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ABSTRACT OF THE THESIS 
 
 
 

Multiomics Networks of Cardiovascular Diseases 

 

by 

 

Jenny T. Cheng 

 

Master of Science in Physiological Science 

University of California, Los Angeles, 2022 

Professor Xia Yang, Chair 

 

Spontaneous coronary artery dissection (SCAD) and coronary artery disease (CAD) both 

represent cardiovascular diseases that may result in myocardial infarction and sudden death. 

However, the populations predominantly impacted by SCAD and CAD as well as the 

pathogenesis of both diseases are notably different; while SCAD overwhelmingly affects a 

young, female population and is non-atherosclerotic, CAD mainly impacts males and develops 

via atherosclerosis. The genetic architecture and mechanisms leading to SCAD onset are 

currently poorly understood, and although the genetic and environmental risk factors for CAD 

are better elucidated, further understanding of the mechanisms in which genetic and 

environmental factors interact to facilitate pathogenesis is needed. We conducted two studies to 

examine the networks of SCAD and CAD at various omics layers. In a comprehensive 

multiomics human SCAD study, we investigated disease-associated biological mechanisms and 

modeled tissue-specific gene regulatory and protein-protein interaction networks across genetic, 

transcriptomic, and proteomic levels and predicted potential therapeutics for SCAD treatment. 

We identified various pathways related to the extracellular matrix, immune function, and blood 
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clotting activation. We pinpointed key regulatory genes and hub proteins central within our 

tissue-specific networks, including HOXB9, CADM1, and COL18A1. Female-specific drugs, 

such as medroxyprogesterone and progesterone receptor agonist, were prioritized in SCAD 

drug repositioning. In a single-cell RNA-sequencing mouse study, we examined the cell type-

specific transcriptome changes of the aorta in Ldlr-/- mice, an established atherosclerosis 

animal model for CAD, under various diet conditions, namely chow, high-cholesterol, and high-

cholesterol with added trimethylamine N-oxide (TMAO). We identified significant differences in 

cellular composition in the modulated smooth muscle cell (SMC) cluster and macrophage M1 

subtype and elucidated the transition of SMCs into a protective fibromyocyte phenotype in a 

data-driven manner. Additionally, we determined cell type-specific and shared differentially 

expressed genes and their corresponding biological pathways across dietary conditions, 

pinpointing extracellular structure organization pathways as significant in various cell types 

between high-cholesterol and chow diets as well as apoptosis-related pathways as enriched in 

SMC and modulated SMC with the addition of TMAO to the high-cholesterol diet. We further 

predicted intercellular communications that influence downstream gene expression in 

modulated SMC and endothelial cells.  
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1. Introduction and Background 
 
Characterization of Spontaneous Coronary Artery Dissection 

Spontaneous coronary artery dissection (SCAD) is a non-atherosclerotic cause of 

myocardial infarction occurring when an intramural hematoma occludes an epicardial artery1,2,3. 

The true incidence of SCAD remains unknown, largely because most patients classify into the 

lowest risk categories for conventional atherosclerotic disease, thus leading to underdiagnosis4. 

SCAD overwhelmingly impacts a young, predominantly female population and has 

demonstrated association with pregnancy and systemic arteriopathies, including fibromuscular 

dysplasia2. Clinical presentation of SCAD has proven variable and may include chest pain, 

ventricular fibrillation, and sudden death3. There are currently no clinical trials to direct optimal 

medical management following SCAD, and report incidences of recurrent SCAD range from 5% 

to 19% of cases5,6,7,8,9,10. While variants in several genes, including PHACTR1/EDN1, COL3A1, 

and PKD1, have been identified, the genetic architecture of SCAD remains poorly elucidated. 

Therefore, a more comprehensive understanding of SCAD mechanisms will help develop new 

preventative and therapeutic strategies targeting key regulatory genes involved in SCAD 

pathogenesis. 

 

Characterization of Coronary Artery Disease 

Coronary artery disease (CAD) is caused by atherosclerosis, or the buildup and 

hardening of plaque in arteries, and is the most common type of heart disease11. CAD primarily 

impacts men over 45 years of age12, and CAD mortality rates are higher in men compared to 

women13. However, after menopause the prevalence of CAD in women increases. While 

lifestyle modifications, medication, or surgery may reduce the risk of CAD development and 

progression, CAD nonetheless remains one of the leading causes of mortality worldwide14. 

Numerous genetic and environmental factors, including hyperlipidemia15, lack of exercise16, 
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smoking17, and diets rich in high cholesterol and red meat contribute to CAD onset, and this 

disease may lead to arrhythmia, myocardial infarction, heart failure, or sudden cardiac death18. 

Diets high in red meat and high cholesterol contain higher levels of choline, phosphatidylcholine, 

and L-carnitine, and microbial enzymes act on these substrates to generate trimethylamine 

(TMA), and trimethylamine N-oxide (TMAO), the metabolized form of TMA. Circulating TMAO is 

associated with promotion of atherosclerosis and increased risk for CAD19. Due to the polygenic 

nature of and environmental contributions towards CAD, investigating the mechanisms by which 

environmental dietary factors contribute to CAD pathogenesis will help to refine and advance 

existing treatments and develop novel treatment strategies. 

 

Introduction to Multiomics Network Projects 

With the ongoing development and advancements in sequencing technology, data at 

varying molecular levels, termed “multiomics” data20, may be integrated to allow for a system-

level understanding of multifactorial diseases. Multiomics data encompasses genomics, 

epigenomics, transcriptomics, proteomics, metabolomics and metagenomics. Specifically, 

genomics, referring to the genome or DNA sequence, allows for insight into the organization 

and function of genes as well as how genetic variants may contribute to disease or biological 

processes. Epigenomics studies non-genetic contributions to changes in gene regulation and 

encompasses such processes as DNA methylation and chromatin modification. Transcriptomics 

measures mRNA levels to determine gene expression changes in response to external stimuli, 

and this omics layer aggregates genetic and epigenetic landscapes to inform on the 

transcription capability of a specific locus. Further, proteomics measures protein expression 

levels and can delineate altered protein expression in a disease state and contribute to the 

identification of disease biomarkers and therapeutic targets. Metabolomics examines 

endogenous low-molecular-weight structure, including lipids, amino acids, peptides, and organic 

acids, as small-molecule metabolites and metabolic pathways hold integral roles in biological 
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systems and in disease development. Finally, metagenomics is the genomic study of uncultured 

microorganisms, particularly in the microbiome, and the intimate relationship between the 

microbes and overall homeostasis is increasingly highlighted in various diseases.  

We carried out two projects to apply multiomics data to dissect the pathogenic 

mechanisms of SCAD and CAD by employing systems biology and bioinformatic concepts and 

approaches. To integrate various levels of omics data that each represent a fragmented layer of 

a whole system, we utilized tissue-specific network modeling. Networks serve to depict large 

numbers of molecules associated with disease-related pathways obtained from multiomics data 

as nodes and regulatory relationships and interactions between such molecules as edges or 

connections. Varied gene expression and biological function by tissue warrant the 

implementation of tissue-specific networks to reflect the biological setting most accurately. In 

networks with scale-free topologies, meaning the fraction of nodes with number of edges k 

follows a power law k^-α, peripheral non-hub nodes with few connections surround central hub 

genes with high connectivity within the network. Central hub nodes may be more pathologically 

relevant due to their high connectivity and therefore may have a larger impact within 

pathogenesis. We hypothesize that perturbations to tissue-specific networks underlie 

pathogenesis, and multiomics data can not only inform these networks but also guide 

therapeutic predictions for disease treatment. Our holistic systems biology-based approach 

employing various levels of omics data further advances the understanding of two complex and 

contrasting cardiovascular diseases. 

In the first project, we utilized SCAD human multiomics datasets to identify key biological 

mechanisms involved in disease onset, model SCAD regulatory gene and protein-protein 

interaction (PPI) networks, and translate findings for drug repositioning. Although various 

genetic loci have been previously proposed to contribute to SCAD1,2,3,21, there is certainly still a 

need for the identification and interpretation of additional precipitating factors and meaningful 

disease-associated molecular and biological functions to eventually guide the establishment of 
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an efficacious SCAD treatment plan. In our study, we integrated SCAD genome-wide 

association studies (GWAS), transcriptomics, and proteomics with functional genomics to 

identify disease-associated biologically relevant pathways and functional coexpression modules. 

We further modeled gene regulatory and PPI networks to pinpoint hub genes and proteins 

central within the networks that represent key candidates involved in SCAD pathogenesis. 

Based on the network structure and genes, we performed drug repositioning to propose 

potential therapeutic treatment options for SCAD as a standardized treatment plan supported by 

data-driven findings is lacking. 

In the second project focusing on CAD, which is on the other end of the cardiovascular 

ddisease spectrum in contrast to SCAD, we utilized single cell transcriptomics to uncover cell-

type specific changes and predict intercellular communication in the mouse aorta in response to 

varying diet conditions. The lack of a comprehensive understanding of the connection between 

genetic and environmental factors that together lead to CAD onset requires further insight, 

particularly at a single-cell resolution to account for cell heterogeneity and differential gene 

expression. Single-cell RNA-sequencing, a cutting-edge throughput analysis, allows for 

transcriptional profiling of individual cells. Specifically, we aimed to uncover cell type-specific 

pathways altered in the aorta of the low-density lipoprotein receptor knockout (Ldlr-/-) mouse 

model of atherosclerosis with differing diet conditions that are known to promote CAD, including 

chow, high-cholesterol, and high-cholesterol with trimethylamine-N-oxide (TMAO). Additionally, 

we modeled intercellular interactions within the heterogeneous cell population to determine how 

ligands from one cell type may modulate downstream effectors in another to pinpoint key 

vascular cell types and regulators of CAD.  

 

2. Multiomics Systems Biology of Spontaneous Coronary Artery Dissection 
 
Introduction 
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Both recessive and dominant modes of inheritance have been implicated in SCAD as 5 

familial cases were identified in the Mayo Clinic SCAD Registry consisting of 412 patients22, but 

additional familial clustering of SCAD via pedigree studies are still needed23. SCAD pathogenic 

variants have been identified in several genes, including PKD1, COL3A1, SMAD3, TGFB2, 

LOX, MYLK, and YY1AP1, but these pathogenic variants only explained 14/384 cases in a 

cohort of SCAD survivors2. Additionally, PHACTR1/EDN1 on chromosome 6q24 was pinpointed 

as another genetic locus associated with SCAD24 and has been reported to confer risk for CAD 

and cervicocerebral artery dissection. However, there remains uncertainty in how genetic and 

molecular factors may interact and ultimately precipitate SCAD, and this gap certainly serves as 

a detriment in cultivating effective treatment plans for SCAD patients.  

