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ABSTRACT OF THE THESIS

Active Learning and Epistemic Defenses of Fairness

by

Praveen Nair

Master of Science in Computer Science

University of California San Diego, 2024

Professor David Danks, Chair
Professor Julian McAuley, Co-Chair

In many high-stakes machine learning problems, outcomes for a given input are only

observed if a certain decision is made. For example, in loan prediction, an applicant’s loan

repayment is only observed if the loan is provided. In these cases, the resulting missing data

can lead to uncertainty in models trained on that data, and even with decisions that are globally

optimal across both groups, the model can have differences in uncertainty between groups. In

this paper, we use active learning with mutual information, or infomax learning, to establish

that it could be more informative for a model to select from groups with more missing values.

This establishes an epistemic argument, rather than a moral one, for intervening by sampling
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more from one group than another, indicating new opportunities and questions for fair, accurate

prediction over time in these settings.
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Chapter 1

Introduction

In many high-stakes contexts for algorithmic decisionmaking, our ability to collect a

high-quality training dataset is negatively impacted by a lack of counterfactual data points, based

on decisions made in the past. For example, in the setting of loan repayment prediction, if an

applicant is denied a loan, we do not get any information about whether or not they would have

repaid if they had received the loan; in this way, we never learn whether this person was a true or

false negative prediction. The same is true with recidivism prediction, as we only learn whether

a person recidivates if they are released from prison. In healthcare settings, where algorithms

might be used to decide whether to provide a certain treatment for a patient, we might see a

different informational profile. In these situations, if a patient receives a treatment, we do not

know whether or not they would have recovered without it; if they do not receive a treatment,

we do not know whether their condition would have improved with the treatment. Previous

work aims to rectify this imbalance in training data in multiple ways, including methods for

handling missing data, modifying datasets and outputs with respect to fairness constraints, and

using Bayesian methods to quantify uncertainty.

In this paper, we draw from two machine learning paradigms that aim to improve our

performance and understanding of machine learning models, active learning and causal modeling.

Active learning approaches improve model performance over time in situations where the next

point to be observed can be chosen. In the long term, incorporating more points into the dataset in
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areas of the input space that the model is uncertain about will lead to greater model performance

than if new data points are observed randomly. In this work, we use infomax active learning,

which selects points from the dataset which maximize mutual information between a point’s label

y and the model parameters θ given inputs X and the dataset. In order to capture our uncertainty

about predictions, and to provide a tractable framework for inference in the presence of latent

variables, we use Bayesian structural equation modeling (BSEM) as our model framework,

which describes linear-Gaussian relationships between features, decisions, outcomes, and latent

variables. Most importantly, using a Bayesian model means that we can easily estimate our level

of uncertainty about the parameters of a model in order to conduct infomax active learning.

Crucially, these issues around uncertainty in models with missing outcomes have effects

when it comes to group fairness in algorithmic decisionmaking. A rapidly growing literature in

machine learning fairness aims to align algorithms, and the decisionmaking structures surround-

ing them, with philosophical notions of fairness, justice, and equality, particularly in high-stakes

areas where people are directly impacted by algorithmic decisions. This field has raised many

valid arguments about ethical and consequentialist implications of unfairness, and made a case

for intervention to rectify group imbalances through various methods. However, in this work, we

aim to establish that such interventions could be justified not solely under moral grounds, but

also as a matter of epistemic best practice. If we have a situation in which multiple subgroups of

the population have different underlying relationships between observed features and outcomes,

and in which decisions yield asymmetric amounts of information, we can make an epistemic

case for accepting applicants from groups with fewer historical acceptances purely from an

active learning standpoint. In doing so, we provide a reason for even decisionmakers whose only

incentive is creating a better model, and who have no vested interest in fairness or equality, to

have to consider how their models, both historically and in the present, affect groups differently.

In Chapter 2, we describe previous work in causal modeling, active learning, and fairness

with relevance to this paper. In Chapter 3, we introduce our methodology, including our

framework for specifying and estimating a causal model with missing data, and calculating

2



mutual information for that model. Chapter 4 describes our results, based on simulations with

synthetic data, and Chapter 5 provides a discussion of these results, and of the implications of

some of the questions this work raises.

3



Chapter 2

Previous Work

2.1 Active Learning & Causal Modeling

2.1.1 Active Learning and Mutual Information

Active learning is a subfield of machine learning that deals with settings in which a

decisionmaker, or model, has the ability to choose inputs to get labels for, with the intent of

choosing inputs whose labels, when incorporated into the training data, will improve the model

as much as possible [1]. In theory and in practice, allowing the model the freedom to select

points it is uncertain about leads to more sample-efficient improvements in task performance

when compared to feeding the model training samples in a random fashion [2, 3, 4]. However,

active learning often requires much higher computational costs and can sometimes underperform

random sampling, depending on the heuristic used to select the most informative point [5].

In general, heuristics used in active learning methods seek to find areas of the input space

for which the model is uncertain. The method that we use for this paper, which tackles this in

an information-theoretic way, is infomax active learning, which uses the mutual information

between labels and model parameters as a measure of how informative a point will be. Mutual

information was defined as an entropy measure in Claude Shannon’s seminal ”A Mathematical

Theory of Communication” [6], but was not named as such or used as a metric of the relationship

between two variables until later [7, 8]. Formally, the mutual information between two variables

X and Y is defined (from [9]) as the difference between the entropy of the distribution of X , and
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the entropy of the distribution of X conditional on Y:

I(X ;Y ) = H(X)−H(X |Y ) = ∑
x,y

p(x,y) log
p(x,y)

p(x)p(y)
(2.1)

Note that this measure is symmetric between X and Y . Intuitively, this value captures the

degree to which knowledge of the variable Y reduces the entropy of our beliefs over X . Mutual

information has its lowest value of 0 when knowledge of Y does not change the entropy of the

distribution over X .

In infomax learning, X and Y are generally replaced with the outcomes of a model Y and

the parameters of the model θ , with both distributions conditional on an input X and the rest

of the dataset that has been observed, D . So, higher values of mutual information mean that

knowledge of a particular label, or outcome, Y for input X provides more information about (i.e.

reduces the entropy over) the distribution of possible model parameters θ . One optimization

of the mutual information calculation is given in [10], which rearranges the previously used

equation for mutual information such that entropy is calculated in outcome space, which is

generally much lower in dimensionality; the objective for active learning with this formulation is

called Bayesian Active Learning by Disagreement (BALD). In addition to allowing sampling

from the posterior without estimating the entire posterior distribution, BALD provides the simple

framing that active learning with this objective selects the input X for which there is the most

disagreement about the outcomes in the posterior distribution over θ . This framework is extended

in [11], from which we ultimately derive our calculation for mutual information in our model,

starting at Equation 3.1. Mutual information and infomax learning have been widely used in

active learning research, in feature preprocessing [12], as a sample-efficient method for continual

learning in a neural network [13], as a method for learning representations over time in deep

reinforcement learning algorithms [14], and as a data-efficient method for estimating neuron

responses from stimuli [15].

While active learning is possible with a number of machine learning models, we choose
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to use a causal modeling framework in this paper, because it allows us to both parameterize

assumptions and ask questions about our problem setting that traditional machine learning

methods couldn’t. At their most basic, machine learning methods only learn associations

between features and outcomes, and in general, do not particularly care if those represent real-

world causal relationships. But in many settings, we want to know those real-world causal

relationships, especially if we have the ability to intervene on them. Causal learning methods

model features and outcomes as part of a causally-linked graph that, ideally, represents patterns

of causation between variables. In addition to graphs, causal models can also be represented by a

set of equations that formulate effects as the function of their causes.

