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Retardation e�ets in the Holstein-Hubbard hain at half-�llingKa-Ming Tam,1 S.-W. Tsai,2 D. K. Campbell,1 and A. H. Castro Neto11Department of Physis, Boston University, 590 Commonwealth Ave., Boston, MA 022152Department of Physis, University of California, Riverside, CA 92508(Dated: 6th February 2008)The ground state phase diagram of the half-�lled one-dimensional Holstein-Hubbard model on-tains a harge-density-wave (CDW) phase, driven by the eletron-phonon (e-ph) oupling, and aspin-density-wave (SDW) phase, driven by the on-site eletron-eletron (e-e) repulsion. Reently,the existene of a third phase, whih is metalli and lies in a �nite region of parameter spaebetween these two gapped phases, has been laimed. We study this laim using a renormalization-group method for interating eletrons that has been extended to inlude also e-ph ouplings. Ourmethod [1℄ treats e-e and e-ph interations on an equal footing and takes retardation e�ets fullyinto aount. We �nd a diret transition between the spin- and harge-density wave states. Westudy the e�ets of retardation, whih are partiularly important near the transition, and �nd thatUmklapp proesses at �nite frequenies drive the CDW instability lose to the transition. We alsoperform determinantal quantum Monte Carlo alulations of orrelation funtions to on�rm ourresults for the phase diagram.PACS numbers: 71.10.Fd, 71.30.+h, 71.45.LrThe interplay between eletron-eletron (e-e) andeletron-phonon (e-ph) interations leads to importante�ets in low-dimensional materials suh as moleularrystals, harge transfer solids [2℄, onduting polymers[3℄, and fullerenes [4℄. In narrow band eletroni materi-als, perhaps the simplest model apturing this interplayis the Holstein-Hubbard model (HHM), where the e-e in-terations are desribed by a on-site repulsive Coulombterm, and the eletrons are oupled to dispersionless op-tial phonons in loalized vibrational modes [5℄.In the one-dimensional HHM (1DHHM) at half-�lling,early quantum Monte Carlo (QMC) alulations [6℄ sug-gested that there are only two phases: the Peierls harge-density-wave (CDW) and the Mott spin-density-wave(SDW) state. The boundary between these two phaseswas predited to lie along the line in parameter spaewhere an �e�etive� e-e interation vanishes: Ueff =
U − 2g2

ep/ω0 ≃ 0, where U is the Hubbard on-site e-e re-pulsion, gep is the eletron-phonon oupling, and ω0 is thephonon frequeny. More reently, several authors haveproposed that a third phase might exist near Ueff ≃ 0: ametalli, Luttinger liquid, phase [7, 8, 9℄, or an o�-sitepairing superonduting phase [10℄. Large sale QMCstudies [11℄ have indiated that there is a metalli regionwith dominant superonduting (SC) pairing orrelationsbetween the CDW and SDW regions. DMRG studies [12℄suggest that SC does not exist but instead that both thespin and harge gaps vanish only for Ueff ≃ 0, suggest-ing that a metalli phase (with no dominant SC orrela-tions) may exist only exatly on the boundary betweenthe CDW and SDW phases. This is also the onlusion oftwo-step renormalization-group studies [14℄ and Lanzosdiagonalization [13℄. To attempt to determine whih ofthese senarios is orret, we study the problem here us-ing a reently developed extended renormalization group

approah [1℄.At half-�lling, Umklapp sattering reates a strongtendeny to open a harge gap. From the perspetive ofweak-oupling approahes, it is highly non-trivial to havea �nite metalli, or SC, region. If suh a phase is to ex-ist, it must be that the dynamial nature of the phononse�etively suppresses Umklapp sattering. Therefore, re-tardation e�ets must be taken into aount in order toinvestigate this issue. For this purpose, we use a multi-sale funtional renormalization-group (MFRG) method[1℄. Our MFRG is an extension of the RG for interat-ing fermions [15℄ that are also oupled to bosoni modesand applies to both weak (λ ≪ 1) and strong (λ ≫ 1)eletron-phonon oupling limit (λ = 2N(0)g2
ep/ω0, N(0)is the eletron density of states at the Fermi level). Fora spherial Fermi surfae, the MFRG reprodues Eliash-berg's theory at the SC instability [1℄, and it has alsobeen applied in the study of e�ets of phonons in laddersystems [16℄.The 1DHHM is given by the Hamiltonian

