

range of canonical flows like turbulent mixing and Rayleigh-Bénard (RB) convection[23].

FluTAS uses very efficient FFT solvers in problems with different combinations of homo-

geneous pressure boundary conditions. It relies on 2D pencil-like domain decomposition,

which enables efficient massively parallel simulations.

(a) RB convection[23] (b) Hot fluid phase[23] (c) Cold fluid phase[23]

Figure 4.8: Visualization of Rayleigh-Bénard (RB) convection flow using FluTAS

For this study, we use the open-source implementation of FluTAS v1.5, avail-

able on GitHub, under the MIT license.
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4.4.2 Build and Input description

FluTAS relies on the FFTW interface to perform Fast Fourier Transforms, so

FFTW3 should be installed and linked with the Fortran compiler and MPI during the

build process.

The input dataset is a two-layer Rayleigh-Bénard convection benchmark. This

simulates the flow developed inside a fluid layer that is heated from below and cooled

from above. It is driven by the density differences that arise due to the temperature

variation inside the fluid. The grid size is 768× 284× 768, and the simulation runs for

1000 timesteps.

4.4.3 Results

Cores MPI ranks Time (s)

128 128 3477.54
256 256 2340.78
512 512 1347.98

(a) Bridges-2

Cores MPI ranks Time (s)

72 72 2658.75
144 144 1660.51
288 288 954.92

(b) Fritz

Table 4.6: FluTAS Baseline results

Baseline FluTAS results on Bridges-2 and Fritz are in Table 4.6. Profiling data

from baseline results (Figure 4.9 show that FluTAS is both compute-bound and

communication-bound. It spends 48.41% of its runtime in MPI communication and

51.55% in computation. We also observe that FluTAS is susceptible to communica-

tion imbalance as MPI calls are dominated by point-to-point SendRecv (70% of MPI
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WallTime) and collective AlltoAll (23% of MPI WallTime).

(a) MPI calls (b) MPI Topology

(c) MPI Imbalance

Figure 4.9: FluTAS Profiling data

Based on the hardware configuration, we choose Intel Fortran+HPC-X

MPI+FFTW3 for the optimized build on Bridges-2 (AMD), and Intel Fortran+Intel
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MPI+FFTW3 for the optimized build on Fritz (Intel). Additionally, we modify the

Fortran compiler flags in the Makefile to enable loop and math optimizations using -O3

-fp-model fast=2 on Intel Fortran. To enable optimized vector instructions for the

target CPU, we use -march=core-avx2 on Bridges-2 to target AMD’s Zen2 microarchi-

tecture, and -xCORE-AVX512 -qopt-zmm-usage=high on Fritz to target Intel’s IceLake

microarchitecture.

Tracing the code execution shows that the bulk of computation occurs in the

cmpt nor curv 2o subroutine, which solves the quadratic surface function for the sym-

metric Cartesian curvature tensor[31]. Profiling shows that this subroutine operates

on scalar floating-point data. Vectorization can transform this scalar operation acting

on individual data elements to concurrently operate on multiple data elements with a

single instruction.

Since MPI communication is dominated by MPI SendRecv in halo exchanges

with nearest neighbors, MPI process placement strategies can help by mapping MPI

processes to NUMA domains within the node. This ensures that MPI ranks will use

intra-node shared memory instead of inter-node distributed memory for halo exchanges.

To further reduce the impact of network congestion and communication im-

balance, we instruct the SLURM HPC scheduler to allocate nodes close to each other

using the --contiguous directive.

Optimized FluTAS results on Bridges-2 and Fritz are in Table 4.7. Using

compiler optimizations and enforcing the usage of vector instructions increases CPU

resource utilization. Binding MPI ranks to NUMA domains on the same node transfers
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Cores MPI ranks Optimized Time (s) Baseline Time (s) Speedup

128 128 2368.35 3477.54 1.47
256 256 1510.16 2340.78 1.55
512 512 795.63 1347.95 1.69

Average Speedup 1.57

(a) Bridges-2

Cores MPI ranks Optimized Time (s) Baseline Time (s) Speedup

72 72 2310.22 2658.75 1.15
144 144 1337.16 1660.51 1.24
288 288 730.12 954.92 1.31

Average Speedup 1.23

(b) Fritz

Table 4.7: Optimized results for FluTAS

the majority of point-to-point communication from the Infiniband network to the intra-

node shared memory. This improves the performance of FluTAS by 57% on Bridges-2

and 23% on Fritz.