As described in Pearl (2010) [16], causal modeling, and more specifically structural

equation modeling, provides a formal mechanism for asking questions of a counterfactual form,

for example, ”Y would be y had X been x in situation U = u” [16, 17]. This is useful for the

interpretation of decisions; for example, causal modeling allows us not only to say how a feature

could vary to change the model’s prediction, but also to outline the causal pathway between

a feature and a prediction. Causal modeling also neatly describes relationships of conditional

independence, dependence, and confounding that occur in real data. Most importantly, causal

modeling allows for estimation of unobserved, or latent, factors that have impacts on observed

values. If one can specify a hypothesized causal model, as a graph or path diagram, of how

latent variables relate to observed ones, this makes it possible to capture constructs that are either

unobserved in a particular dataset or impossible to observe as part of our analysis of a dataset.

These features of causal modeling will be useful in our setting by allowing us to define latent

features like ”creditworthiness” that we can relate to features and outcomes, and allow us to

define our uncertainty about specific parts of the causal model.

In particular, in this paper, we use structural equation modeling, or SEM, as our causal

modeling framework. Structural equation modeling is a general causal framework for understand-

ing relationships between variables, and consists of a ”measurement model” which relates latent

variables to observed variables, and a ”structural model,” which relates latent variables to one
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another [18]. In the SEM we will set up, effects are described as a linear equation of their inputs,

plus a Gaussian error term. A more in-depth analysis of SEM parameters and their estimation in

such a model is provided as part of Modeling Framework A in [19], and the specifics of how

our model is learned from our data, including the handling of missing values using maximum

likelihood methods based on the covariance matrix of the data, are provided in Section 3.1.

Active learning on causal models has been conducted with multiple strategies. These

methods can operate either at the level of causal graphs themselves, or with respect to a given

sampled dataset from the true causal graph. Eberhardt et al. (2005) [20] formalize types of

experiments, varying multiple nodes at a time, that can be conducted for learning more about

a causal graph, and derive an upper bound of log2(N)+1 experiments required to completely

determine a causal graph with N variables. However, due to the nature of these experiments,

these results do not apply when latent variables or selection bias are present. He and Geng

(2008) [21] chose intervention experiments in chain graphs that required the fewest variables

to manipulate such that directions of causal links could be determined for all graphs within a

Markov equivalence class. Hauser and Bühlmann (2014) [22] extended this framework with

optimization frameworks for single- or multiple-target interventions that either maximized the

number of edges that could be oriented (rather than being undirected), or minimized the largest

clique of undirected edges in the hypothesized graph, and evaluated this in both the ”oracle” case

assuming infinite samples, and with finite samples from observational data.

Other works have conducted active learning on causal models with Bayesian parameter

estimation, mostly in the last few years. Zhang et al. (2023) [23] learn a Bayesian causal model,

then design an acquisition function over possible interventions such that minimizing this function

will yield the intervention that will maximally reduce the variance of the belief distribution over

the parameters. Toth et al. (2022) [24], similarly to our paper, use mutual information to perform

active learning on a Bayesian structural causal model, but unlike this paper, rather than directly

optimizing the likelihood, estimate causal additive noise models using Gaussian processes in

order to compute likelihood. This provides both computational optimization and allows more
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general causal models to be used. Our paper most directly draws on Jha et al. (2024) [11], which

performs infomax active learning on discrete latent variable models; while we focus on a simpler

causal model, [11] provides a starting point for calculating the mutual information using MCMC

parameters, which we adapt to our model beginning with Equation 3.1.

2.2 Inference with Missing Outcomes

Many machine learning problems that deal with prediction suffer from not being able to

observe counterfactual outcomes – what would have occurred had another choice been made, or

another possibility have transpired. In this paper, we deal with outcomes that are missing due to

past decisions. For example, in a loan repayment prediction setting, if a loan was not granted

previously to an applicant, we are never able to observe if they were actually creditworthy, so

the amount of information we’re able to learn from them is limited. This sort of missingness

structure takes place in a number of other high-stakes contexts for machine learning, such as the

prediction of recidivism, the prediction of healthcare outcomes, or child welfare screening [25].

Missingness can also occur for reasons that are non-random, but not explicitly intentional, such

as participants dropping out of clinical or research trials [26, 27].

A great deal of previous work exists on handling missing data. Under the taxonomy

created by Rubin (1976) [28], these settings we discuss have missingness that can be classified

both as missing at random (MAR), because missingness of the outcome is related to observed

features, and not missing at random (NMAR), because if the decision that leads to missing values

is even slightly informative, the missingness of the outcome is also correlated with the value of

the outcome itself. For example, in the loan prediction case, we might be less likely to observe

outcomes for applicants who would not have actually repaid a loan, because these are also the

applicants who should be less likely to receive a loan in the first place.

In practice, missing data can be handled in a number of ways in a causal model. The

most basic is listwise deletion, where any observations with any missing values are deleted in
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their entirety. However, estimating a model after listwise deletion assumes that, per Rubin’s

[28] taxonomy, the data are missing completely at random (MCAR), which is very rarely the

case, and certainly not the case for our setting [29]. In a loan prediction setting where only

accepted applicants have outcomes observed, for example, this would mean only training a

model of loan repayment on the applicants who received loans, which would do little to tell us

about creditworthiness for the people who were unlikely to receive loans under the historical

decisionmaking procedure. Pairwise deletion, meanwhile, estimates covariance parameters with

only available data, ignoring missing values of the relevant pair of variables, therefore removing

less information than listwise deletion. But this means that covariance parameters are estimated

on different samples of the data (meaning it also assumes MCAR missingness), and this method

will not adjust variance due to missing data points [29]. Another common approach, also used in

non-causal modeling methods, is imputation, either simply with the mean of the available values

of a column, or multiple imputation regressing the missing value on available data. Finally, the

method that we use is full information maximum likelihood (FIML) [30], which adapts standard

maximum-likelihood methods for estimating SEMs to use all available, non-missing data, and

requires fewer assumptions about the missing data patterns than aforementioned methods [29].

In multiple analyses, FIML outperformed or performed similarly to other methods for handling

missingness, such as listwise deletion, pairwise deletion, simple mean imputation, and multiple

imputation [31, 32, 33], although the differences between FIML and multiple imputation have

been noted to be modest, and could depend on the metrics used to compare the complete and

estimated data [32].

It is also possible to include missingness patterns as variables themselves in a structural

equation model. Muthen et al. (1987) [34] does so with ”latent selector variables” si j that are

learned based on whether given values j for observations i are missing. In this paper, we will not

need to do so, since missingness in the cases that we’re studying does not have a direct causal

impact on outcomes (the assumption being, for example, that being rejected for a loan does not

inherently make one less likely to repay a loan, all else equal), and these indicator variables are
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only necessary if we want to estimate a impact that missingness of a given variable has on a

different variable’s numerical value.

However, unlike many of the causes of missingness for which the above methods are

designed, as mentioned above, the missingness we concern ourselves with in this paper occurs

deterministically based on previous predictions made by the decisionmaking agent. Relatively

little work exists for performing inference in these settings. In credit scoring models, [35] found

that the stricter a decision threshold was, the more a model trained only on accepted applicants

overperformed a model trained on all applicants. This indicates that not only does such a model

reflect the entire dataset poorly, but it also reports misleadingly high performance compared to

its actual performance on the intended task of classifying all applicants. Within credit scoring,

methods collectively known as ”reject inference” are used to learn from both accepted and

rejected applicants. These include re-weighting scores trained for accepted applicants to consider

similar rejected applicants, and extrapolating possible values for the missing probability of

default for rejected applicants with a regression model [36]. However, in practice, the use cases

for these methods are limited, and their effects on performance range in effectiveness, performing

particularly poorly in situations with a low rejection rate [36].