H = −t
∑
i,σ

(c†i+1,σci,σ + H.c.) + U
∑

i

ni,↑ni,↓

+gep

∑
i,σ

(a†
i + ai)ni,σ + ω0

∑
i

a†
iai, (1)where c†i,σ (ci,σ) is an eletron reation (annihilation) op-erators at site i with spin σ, niσ is the eletron numberoperator, a†

i (ai) is a reation (annihilation) operator foran optial phonon at site i, t is the nearest-neighbor ele-tron hopping integral. We use units suh that t = 1 = ~.Using a path integral formulation and integrating outthe phonon �elds exatly, we �nd that the e�etive (re-tarded) e-e interation beomes [1℄:
g(k1, k2, k3, k4) = U −

2g2
epω0

[ω2
0 + (ω1 − ω4)2]

, (2)
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2where k = (k, ω). We use a notation in whih, after sat-tering, an inoming eletron with momentum and fre-queny k1 (k2) goes out with k4 (k3), so that k1 + k2 =
k3 + k4. In the anti-adiabati limit, where ω0 → ∞, allthe eletroni frequeny dependenes are suppressed, andthe HHM maps onto the standard Hubbard model witha renormalized Ueff . At half-�lling, its ground state isharge-gapped SDW for repulsive interations and spin-gapped degenerate CDW/SC for attrative interations.The transition between SDW and degenerate CDW/SCours when the bare oupling hanges sign, that is when
Ueff = 0.In the MFRG approah at the one-loop level, the RG�ow equations for the oupling funtions, g(k1, k2, k3, k4)with initial onditions given by (2), are given by [1℄:

dg(k1, k2, k3)

dΛ
=

−

∫
dp

d

dΛ
[GΛ(p)GΛ(k)]g(k1, k2, k)g(p, k, k3)

−

∫
dp

d

dΛ
[GΛ(p)GΛ(q

1
)]g(p, k2, q1

)g(k1, q1
, k3)

−

∫
dp

d

dΛ
[GΛ(p)GΛ(q

2
)][−2g(k1, p, q

2
)g(q

2
, k2, k3)

+ g(p, k1, q2
)g(q

2
, k2, k3)+g(k1, p, q

2
)g(k2, q2

, k3)],(3)where k = k1 + k2 − p, q
1

= p + k3 − k1, q
2

= p +

k3 − k2, ∫
dp =

∫
dp

∑
ω 1/(2πβ), and GΛ is the self-energy orreted propagator at energy ut-o� Λ. Sinethe interation verties are frequeny dependent, thereare also self-energy orretions. At the one-loop level,the self-energy MFRG equation is:

dΣ(k)

dΛ
= −

∫
dp

d

dΛ
[GΛ(p)][2g(p, k, k) − g(k, p, k)].(4)We have solved the oupled integral-di�erential equa-tions, (3) and (4), numerially with two Fermi points(Nk = 2) and by dividing the frequeny axis into �fteensegments (Nω = 15). Fig. 1 shows the disretizationsheme for Nk = 2 and Nω = 15.We next alulate within our MFRG approah the RG�ow of suseptibilities in the stati (zero frequeny) andlong-wavelength limit. In partiular, the SC suseptibil-ity is given by: χSC

Λ (0, 0)=
∫

D(1, 2)〈cp1,↓c−p1,↑c
†
−p2,↑c

†
p2,↓〉;and the SDW and CDW suseptibilities an be writ-ten as: χδ

Λ(π, 0) =
∫

D(1, 2)〈c†p1,σ1
cp1+π,σ1

c†p2+π,σ2
cp2,σ2

〉,where pi is the momentum at energy ξi, ∫
D(1, 2) ≡∫

|ξ1|>Λ
dξ1J(ξ1)