Integrating data across multiomics domains to connect risk factors to pathogenic 

pathway perturbations has proven invaluable in fully leveraging big data to better understand 

complex diseases such as CAD25, T2D25, psoriasis26, and Alzheimer’s27, and to identify novel 

targets for effective preventative or therapeutic treatment. Therefore, multiomics integration to 

dissect the pathogenesis of additional complex diseases such as SCAD is warranted. The 

establishment of the omnigenic disease model28, in which genes interconnected in networks 

lead to complex diseases when perturbed, in conjunction with the multiomics systems biology 

discipline29, which models network perturbations in complex diseases, facilitates a 

comprehensive understanding of the contribution of genetic variants to disease onset. 

Additionally, the omnigenic disease model prioritizes key hub genes as central regulators that 

likely contribute more to pathway perturbations compared to other peripheral disease-

associated genes. Over the past decade, tissue-specific multiomics systems biology has 

emerged to resolve the omnigenic disease model and its multi-dimensional complexities by 

pinpointing key tissues, regulatory genes, pathways, networks, and cross-tissue interactions 

involved in pathophysiology29. We aimed to fully leverage multi-tissue multiomics human SCAD 
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data to produce tissue-specific networks that unravel the complexities of SCAD pathogenesis at 

various molecular levels and translate findings to perform drug repositioning. 

Drug repositioning, an approach that uses existing FDA-approved drugs for new 

indications, serves to address our current limitations of preventing SCAD, particularly since 

SCAD has no standardized treatment plan. Therapeutic drugs exert additional complex effects 

on surrounding pathways and tissues of the known therapeutic target, and therefore may have 

beneficial effects on additional diseases for which the drugs are not initially designed. Network-

based drug repositioning has the capacity to identify such hidden connections and therapeutic 

options. Pharmomics30 is a novel species- and tissue-specific network-based drug repositioning 

tool which is based on in vivo molecular studies of drugs. Pharmomics has been shown to 

outperform existing repositioning tools, such as CMap31 and LINCS L100032, which depend on 

in vitro cell line data. We aimed to use Pharmomics to couple the multiomics-informed SCAD 

networks with drug networks to determine therapeutic options that target top SCAD regulatory 

genes and provide drug therapies for treatment. Beyond network-based drug repositioning, we 

also employed traditional gene overlap-based repositioning via Pharmomics to assess direct 

overlap between existing drug gene signatures and our SCAD network genes. 

 

Methods 

Overall Study Design 

As illustrated in Figure 1, we queried curated SCAD human multiomics data (genetic, 

transcriptomic, and proteomic) to determine significantly enriched pathways and coexpression 

modules associated with SCAD. Canonical pathways were retrieved from various public 

repositories33,34,35 while coexpression modules were constructed using SCAD transcript and 

protein data. Subsequently, key hub genes or molecules were prioritized within regulatory gene 

or protein interaction networks, and drug repositioning was performed based on either network 

structures or direct overlap between drug gene signatures and gene inputs. In this study, GWAS 
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refers to the association between single nucleotide polymorphisms (SNPs) within the genomes 

of SCAD patients and healthy controls with disease status. We defined transcriptome-wide 

association studies (TWAS) as the analysis of differentially expressed genes in fibroblasts 

between SCAD patients and healthy volunteers. Here, protein-wide association studies (PWAS) 

were defined as the analysis of differentially expressed proteins in the plasma between SCAD 

patients and healthy volunteers. 

 

Multiomics Datasets 

The GWAS meta-analysis included participants of European ancestry from eight studies: 

DISCO-3C, SCAD-UK I, SCAD-UK II, Mayo Clinic, DEFINE-SCAD, CanSCAD/MGI, VCCRI I and 

VCCRI II. SCAD patients presented similar clinical characteristics, homogeneous diagnosis, and 

inclusion criteria (Tables 1-2). The overall sample size for the GWAS meta-analysis was 1,913 

SCAD patients and 9,292 controls. All studies were approved by national and/or institutional 

ethical review boards. The fibroblast transcriptome (n=50 SCAD vs n=29 controls) and plasma 

proteome (n=50 SCAD vs n=50 controls) data were collected exclusively from the SCAD UK 

studies. 

 

SNP to Gene Mapping Methods 

To map SNPs to potential target genes with changes in the expression levels or 

alternative splicing, tissue-specific expression quantitative trait loci (eQTL) and splicing 

quantitative trait loci (sQTL) were used, respectively. Human eQTLs and sQTLs were obtained 

from the Genotype-Tissue Expression (GTEx) project (version 8) 36 for tissues relevant to 

SCAD, including aorta, coronary artery, tibial artery, and cultured fibroblasts. SNPs were 

mapped to genes using tissue-specific eQTLs or sQTLs with a cutoff of 50kb distance. SNPs 

were also mapped to genes using protein quantitative trait loci (pQTLs) from Emilsson et al.37  
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Canonical Pathways and Data-Driven Coexpression Modules 

Canonical pathways were curated from public repositories, including the Kyoto 

Encyclopedia of Genes and Genomes (KEGG)33, Reactome34, and Biocarta35. Tissue-specific 

coexpression networks were constructed from SCAD fibroblast transcriptomic and plasma 

proteomic data, using two network approaches: Weighted Gene Co-expression Network 

Analysis (WGCNA)38 and Multiscale Embedded Gene Co-expression Network Analysis 

(MEGENA)39. WGCNA can identify biologically meaningful and relevant modules, but modules 

are larger in size, with some modules including thousands of genes; this may increase noise 

and decrease interpretability in downstream analyses. The second coexpression network 

construction method, MEGENA, can define smaller and more coherent modules that still remain 

biologically relevant, thereby overcoming a limitation of WGCNA. Both network methods were 

based on hierarchical clustering to assign co-regulated genes into the same coexpression 

module. Agglomerative hierarchical clustering is used in WGCNA, whereas divisive clustering is 

used in MEGENA. In WGCNA, 1 minus topological overlap matrix (TOM), hence dissTOM=1-

TOM, was used as the distance measure. TOM is based on the correlation score (edge weight) 

between two genes (nodes) but also considers the edge weights of common neighbors of these 

two nodes in the network. In MEGENA, a shortest path distance (SPD) measure was used. To 

create compact modules, a nested k-medoids clustering, which defines k-best clusters at each 

step that minimizes the SPD within each cluster, was used. Nested k-medoids clustering was 

run until no more compact child clusters could be defined. Subsequently, Gene Ontology (GO) 

was used to assign biologically meaningful functions to WGCNA or MEGENA coexpression 

modules. 

 

Marker Set Enrichment Analysis (MSEA) 

The MSEA component of the Mergeomics40,41 pipeline was used to integrate knowledge-

driven canonical pathways and data-driven coexpression modules with SCAD GWAS and 
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functional genomics (eQTLs, sQTLs, pQTLs), transcriptomics, or proteomics to reveal 

significant disease-related pathways. Before performing MSEA, the GWAS dataset was 

specifically corrected for linkage disequilibrium (LD) for SNPs, and a LD cutoff of r2<0.5 was 

applied to remove redundant SNPs. Pathways and coexpression modules were assessed for 

enrichment of disease associations using a Chi-square like statistic: , where n 

denotes the number of quantile, Oi and Ei denote the observed and expected counts of positive 

findings (i.e. signals above each quantile point), and κ is a stability parameter to reduce artifacts 

from low expected counts for small marker sets. Pathways and coexpression modules were 

considered significant if the Benjamini-Hochberg false discovery rate (FDR)< 0.05. Hence, 

through MSEA, multiomics data and various functional genomic data (QTLs, pathways, 

coexpression networks) were integrated to capture the tissue-specific causal processes related 

to the disease.  

 

Meta-MSEA 

Meta-MSEA was used to integrate the various levels of omics data for meta-analysis at 

the pathway and coexpression module level. Meta-MSEA conducts a meta-analysis across 

datasets to retrieve consistent pathways and coexpression modules. Pathway enrichment Z-

scores from each dataset are first estimated with MSEA (described above), and the meta p-

value is estimated by integrating individual Z-scores using the Stouffer’s method. 

 

Weighted Key Driver Analysis (wKDA) 

The second step of Mergeomics involves wKDA, which detects potential key drivers 

(KDs) of disease-associated pathways or coexpression modules based on the topology of 

Bayesian Networks (BNs), which include the causal and directed relationships between genes, 

based on genomic, transcriptomic, and proteomic data. We constructed BNs with an established 
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method, RIMBANet42,43,44,45, using genetic and transcriptome data from GTEx V8 aorta, 

coronary, and tibial arteries, cultured fibroblast, hybrid mouse diversity panel46,47 (HMDP) aorta, 

and the SCAD fibroblast transcriptome data. Protein-protein interaction (PPI) networks were 

curated from STRING48; network edges were ranked by their combined score, and the top 3% of 

edges were used. A KD is defined as a gene connected to a significantly larger number of 

disease-associated genes compared to the expected number for a randomly selected network 

gene within a given BN based on a Chi-square like statistic , where O and E represent the 

observed and expected ratios of genes from disease-associated gene sets in a hub subnetwork, 

and  is estimated using the hub degree Nk, disease gene set size Np, and the order of the 

full network N. Statistical significance of the disease-gene enriched KDs was estimated by 

permuting the network gene labels 10,000 times and estimating the P-value based on the null 

distribution. wKDA used Benjamini-Hochberg FDR<0.05 as the significance cutoff. Regulatory 

networks for a subset of KDs were visualized using Cytoscape49.  