2.3 Machine Learning Fairness

In the last decade, a rapidly growing field of study has examined the ability of algorithmic

decisionmaking processes to be fair, unbiased, and equitable [37, 38], with an increasing number

of definitions of fairness [39], and in a growing number of domains of machine learning [40].

Fairness definitions and analyses are most commonly covered for binary classification tasks,

considering fairness with respect to a defined set of protected, often demographic groups, such as

race or gender. Definitions of fairness most commonly use statistical measures such as balancing

false positive rate, predictive parity, or equalized odds [39].

However, other work has extended the field to include other conceptions of fairness
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than between-group equity, and to include other, more complex definitions of fairness. These

include individual fairness [41], which operates on the principle that similar people (according

to a context-dependent measure of similarity) should receive similar classifications. This relates

closely with the framing used in latent variable modeling in multiple ways. Latent variable

modeling posits that there are unobserved, latent constructs that are nevertheless important in

understanding and predicting outcomes. For example, for a loan prediction problem, one latent

construct of value might be ”creditworthiness” – we believe that two people who are equally

creditworthy should be as likely as each other to receive loans. Of course, this shifts the problem

from a fairness issue to one of defining who is and is not creditworthy, but this is exactly the

sort of analysis that causal modeling with latent variables is designed to handle, as long as we

provide the model with simple assumptions of causality. (For example, we can specify the link

between latent values and the outcome variable in our model, which we will do in this paper, to

provide meaning to the latent as a construct.)

Multiple analyses have combined the individual fairness approach with causal modeling,

especially with respect to counterfactuals – in this case, counterfactuals refer to what would

have occurred if the protected group was different, rather than if the prediction was changed

[42, 43, 44]. In particular, Madras et al. (2019) [45] conceived of protected group membership

as a confounding variable between treatments and outcomes, unlike previous causal fairness

approaches which generally held the group membership as just one of the features; the authors

also note that this causal framework has implications for dealing with missing data through

methods like imputation. A follow-up work [46] considers fairness through causal modeling in

dynamical systems, where models are updated over time and the effects of predictions on new

input data need to be considered. That paper considers the fact that non-random missingness is

present in the outcome, and handles this by using a doubly robust estimator derived in [47] to

improve performance. There are also multiple fairness metrics that use causality as a framework

for measuring fairness and discrimination, as once a causal model is learned, it is simple to query

it about how different adjustments to protected characteristics could affect outcomes [48].
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Machine learning fairness research has also overlapped with active learning, as some

approaches seek to use active learning as a method to remedy imbalances in information between

groups present in datasets. These methods include selecting features that maximally reduce

classification disparities within a budget for exploration [49], using Bayesian Active Learning by

Disagreement (BALD) to sample in order to balance datasets between groups [50], and other

methods [51, 52]. These methods primarily use machine learning to collect more information

from groups with fewer data points available in the current training set; however, this is still

only considering cases with fully available data, where disparities in information are only due

to the relative size of the subgroups, and our paper will have to conduct this active learning

without access to outcome labels in many cases. For work on fairness with missing values, [53]

considered the impact of missingness on algorithms for fair ML, and developed a algorithm for

multi-stage decisionmaking where values at given stages could be missing.

Several methods exist to adjust the decisionmaking pipeline in order to consider fairness

prominently. These methods operate throughout the lifecycle of an ML model, from prepro-

cessing methods like ”massaging,”, reweighing, or other adjustments in a dataset to produce

classifiers independent of sensitive attributes [54, 55], in-processing techniques such as for-

mulating fairness as a constraint or penalty term [56, 57], to post-processing model outputs to

meet different definitions of group or individual fairness [58, 59, 60]. Primarily, these fairness

methods adjust the predictions from a model with a purely accuracy-based loss function, and in

many cases, the addition of constraints or adjustment of procedure to consider fairness incurs a

nontrivial cost in performance. These costs are often justified with reference to avoiding disparate

impact among protected groups [56], or more generally, with regards to what applicants deserve

from a decisionmaking procedure. While, as discussed above, fairness research has considered

other framings for thinking about group imbalances in prediction, we will aim to make a direct

case for such interventions without requiring an appeal to either disparate impact or to what

applicants deserve, not because these aren’t important considerations, but because they aren’t

incentives for many stakeholders with interest in and power over algorithmic decisionmaking.
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While the majority of work on fairness seeks to implement some statistical measure

of fairness under fixed datasets and a particular learning problem, some higher-level work has

considered that the fairness-relevant choices made in the process of developing a machine

learning system are not isolated to the performance of the algorithm at that system’s core.

Many papers have considered that in the process of creating an ML system, outside of just

the model used, practitioners make a wide variety of morally relevant choices in their design

of decisionmaking procedures [61, 62, 63]. These include how training data are chosen, how

models trained on one context can be transferred to use in another context, how we choose

to encode concepts like outcomes, accuracy, fairness, and protected group membership, and

ultimately, how the a model’s predictions are translated into concrete actions. These questions

are not directly addressed in this paper, but it is nonetheless important to note, when examining

the sorts of high-stakes machine learning contexts that we care about, that fairness in machine

learning involves more than just training the right prediction algorithm.
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Chapter 3

Methods

In order to investigate the performance of active learning methods for situations with

missing outcomes, we set up a two-step procedure for learning causal models from data, then

apply active learning to yield the point that is most informative about model parameters. The

motivation behind this procedure is two-fold. The first, in the generation and estimation of the

SEM, is to establish that learning a single decisionmaking model, even if it is globally optimal

for the union of two subgroups, can lead to imbalances in the model’s ability to predict for both

groups if the groups’ true parameters differ. Of course, these imbalances are widely studied in

the field of machine learning fairness. But in our setting, we don’t just care about imbalances in

prediction, but due to the pattern of missingness we’ve described, we also care about imbalances

in information we can learn about each group. In other words, we care not only that the best

global model can make more mistakes for one group than another, but also that these mistakes

could lead to missing data in future training sets, such that we are much more uncertain about

true parameters for one group than another.

The second motivation is to establish that there could be epistemic cause for intervening

in favor of points from an underrepresented group. While literature on machine learning fairness

and fairness in decisionmaking differs wildly on what the goals of the field and what it means to

be fair [64, 39], the case for why fairness matters, and why it might be worthwhile to intervene

to enforce it, is normally justified on ethical grounds. However, in this paper, we aim to show
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that even if a decisionmaker were not to care about the moral issues with treating multiple

groups within datasets differently, they might still have cause to care about this differential

treatment, because in the long run it could lead to a worse model. This is important, because

in many of the high-stakes decision problems that we attempt to model, the primary objective

of the decisionmaker is often agnostic to fairness or impacts for individuals. For example, in

loan repayment prediction, a typical bank’s primary goal in lending, at least in the absence of

regulation, is to profit from loans, not to serve the interests of applicants. But in situations where

a negative prediction also means that a point will not be observed, we hypothesize, the points

that would most benefit the model come from the group most disproportionately harmed by the

decisionmaking procedure.

In order to achieve these goals, we design a structural equation model (SEM) that

represents the prediction settings we are interested in, and formulate a definition for mutual

information (MI) for that model. We then use an optimization procedure to find the points for

which mutual information is highest, perform this procedure for a selected group of datasets, and

analyze the results for implications for prediction and fairness.

3.1 Structural Equation Modeling

Figure 3.1. The SEM path diagram we use for estimation throughout this paper.
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In this paper we use the SEM path diagram pictured in Figure 3.1, in which a single

latent C leads to a vector of observed features X , and also is the sole variable that affects the

value of the outcome Y . Because the features X might be correlated with each other in ways that

are not captured by the latent C, the features X can also interact through residual covariances.