∫
|ξ2|>Λ

dξ2J(ξ2)
∑

σ1,σ2
sσ1

sσ2
, and J(ξ)is the Jaobian for the oordinate transformation from kto ξk. For δ = SDW: s↑ = 1, s↓ = −1, and for δ = CDW:

s↑ = 1, s↓ = 1. The dominant instability is determinedby the most divergent suseptibility as the ut-o� Λ islowered. The RG �ow for the SC suseptibility is givenby:
dχSC

Λ (0,0)

dΛ
=

∫
dp

d

dΛ
[GΛ(p)GΛ(−p)](ZSC

Λ (p))2, (5)

Figure 1: Disretization of the momenta in the Brillouin zoneand frequenies in the frequenies axis. This �gure shows thease Nk = 2, Nw = 15.
dZSC

Λ (p)

dΛ
=−

∫
dp′

d

dΛ
[GΛ(p′)GΛ(−p′)]ZSC

Λ (p′)gSC(p′, p),(6)where gSC(p′, p) = g(p′,−p′,−p), and MFRG �ows forthe SDW and CDW suseptibilities are,
dχδ

Λ(π, 0)

dΛ
= −

∫
dp

d

dΛ
[GΛ(p)GΛ(p+Q)](Zδ

Λ(p))2, (7)
dZδ

Λ(p)

dΛ
=

∫
dp′

d

dΛ
[GΛ(p′)GΛ(p′+Q)]Zδ

Λ(p
′)gδ(p′, p), (8)where Q = (π, 0). For δ = SDW: gδ(p′, p) = −g(p +

Q, p′, p), and for δ = CDW : gδ(p′, p) = 2g(p′, p+Q, p)−

g(p + Q, p′, p). The funtion Zδ(p) is the e�etive vertexin the de�nition of the suseptibility χδ. Its initial RGvalue is 1. The MFRG equations for suseptibilities aresolved with initial ondition χδ
Λ=Λ0

= 0.In g-ology [17, 18, 19℄ there are only four ouplings,orresponding to forward (g2, g4), bakward (g1), andUmklapp (g3), sattering. The harge and the spinparts are governed by g3 and g1, respetively. Underthe MFRG, eah one of these ouplings arries frequenydependene, gi(ω1, ω2, ω3). In the weak e-ph ouplinglimit (λ ≪ 1), the two-step RG is a good approximation,and the ouplings are separated into two types: highfrequeny transfer, |ω1 − ω4| > ω0, and low frequenytransfer, |ω1 − ω4| < ω0. However, our MFRG analysisreveals that the ouplings develop additional non-trivialfrequeny dependene, partiularly when the e-ph ou-pling is omparable to the e-e oupling and Ueff ≈ 0.As we shall see, understanding this frequeny strutureis ritial to resolving the urrent ontroversy about thebehavior in the region near the CDW-SDW transition.Deep inside the CDW and SDW regions, we �x ω0 =
1.0 and U = 0.5, and show results of the RG �ows for thesuseptibilities and ouplings for di�erent values of gep.For small e-ph oupling (gep = 0.2, and Ueff > 0), theSDW suseptibility exhibits a strong divergene, while
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Figure 2: Left: �ows of SC, SDW, and CDW suseptibilitiesfor U = 0.5 and ω0 = 1.0. Right: �ows of Umklapp g3 andbak-sattering g1, at zero frequenies. Top: gep = 0.2 (Ueff >

0). Bottom: gep = 0.8 (Ueff < 0).both CDW and SC suseptibilities are suppressed (Fig.2,top). This is expeted, sine the on-site repulsion dom-inates over the retarded attrative interation mediatedby the phonons. A harge gap develops, with no spingap, whih an be inferred from the �ow of the ouplings:Umklapp (g3) diverges, whereas bak-sattering (g1) doesnot. For large e-ph oupling (gep = 0.8, and Ueff < 0),the CDW suseptibility diverges (Fig. 2, bottom). Nowthere are both spin and harge gaps, and, orrespond-ingly, both Umklapp (g3) and bak-sattering (g1) aredivergent.