4.5 POT3D

4.5.1 Introduction

POT3D is a Fortran90 code that computes approximations of the solar coronal

magnetic field (called potential fields) using observations of the solar surface magnetic

field as a boundary condition[10]. It can be used to generate potential field source

surfaces, potential field current sheets, and open field models. It is used in numerous

studies of coronal structure and dynamics, solar/heliophysics, and space weather.
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Figure 4.10: Visualization of field lines in a solar coronal magnetic field using POT3D

This Fortran90 code is highly parallelized using MPI and Fortran standard

parallelism (do concurrent). It can also be offloaded to GPUs by using OpenMP

and OpenACC, along with an option to use the NVIDIA cuSparse library for sparse

matrix/vector operations. POT3D is included in the Standard Performance Evaluation

Corporation’s (SPEC)[6] SPEChpc(TM) 2021 benchmark suite[62].

POT3D solves the 3D Laplace equation on a non-uniform logically-rectangular

spherical grid using an iterative Preconditioned Conjugate Gradient (PCG) method

consisting of array operations, matrix-vector products, and dot products. Conjugate

Gradient operations are typically memory-bandwidth bound (which involves system

bottlenecks due to data movement to and from memory, as it is too large to store in

caches).

For multi-node MPI, POT3D uses domain decomposition to distribute work-

load, where each MPI rank takes one subsection of the grid (as cubed as possible) and

treats it as its own local domain for all operations. The only MPI communication

needed is point-to-point messages for the local boundaries in the matrix-vector product

and collective operations for the inner products and polar boundary conditions.
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For this study, we use the open-source implementation of POT3D v3.1.0r,

available on GitHub, under the Apache-2.0 license.

4.5.2 Build and Input description

POT3D uses the HDF5 file format for input/output, so HDF5 needs to be

installed and linked with the Fortran compiler and MPI during the build process. Par-

allelism is achieved through the use of Fortran’s standard parallelism (DC) along with

OpenACC for loops that are not yet supported with DC.

The input dataset is the ‘ISC2023’ benchmark, derived from the ‘small’ POT3D

benchmark run from the SPEChpc 2021 benchmark suite. A successful CG solver run

should converge in 25112 steps.

4.5.3 Results

Cores MPI ranks Time (s)

128 128 6983.87
256 256 3754.16
512 512 2136.42

(a) Bridges-2

Cores MPI ranks Time (s)

72 72 5175.15
144 144 2781.74
288 288 1583.12

(b) Fritz

Table 4.8: POT3D Baseline results

Baseline POT3D results on Bridges-2 and Fritz are in Table 4.8. Profiling

data from baseline results (Figure 4.11) show that POT3D is memory-bound. It

spends 16.62% in MPI communication and 83.30% in computation. This is expected,
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as the Preconditioned Conjugate Gradient solver has a high Byte/FLOP ratio, and the

amount of FLOPs that can be executed is limited by the maximum data throughput

for sparse matrix-vector operations.

(a) MPI calls (b) MPI topology

(c) MPI imbalance

Figure 4.11: POT3D Profiling data
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Based on the hardware configuration, we choose Intel Fortran+HPC-X

MPI+HDF5 for the optimized build on Bridges-2 (AMD), and Intel Fortran+Intel

MPI+HDF5 for the optimized build on Fritz (Intel). Additionally, we modify the

Fortran compiler flags in the Makefile to enable loop and math optimizations using -O3

-fp-model fast=2 on Intel Fortran. To enable optimized vector instructions for the

target CPU, we use -march=core-avx2 on Bridges-2 to target AMD’s Zen2 microar-

chitecture, and -xCORE-AVX512 on Fritz to target Intel’s IceLake microarchitecture.

However, vectorization is not very effective as POT3D is a memory-bound application.

Tracing the code execution shows that the bulk of memory accesses occurs

in the call ax(p,ap,N) subroutine used for matrix-vector multiplication, and the

r(i)=r(i)-alphai*ap(i) statement for concurrently updating the matrix. In terms of

MPI communication, these subroutines are designed to use asynchronous point-to-point

MPI ISEND and MPI IRECV calls, so there is not a lot of scope for MPI optimizations.