 

Drug Repositioning Using Pharmomics 

For Pharmomics30, network-based drug repositioning was contingent on network 

similarities between drug signatures and disease genes. Similarities between two gene 

networks matched by tissue (e.g., a drug network vs. a disease network) were determined by a 

distance measure derived from the mean of shortest path lengths between a drug gene 

signature (A) and a disease signature (B) in a given Bayesian gene regulatory network. This 

distance measure was adapted from a previous study using protein interaction network50, where 

distance(B, A) = 	 !
‖#‖

∑ min b ∈ B	distance(b, a)$∈# . To obtain a null distribution for shortest path 

lengths, we randomly selected genes in the drug or disease network 1000 times and calculated 

a z-score based on the mean and standard error of the null distribution. We also used a 

standard gene overlap-based drug repositioning via Pharmomics by assessing the direct 
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overlap between drug gene signatures and input genes. The overlap Jaccard score was defined 

as 𝐽(𝐴, 𝐵) = 	 |'∩)|
|'∪)|

. Predicted drugs were considered significant if p < 0.05. 

 

Results 

Biological Pathways and Coexpression Modules Associated with SCAD GWAS 

SCAD GWAS signals were mapped to their corresponding genes via relevant 

vasculature eQTLs and sQTLs and were subsequently tested for disease enrichment against 

1,840 curated canonical pathways and 23,196 coexpression modules constructed from SCAD 

transcriptome and proteome data. Queried pathways and coexpression modules were 

considered significantly enriched if FDR<5%, and significant pathways and coexpression 

modules were merged into 73 nonoverlapping supersets. Significant pathways and 

coexpression modules from GWAS with biologically relevant annotations are shown in Table 3. 

SCAD GWAS signals were also mapped to their corresponding proteins via pQTLs, but no 

significant pathways or coexpression modules were uncovered. 

 Top significant gene sets associated with SCAD based on GWAS summary statistics 

included the positive control gene set for SCAD and positive control gene set for coronary heart 

disease, both curated via the online GWAS catalog51. SCAD and CAD patients often have 

contrasting phenotypes, and observational studies in SCAD have accounted for a low frequency 

of coincidental atherosclerotic CAD24. Further, as SCAD is nonatherosclerotic and spontaneous 

while CAD is characterized by atherosclerosis, it is possible shared genetic factors associated 

with both diseases may increase risk for one while serving as protective for the other. Therefore, 

the enrichment of both SCAD and CAD gene control sets supports the hypothesis that the 

genetic factors of these two cardiovascular diseases may converge in pathogenesis; however, 

further study into the direction of the genetic signal is warranted. For example, PHACTR1 

represents a top gene shared between these positive control gene sets and has been implicated 
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to confer risk for both SCAD and CAD24. Specifically, rs9349379, a common noncoding variant 

in the PHACTR1/EDN1 locus, has been estimated to contribute to an increased SCAD risk 

among carriers of the common rs9349379-A allele, but this risk allele for SCAD has proven to 

be the protective allele for CAD and acute myocardial infarction; rs9349379-G, the minor allele, 

associates with increased risk for CAD and acute myocardial infarction. This genetic variant at 

the PHACTR1 locus has been reported to lie in a putative enhancer region for the endothelin-1 

(ET-1) gene, EDN1. ET-1 is a potent vasoconstrictive peptide produced primarily by vascular 

endothelial cells and has been proposed to mediate various vascular diseases genetically linked 

to rs9349379 via vasoconstriction and endothelial proliferation52. The rs9349379-A allele, 

associated with increased SCAD risk, has been shown to correlate with decreased expression 

of plasma ET-1; this decrease in circulating vasoconstrictive ET-1 is consistent with the lack of 

atherosclerosis in SCAD patients. Estrogen has been proposed to downregulate the 

vasoconstrictive properties of ET-153, however further study into how sex hormones interact with 

risk factors to produce the sex specificity of SCAD is necessary.  

Another top module identified from MSEA based on SCAD GWAS was regulation of 

endothelial cell proliferation (ERI1, P3H1, APMAP, SSR4, PRDX4). SCAD was initially 

proposed to occur via an “outside-in” endothelial-intimal disruption in which blood enters the 

sub-intimal space. However, recently an alternative “inside-out” hypothesis in which the primary 

event for SCAD is a de novo intramural bleed leading to intimal disruption has been supported, 

as there was no evidence of endothelial/intimal injury while examining SCAD coronary 

histopathology54. Endothelial cells may remain intact, but our results indicate that the 

proliferation of this cell type is involved in SCAD as evidenced by the enrichment of the 

endothelial cell regulation coexpression module. It is plausible that the technology to examine 

the endothelial monolayer lining the lumen is currently lacking as immunohistochemistry to stain 

for mature endothelial markers (CD31, PECAM1) is insufficient in studying dynamic changes 
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and proliferation of this cell monolayer as a whole in SCAD. Additional studies utilizing real-time 

tracking tools to investigate the contrasting hypotheses about SCAD etiology are warranted. 

 The vascular extracellular matrix (ECM) provides structural and mechanical properties 

necessary for vessel function as well as signals that stabilize vascular cell phenotypes. Various 

vascular ECM molecules interact with vascular cell types to regulate gene expression55. 

Extracellular structure organization, assembly of collagen fibrils, integrin signaling, and 

glycosaminoglycan metabolism all represent ECM-related pathways and modules significantly 

associated with SCAD GWAS. Estrogen has been implicated in increasing the release of matrix 

metalloproteinases56, which can result in degradation of ECM proteins and impaired structural 

integrity of the vessel wall, and this function of estrogen aligns with the predominantly female 

population impacted by SCAD. At the 1q21.3 locus, ECM1, ADAMTSL4, and C1orf54 have 

been implicated in SCAD susceptibility, and these three genes represent top genes with 

stronger SCAD GWAS associations in the extracellular structure organization, 

glycosaminoglycan metabolism, and focal adhesion pathways and modules. ECM1 encodes a 

glycoprotein that is secreted to interact with several ECM proteins involved in angiogenesis 

induced by endothelial cell proliferation1. ADAMTSL4 encodes a secreted glycoprotein localized 

to the ECM that may contribute to cell-cell or cell-ECM adhesion1. C1orf54 encodes a protein of 

unknown function but has been previously reported to be upregulated in a rabbit model of 

carotid artery aneurysms1. Also involved in the ECM is collagen, the main structural protein of 

the ECM that provides tensile strength, regulates cell adhesion, and supports cell migration and 

tissue development57. COL4A1, a top collagen gene within the assembly of collagen fibrils 

pathway, has a rare disruptive variant associated with SCAD58. Therefore, defects in ECM 

integrity and cell-cell adhesion may affect the vascular structure and contribute to SCAD 

development. 

 Mechanisms related to vascular injury, such as complement and coagulation cascades, 

intrinsic prothrombin activation pathway, fibrin clot clotting cascade, and acute myocardial 
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infarction, were also identified as significantly enriched pathways based on SCAD GWAS. The 

fibrin clot clotting cascade occurs immediately following vascular injury to minimize blood as 

enzymatic activations and protein conformational changes convert fibrinogen to fibrin and 

activate platelets59. The intrinsic prothrombin activation pathway is one mechanism in which 

interaction of exposed collagen in the injured vessel initiates activation of Factor XII that 

ultimately results in thrombin generation and blood clot60. The complement system is described 

as a proteolytic cascade in blood plasma and mediator of innate immunity, which is related to 

the coagulation cascade because protease-activated receptors that are activated by thrombin 

function as a mediator of innate immunity33. It is plausible that the coagulation pathway 

activation or inflammatory cytokine effects may lead to hematoma and subsequent coronary 

dissection61, thereby supporting the enrichment of the complement and coagulation cascade in 

SCAD.  

 Curated gene sets for both low density lipoprotein (LDL) cholesterol and high-density 

lipoprotein (HDL) cholesterol also showed significant enrichment for SCAD GWAS association. 

In a case-control study involving young (≤55 years) female patients, SCAD patients displayed 

lower levels of LDL cholesterol and of total cholesterol compared to CAD patients62. 

Hypercholesterolemia, in which increased levels of LDL cholesterol circulate in the blood, 

serves as a risk factor for CAD and promotes atherosclerosis. Considering again the contrasting 

natures of SCAD and CAD, the level of circulating LDL cholesterol has proven to be another 

physiological difference between diseases, though further study is warranted to determine 

whether LDL or HDL cholesterol holds a significant involvement in SCAD. At the 12q13.3 locus, 

the rs11172113-T allele, localized to the first intron of LRP1 which was identified as a top gene 

in the HDL cholesterol gene set, was observed to have higher prevalence among SCAD 

samples1,3. LRP1 is proposed to function in a variety of physiological functions, including focal 

adhesion disassembly and reorganization, cellular uptake of lipoproteins, reverse cholesterol 

transport, and vascular wall integrity63. Additionally, rs11172113-T and rs11172113-C serve as 
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risk alleles for SCAD and CAD, respectively, which further supports the dichotomy of opposing 

risk alleles between the two cardiovascular diseases. Disrupting Lrp1 in vascular smooth 

muscle cells in mice resulted in increased susceptibility to atherosclerosis and decreased 

vascular wall integrity64. 

 

Biological Pathways and Coexpression Modules Associated with SCAD TWAS 

 SCAD transcriptomic data was likewise queried against canonical pathways and 

coexpression modules to determine gene sets enriched in the disease state, as shown in Table 

4. Significant pathways and coexpression modules at the transcript level were merged into 207 

nonoverlapping supersets. Pathways and modules enriched at the transcript level that shared 

similar annotation terms with GWAS pathways and modules included ECM-related pathways, 

mRNA metabolism, platelet activation and aggregation, cholesterol biosynthesis, the 

tricarboxylic acid (TCA) cycle, and the insulin signaling pathway. Various immune pathways and 

coexpression modules were also implicated at the transcript level, including regulation and 

activation of nuclear factor kappa B (NFkB), cross presentation and processing of antigens, 

interleukin and cytokine signaling, and cell apoptosis. 

 

Biological Pathways and Coexpression Modules Associated with SCAD PWAS 

We further queried SCAD protein data against canonical and coexpression modules, 

and those significantly enriched are listed in Table 5. Significant pathways and coexpression 

modules at the protein level included adaptive immune system, amino acid metabolism, 

complement and coagulation cascades, and regulation of the mitotic cell cycle.    