We also model the relationship between the features X and a decision variable D. To simulate

the presence of missing outcomes, whenever the decision D is negative, we delete the value of Y

for that observation. The decision D does not affect the actual value of the outcome Y , although

they are likely correlated through the latent and the features, and the only effect of the decision

is in controlling the missingness of Y . However, we do estimate the SEM with a link between

the latent C and the decision D, to capture the idea that past decisions might have been made

with additional knowledge about the latent than is available in the features X , allowing us to

better understand the information that a positive or negative decision tells us about the latent.

In this way, the latent represents the ”true,” unobserved construct that controls an observation’s

likelihood of a positive or negative outcome, which is what the decision aims to capture. It

should be noted, however, that while the link between the latent and the decision is used in

estimation, it need not be included in the dataset generation, where we learn the decision just

from the features, or the calculation of mutual information, where the model parameters for the

decision are not required.

Our SEM is specified as follows:

• C ∼ N (0,εC)

– where C is a scalar latent variable that controls the outcome Y , and is distributed

according to a normal distribution centered at 0 with variance εC

• X = α +ΓC+EX

– where X is a d-dimensional vector of observed features, α is a d-dimensional vector

of intercepts for X ,Γ is a d-dimensional vector of regression coefficients, C is the
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scalar value of the latent, and EX is the d-dimensional vector of residuals of each

dimension in X , which can have different variances and be correlated with each other

• D = τ +KX +φC+ εD

– where D ∈ {−1,1} is the historical decision made for each point, τ is the scalar

intercept for D, K is the d-dimensional regression coefficients of D from X , φ is the

scalar regression coefficient of C on D, and εD is the uncorrelated variance of D

• Y = ν +ΛC+ εY

– where Y ∈ {−1,1} is the true outcome for each point or null if not observed, where

ν is the scalar intercept for Y , Λ is the scalar coefficient of C on Y , and εY is the

uncorrelated variance of Y

To provide an example of how these variables might work in practice, we’ll turn to the

setting of credit, where a decisionmaker (e.g. a bank) is deciding whether to provide loans to a

particular applicant. In this situation, the latent C represents the true, underlying creditworthiness

of the applicant. The relationship between C and the outcome Y can be noisy, but C is the

only value which has a causal link to Y . The bank can observe a set of features X about the

applicant, which are causally downstream from C, and based on these features, the bank makes

a decision D. If this decision D is positive, then the bank is able to add a full feature vector

containing the features X , the decision D, and the outcome Y to their training dataset for future

predictions. However, if the decision D is negative, then the bank can only add X and D to

their data. Of course, this is not useless information – this could help better understand the

relationships between features in X , and better calibrate decisionmaking, but it does not provide

information about whether this point was a false or true negative.

In our experiments, we treat both the decision variable D and the outcome variable

Y as continuous when learning the model, although in practice these are discrete values of

either −1 or 1. While there are methods for specifying SEMs with discrete and categorical
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values, this increases the number of parameters required to estimate; in our setting, although

our SEM will return predictions as continuous values, we can use a threshold value that will

allow us to discretize those variables in both our generation of data and our calculation of mutual

information.

SEMs can be estimated in a number of ways, but in order to leverage active learning

tools, we use Bayesian Structural Equation Modeling, which in addition to learning a single

best model, returns a distribution over our beliefs that quantifies our uncertainty about each

parameter. We are able to do this with the use of the R [65] package blavaan [66, 67], which

builds Bayesian estimation onto the earlier package lavaan [68], provides a simple syntax for

describing causal models, and allows for Markov Chain Monte Carlo (MCMC) draws from the

posterior distribution of the model parameters. blavaan performs Bayesian inference with the

use of the software Stan [69, 70].

More specifically, after the model is specified as described above, the parameters of the

model are estimated using maximum likelihood (ML) methods. In the presence of missing data,

blavaan makes use of full-information maximum likelihood (FIML), a method for learning

SEM’s in the presence of missing observations, first developed as part of the SPSS Amos software

[30]. In the Bayesian structural equation modeling procedure implemented in blavaan, the

FIML estimation method is combined with sampling over the latent variables in order to produce

a set of parameter draws from the model, with the mean values of each parameter providing

the maximum-likelihood model, and the distribution of draws around that mean quantifying

uncertainty in the model [67].

In our implementation of the SEM model, we specify the model with the syntax provided

by lavaan, with the additional constraint that the latent variable C has a standard normal

distribution N (0,1). Then, we run 4 MCMC chains with different starting points, running

in parallel, which each draw 2000 burn-in samples, then draw and save 1000 more MCMC

samples which will form our actual model later. However, we first check whether the chains

have converged by assessing the R̂ measure of the model, which checks whether chains have
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mixed by comparing the variance of the parameter values between chains to the variance within

each chain [71]. As recommended in the Stan documentation [70], we only continue to use the

MCMC samples when our 4 chains yield an R̂ below 1.05. If this is not the case, we re-run our

model estimation with a larger burn-in period, increasing by 1000 samples each time our model

has not converged enough. We then export our parameter draws to a CSV file, where they are

then read in by a Python script that performs mutual information calculations and optimization.

In our active learning procedure, we aim to find the point X for which getting a label y

would be most informative about our model parameters θ . In this paper, as described in Section

2.1.1, we will use mutual information (MI) between the label y and the model parameters θ .

To calculate mutual information between y and θ , or I(θ ;y|x,D), at a given point using

MCMC samples, we begin with a formulation given in Jha et al. (2024) [11]:

I(θ ;y|x,D)≈ 1
M

M

∑
j=1

DKL(P(y|θ j,x,D) || P(y|x,D)) (3.1)

In equation 3.1, DKL refers to the Kullback-Leibler (K-L) divergence, which measures

the distance between two probability distributions, θ j refers to the j-th of M MCMC parameter

draws, and D refers to the information present in the dataset. More specifically, Jha et al. define

the K-L divergence with respect to model predictions as follows:

DKL(P(y|θ j,x,D) || P(y|x,D)) =
∫
Y

P(y|θ j,x,D) log
P(y|θ j,x,D)

P(y|x,D)
(3.2)

where Y refers to the output space of Y. With this equation, as pointed out in [11], the

point with the highest mutual information will be the one where the predictions of y given by

individual MCMC parameter samples θ j tend to deviate more from the average prediction over

all MCMC samples, capturing the entropy of the Bayesian confidence distribution over the

parameters.

Now, all we have to do to adapt this formulation of mutual information to our setting is
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to specify an equation for P(y|θ ,x) in our SEM. (In this and all future equations, we will not

include the D used in [11] representing the dataset explicitly, since every quantity we look at

is calculated with respect to the dataset.) P(y|θ ,x) is not difficult to specify, but it is difficult

to compute, as due to the structure of our SEM it involves marginalizing over C, and therefore

involves an integral. In the following equations, we will use the variables for SEM parameters

established in Section 3.1.

P(y|x,θ) =
∫

C
P(y,C|x,θ) =

∫
C

P(C|x,θ)P(y|C,x,θ) =
∫

C
P(C|x,θ)P(y|C,θ) (3.3)

P(C|x,θ) = P(x|C,θ)P(C|θ)
P(x|θ)

, and P(x|θ) =
∫

C
P(x,C|θ) =

∫
C

P(C|θ)P(x|C,θ) (3.4)

P(y|x,θ) =
∫

C

P(x|C,θ)P(C|θ)∫
C P(C|θ)P(x|C,θ)

P(y|C,θ) (3.5)

The integral in the denominator will have the same value for every value of C in the outer

integral, so we can pull the denominator out.