Figure 3: Left: �ow of suseptibilities for U = 0.5, ω0 = 1.0,
gep = 0.55 (Ueff < 0). Right: �ows of the Umklapp sattering
g3 and bak-sattering g1 at zero frequeny.We next onsider the region lose to the CDW-SDWtransition where Ueff ≃ 0. For Ueff slightly below zero(gep = 0.48), the behavior of suseptibilities and ou-

plings is qualitatively the same as in the rest of theSDW phase (Fig. 2, top). The only di�erene is thatthe gap dereases and eventually goes to zero at thetransition. Fig. 3 shows the �ows for gep = 0.55 (Ueffslightly above zero). The SC suseptibility beomes en-haned, but the CDW suseptibility still dominates. In-terestingly, g1(0, 0, 0) diverges but g3(0, 0, 0) does not. In1D problems without retardation, the usual interpreta-tion is that the CDW instability ours when g1 → −∞and g3 → −∞ [17, 19, 20℄. In the present ase, sine
g3(0, 0, 0) → 0, we need to look at the frequeny depen-dene of the ouplings in order to understand what isdriving the CDW instability.In the MFRG approah, we obtain the RG �ow of allthe gi(ω1, ω2, ω3) ouplings and self-energies, and there-fore an analyze how this frequeny dependene evolveswith the RG �ow. Consider �rst the ases deep in theSDW and CDW phases. Fig. 4 shows ontour plots of
g3(ω1, ω2, ω2, ω1) whih orresponds to an Umklapp pro-ess with zero-frequeny transfer, |ω1 −ω4| = 0. We plotthe value of the oupling at an RG sale ℓ right beforethe ritial sale ℓc when the instability ours. For theSDW phase (Fig. 4, left), the existene of a harge gap issignaled by divergene in the Umklapp hannel, and themost divergent g3 ouplings are the ones lose to zerofrequeny. Deep inside the CDW phase, g3(0, 0, 0, 0) alsodiverges, as we have seen before from Fig. 2. However,the most divergent ouplings are for large values of ω1and ω2 (see Fig. 4).
Figure 4: Plots of the Umklapp sattering g3(ω1, ω2, ω2, ω1)for U = 0.5, and ω0 = 1.0. Left: gep = 0.2. Right: gep = 0.8.The situation for gep = 0.55, shown in Fig. 5, is moreintriguing. Umklapp sattering is renormalized to largevalues in most part of the frequeny spae. However, forfrequenies near zero Umklapp sattering �ows to verysmall values. From the RG �ow of the suseptibilities(Figs. 2 and 3), it is lear that there is CDW instabilityfor Ueff > 0 and a diret transition from CDW to SDW.From the frequeny dependene of g3 we onlude thatlose to the transition to the SDW, the CDW instabilityis being driven by Umklapp proesses at high frequenies.These are proesses at small frequeny transfer, |ω1 −
ω4| ∼ 0 < ω0 but that nevertheless involve eletrons withhigh frequenies (ω1 and ω2). In a two-step RG analysis,the ouplings g3(ω1, ω2, ω2, ω1), with di�erent ω1 and ω2
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Figure 5: Plot of the Umklapp sattering g3(ω1, ω2, ω2, ω1)for U = 0.5, ω0 = 1.0, and g3 = 0.55. Note that g3(0, 0, 0) is�owing towards zero.are all indistinguishable sine |ω1 − ω4| = 0 for all ofthem. Clearly, the two-step RG fails in this region.As an independent (partial) on�rmation of our MFRGresults, we have also performed determinantal QMC [22℄alulations for the Holstein model (U = 0). For theharge exponent, KCDW = limq→0 πSρ(q)/q, we obtainthat KCDW > 1 when gep is smaller than some valuethat depends on ω0. This result agrees with that ob-tained in [11℄, using stohasti series expansion QMC[23℄. For a Luttinger liquid, the salings of ground stateorrelation funtions are determined solely by the harge(Kρ) and spin (Kσ) exponents. For example, in the spin-gapped regime, where Kσ = 0, CDW and SC orrela-tion funtions sale as OCDW(x) ∝ x−αKρ ≡ x−KCDW ,and OSC(x) ∝ x−β/Kρ ≡ x−KSC , with α = β = 1[17, 18, 19℄. The dominant orrelation is of CDW (SC)type for Kρ < 1 (Kρ > 1). This relation is not guaran-teed to hold in the presene of phonons and retardatione�ets [21℄.