 

Biological Pathways and Coexpression Modules Associated with SCAD GWAS and TWAS in a 

Meta-Analysis 
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We additionally performed meta-MSEA to determine shared significant canonical 

pathways and coexpression modules between the omics levels. Although PWAS did not share 

significant pathways and modules with the other data types, various significant pathways and 

modules were shared between GWAS and TWAS (Table 6). The Wnt signaling pathway, an 

integral pathway involved in cell fate determination, migration, and polarity as well as neural 

patterning and organogenesis65, was identified as a shared annotated coexpression module 

between GWAS and TWAS. The Wnt signaling pathway was uniquely identified by our pathway 

analysis and has not yet been linked to SCAD previously. Wnt signaling is vital to heart 

development, patterning, and adult homeostasis and adaptation66. Also, a coexpression module 

derived from SCAD transcriptome data and annotated as neurotransmitter secretion showed 

significance across GWAS and TWAS. Migraines have been associated with SCAD 

presentation, and one hypothesis for the etiology of migraine has been the genetic variants for 

receptors and neurotransmitters associated with adrenergic, GABAergic, and nitroxidergic 

nerves67. Additional significant coexpression modules shared between GWAS and TWAS were 

annotated as regulation of endothelial cell proliferation and terms relating to the formation of 

blood clot, including the fibrin clot clotting cascade and the extrinsic pathway.  

 

Key Driver Genes and Proteins Within SCAD Networks 

After identifying the significant pathways and coexpression modules associated with 

SCAD, we next modeled multi-tissue gene regulatory Bayesian networks (BNs) and protein-

protein interaction (PPI) networks to pinpoint key regulators, or key drivers (KDs), central within 

the disease networks. For gene regulatory networks based on significantly enriched SCAD 

GWAS and TWAS gene sets, BNs informed by GTEx aorta, coronary, and tibial arteries, 

cultured human fibroblast, mouse aorta, and the SCAD fibroblast transcriptome data were used. 

We queried these cross-tissue BNs using the 73 nonoverlapping pathways and modules which 

comprised 5,678 genes based on SCAD GWAS analysis to identify KDs. The KDs were 
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involved in anatomical structure development and morphogenesis (CADM1, HOXB9, ATRNL1, 

AC091814.3, NTF3, ABCC9, COL18A1, IGF1, RP11-357H14.17, GPR4, APCDD1, RCAN2), 

assembly of collagen fibrils (COL1A1, COL6A1, COL6A3, ADAMTS2, COL5A1), focal adhesion 

(COL3A1, COL1A1, COL6A3, ACTN1, MYL9), glycosaminoglycan metabolism (ADAMTS15), 

Wnt pathway and intercellular signaling (Col18A1), and amino acid phosphorylation and 

intracellular signaling cascade (HSPA5). The top five KDs of each pathway or module and their 

surrounding subnetwork genes are illustrated in Figure 2.  

We next queried the cross-tissue BNs using the 207 significant nonoverlapping 

pathways and modules which comprised 12,409 genes based on SCAD TWAS analysis. Top 

KDs were involved in such pathways as anatomical structure development (CADM1, HOXB9, 

RP11-357H14.17, NTF3, IGF1, ABCC9), translation regulation (HOXB9), membrane 

organization and ligand binding and activation (EDN1), and Nerve Growth Factor (NGF) 

signaling (SEC31B). The top five KDs of each pathway or module and their surrounding 

subnetwork genes are depicted in Figure 3. The PHACTR1/EDN1 locus was previously 

identified as a genetic locus associated with SCAD24, and EDN1 was pinpointed as a KD in our 

TWAS network modeling. As discussed above, EDN1 encodes vasoconstrictive peptide ET-1 

which has decreased expression in patients with the SCAD EDN1 risk allele52.  

Shared KDs between SCAD GWAS and TWAS data include genes involved in 

anatomical structure development, including CADM1, HOXB9, RP11-357H14.17, NTF3, and 

IGF1. HOXB9 has been proposed as a positive regulator of inflammatory molecule expression 

in aorta endothelial cells and a regulatory of endothelial cell turnover68. Low wall shear stress in 

the aorta was shown to activate a BMP4-HOXB9-TNF signaling pathway to initiate focal arterial 

inflammation68, highlighting the contribution of HOXB9 to vascular pathophysiology. HOXB9 has 

been shown to be transcriptionally regulated by estrogen, supporting the female-biased nature 

of SCAD69. CADM1 has been shown to be involved in cell-cell adhesion70,71 and immunity72. In 

humans, CADM1 SNP variants have been associated with vascular disease and dysfunction.  
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 PPI networks were queried using the seven nonoverlapping modules comprised of 940 

genes based on the SCAD PWAS analysis. The hub proteins central to the network, C4A and 

SERPING1, were both relevant to the complement and coagulation cascade and individually 

related to formation of tubulin folding intermediates and platelet activation signaling and 

aggregation, respectively (Figure 4). As discussed above, mechanisms leading to thrombus 

formation contribute to SCAD onset, thereby supporting the role of complement protein C4A and 

SERPING1 in SCAD at the protein level.  

 Querying the combined gene BNs encompassing arterial and fibroblast tissue using the 

consistent significant pathways and coexpression modules across SCAD GWAS and TWAS in 

the meta-analysis, we identified COL18A1 as the top significant KD (Figure 5). COL18A1 was 

prioritized as a highly ranked gene in a rare variant collapsing analysis and proposed to be a 

credible candidate for SCAD based on function, expression, and mouse phenotype2. COL18A1 

is a basement membrane proteoglycan that functions in presenting the enzyme lipoprotein 

lipase, which breaks down triglycerides, to the luminal side of the vascular endothelium73. 

Col18a1-/- mice demonstrated hypertriglyceridemia from decreased lipoprotein lipase activity, 

and humans with homozygous deficiency of COL18A1 were observed to have higher blood 

triglyceride levels than controls74. Additionally, endostatin, a proteolytic fragment of COL18A1, 

inhibits endothelial proliferation and angiogenesis75, which may be a more relevant pathway 

through which COL18A1 is involved in SCAD onset. Further validation of this candidate gene is 

warranted as the impact of COL18A1 within SCAD is yet to be elucidated. 

 

Prioritized Therapeutic Options Pinpointed via Network-based Drug Repositioning 

 Network- and gene overlap-based drug repositioning via Pharmomics using SCAD 

networks informed by SCAD GWAS and TWAS was performed to reveal FDA-approved drugs 

that may be translated to SCAD treatment (Table 7-8). Top candidate drugs were filtered for 

function within the human cardiovascular system as curated by the Pharmomics tool30 to match 
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the informative and relevant tissuses for SCAD. It is important to note that while these drug 

repositioning techniques propose therapeutics relating to SCAD, the direction by which these 

proposed drugs impact SCAD must be studied further through experimental testing.  

SCAD GWAS network-based repositioning (Table 7) identified medroxyprogesterone, 

etonogestrel, and contraceptive as top significant candidates for SCAD treatment. 

Medroxyprogesterone is a progestin hormone capable of treating menstruation problems 

caused by a hormone imbalance and can prevent pregnancy in an injectable form76. 

Etonogestrel is an artificial active metabolite of the synthetic progestin Desogestrel and prevents 

the release of luteinizing hormone which prevents ovulation, and etonogestrel subdermal 

implants are considered a clinically effective and safe contraceptive method77. Contraceptive is 

the general term for mechanisms that prevent pregnancy, including medications, devices, and 

surgical procedures. The direction by which contraceptives and hormonal treatments affect 

SCAD must be elucidated as pregnancy hormone modulation, infertility treatments, 

postmenopausal hormonal therapy, and oral contraceptives can lead to a weakened arterial 

media5,6,78,79,80,81,82,83.  

SCAD TWAS network-based repositioning (Table 7) likewise pinpointed 

medroxyprogesterone and etonogestrel, highlighting the candidacy of these sex-specific and 

hormone-based drugs on the female-biased disease. The repositioning analysis further 

identified rofecoxib, an anti-inflammatory cyclooxygenase-2 (COX-2) inhibitor used to treat 

conditions like rheumatoid arthritis and migraine, as a significant treatment candidate. COX-2 is 

predominantly localized in the brain, renal, and endothelial cells and is significantly upregulated 

in various inflammatory infections, and rofecoxib inhibits the COX-2 enzyme to contain 

inflammation84. Rofecoxib was found to be an effective and overall well-tolerated acute 

treatment of migraine85, a condition commonly impacting SCAD patients86. 

 

Prioritized Therapeutic Options Pinpointed via Gene Overlap-based Drug Repositioning 
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We next used the traditional gene-overlap based matching between SCAD networks and 

drug signatures to identify drug candidates. Using SCAD network informed by GWAS, gene 

overlap-based drug repositioning (Table 8) also identified hormone-modulating drugs, such as 

contraceptive, medroxyprogesterone, progesterone receptor agonist, and etonogestrel as top 

significant therapeutic candidates for SCAD. Additionally, pain relief (analgesic), anti-

inflammatory (COX-2 inhibitor, celecoxib), and proton pump inhibitor (omeprazole, anti-

ulcerative) drugs showed significant gene overlap with SCAD GWAS network genes.  

Using SCAD network informed by TWAS, gene overlap-based drug repositioning (Table 

8) uncovered hormone (medroxyprogesterone, progesterone receptor agonist, contraceptive), 

proton pump inhibitor (omeprazole, anti-ulcerative, antisecretory), and clotting promotor and 

antihemorrhagic (thrombin, blood coagulation factor, hemostatic) drugs.  

Across network and gene-overlap based drug repositioning analysis, hormones and anti-

inflammatory medication are consistent findings. The gene-overlap based analysis also 

revealed proton pump inhibitors, which irreversibly inhibit the hydrogen/potassium pump (H+/K+ 

ATPase pump) in gastric parietal cells, thereby reducing gastric acid secretion87. A significant 

increase in morbidity due to cardiovascular disease and all-cause mortality was observed in 

patients using protein pump inhibitors88. Long-term use of proton pump inhibitors has been 

associated with cardiac dysfunction and myocardial infarction as this drug class may impair 

endothelial function and accelerate endothelial aging89, so it is plausible proton pump inhibitor 

use facilitates SCAD precipitation. Additional experimental validation studies are needed to 

confirm whether these drugs promote or mitigate SCAD. 