P(y|x,θ) =
∫

C P(x|C,θ)P(C|θ)P(y|C,θ)∫
C P(C|θ)P(x|C,θ)

(3.6)

While we were not able to simplify either integral solve directly for P(y|x,θ), we note

that we can solve for every probability in the above equation with parameters θ :

• P(x|C,θ) = P(N (α +ΓC,EX) = X)

• P(C|θ) is a normal distribution described by its coefficients

• P(y|C,θ) = P(N (ν +ΛC,εY ) = y)

So, we can numerically estimate both integrals through numerical methods, by sampling

from the known distribution of C, calculating the quantities above, and aggregating them to

estimate P(y|x,θ). In our simulations, we do this with 500 samples of C, which in model
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estimation is fixed to have a standard normal distribution. Once we do this, we can plug P(y|x,θ)

back into the equation for mutual information from [11], which we simplify as follows:

I(θ ;y|x) = 1
M

M

∑
j=1

∫
Y

P(y|θ j,x) log
P(y|θ j,x)

P(y|x)
(3.7)

Since Y is a binary, discrete variable for our purposes, despite learning Y as a continuous

variable, we can replace the integral over all possible outcomes Y with a sum over the two

possible outcomes, positive and negative. In our data, we denote positive decisions as y =+1,

and negative decisions as y =−1, and so we can simplify Equation 3.7 to:

=
1
M

M

∑
j=1

[(
P(y ≤ 0|θ j,x) log

P(y ≤ 0|θ j,x)
P(y ≤ 0|x)

)
+

(
P(y > 0|θ j,x) log

P(y > 0|θ j,x)
P(y > 0|x)

)]
(3.8)

By substituting in y ≤ 0 or y > 0 for y into Equation 3.6, we can then compute mutual

information using Gaussian PDF’s and CDF’s with known parameters. To calculate P(y > 0|x),

we simply take the mean of P(y > 0|θ j,x) over all MCMC samples θ j for j from 1 to M, the

total number of MCMC samples.

Once we are able to calculate mutual information, to perform active learning, we need

to find the value of X , X∗, that maximizes I(θ ;y|x). Because we are using numerical methods

to estimate mutual information, we cannot directly compute the gradient, making optimization

difficult. However, there are a many methods for gradient-free optimization, and we experimented

with several methods implemented through scipy’s scipy.optimize interface [72]. However,

due to there being some amount of noise in the mutual information landscape due to the

gradient being sampled, we received poor performance from these methods designed for local

optimization, since our use case was a global optimization problem. These issues included

stopping before reaching maxima, and the returned solution being sensitive to start location.

Another issue we encountered was that, since mutual information captured uncertainty in the

model, the highest values were often found at values unrealistically far from the rest of the data.
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In order to better capture the entire input space, while still making sure we returned

a realistic result, we implemented a two-phase optimization procedure. In the first step, we

restricted our search space to the convex hull of the feature vectors present in the dataset, using

the Qhull software, implemented through scipy [72, 73]. After doing this, we sample 100

points from the dataset and evaluate mutual information at these points, in a similar approach

to a grid search. We do this in the first step instead of an actual grid search because the data

are often distributed in uneven ways, and the convex hull is often quite narrow, depending on

the parameters generating the dataset. Sampling points allows us to get more samples in areas

with more density of data points. Then, in the second step, we perform a grid search in the

neighborhood within 2 units in Euclidean space around the point with highest mutual information.

(The neighborhood size 2 was chosen as a lenient value, based on experimentation, for how far

the nearest of the 100 sampled points could be from the optimal point.) After performing this

grid search, we perform the Nelder-Mead simplex algorithm from the grid search point with

highest mutual information, again implemented through scipy [72, 74]. The optimal input X

returned by this algorithm is then returned.

3.2 Synthetic Data Procedure

In order to evaluate our procedure, and understand its effects with respect to situations

with multiple groups with different true parameters, we ran the above procedure on a series of

synthetic datasets, each consisting of data generated from two different SEM’s, each representing

one group.

In each iteration, we generate a dataset for each group from a SEM with parameters we

control. In these generated datasets, we fix the weight Λ and the variance εY of the link between

the latent C and the outcome Y , so that the value of C has equivalent meaning between datasets.

To simplify the procedure, we also fix the covariance matrix of the residuals of our features, EX ,

such that the residuals are uncorrelated with each other. However, when this model is learned in
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blavaan, the only one of these simplifications that is known during estimation is the true value

of Λ, which is 1, and the model’s parameters for EX and εY can still vary.

One key assumption we make in our simulations is that the distribution of the latent

variable C is the same between both groups. By doing this, we can establish that differences in

points being observed are not due to true differences between the groups in their relationship to

the outcome variable, but rather due to choices made in modeling and decisionmaking. In each

simulation we run, the only two values that we vary are the weights, or loadings, from the latent

to the features, Γ, and the relative size of the two datasets. We set Γ to be different for each group,

to model a situation where despite two groups having the same underlying distribution of some

latent like creditworthiness that is directly related to the outcome, the relationship from that latent

to the features could differ between groups. The two datasets are set to have a combined size of

2000, with the lengths of the two groups being one of (1000,1000), (1200,800), (1400,600), and

(1600,400). The values of Γ and the relative dataset sizes used are reported in Section 4.

In the following section, the amount of results we are able to report is limited by long

runtimes, which are due mostly to the computationally expensive process of calculating mutual

information over MCMC samples. When we use Equation 3.7, this requires computing and

storing Gaussian PDF and CDF values for each of 500 samples from the latent distribution C,

which we do once for each parameterization given by one of 4000 MCMC samples θ j, 1000

for each of the four MCMC chains we ran. On the computational environment we ran this

on, as a containerized application on a Kubernetes cluster with access to 16 processors and

128 GB of RAM, even while parallelizing calculations for the samples from C, calculating

mutual information at a given input point X took around 15 to 20 seconds, and therefore, since

conducting our optimization procedure required something on the order of 150 to 200 points,

this procedure could take up to an hour. Since for each iteration of this algorithm, we learn the

model and optimize for mutual information for two different groups, this meant that a single

result reported below took multiple hours of calculation.

We generate values from the SEM for each group by sampling from the latent C, since
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C is causally prior to any other variables in the SEM, and propagating using the parameter

values to generate features X and outcome Y . However, to generate the decision D, instead

of setting known parameters, in order to make sure that our results are not an artifact of poor

decisionmaking, we design the decision D to be learned from the best possible global linear

classifier from features X to outcomes Y across both datasets, even including information that

will not be available to the SEM at estimation time. This means that the decision boundary for

both groups is the same, even though they might have different true parameters between the

latent and the features, Γ. So as the disparity between group dataset size increases, the best

global classifier will more closely approximate the best within-group classifier for the majority

group, and depending on how the two groups are distributed, could begin to perform worse for

the minority group. This models situations where, for example, despite applicants from different

demographic (or other) groups having different relationships between their observed features

and their ability to repay loans, the financial institution making decisions trains only one global

model for both groups, which could better serve one group than the other. After generating the

two datasets, we then separately learn a SEM using blavaan for each dataset, then perform our

optimization procedure for mutual information on each one. As a result, we report the optimal

points and values for mutual information on both datasets, as well as the variance on the Bayesian

belief distribution for each parameter in the SEM.
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Chapter 4

Results

In our experiments described in Section 3.2, we generated data from a SEM, described

in Section 3.1, whose parameters were fixed except for Γ, the loadings from the latent C to

two-dimensional features X , and the sizes of the two groups. When generating data, the latent

was fixed to a standard normal distribution, the link between the latent C and outcome Y was

fixed to a loading of one with a standard deviation of 0.5, and the residual covariance of the

features to 1
4 times the identity matrix, such that for small values of Γ noise did not dominate the

signal from C. However, as noted previously, the only parameters known to the SEM estimation

program were the latent was a standard normal, and that the link between C and Y had a loading

of one; the remaining parameters were allowed to be learned.