Figure 6: SC and CDW orrelations for 38-sites Holsteinmodel (ω0 = 1.0, gep = 0.5), with KCDW = 1.032 ± 0.005.Using the determinantal QMC allows us to alulatethe pairing and harge orrelations diretly (Fig. 6).We �nd that the harge orrelation funtion deays more

slowly. This provides, at least for the ase U = 0, on�r-mation of our MFRG results and strongly suggests thatthere is no region of dominant SC orrelations in the half-�lled 1DHHM, even though the saling exponent of theharge orrelation funtion an be larger than 1.In onlusion, we have studied the ground state of1DHHM at half-�lling using the MFRG method. Thistehnique enables us to treat retardation e�ets from thephonons in a systemati way. We �nd SDW and CDWphases, and a diret transition between them. Analysisof the frequeny dependene of the g3 shows a shift inspetral weight indiating that the CDW instability nearthe transition is driven by dynamial Umklapp proesses.Our determinantal QMC results for the harge exponentand orrelation funtions for the Holstein model on�rmour MFRG preditions and suggest that having a hargeexponent larger than one for �nite size system does notmean dominant SC orrelations beause of breakdown ofTLL relations due to retardation.We thank Torsten Clay for instrutive disussions.A.H.C.N. was supported through NSF DMR-0343790.[1℄ S.-W. Tsai, A. H. Castro Neto, R. Shankar, D. K. Camp-bell, Phys. Rev. B 72, 054531 (2005), Phil. Mag. 86, 2631(2006).[2℄ T. Ishiguro and K. Yamaji, Organi Superondutors(Springer-Verlag, Berlin, 1990).[3℄ Conjugated Conduting Polymers, edited by H. G. Weiss(Springer-Verlag, Berlin, 1992).[4℄ O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).[5℄ T. Holstein, Ann. Phys. 8, 325 (1959).[6℄ J. E. Hirsh and E. Fradkin, Phys. Rev. B 27, 4302(1983); J. E. Hirsh, Phys. Rev. B 31, 6022 (1985).[7℄ C. Wu, et al., Phys. Rev. B 52, R15683 (1995).[8℄ E. Jekelmann, C. Zhang, and S. White, Phys. Rev. B60, 7950 (1999).[9℄ Y. Takada and A. Chatterjee, Phys. Rev. B 67, 081102(2003).[10℄ Y. Takada, J. Phys. So. Jpn. 65, 1544 (1996).[11℄ R. T. Clay, R. P. Hardikar, Phys. Rev. Lett. 95, 096401(2005).[12℄ M. Tezuka, R. Arita, H. Aoki, Physia B 359, 708 (2005),Phys. Rev. Lett. 95, 226401 (2005).[13℄ H. Feshke, et al., Phys Rev. B 69, 165115 (2004).[14℄ I. P. Bindloss, Phys. Rev. B 71, 205113 (2005).[15℄ R. Shankar, Rev. Mod. Phys. 66, 129 (1994).[16℄ K.-M. Tam, et al., ond-mat/0603055.[17℄ V. J. Emery, in Highly Conduting One-DimensionalSolids, p. 327, edited by J. T. Devreese, et al. (Plenum,New York, 1979).[18℄ J. Sólyom, Adv. Phys. 28, 201 (1979).[19℄ J. Voit, Rep. Prog. Phys. 58, 977 (1995).[20℄ M. Nakamura, Phys. Rev. B 61, 16377 (2000).[21℄ D. Loss and T. Martin, Phys. Rev. B 50, 12160 (1994).[22℄ R. Blankenbeler, et al., Phys. Rev. D 24, 2278 (1981).[23℄ O. F. Syljuasen and A. W. Sandvik, Phys. Rev. E 66,046701 (2002).
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