 

Discussion 

In this multiomics integrative study of SCAD leveraging GWAS, transcriptome, and 

proteome data and tissue-specific functional genomics and networks, we identified various 

canonical pathways and coexpression modules enriched in the SCAD disease state. These 
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include immune function, extracellular matrix organization and integrity, and blood clot 

mechanisms. Significant pathways or modules were used to query vascular gene regulatory 

BNs and PPI networks to identify KDs and central proteins, respectively. Separate GWAS and 

TWAS analyses both identified CADM1, HOXB9, RP11-357H14.17, NTF3, and IGF1 as KDs 

involved in the anatomical structure development pathway. PWAS analysis highlighted 

SERPING1 and C4A as KDs in the complement and coagulation cascade. In the GWAS/TWAS 

meta-analysis, COL18A1 was pinpointed as the top significant KD across these two omics 

layers. Lastly, network- and overlap-based drug repositioning revealed various sex-specific 

treatment options for SCAD, including medroxyprogesterone, etonogestrel, and estradiol.  

The numerous significant pathways and modules identified at specific omics layer or 

shared across omics levels indicate various possible mechanisms of SCAD pathogenesis that 

may cooperate to ultimately result in disease manifestation. Current hypotheses for SCAD 

etiology include i) an endothelial-intimal disruption with blood entering the sub-intimal space 

(“outside-in”)90, ii) a de novo intramural bleed in which increased pressure from the hematoma 

causes intimal disruption (“inside-out”)24, and iii) injury to the vascular endothelium from 

eosinophilic cytokines54. Our data-driven pathway enrichment results identified regulation of 

endothelial proliferation at the GWAS, TWAS, and GWAS/TWAS meta-analysis levels, 

emphasizing endothelial proliferation rather than injury or disruption in SCAD onset. 

Additionally, blood clotting-related pathways and the numerous immune-related pathways and 

modules identified at all omics levels support the immune and hematoma involvement. Although 

the traditional “outside-in” and novel “inside-out” proposals provide contrasting etiologies for 

SCAD, immune function, potentially by mechanism of eosinophils, is certainly involved 

regardless of the cause and origin of the thrombus. 

Immune function is closely involved in SCAD pathogenesis and disease manifestation, 

and coincidental cases of various autoimmune and inflammatory conditions, such as rheumatoid 

arthritis, Crohn’s disease, and Kawasaki disease, have been presented in SCAD patients. Also, 
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as myocardial infarction is one manifestation of SCAD, various resident immune cells, such as 

macrophages, mast cells, and innate lymphoid cells, coordinate to minimize the damaged 

myocardial infarction region by removing damaged cells; additionally, monocytes and 

neutrophils are generated and quickly recruited to the injury site. The identification of immune-

related pathways and coexpression modules at the GWAS, transcriptome, and proteome levels 

establishes the integral role of the immune system in SCAD. Specifically, at the GWAS level, 

the mitogen-activated protein kinase (MAPK) pathway was significantly enriched. MAPKs are 

involved in all aspects of immune response, ranging from initiation of innate immunity and 

adaptive immunity to cell death91, and they regulate the production of immunomodulatory 

cytokines which subsequently promote Th1 and Th2 responses92. At the transcriptome level, 

various aspects of the immune system were implicated by the significant pathways and 

coexpression modules; namely, regulation and activation of nuclear factor kappa B (NFkB), 

cross presentation and processing of antigens, interleukin and cytokine signaling, and cell 

apoptosis. NFkB is considered an integral mediator of inflammatory responses by inducing the 

expression of numerous pro-inflammatory genes and by contributing to the regulation of innate 

immune cells and T cells93. Interleukin and cytokine signaling also contributes to inflammatory 

response, and an inflammation mechanism has previously been proposed for SCAD: 

inflammatory mediators promote the release of cytotoxic products from eosinophils which cause 

injury to the vascular endothelium94. Apoptosis, or programmed cell death, is critical in immune 

system homeostasis through the deletion of self-recognizing immune cells and controlled 

cytotoxic killing95. Lastly, at the proteome level, the coexpression module annotated with 

adaptive immune system, endoplasmic reticulum phagosome pathway, and neurotrophin 

signaling was significantly enriched for SCAD. While immune dysfunction has been proposed 

for SCAD pathogenesis, our pathway enrichment analyses certainly revealed novel, specific 

immune mechanisms reflected in the various omics datasets associated with SCAD.  
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The sex specificity of SCAD was highlighted at every stage of analysis and across omics 

datasets. In pathway and coexpression module enrichment, the female hormone estrogen has 

been shown to modulate ET-1, involved in the PHACTR1/EDN1 locus (SCAD positive control 

gene set), and also contributes to the release of matrix metalloproteases which can impair 

vessel wall integrity (ECM-related terms). HOXB9, a KD for the anatomical structure 

development and morphogenesis subnetwork identified by both GWAS and TWAS network 

analysis, is transcriptionally regulated by estrogen. Finally, network- and gene overlap-based 

drug repositioning for GWAS and TWAS prioritized medroxyprogesterone, etonogestrel, and 

contraceptive; these treatments all correspond to female hormone levels and are currently 

implemented to treat female conditions, such as menstruation and pregnancy prevention and 

menopausal side effects. If additional clinical characteristics pertaining to contraceptive usage 

within the GWAS or TWAS cohorts become available, we can investigate the association of 

contraceptive usage and type with SCAD manifestation in future studies.  

 To further dissect the multiomics of SCAD, we plan to query metabolites collected from 

the UK cohort of SCAD patients and healthy controls. Metabolomics refers to the low molecular 

weight compounds serving as substrates, intermediates, or products of metabolic reactions that 

participate in diverse molecular and cellular functions ranging from epigenetic regulation of gene 

expression to protein modification96. Adding this omics layer to our SCAD study will further 

facilitate the development of a holistic understanding of SCAD as each omics layer solely 

reflects a partial, fragmented perspective of disease development.  

 In summary, we analyzed and integrated multiomics SCAD datasets to identify disease-

associated pathways and modules, such as immune-, ECM-, and clotting-related terms, and 

modeled vascular gene regulatory and PPI networks to pinpoint hub genes and proteins, 

respectively. We highlighted the sex specificity of SCAD development in the network key drivers 

and the predicted drugs from our network- and overlap-based repositioning approaches. 
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Experimental validation of the key genes, pathways, and drugs identified in this study is 

warranted. 

 

3. Single-Cell Level Understanding of Dietary Risk Factors on an Atherosclerotic Mouse 
Model 
 
Introduction 

Hypercholesteremia, in which circulating LDL or total cholesterol level is elevated, 

serves as a major risk factor for CAD. Familial hypercholesterolemia (FH) is an autosomal 

inheritance primarily attributed to mutations in the low-density lipoprotein receptor (LDLR) gene 

localized to chromosome 1912. The LDL receptor, located on the cell surface, mediates removal 

of LDL particles from plasma via endocytosis. However, in the development of atherosclerotic 

lesions, a dysfunctional vessel wall endothelium allows for LDL to enter the vessel wall, become 

oxidized, and initiate monocyte recruitment. At the site of injury, monocytes differentiate into 

macrophages which uptake lipids and become lipid-laden and “foamy”, smooth muscle cells 

(SMCs) de-differentiate and proliferate, and eventually the atherosclerotic plaque expands with 

cholesterol deposits and toxic lipids resulting in cellular death. A fibrous cap comprised of 

migrated SMCs embedded in dense extracellular matrix overlies the necrotic core and serves to 

protect from plaque rupture and myocardial infarction. If the plaque ruptures, a thrombus forms 

and may occlude the vessel, potentially leading to permanent myocardial tissue damage or 

fatality.  

In addition to the genetic basis of hypercholesterolemia through mutation of LDLR and 

other related genes, there are various environmental contributions to atherogenesis, including 

high intake of cholesterol diets and of dietary nutrients that metabolize to trimethylamine N-

oxide (TMAO). Microbial enzymes act on choline, phosphatidylcholine, and L-carnitine from 

diets high in red meat and full-fat dairy products to generate trimethylamine (TMA), and TMA is 

metabolized into TMAO by hepatic flavin monooxygenases (FMO3)97. TMAO is typically cleared 
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by the kidney, however circulating TMAO is associated with promotion of atherosclerosis and 

increased risk for CAD19. In mice, dietary supplementation with TMAO, carnitine, or choline 

reduced reverse cholesterol transport, and chronic dietary L-carnitine supplementation markedly 

enhanced TMA and TMAO synthesis, increasing atherosclerosis97.  However, how TMAO 

modifies atherosclerosis in the vasculature in the presence of high cholesterol is poorly 

understood.  

Therefore, we modeled in vivo atherosclerosis in the Ldlr-/- mouse model and carried out 

single-cell RNA-sequencing (scRNAseq) analysis of the aorta to identify cell type-specific 

changes in gene expression and top representative functional pathways under chow, high-

cholesterol (HC), and high-cholesterol with added TMAO (HC+TMAO) dietary conditions. We 

further predicted intercellular communications across aortic cell populations to identify key cell 

types and genes mediating cell-cell interactions important for atherogenesis.  

 

Methods 

Animals and Dietary Treatment 

Female Ldlr-/- mice were divided into 3 treatment groups: (1) chow diet group (chow), 

age of mice: 14 weeks, (2) Cholesterol (0.5%) diet for 3 months (HC), age of mice: 22 weeks, 

and (3) Cholesterol (0.5%) + 0.125% TMAO diet for 3 months (HC+TMAO), age of mice: 22 

weeks.  

Aorta Dissection and Single Cell Dissociation 

For each treatment group, we had 3 aorta pools with n=2 mice/pool, for a total of 9 

independent aorta samples. Aorta samples from the above groups were collected from the 

lesion prone areas of aorta, including ascending aorta, aortic arch, and thoracic aorta. Aorta cell 

dissociation protocol was based on the Wirka et al. study98. Briefly, the aorta samples were cut 

into < 1 mm pieces and incubated in 1 ml of Hanks’ Balanced Salt solution containing 2 units of 

liberase and 24 units of elastase at 37 oC for 1 hour. Fetal bovine serum (10% of total volume) 
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was then added to inactivate the enzymes. The digested cells were then passed through a 70 

µm cell strainer and rinsed with 4 ml PBS. After centrifugation at 300g, 4oC, for 10 min, the 

supernatant was discarded. The cells were then resuspended in 4 ml PBS/0.04% BSA, spun 

down again, and resuspended in 100 µl PBS/0.04% BSA.  