The values of Γ were first chosen to be random integer coefficients between 1 and 10;

in other words, each of the four values (two values in each vector Γ1 and Γ2) was randomly

selected between 1 and 10. We will note that negative coefficients could also be possible,

indicating features in X that had negative associations with the latent, and that it would be

possible for the vectors Γ1 and Γ2 to point in opposite directions, indicating that a feature could

be positively related to the latent for one group and negatively related for another group. Still, we

restricted ourselves to situations where features have positive, but different, relationships to the

features in both groups, as might be realistic for features in the settings we want to model. We

chose 40 parameterizations of the SEM, equally balanced between relative dataset sizes, in this
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fashion. However, as will be discussed later, the value of mutual information is only sensitive to

missingness of the outcome when very few observed outcomes remain; therefore, for random

values of Γ, it is very difficult to see the relationship that we discuss. So, in order to better

visualize the patterns we are trying to describe, we then ran the same analysis, but restricting

coefficients Γ such that (1) the proportion of missingness of outcome Y in one of the datasets,

no matter the dataset size, was at least 0.9, and (2) there were still at least 5 observed negative

outcomes in the dataset. If missingness was lower than this threshold, then the resulting patterns

were difficult to interpret, and if they were higher than this threshold, then the MCMC sampling

for estimation of the SEM was likely to fail. Since generating datasets is computationally much

cheaper than doing estimation, we generated datasets for all possible combinations of parameters

{0,1, · · · ,10}4, and chose 40 parameterizations at random, with the same number for different

dataset sizes. Finally, we ran 32 parameterizations with the same set of conditions, but restricted

to only source datasets that were balanced in size, with 1000 points in each group. This was in

order to show that the effects described could occur not only because of imbalanced dataset sizes

before any missingness was introduced, but purely because two groups had different parameters

between features and the latent. Therefore, it should be noted that the following results are not

calculated from a random sample of values of Γ in two dimensions, but rather a mixture between

random values, and values chosen due to high missingness in one group that helps to demonstrate

the effect we’re describing.

The following chart shows the relationship between the number of observed values of

the outcome Y for a given group in a given dataset, and the value of mutual information at the

optimal point reached in the optimization procedure. The value on the x-axis is not the total

number of points in the dataset – this is always one of 400, 600, 800, 1000, 1200, 1400, or 1600 –

but rather, the number of points for which the true label Y is observed in the dataset. In other

words, the number of observed points is the number of points which received a positive decision

using the optimal global linear model trained across both groups.
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Figure 4.1. The relationship between observed outcomes and optimal mutual information.

In Figure 4.1, the optimal value of mutual information has a clear elbow at around

100 observed points; when the number of observed outcomes gets larger, the value of mutual

information at the optimal point remains low, but when fewer than 100 outcomes are observed,

we see a strong increase in optimal values of mutual information. This squares with our reasoning

about active learning, namely that there is a diminishing return for new information after some

amount of samples are observed. Since mutual information captures the amount of disagreement

between the MCMC samples of parameters θ , the above result indicates that after around 100

values of the outcome are observed, the Bayesian belief distribution over parameters at even

the most unconfident point stabilizes, at least in its degree of entropy. We note that the large

gap in the graph for datasets with observed values between 300 and 600 is due to the choices
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of parameterization we made above, as the left cloud of points represents the groups with

high missingness, and the right cloud represents the counterpart groups with low missingness.

(Throughout this section, when we refer to a group’s counterpart, we mean the group that it was

paired with in the simulation, and which shares the same decision boundary that determined

which outcomes would be observed.)

In order to show that the relationship in the above graph does not just come about because

of the different total dataset sizes, as opposed to the number of observed outcomes, that are in

most of our simulations, we report the following Figure 4.2, which is a subset of Figure 4.1 for

just parameterizations with both groups having 1000 total points each. So, in these simulations,

the only factor that leads to one group having more observed outcomes than another is that the

global decision boundary learned across both groups ends up accepting more from one group

than another, purely because of the different parameters Γ between the latent and the features.

Once again, each point on the left of the graph is the direct counterpart to a point on the right,

since very high missingness in one group implied low missingness in the other. As in Figure

4.1, in Figure 4.2, we find that the optimal mutual information value only reaches an inflection

point when fewer than 150 outcomes are observed, and greater than this threshold, there are

diminishing returns for mutual information as the model gains more outcomes.
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Figure 4.2. The relationship between observed outcomes and optimal mutual information, for
simulations with 1000 total observations (including where Y is missing) in each group.

To demonstrate how active learning would work in this situation, Figure 4.3 shows the

amount of observed outcomes in each group on the x-axis, and the y-axis represents whether or

not the group was selected over its counterpart due to having higher mutual information, with

”True” at the top meaning the group had higher mutual information than its counterpart, and

”False” at the bottom meaning it had lower mutual information. Again, for the same reasons as

the results in the prior graphs, we can see that the number of observed outcomes provides a very

strong threshold for whether or not a group has higher mutual information; this graph simply

adds the context that these are the groups that are being selected in active learning experiments

that operate on two groups at a time with the same decision boundary. Figure 4.3 does not

display anything about the pairwise relationship between which group was selected, and which
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group had fewer observations. In total, however, the group with fewer observed outcomes of

the two had a higher optimal value of mutual information 95.76% of the time, across all dataset

sizes that we looked at (which as mentioned before, is a nonrandom sample that exaggerates the

differences between dataset missingness), and this figure was 94.64% for graphs of balanced

total size (1000 total points in each group, though the number of observed outcomes, clearly,

differed.)

Figure 4.3. The relationship between observed outcomes and whether or not a point was selected
over its counterpart.

Another way to frame these results is in terms of the relative performance of classifiers

over the two groups. As described in Section 3.2, the decision boundary used to determine which

outcomes are present is learned across both groups. Therefore, very high missingness in a group

is due to almost all of the points in one group being on one side of the global decision boundary.
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This is more likely to happen when one group is much larger than the other, but this also happens

when the parameters connecting latent C to features X , Γ, are very different. Since both groups

have the same underlying distribution of the latent, this means that, up to noise, both groups

should have the same likelihood for positive outcomes; so, a radical difference between the two

groups’ classifications under the best global classifier represents a failure of using a single global

classifier.

With this framing in mind, we can consider one red flag for imbalance in prediction to be

a change in false negative rate from the best local linear classifier, trained only on the data points

within a group, and the best global linear classifier, trained on both groups and what we use to

generate datasets in our simulations. False negatives here refer to when data points which would

yield positive outcomes are predicted as negatives and do not have their outcomes observed;

this analogizes to a loan applicant who would repay a loan if given one, but is denied a loan

by a financial institution. (The false negative rate is calculated from the generated data before

unobserved outcomes are deleted, so this calculation would not be available in the real-world

analogue of this procedure.) If the false negative rate increases massively between the best local

and best global classifiers, it means that there are many more potential applicants whose loans

are unjustifiably being denied; the increase in proportion of false negatives, then, represents

those disadvantaged by the choice of using a global model over a local one.
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Figure 4.4. The relationship between change in false negative rate for a group and that group’s
optimal value of mutual information.

Like in previous graphs, due to the choices of parameterizations we used, the values

cluster in two directions. The values on the left represent groups where false negative rate went

down using a global rather than local classifier. This is because the introduction of the other

group dataset skewed the decision boundary such that these points were no longer likely to be

classified as negatives. Meanwhile, on the right, we can see groups that had much larger changes

in false negative rate due to using a global classifier. Just like with mutual information, we can

see a gradual increase until a much steeper curve once the change in false negative rate reaches

0.5. Note that the data points plotted here are the same as the ones plotted in Figure 4.1. This

indicates that the groups for which sampling a point from a group are most informative are the

groups where the choice to use a global decision boundary leads to much higher false negative
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rate, and that there might be value in sampling new data from these points due to the uncertainty

that these missing values have produced.