To improve the memory bottleneck, changing the MPI process placement such

that the L3 cache is utilized by a single MPI process can reduce contention. So, we

use hybrid runs (MPI+OpenMP) by binding where MPI processes are mapped by L3

cache (i.e. 1 MPI process per L3 cache and 4 OpenMP threads per MPI process). This

is particularly effective on Bridges-2, as the AMD EPYC CPU has 1 shared L3 cache

between every 4 CPU cores(Figure 4.1b), so each socket has 16 L3 caches. A similar

strategy is not as effective on Fritz as the Intel IceLake CPU has 1 shared L3 cache per

socket(Figure 4.3b), so all 36 cores on a socket share the same L3 cache.

Finally, to reduce the impact of network congestion, we instruct the SLURM
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HPC scheduler to allocate nodes close to each other using the --contiguous directive.

Cores MPI ranks Threads/rank Optimized Time (s) Baseline Time (s) Speedup

128 32 4 5498.11 6983.87 1.27
256 64 4 3052.16 3754.16 1.23
512 128 4 1707.27 2136.42 1.25

Average Speedup 1.25

(a) Bridges-2

Cores MPI ranks Threads/rank Optimized Time (s) Baseline Time (s) Speedup

72 72 1 5024.42 5175.15 1.03
144 144 1 2674.75 2781.74 1.04
288 288 1 1461.12 1583.12 1.08

Average Speedup 1.05

(b) Fritz

Table 4.9: POT3D Optimization results

Optimized POT3D results on Bridges-2 and Fritz are in Table 4.9. Mapping

each MPI process by L3 cache and using hybrid runs for computation is an effective

strategy for POT3D on Bridges-2, improving the performance of FluTAS by 25%. A

similar strategy does not show an equivalent increase in performance on Fritz due to Intel

IceLake’s cache hierarchy and core grouping. Vectorization and close-node placement

yield a 5% improvement on Fritz.

4.5.4 CPU vs GPU comparison

The POT3D implementation also supports GPU-enabled runs and uses the

NVIDIA cuSparse library[17] for accelerating sparse matrix-vector multiplications on

GPUs. Table 4.10 compares the performance of CPU-only runs vs. GPU-accelerated
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QE runs on Bridges-2.

Configuration CPU Cores GPUs MPI ranks Threads/rank Time (s) Speedup

CPU 512 0 128 4 1707.27 1.00
GPU 40 4 4 10 550.64 3.10

GPU (cuSparse) 40 4 4 10 288.23 5.92

Table 4.10: POT3D CPU-only vs GPU-accelerated comparison

GPU-accelerated POT3D using 4 NVIDIA V100 GPUs performs 3.10x faster

than 4 CPU-only Bridges-2 nodes. Using cuSparse further improves performance to

5.92x. Profiling data from NVIDIA Nsight systems shows that without cuSparse, a

lot of time is spent in loading sparse matrix data instead of arithmetic operations,

which lowers the arithmetic intensity and reduces performance. This aligns with our

earlier observation that POT3D is memory-bound. With cuSparse, POT3D relies on the

cusparseSpSV solv subroutine to solve a system of linear equations whose coefficients

are represented in a sparse triangular matrix. cuSparse enables asynchronous execution

using streams even when they are generated by a previous kernel resulting in maximum

parallelism.

4.6 Conclusion

In Sections 4.2-4.5, we showed the impact of compiler optimizations and profile-

guided optimizations on the performance of multi-node runs.

Communication/MPI is a common bottleneck to the performance and scala-

bility of multi-node HPC applications. One of the reasons for this bottleneck is the
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prevalence of Fast Fourier Transforms (FFT) and global communication in molecular

dynamics and fluid dynamics applications. To overcome this bottleneck, we utilize opti-

mization strategies like hybrid runs (MPI+OpenMP), custom MPI process placement,

non-blocking MPI communication, specialized MPI implementations that enable offload-

ing communication to network interconnect adapters, and choosing contiguous nodes to

reduce interconnect congestion. Combined with compiler optimizations, this results in

an average 2x runtime improvement for XComapct3D, 1.5x runtime improvement for

Quantum Espresso, and 80% runtime improvement for FluTAS. We also observe that

GPUs can further improve QE runtime by 3x.

Memory bandwidth can be a bottleneck for HPC applications that rely on

Preconditioned Conjugate Gradient solvers and sparse matrix-matrix or matrix-vector

operations. This can be resolved by using hybrid runs (MPI+OpenMP) and custom

MPI process placement to reduce memory traffic and cache contention. We observe

an average 15% runtime improvement for POT3D. We also observe that GPUs and

customized libraries like cuSparse can further improve POT3D runtime by 3x.