 

scRNAseq Library Construction and Sequencing 

Approximately 16,000 cells pooled from two aortas were used for each single cell library 

construction. In total, 9 libraries (3 libraries/diet group) were made using the 10x Genomics 

Chromium Next GEM Single Cell 3' GEM, Library & Gel Bead Kit v3.1. The 9 libraries were then 

sequenced in one lane of NovaSeq S4 2x100bp at 2.4 billion reads. 

 

scRNAseq Data Pre-processing and Quality Control 

Sequencing reads were aligned to the mus musculus genome assembly GRCm38 

(mm10), and gene counts were calculated using CellRanger software (v 6.0.1) (10X Genomics). 

Filtered feature-barcode matrices from each library were loaded into Seurat99 (v 4.1.1) and 

combined to create three gene expression matrices corresponding to chow, HC, and 

HC+TMAO. Single cells were selected based on a threshold of between 200 and 5000 genes 

expressed and between 500 and 20,000 unique molecular identifiers (UMIs) counted. Single 

cells were further filtered with a mitochondrial gene expression cutoff of <25% and with a 

hemoglobin gene expression cutoff of <0.01%. Transcript counts of each gene were normalized 

by the total counts for that cell, and the values were multiplied by 10,000 and log transformed 

(LogNormalize).  

 

Doublet Prediction 
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 Doublets, droplets filled with two or more cells in scRNAseq, are technical artifacts that 

limit cell throughput and confound the analysis by leading to spurious biological conclusions. 

Therefore, DoubletFinder100 was implemented to predict doublets according to each real single 

cell’s proximity in gene expression space to artificial doublets created by averaging the 

transcriptional profile of randomly chosen cell pairs. DoubletFinder first simulates artificial 

doublets from existing scRNAseq data, and then merge and preprocess real and artificial data 

using the Seurat pipeline across the original and merged datasets. Subsequently, DoubletFinder 

performs dimensionality reduction using principal component analysis (PCA) and detects the k 

nearest neighbors for every cell in the principal component (PC) space. With this calculation, 

each cell’s proportion of artificial nearest neighbors (pANN) is computed, and DoubletFinder 

relies upon the assumption that real and artificial doublets co-localize in PC space to predict real 

doublets as cells with the top n pANN values (n = total number of expected doublets).  

 

Cell Clustering and Cell Type Annotation and Distribution 

Using Seurat, cells were projected onto two dimensions using T-distributed Stochastic 

Neighbor Embedding (t-SNE) or Uniform Manifold Approximation and Projection (UMAP) and 

assigned into clusters using Louvain clustering. Seurat’s FindAllMarkers, which employs a non-

parametric Wilcoxon rank sum test that is run within each sample and calculates a meta p-value 

across all samples to assess the significance of each gene’s specific membership to a cluster, 

was used to determine the cluster-specific marker genes consistent across samples. Genes 

tested were required to be expressed in at least 10% of the cells in one cluster. These markers 

were manually evaluated for convergence on known cell type marker genes and used to identify 

cell types. Cell clusters labeled as “unknown” displayed a combination of markers from known 

cell types. The cell type proportions for all cell types within a diet treatment group was 

calculated and significant differences between the same cell type across dietary conditions were 

evaluated by one-way ANOVA and Tukey’s Honest Significant Difference (HSD) post-hoc test. 
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Differential Gene Expression Analysis and Pathway Enrichment 

The FindMarkers function from Seurat, which similarly to the FindAllMarkers function 

performs a non-parametric Wilcoxon rank sum test, was used to compare gene expression 

between dietary treatment groups to identify differentially expressed genes (DEGs). Genes 

tested were expressed in at least 10% of the single cells in one cell cluster. Pathway enrichment 

analysis, utilizing pathways from KEGG33, BioCarta35, and Reactome34, and Hallmark101 gene 

sets from the Molecular Signatures Database (MSigDB), was performed using DEGs with 

adjusted p-value<0.05 and log fold-change (logFC) >0.1. However, for clusters that had 

insufficient number of DEGs at adjusted p-value<0.05 to identify meaningful significant 

pathways, a DEGs with a threshold of unadjusted p-value<0.01 were inputted to predict 

suggestive pathways for these cell types102.  Significant enrichment of pathways was based on a 

hypergeometric test followed by multiple testing correction with the Benjamini-Hochberg 

method. logFC of each pathway was calculated by summing all the individual pathway member 

gene logFC values. 

 

Cell Lineage Trajectory Analysis 

Slingshot103 was used to perform trajectory analysis on smooth muscle cell (SMC) 

subpopulations and on macrophage subtypes separately in the UMAP space. To construct the 

global lineage structure for trajectory analysis, Slingshot uses a cluster-based minimum 

spanning tree and fits smooth branching curves to the predicted lineages based on 

simultaneous principal curves. The designated starting cell cluster guided the trajectory 

prediction via a semi-supervised approach.  

 

Intercellular Interaction Analysis 
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Nichenet104 predicts ligand-target connections between interacting cell types by 

combining cell expression data with prior knowledge on signaling and gene regulatory networks. 

In addition to predicting intercellular communications, Nichenet also predicts how ligands 

influence target gene expression in receiver cell types. Curated biological knowledge about 

ligand-target signaling paths, signal transduction, and gene regulatory interactions were 

integrated into weighted networks which were optimized to weight each data source to 

maximize the accuracy of ligand-target predictions. Regulatory potential scores between all 

pairs of ligands and target genes were calculated, and a pair was given a high regulatory 

potential score if regulators of the target gene were downstream of the signaling network of the 

ligand. The Pearson correlation coefficient between prior regulatory potential scores and target 

genes was used to indicate the ability of each ligand to predict target genes; better predictive 

ligands were ranked higher. In our study, the modulated SMC and endothelial cell types were 

designated as the “receiver/target” cell populations, and all the known cell types, including 

modulated SMC and endothelial, served as the “sender” populations to infer which cell types 

and genes regulate SMCs and endothelial cells. 

 

Results 

Cell Type Identification in the Ldlr-/- Aorta 

 A single-cell digital gene expression matrix across the 9 aorta samples was generated 

using Seurat and projected onto two dimensions using UMAP to define cell clusters. We 

detected ten clusters containing cells sharing similar gene expression patterns (Figure 5a). 

Known aortic cell types recovered from the Ldlr-/- mouse models included SMC, modulated 

SMC, fibroblast, macrophage, pericyte, and endothelial cells. Top cell type-specific markers are 

illustrated in Figure 5b-e. Previously known cell markers, such as Acta2 for SMC105, Spp1 for 

modulated SMC98, Notch3 for pericyte98, Egfl7 for endothelial106, Cd14 for macrophage107, and 

Pi16 for fibroblast108, demonstrated cluster-specific expression patterns, highlighting the ability 
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of our data-driven method to retrieve known cell types. In addition to these known cell types, we 

also found four cell clusters which expressed a combination of known aortic cell type markers 

and were designated “unknown 1-4”. We excluded the possibility of these unknown clusters 

being doublets based on the doubletFinder analysis. Therefore, these unknown clusters were 

included in downstream analyses. Because the designated unknown clusters expressed 

combinations of known cell type markers from SMC, fibroblast, and endothelial, their top 

markers proved to be less specific.   

 

Identification of Subtypes of Modulated SMC in the Ldlr-/- Aorta 

 Three types of modulated SMC have been proposed as a result of SMC phenotypic 

modulation during atherosclerosis98: (1) pro-inflammatory, dysfunctional macrophage-like cells 

that are characterized by upregulation of the known macrophage marker Lgals3109, (2) 

protective ECM-producing SMCs that may contribute to the fibrous cap that prevents plaque 

rupture110,111, and (3) a mesenchymal stem cell-like population of unknown significance109. We 

subclustered the modulated SMC cell type and produced three distinct subclusters, entitled 

Modulated SMC 0, 1, and 2 (Figure 6a-b). SMC phenotypic switching is associated with 

decreased expression of SMC markers, and therefore the majority of SMCs within 

atherosclerotic lesions cannot be identified using traditional SMC markers, but may rather 

express markers of macrophages (LGALS3, CD11b, CD68), myofibroblasts (ACTA2), and 

mesenchymal stem cells (SCA1)109,110. Our inspection of gene expression patterns of potential 

modulated SMC subtype markers for macrophage, myofibroblast, and mesenchymal stem cell 

did not produce clear patterns in our modulated SMC subpopulations. Unfortunately, a 

comprehensive resource detailing the markers specific to various types of phenotypically 

switched SMCs is lacking and the precise lineage of lesion cells remains unknown111.   

Wirka et al.98 hypothesized that SMC phenotypic modulation occurs along a single 

trajectory rather than separating into distinct lineages. They defined SMCs undergoing 
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phenotypic modulation as ‘fibromyocyte,’ a fibroblast-like cell derived from contractile SMCs with 

decreased SMC gene expression and increased protective properties at the fibrous cap; though 

similar to the myofibroblast characterization, the fibromyocyte term highlights the cell origin as 

smooth muscle myocytes rather than as fibroblast. Although fibromyocytes express the 

macrophage marker Lgals3, they otherwise lack expression of all other top macrophage 

markers and instead can be identified by the Lum gene, a fibroblast marker. In our three 

modulated SMC subclusters, we investigated the expression of fibromyocyte markers identified 

by Wirka et al. across diet conditions (Figure 6c). The expression patterns of the fibromyocyte 

markers in our modulated SMC clusters 1 and 2 closely aligned with those of the Wirka et al. 

fibromyocyte characterization. Namely, Cnn1 and Tagln showed decreased expression in 

modulated SMC clusters 1 and 2 across all diet conditions, whereas expression of Lgals3, Lum, 

Fn1, Tnfrsf11b, Col1a1 and Dcn was upregulated in modulated SMC clusters 1 and 2 in the HC 

and HC+TMAO diet conditions. We further performed pseudotime trajectory analysis to predict 

the lineage of SMC and modulated SMC single cells (Figure 6d). Originating from the SMC 

cluster, the trajectory extended to modulated SMC cluster 0 and subsequently bifurcated into 

modulated SMC clusters 1 and 2. As modulated SMC cluster 0 had relatively higher average 

expression of Cnn1 and Tagln (Figure 6c), it is possible that this cluster represents an earlier 

timepoint in the SMC phenotypic transition compared to clusters 1 and 2. Together, these data 

support the Wirka et al. proposal that SMC phenotypically transition along a single trajectory into 

fibromyocytes.  