Similarly, we can see in Figure 4.5 the relationship between the accuracy of the learned

global classifier and the ultimate optimal value for mutual information that we yield at the end of

our optimization procedure. Mutual information increases as accuracy of the model decreases,

which comports with the basic underpinnings behind active learning – that we place more value

on points (and more broadly, on datasets as a whole) when we are uncertain about their true

values, which is more likely with an inaccurate global model responsible for determining whether

or not the outcome value is missing.

Figure 4.5. The relationship between the accuracy of the best learned global model, learned
across data from both groups, and the ultimate optimal value of mutual information.

In addition to learning about what causes values of mutual information to increase, we
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might also be interested in where the optimal input point that maximizes mutual information

between Y and θ might be. While the actual value of the points varies between different

simulations because the distributions of both groups can vary widely, what we can look at is the

distance of the optimal point for mutual information from the global decision boundary used

to determine missingness in the data. In this case, we’re using the optimal point with highest

mutual information between the two groups, which would be the point that active learning would

suggest we get a label for next. Figure 4.6, below, shows the distribution of points with respect

to the global decision boundary, where a positive value +n indicates that the point was n units

from the decision boundary and on the predicted-positive side, and a negative value −n means

that a point was n units from the decision boundary and on the predicted-negative side.

We find, as expected, that the points that maximize mutual information are distributed

near the decision boundary, as these are the points whose outcomes that the model is most

uncertain of. However, we find that the distribution of distances to the decision boundary is

slightly skewed towards points on the positive side of the decision boundary, indicating that more

of the points that mutual information was optimal at would have been predicted as positives by

the global model; we might have expected that the opposite would be the case, since the model

should have an incentive to select points from regions of the input space with fewer existing

data points, and outcomes for observations below the decision boundary are missing, so active

learning might be expected to select from this region. However, one effect that we have not

accounted for is that the decision boundary that our causal model implicitly estimates is only

learned for the subset of outcomes that are observed. Therefore, when we perform active learning,

the point for which Y provides the most information about model parameters might be closer to

the best decision boundary for the observed subset of points, which we have not recorded, but

which will be different from the best global decision boundary on all outcomes. Indeed, we might

expect the best decision boundary for observed points to be on the predicted-positive side, since

that is where all of the points the causal model can see lie. Still, this is only a hypothesis about

the behavior of such classification models with missing data. When conducting a one-sample
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t-test for whether this distribution has a mean at 0, we get a p-value of 0.047588, indicating

that a difference from a mean of 0 could be present. But Figure 4.6 represents only a small,

skewed sample of the locations of these optimal points, and therefore we would require further

investigation before drawing conclusions from the results, such as examining a larger, random

sample of possible values of Γ used to create our datasets.

Figure 4.6. The signed distance between the global decision boundary learned over both groups,
and the optimal input point with respect to mutual information for each group. Points in the red
area would have been predicted negative by the best global linear classifier on the training data
without missingness, while points on the right would be predicted positive.
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Chapter 5

Discussion

5.1 Epistemic Value

In Chapter 4, we showed that infomax active learning could indicate that, in problems

where decisions determine whether or not an outcome is observed, sampling from an underrepre-

sented group would provide more statistical information about model parameters, indicating an

epistemic case for sampling from these groups. This case is meant to complement the already

well-covered ethical arguments for selecting from underrepresented group. But since the epis-

temic case is that sampling from underrepresented groups would help the model’s performance

in the long-term as demonstrated in previous work on active learning, the epistemic case will

likely have value to stakeholders that might not be concerned with moral arguments. However, it

should be noted that as Figure 4.1 indicates, this epistemic case hits a point of diminishing returns

relatively quickly. In the particular way we set up our procedure, the mutual information between

Y and θ at the optimal point X∗, which in active learning quantifies the value of observing

the true label at the best possible point, only has a slight decrease after a certain number of

observations (around 150 to 200) are observed. This rapid diminishing of returns, of course,

is not present with the types of moral cases for sampling points from underrepresented groups

discussed in Section 2.3, where the fact that a given model predicts differently for one group

than another could be enough cause to adjust our decisionmaking, even if there’s no reason to

believe that sampling from an underrepresented group will help the model in the long run.
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It might not be immediately clear why this sort of epistemic value from a prediction

might be important. More precisely, when we refer to epistemic benefits of getting a label from a

particular observation, we refer to tightening the distribution of our belief about the parameters

of our model, as infomax learning and many other active learning methods seek to accomplish.

We believe that doing so will get us closer to the best possible model, which in a causal model is

ideally close to the ”true,” unobservable data-generating process that underlies the observed data.

Of course, having a more confident version of our model is only useful if we intend our model

to be used repeatedly over time, being updated as new points are observed. This is not always

the case, but in practice ML algorithms are likely to be updated as new information is available,

rather than being rebuilt from scratch for every new data point. The existence of epistemic value

for acquiring a certain label means that it might not always be the right thing to do to trust the

model entirely, but rather to treat the model as a fallible, uncertain approximation of the real

constructs we want to study, which might involve deviating from the model in order to improve

the quality of that approximation. Whether that deviation is justified is context-dependent, and

presents an explore-exploit tradeoff that mirrors the tradeoffs found in many sequential decision

theory problems.

To further ground what we mean by epistemic benefit, we can appeal to the concepts of

aleatoric versus epistemic uncertainty, which have been discussed widely in engineering and

machine learning settings [75]. In this framework, aleatoric uncertainty refers to uncertainty

inherent in the data-generating process, and therefore in the data itself, and epistemic uncertainty

refers to the uncertainty we have due to our lack of knowledge about that data-generating process,

due to our finite amount of data and limited mechanisms for modeling it. As noted by [75],

aleatoric uncertainty is irreducible, since it exists in the data-generating process, or ”nature”

itself, while epistemic uncertainty is reducible, if not completely eliminable, through better data

and better models. For example, causal models seek to directly estimate the aleatoric uncertainty

in data-generating processes with error terms, even if this is an unrealistic picture of how things

really work. Previous work has even applied these concepts to fairness and discrimination [76],
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with [77] defining aleatoric and epistemic discrimination as bias inherent in the distribution of

the data, and discrimination due to choices in modeling and predicting from data, respectively.

[77] continues to state that existing fairness interventions perform well at mitigating epistemic

discrimination, but not in the presence of additional aleatoric discrimination, in particular the

presence of missing values.

In this paper, we aim to demonstrate how having few samples from a given group produces

a large amount of epistemic uncertainty, which clouds our ability to make good inferences about

data points. Following these definitions further, our setting does involve aleatoric discrimination,

not in the distribution of outcomes between groups, which are identical, but in how missingness

comes about. Indeed, our setting provides an example of how epistemic uncertainty can lead

to further epistemic uncertainty and discrimination in future iterations of a model, in that a

combination of uncertainty about a model and having fewer points for it can lead to more false

negative decisions for a group; with the missingness pattern we used, this means that a group

will have more missing values due to the epistemic uncertainty that we had previously. Finally,

we show how active learning, which aims to reduce epistemic uncertainty, can do so by querying

labels for groups which have so far been underrepresented in the training data, which does

not reduce the underlying aleatoric uncertainty, but does mean that a future model will have

marginally less epistemic uncertainty by having access to that label.