One thing to note is that the input dataset size can affect application scalability

at higher core counts or when using GPUs, as we observe with the CP-W256 dataset in

QE runs.
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Chapter 5

Related Work

This section covers related topics like the Roofline Performance Model and

how HPC system optimizations are applicable to Distributed Deep Learning. Roofline

Model is an alternative approach that presents visual insights into improving parallel

software and hardware for floating-point computations. The section on Distributed Deep

Learning shows the similarities between HPC systems and large-scale ML systems.

In the end, we also talk about Student Cluster Competitions (SCCs) and their

potential for teaching students about application profiling and performance optimiza-

tion.

5.1 Roofline Model

The Roofline performance model[68] provides a user-friendly and informative

approach for evaluating application performance in relation to the capabilities of a

machine. This model enables tracking progress toward optimal performance, identifying
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bottlenecks, inefficiencies, and limitations in software and architecture designs. By

extracting computational characteristics and simplifying the complexities of memory

hierarchies, Roofline-based analysis can help optimize application performance.

This performance model allows us to set bounds on the floating-point perfor-

mance (FLOP/s) using the machine’s peak performance (FLOP/s), peak bandwidth

(GB/s), and the arithmetic intensity (FLOP/Byte) of the application. The resulting

curve, represented by a hollow purple line in Figure 5.1, forms a performance envelope

that shows where the application performance falls.

(a) Base Roofline Model[48] (b) Hierarchical Roofline Model[48]

Figure 5.1: Roofline Performance Model

On this Roofline plot in Figure 5.1a, there is a ridge point called the ‘machine

balance’ point. If an application’s arithmetic intensity is lower than this point, it is

considered to be memory-bandwidth bound. This means that the application’s per-

formance is limited by how quickly data can move through the memory system rather
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than how fast calculations can be performed on the CPU core or GPU. To optimize

performance in this case, it is important to examine memory inefficiencies, such as the

memory access pattern, data locality, and cache reuse. On the other hand, if the appli-

cation’s arithmetic intensity is higher than the machine balance point, it is more likely

to be computation-bound. In this scenario, improving vectorization (making better

use of the vector units on each CPU core) or implementing multi-threading (utilizing

multiple or many cores effectively) can usually lead to performance improvements.

To gain insight into the complex memory system of modern architectures,

multiple Rooflines can be overlaid to represent different cache levels in the memory

hierarchy. This approach is known as the hierarchical Roofline model (shown in Figure

5.1b). It helps analyze the application’s data locality, cache reuse patterns, and how

efficiently data is flowing through the memory system.

To my knowledge, the Roofline Performance model does not incorporate multi-

node distributed memory runs, so it does not provide insights into network communi-

cation bottlenecks. As a result, it is not used in this study.

5.2 Distributed Deep Learning

Distributed Deep Learning workloads can benefit greatly from High-Performance

Computing (HPC) systems and programming models, as neural network training de-

mands substantial computational power, and relying solely on vertical scaling for high-

end single-node machines is insufficient to meet this demand. Among the scale-up
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solutions, adding programmable GPGPUs is the most common method. An alterna-

tive to using generic GPUs for acceleration is the use of Application Specific Integrated

Circuits (ASICs) like Google TPUs[40], Amazon Tranium[37], Amazon Inferentia[36],

Tesla Dojo D1[12], Meta Training and Inference Accelerator[45], etc., which implement

specialized functions through a highly optimized design targeting specific domains.

On the other hand, distributed training architectures and frameworks that

leverage horizontal scaling with supercomputing clusters have gained popularity in re-

cent years. However, these distributed training frameworks face numerous challenges

in efficiently coordinating nodes within the cluster for tasks such as sharing states, pa-

rameters, and gradients. Consistency, fault tolerance, communication overhead, and

resource management pose significant obstacles to achieving optimal performance.

When it comes to distributed training of deep neural networks, two primary

paradigms are commonly used: Data parallelism and Model parallelism. Data paral-

lelism involves dividing the large dataset into batches and distributing them among

processing elements that train the same model simultaneously. This approach is simi-

lar to the Domain Decomposition strategy used in HPC systems. On the other hand,

Model parallelism entails distributing the model itself among different processing el-

ements. This is similar to the Functional Decomposition strategy employed in HPC

systems. In practice, Data and Model parallelism are not mutually exclusive but rather

complementary. They can be combined and used together to optimize the training pro-

cess, much like how Domain and Functional Decomposition strategies are often used in

tandem.
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Three data-parallel distributed training architectures are popular in this field[1].