We further illustrated the expression of top modulated SMC subcluster-specific markers 

in Figure 6e. Namely, Tcap served as a subcluster-specific marker for modulated SMC cluster 

0; Tcap was upregulated in the transcriptome of a high fiber diet from the Human Microbiome 

Project112 and is considered to serve a preventative role in various heart diseases, including 

hypertrophic cardiomyopathy and dilated cardiomyopathy113,114. Gas7, associated with metabolic 

traits like obesity in humans and mice115,116, was subcluster-specific in expression for modulated 
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SMC cluster 1. Specifically, male mice transgenic for the GAS7 human gene demonstrated 

significantly reduced body weight, triglycerides, and unesterified cholesterol as well as 

significantly increased HDL116. For modulated SMC cluster 2, Col11a2 was highly and 

specifically expressed. Col11a2 is an ECM gene involved in collagen biosynthesis and cross-

linking105 and may contribute to the protective fibrous cap of the atherosclerotic plaque. 

 

Identification of Subtypes of Macrophages in the Ldlr-/- Aorta 

 We likewise subclustered the macrophage cell type as undifferentiated macrophages 

(M0) undergo polarization to distinguish into M1-like and M2-like macrophages (Figure7a-b). 

“Classically activated” M1 macrophages within innate immunity occur in inflammatory 

environments and in response to tissue injury whereas “alternatively activated” M2 

macrophages are considered anti-inflammatory and involved in wound healing117. The 

expression of previously known M1 and M2 macrophages118,119 are illustrated in Figure 7c-d, 

confirming the reliability of our data-driven approach in distinguishing the differentiated M1 and 

M2 macrophage subtypes. Top macrophage subcluster markers for M0, M1, and M2 included 

Fermt2, Gngt2, and Cd163, respectively (Figure 7e). FERMT2 is a kindlin molecule regulating 

integrin function and activation and has been shown to be downregulated in atherosclerotic 

plaques and associated with SMC-rich plaque markers120. Gngt2 was found to be increased 

more than two-fold change in M1 and decreased more than two-fold change in M2 

macrophages118, thereby establishing Gngt2 as an M1 marker. Cd163 is a well-established M2 

macrophage marker, and CD163 is necessary for effective hemoglobin clearance after plaque 

hemorrhage121. 

 

Cell Proportion Changes between Dietary Conditions 

We further observed the cell type proportions at each diet condition to determine 

significant differences for particular cell types between chow, HC, and HC+TMAO (Figure 8a). 
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Given the cellular composition of the aorta, we expected SMCs (53.6% of all cells tested) and 

fibroblasts (18.6% of all cells tested) to compose the majority of the single cell population. Since 

modulated SMC are involved in atherosclerotic SMC phenotypic modulation, we anticipated the 

number of phenotypically modulated SMCs to be proportionally higher in the HC and HC+TMAO 

groups compared to the chow group, but there was only a significant difference in the proportion 

of modulated SMCs between HC (5.1% of HC single cells) and chow (0.03% of chow single 

cells).  

As we also subclustered the modulated SMC and macrophage cell types, we further 

examined differences in the proportional number of subcluster cells across diets (Figure 8b-c). 

There were no statistically significant differences in the proportions of modulated SMC 

subclusters across diet conditions (Figure 8b). However, modulated SMC subcluster 2 

consisted of 2.78% of the chow modulated SMC population, whereas this subcluster comprised 

23.8% and 13.7% of the modulated SMCs in HC and HC+TMAO, respectively, suggesting that 

modulated SMC subcluster 2 is more atherogenic.  

Because M1 macrophages function in an inflammatory environment, we expected the 

number of M1 macrophages to be proportionally high in the HC and HC+TMAO diets compared 

to chow. Indeed, the proportions of M1 macrophages in the HC (35.7%) and HC+TMAO 

(33.0%) conditions were significantly higher than that in chow (2.6%) (Figure 8c). 

 

Cell Type-specific DEGs and Perturbed Pathways Between Dietary Conditions 

 To determine cell type-specific genes and pathways that may contribute to 

atherogenesis and disease development, we identified differentially expressed genes (DEGs) 

between HC and chow, HC+TMAO and HC, and HC+TMAO and chow at FDR<0.05. We 

annotated DEGs with biological pathways curated from KEGG33, Reactome34, Biocarta35, and 

Gene Ontology122 databases to propose cell type-specific mechanisms affected by CAD risk 

diets.  
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Between HC and chow, we identified diverse pathways involved in atherogenesis, 

including smooth muscle contraction (SMC, Unknown 3), extracellular structure and collagen 

fibril organization (SMC, modulated SMC, fibroblast, Unknown 1, Unknown 4), complement 

cascade (fibroblast), regulation of cell proliferation and endothelial migration (endothelial), 

immune and inflammatory response (macrophage), respiratory electron transport (pericyte), and 

protein translation (Unknown 2, Unknown 3, Unknown 4) (Table 9).  

Comparing HC+TMAO and HC diets, regulation of cell proliferation (SMC), regulation of 

apoptosis and the apoptotic process (SMC, modulated SMC), vasculature development 

(endothelial), metabolism of mRNA and proteins (modulated SMC, endothelial, macrophage), 

focal adhesion and extracellular structure organization (Unknown 1), and protein translation 

(fibroblast, Unknown 2, Unknown 3, Unknown 4) were suggested as pathways affected by 

TMAO treatment (Table 10).  

Lastly, between HC+TMAO and chow diets, we identified extracellular structure 

organization (SMC, fibroblast, Unknown 3, Unknown 4), integrin/ECM binding (modulated SMC, 

Unknown 1), collagen fibril organization (modulated SMC), platelet degranulation (fibroblast), 

hemostasis (endothelial), cell proliferation (endothelial), immune activation and macrophage 

migration (macrophage), and protein translation (Unknown 2) (Table 11).  

The DEGs and pathways identified from the above dietary comparisons represent 

functionally relevant mechanisms in atherosclerosis. Between every comparison, extracellular 

structure or fiber organization was implicated in the fibroblast cell type. Fibroblasts contribute to 

remodeling of the ECM, and within atherosclerosis, they function to regulate inflammation, ECM 

organization, collagen production, and plaque structural integrity123. The consistent enrichment 

of ECM-related pathways in fibroblast suggests continual contribution of this cell type to the 

remodeling of the vascular wall and ECM as well as to the formation of the fibrous cap when HC 

or HC+TMAO is added to the diet. When comparing the two experimental groups to the 

baseline chow diet, we found extracellular organization and binding pathways involved in the 
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SMC and modulated SMC cell types, whereas between HC and HC+TMAO groups, regulation 

of apoptosis and the apoptotic process were enriched in SMC and modulated SMC, 

respectively. Our results indicate that the Ldlr genetic mutation and HC diet together precipitate 

SMC and modulated SMC transition towards an ECM-synthesizing, protective phenotype.  

Few DEGs were identified in the macrophage cell type between HC and HC+TMAO 

likely due to a similar inflammatory plaque state between the two dietary conditions, but immune 

and macrophage activation were identified as significant DEG pathways when comparing each 

diet to chow. The six DEGs in macrophage when comparing HC and HC+TMAO include mt-Nd3 

(down), AY036118 (down), Nmt1 (down), Rpl10 (up), Tuba1c (down), and Gm42418 (down).  

The number of cell type-specific and shared DEGs between cell types when comparing 

two dietary conditions is depicted in Figures 9, 10, and 11. Spp1 represents the DEG shared 

between the greatest number of cell types when comparing HC v. chow (up in all cell types) and 

HC+TMAO v. chow (up in all SMC, modulated SMC, fibroblast, endothelial, Unknown 1-4) 

(Figure 9, 11). Spp1, a pro-inflammatory cytokine, has been proposed to contribute to both 

plaque formation and instability124. Between HC+TMAO and HC conditions, mt-Nd3 (down), a 

subunit of the respiratory chain complex I involved in NADH dehydrogenation and electron 

transfer, was the DEG shared between all cell clusters except Unknown 2 (Figure 10). mt-Nd3 

gene expression has been associated with a higher histological severity of hepatic steatosis, 

and variants in MT-ND3 yielded a significant association with body-mass index in a gene-based 

meta-analysis burden test125. Mitochondrial genetic variation may contribute to cardiovascular 

disease susceptibility via alterations in oxidative phosphorylation impacting vascular function126. 

Furthermore, various ribosomal (Rpl-, Rps-) genes represented shared DEGs (up) across cell 

types between HC+TMAO and HC, and dysfunction of ribosomal proteins has been linked to 

cardiovascular disease progression since ribosomal proteins function in a variety of biological 

processes, including cell proliferation, differentiation, apoptosis, and DNA repair127. 
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Intercellular Communication Between Dietary Conditions 

We aimed to investigate how other cell types may interact with modulated SMC and 

affect downstream signaling in modulated SMC single cells between the HC and HC+TMAO 

dietary conditions. Based on the Pearson correlation coefficient that represents the ability of 

each ligand to predict modulated SMC target genes, the top prioritized ligands included Jag1, 

Plau, Edn1, Pdgfd, Cd320, Icam2, F11r, Lrpap1, Nrtn, Tnfsf9, and Gmfb (Figure 12a). We 

further identified the main cell type in which each ligand is expressed; namely, Jag1, Edn1, 

Ican2, and F11r were more highly expressed in the endothelial cell type; Plau, Tnfsf9, and Gmfb 

were more highly expressed in the macrophage cell type; Lrpap1 was more highly expressed in 

the fibroblast cell type; Pdgfd, Cd320, and Nrtn were more highly expressed in the SMC cell 

type (Figure 12b). Figure 12c illustrates the differential expression of genes that encode for the 

prioritized ligands in a particular cell type between HC and HC+TMAO conditions. Specifically, 

upregulated genes by the addition of TMAO to the diet include Nrtn in SMC, Jag1 in fibroblast, 

Edn1, Icam2, and Gmfb in endothelial, and Plau, Lrpap1, and Tnfsf9 in macrophage. 