5.2 Implications for Fairness

Throughout this paper, we have referred to the behavior of our model and active learning

procedure with respect to two generic groups, where the only differences between the two are

their relative size and distribution of features given the latent. Indeed, these results might be

most interesting for protected groups for which we have strong moral reasons for models not to

be biased towards, and most fairness methods aim to balance model performance with respect to

these kinds of groups. But the two groups discussed in this paper could be any pair of groups
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within a dataset for which the true parameters between the latent and features, or the relative

group sizes, vary. For example, the patterns in features associated with creditworthiness for one

group might be different than those associated with creditworthiness for another. Depending on

the definitions of those groups, we might not necessarily have strong beliefs about enforcing

equity between them. But, as we’ve shown, if those differences between groups exist, then any

single decision boundary we learn for both groups to predict Y from X can fail to capture these

differences, and either due to differences in group size or just the configuration of parameters, it

is possible that the global decision boundary will fail to classify accurately for one or both of the

groups.

This is an example of what is referred to in Suresh and Guttag (2021) [78] as aggregation

bias, where a one-size-fits-all model is used for a dataset with multiple groups that should be

considered differently. But while this is a general problem for any machine learning task, in the

regime of missingness we study, this is especially troubling, as predicted negatives in our context

will have missing outcomes in the training data. False negatives, for example, represent people

who should have received a loan, but did not solely because of the choice to use a global rather

than local model for this group. Therefore, in our setting, the pattern of missingness dependent

on decisions compounds aggregation bias, such that not only do our decisions perform differently

per group, but our degree of uncertainty about our model also differs per group.

It is important to note that we chose to model the decisions made in the training data

as the best possible linear classifiers, even when considering outcome data not available to

the model. This is to ensure that the results reported above could not be construed to be due

to suboptimal decisionmaking. (While non-linear model classes could possibly provide some

performance improvements, since the data-generating process is a linear-Gaussian SEM, these

performance gains would likely be modest.) However, in the real world, the decisions that inform

missingness in the training data would be markedly suboptimal, as they would not have access to

outcomes for any previous negative decisions. Just as importantly, we also do not consider the

impact of unfair decisions in the training data. Unfairness in historical data is a well-established
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problem in fair machine learning, with work both examining its impacts [79] and establishing

methods to work around it [54, 55]. Once again, the type of missingness we describe here

compounds existing bias in the modeling procedure, as having outcomes missing for negative

predictions means that if a group is more likely to, for unfair reasons, have predicted negative

decisions in the training data, then the model will also be more uncertain about members of that

group. This is important in areas like credit or bail prediction, when there can be a high threshold

for positive decisions, and greater uncertainty alone about an individual might be cause for a

negative decision, leading to a feedback loop that exists for people in a certain protected group

or with a similar set of features. Even if this is not the case, active learning measures could be

useful to rectify historical unfairness by observing more points from groups who had unfairly

been rejected.

5.3 Limitations

This analysis was subject to some limitations that should be considered when interpreting

results. Most prominently, the number of simulations we were able to run was limited by

computational resources and by time, since the choices we made in modeling, and especially how

we chose to do the optimization procedure, had to be iterated on multiple times before arriving

at the procedure reported in Chapter 3. Therefore, the results reported above only represent

a modest, non-random sample of all the possible datasets we could have analyzed with this

procedure. We only looked at the case where the features X were two-dimensional, and where the

features did not have any residual covariance with each other, although our code is designed to

handle any number of features and an arbitrary covariance structure. We also made the powerful

assumption that both groups would have an identical distribution of the latent, and therefore an

equivalent probability of having a positive outcome. While this allows us to narrow down the

possible causes of the results we obtained, it is ultimately unrealistic, and to model many of

the challenges with doing machine learning fairness in practice, we might need to understand
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how active learning and causal modeling might perform if the groups were to have different

propensities for positive decisions.

In addition, it should be noted that the results above were found for only one type of

causal model (a Bayesian SEM), and for only one active learning measure (mutual information).

It is possible that had we made different choices of either of these, the results above would look

different; at the very least, some of the exact results we observed might differ slightly, like where

the inflection point in Figure 4.1 was, or the central tendency in Figure 4.6. We also have some

level of noise in our results due to the fact that we had to use numerical methods to estimate the

integral in Equation 3.6, and because we needed to use derivative-free optimization in order to

optimize mutual information with respect to the input point. While we took measures to ensure

that the number of samples of the integral was high enough to converge in test cases, and that

the optimization procedure reached a globally near-minimal point, we cannot independently

mathematically verify the results of either of those procedures, which also makes it more difficult

to examine the properties of the mutual information function.

5.4 Future Work

This results described in this paper serve mostly to establish an epistemic case for

sampling from underrepresented groups in settings where outcomes are only observed for positive

decisions, using active learning methods as a well-validated measure for how informative a given

point is for the model. However, this is just the surface of the sorts of analysis that could be

done for these sorts of problems. As described above, we could extend this analysis to more

parameterizations within the same model, which we have already written a framework for doing,

or examine other causal modeling and active learning methods. This could also involve freeing

some of the assumptions we have made, such as the assumption that both groups have equivalent

distributions of the latent, that the features are independent given the latent, and that the decision

is an unrealistically performant linear classifier.
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In some contexts, our procedure might not be tractable for active learning. For example,

one worrying possibility is that the two groups have different amounts of uncertainty due to

aggregation bias, but that we do not even know the groups in question. This might occur either

due to the groups not being measured in the training data, or because group membership is

impossible to measure at all. While in this case, we could not train two within-group models

because we lack group information, it might be possible to still perform active learning in such

a way that we are directed to sample points from groups with many missing outcomes. This

could be done by having both groups be learned through a single causal model, and if the groups

are relatively distinct in input space due to different Γ parameters, then optimizing for active

learning might still find the same points; the idea being that there will be regions of the input

space that have fewer observed values in general between both groups.

While in practice, we wouldn’t have a way to know which group we were drawing from,

if we were using synthetic data, we could still record which underlying group the active learning

process selected from. In addition, we could also use clustering methods to try and estimate

which group each point was in, which would allow us to estimate different models by group, but

would add an additional layer of uncertainty about cluster accuracy, especially if as is very often

the case, the distributions of both groups overlap significantly. We might also consider larger

numbers of groups, or groups that each represent the intersection of multiple attributes, as when

group membership becomes smaller, our amount of uncertainty about each group, as evidenced

by our results, increases dramatically. These types of groups are also important because bias in

real-world machine learning has intersectional characteristics, and existing methods for machine

learning fairness do not always account for more complex groups [80, 81, 82].

Another possible avenue for future work, of both a computational and social-scientific

nature, is how stakeholders could incorporate active learning into real-world machine learning

practice while maintaining high performance and without violating legal or moral constraints

around predictions. For example, if we are predicting loan repayment, a bank might not care

whether an applicant will provide information to our model in the long term if they believe that

42



providing a loan to this applicant would result in a default, and therefore a large cost to the bank.

This is both due to discounting of future impacts, but also because the incentives for the bank are

more complex than just the accuracy of the model.

This gets even more complex when we consider other constraints that high-stakes predic-

tions may be held to. For example, might it be justified to provide applicant A, who we currently

believe to be less likely to repay a loan but more informative to the model than applicant B,

a loan over applicant B for purely epistemic reasons? Are there groupings of applicants for

which we might want more information, so much so that we’d bias towards accepting applicants

from that group? If so, which ones? Depending on one’s beliefs about who deserves allocative

benefits from decisions, and what fairness in context looks like, the answer to these might vary.

Extending these questions into the sorts of high-importance machine learning problems that

we’ve described is a difficult task, but ultimately necessary to gain a broader understanding of

how to build a fair decisionmaking system with an algorithm at its core. This paper aims to

establish a framework with which to understand the epistemic benefits of different options in

such situations, providing a new lens for thinking about fair algorithmic decisionmaking, but

also creating new questions which require more work to settle.
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