The first is the Parameter Server (PS) architecture[61], which involves multiple pa-

rameter servers responsible for coordinating and synchronizing model updates across

several worker processes. The workers retrieve the model from the parameter servers,

perform computations on the neural network, and then send the computed gradients

back to the parameter servers. The second is the Peer-to-Peer (P2P) model[44], where

both worker and server processes co-exist on the same machine. The worker process

retrieves the model locally from the server process within the same machine, performs

computations, and sends the computed gradients to all other machines in the system.

The third is the Ring AllReduce (RA) model[52], which involves having only a server

process on each machine. The server reads the model from its buffer, performs compu-

tations, and then sends the computed gradients to its neighboring machine in a ring-like

structure.

(a) Parameter-Server (b) Peer-to-Peer (c) Ring-AllReduce

Figure 5.2: Distributed Deep Learning Training techniques

The Ring-AllReduce (RA) architecture was popularized by Uber Inc. when

they incorporated the Baidu RA algorithm and MPI AllReduce in Horovod[59] which
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is a distributed training framework for TensorFlow. Since then, Ring-AllReduce is

heavily used in modern deep learning frameworks when training on modern GPUs with

fast interconnect. Hardware vendors like NVIDIA[18], AMD[34], Microsoft[46], and

Amazon[35] have designed highly-tuned inter-GPU communication libraries with opti-

mized implementations for intra-node GPU communication (over the GPU interconnect)

and inter-node GPU communication (over the network).

We can observe similarities in the programming models and inter-node commu-

nication between Distributed Deep Learning systems and High-Performance Comput-

ing systems. In fact, modern distributed ML systems are designed using HPC systems,

GPUs, and interconnects. The methodology presented in this study can also be ap-

plied to increase GPU utilization and improve the computation/communication ratio

for large-scale Deep Learning workloads.

5.3 Student Cluster Competitions

Student Cluster Competitions (SCCs) provide students with a hands-on learn-

ing experience about HPC systems. These competitions are integrated within the largest

supercomputing conferences like the International Conference for High-Performance

Computing, Networking, Storage and Analysis (SC)[58] and the International Super-

computing Conference (ISC) HPC[39]. The Winter Classic Invitational is a stand-alone

competition that aims to attract new talent from diverse communities to HPC from

Historically Black Colleges and Universities (HBCUs) and Hispanic Serving Institutions

56



(HSIs)[56].

SCCs simulate a modern HPC ‘micro-verse’, allowing students to gain prac-

tical knowledge in operating a small cluster and optimizing scientific computing ap-

plications. In on-site competitions, a team of six students work together to design

and construct a small cluster (within a certain power limit) with assistance from men-

tors and hardware/software vendors. During a 48-hour hackathon-like challenge, teams

compete against each other to complete a real-world scientific workload while keeping

their cluster operational. Virtual SCCs offer a similar experience, but teams compete

remotely using provided supercomputing clusters and are mentored by HPC industry

experts throughout the months leading up to the conference, allowing for a more ex-

tended learning experience. SCCs serve as platforms for students to demonstrate their

systems expertise in a friendly and enthusiastic competition, which nurtures technical

skills, professional connections, a competitive mindset, and lasting camaraderie.

UC Santa Cruz students have participated in the 2021 Winter Classic Invita-

tional, 2022 ISC SCC (Virtual), 2023 Winter Classic Invitational, and 2023 ISC SCC

(Virtual). The methodology presented in this study enabled the UC Santa Cruz Not-

So-Slow Slugs team to achieve 2nd place in the 2023 Winter Classic Invitational[57]

and the 2023 ISC SCC (Virtual)[39].
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Chapter 6

Conclusion

This work presents a methodology for observing, analyzing, and optimizing

the performance of four scientific computing applications: XCompact3D, Quantum

ESPRESSO (QE), FluTAS, and POT3D.

This methodology can be used to conduct an in-depth analysis of the runtime

characteristics, scalability, and performance bottlenecks in shared (single-node) and dis-

tributed (multi-node) memory applications that are heavily used in High-Performance

Computing and Distributed Machine Learning. All applications and profiling tools we

use in this study are either open-source or free to download from third-party/hardware

vendors, so this methodology can be easily extended to study other applications.

This study can also serve as a good starting point for future Student Cluster

Competitions teams and enable them to streamline their optimization efforts.
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