Downregulated genes include Jag1, Edn1, and Pdgfd in SMC, Nrtn in fibroblast, Jag1, Pdgfd, 

F11r, and Nrtn in endothelial, and F11r and Gmfb in macrophage. The putative downstream 

target genes, expressed by modulated SMC, of the prioritized ligands include Sh3pxd2a, Rpl18, 

Kdm6b, Sod3, and Csrnp1 (Figure 12d-e). Endothelial JAG1 signaling promotes inflammatory 

leucocyte recruitment and atherosclerosis128 and was predicted to affect downstream signaling 

of Sh3pxd2a, a previously identified genome-wide significant CAD locus129, in modulated SMC. 

Edn1 from endothelial cells was predicted to target Sod3, extracellular superoxide dismutase 3, 

in modulated SMC. This antioxidant-related gene in the aorta demonstrated protection against 

endothelial dysfunction130. Further, decreased SOD3 binding to endothelial cells was associated 

with increased incidence of hypertension and increased risk of ischemic heart disease131,132. 

Higher levels of EDN1, a vasoconstrictive peptide previously linked to atherosclerosis and 

hypertension, was found in patients carrying the CAD risk allele in the PHACTR1/EDN1 
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locus133. The predicted ligand-target relationship between endothelial EDN1 and modulated 

SMC Sod3 supports the protective properties of modulated SMC in the disease state of our 

study; with higher levels of endothelial EDN1 associated with atherosclerosis affecting 

downstream modulated SMC Sod3 expression, modulated SMCs may function protectively via 

Sod3 to impede additional endothelial damage, but additional studies are warranted to support 

this hypothesis. Additionally, Icam2, intercellular adhesion molecule 2, was a prioritized 

endothelial ligand predicted to target Kdm6b in modulated SMC. Hypomethylation in the 

untranslated region of ICAM2 in young CAD patients within an Indian population implied 

increased adhesion and aggregation processes occurring during atherosclerosis which 

contribute to endothelial dysfunction134.  Kdm6b is the predicted modulated SMC target gene for 

numerous prioritized ligands. Although Kdm6b has not yet been studied in SMCs, macrophage 

Kdm6b regulates the pro-fibrotic signature of peritoneal foam cells135, and a myeloid Kdm6b 

deficiency was shown to result in more advanced atherosclerosis136. 

We also examined how known aorta cell types may interact with the endothelial cell type 

and affect downstream signaling in endothelial single cells between the HC and HC+TMAO 

dietary conditions. The top prioritized ligands included Anxa1, Ntn1, Itgam, Vegfc, Col2a1, Il1rn, 

Dll4, Hgf, Il1a, Edn1, Vegfa, Pdgfb, Nampt, Dll1, Psen1, Il1b, Apoe, Jag1, Bdnf, and Fgf2 

(Figure 13a). We identified the main cell type in which each ligand is expressed; namely, Jag1, 

Edn1, Ican2, and F11r were more highly expressed in the endothelial cell type; Anxa1, Col2s1, 

Hgf, Bdnf, and Fgf2 were more highly expressed in the modulated SMC cell type; Ntn1, Edn1, 

Vegfa, Dll1, and Jag1 were more highly expressed in the endothelial cell type; Itgam, Il1rn, Il1a, 

Pdgfb, Nampt, Il1b, and Apoe were more highly expressed in the macrophage cell type (Figure 

13b). Figure 13c illustrates the differential expression of genes that encode for the prioritized 

ligands in a particular cell type between HC and HC+TMAO conditions. The putative 

downstream target genes, expressed by endothelial cells, of the prioritized ligands include 

Hes1, Ptgs2, and Igfbp5 (Figure 13d-e). Ptgs2, prostaglandin-endoperoxide synthase 2 or 
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cyclooxygenase-2 (COX2), mediates prostaglandin production, which can induce an 

inflammatory response137, and has been shown to promote metalloproteinase-induced plaque 

rupture in symptomatic lesions138. Numerous prioritized ligands were predicted to target this 

endothelial target gene, and Ptgs2 was previously identified as a hub gene in a network of 

inflammatory genes associated with CAD137. The connections between endothelial Ptgs2 and 

ligands from modulated SMC, endothelial, fibroblast, and macrophage highlight endothelial 

inflammation as a process involved when TMAO is added to the HC diet.  HES1, an endothelial 

target gene functioning within the Notch pathway, has been proposed to play a protective role 

with regards to inflammation and oxidative stress, and dysregulation of the Notch pathway has 

been associated with atherosclerosis and chronic obstructive pulmonary disease (COPD). 

Particularly in COPD, which is characterized by chronic lung inflammation, HES1 reduction has 

been shown in the endothelium. Il1b, an inflammatory M1-associated marker, was predicted to 

affect Ptgs2 and Igfbp5 in endothelial cells. IGFBP5, insulin-like growth factor-binding protein 5, 

was observed to be downregulated in advanced atherosclerotic plaques, and may repress 

endothelial inflammation139. In our study, average expression of athero-protective Hes1 was 

significantly higher in the HC diet compared to the HC+TMAO diet (data not shown), implying 

the addition of TMAO may exacerbate the atherosclerotic inflammatory state. Interestingly, 

average expression of Ptgs2 and Igfbp5 was also significantly higher in the HC diet compared to 

HC+TMAO, suggesting that while the atherosclerotic inflammatory environments persist in both 

HC and HC+TMAO dietary conditions, pro- and anti-inflammatory gene expression may vary 

between states. 

 

Discussion 

High-throughput single cell sequencing analysis of the Ldlr-/- mouse aorta after various 

dietary treatments allowed us to identify aorta cell types and subclusters to study the 

transcriptomic architecture of lesion-prone areas of the aorta under control physiological and 
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atherosclerotic conditions. Our analyses of cell proportion changes, cell type-specific and 

shared DEGs across cell types, and perturbed biological pathways in response to dietary 

intervention collectively highlight the varying degrees of susceptibility of the aortic cell types to 

atherogenesis. HC and HC+TMAO dietary conditions in the Ldlr-/- mouse were both capable of 

establishing atherogenic environments as shown by their cellular compositions (increased M1 

macrophages and modulated SMCs), DEGs when compared to chow (Spp1 (up), Vcam1 (up), 

Lgals3 (up), and their perturbed pathways (extracellular structure organization, cell proliferation, 

immune and inflammatory response). The contribution of TMAO, associated with promoting 

atherosclerosis, to the disease state transcriptome was demonstrated in DEG analyses 

comparing HC+TMAO and HC conditions, including identification of enriched biological 

pathways (apoptosis regulation, extracellular structure organization, mRNA and protein 

metabolism) and intercellular communications targeting such DEGs, such as endothelial Edn1 

targeting modulated SMC DEG Sod3. 

Our data-driven single cell analysis maintained the Wirka et al. fibromyocyte model98 for 

modulated SMC in which SMCs follow a single trajectory to phenotypically transition into a 

fibroblast-like cell. Because Wirka et al. and our study both relied on single cell transcriptomic 

data of ApoE-/- and Ldlr-/- mouse atherosclerosis models, our findings on the modulated SMC 

phenotype may be more reliable than previous knowledge-based conclusions. While our data-

driven modulated SMC observations refuted the canonical belief that SMCs phenotypically 

transition into multiple lineages, our macrophage subclustering supported the known 

macrophage polarization from M0 into M1 and M2 types. Particularly, the proportion of the M1 

inflammatory macrophage subtype was significantly greater in HC and HC+TMAO cellular 

compositions compared to chow, thereby highlighting the inflammatory environment of 

atherosclerotic plaques.  

With the addition of TMAO to the HC diet, genes pertaining to apoptotic pathways in 

SMC and modulated SMC were identified. Lgals1, a DEG upregulated in SMCs by TMAO and 
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functioning in the regulation of apoptosis pathway, encodes galectin-1 (Gal-1) which can 

promote resolution of acute and chronic inflammation by influencing innate and adaptive 

immune responses140. Gal-1 has been shown to be upregulated during SMC growth and 

proliferation141 and to inhibit cell apoptosis142. Ptgis encodes prostacyclin synthase and was 

likewise upregulated between HC+TMAO and HC in the regulation of apoptosis pathway; the 

exact function of this gene in SMC apoptosis remains unclear, but Ptgis has been studied in the 

context of atherosclerosis. In a previous study utilizing the Ldlr-/- mouse model, prostacyclin 

synthase, believed to have an athero-protective effect, was significantly increased after 8 weeks 

on a high-fat diet but significant reduced after 16 weeks when compared to the control143. The 

Ldlr-/- mice in our study were treated for 3 months via dietary intervention, and our results align 

with the prostacyclin synthase expression profile at the earlier 8-week aortic atherosclerotic 

lesion143 and serve as an additional timepoint regarding the timeline of prostacyclin synthase 

expression changes in atherosclerosis. Interestingly, though Ptgis may be athero-protective, 

high activity of this gene has been previously observed in the failing hearts of rats and 

humans144. Additionally, Btg1 was downregulated between HC+TMAO and HC relating to the 

regulation of apoptosis pathway, and BTG1 has been shown to induce apoptosis within a 

cancer context145,146,. From the enrichment of such genes as Lgals1, Ptgis, and Btg1 in the 

apoptosis regulation pathway for SMC and understanding their putative functions, it is possible 

that programmed cell death is hindered or dysfunctional in SMCs with the addition of TMAO to 

the HC diet, though additional validation is certainly warranted to substantiate this hypothesis. 

We acknowledge the limitations of a mouse study for atherosclerosis because mice tend 

to develop atherosclerotic lesions in the aorta and carotids while humans mostly develop lesions 

in coronary arteries147, and myocardial infarction is rare in mice. Despite these limitations of the 

mouse model, the mouse genome still shares 95% of the protein-coding genes with that of 

humans, and this animal model can nonetheless provide insight into disease mechanisms and 

physiological perturbations that can be translated to human study. 
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In conclusion, our Ldlr-/- mouse atherosclerosis models treated with varying dietary 

conditions highlighted the genetic and dietary impacts on the mouse transcriptome. Our cell 

type-specific findings contribute to the understanding of CAD pathogenesis and can direct future 

mechanistic studies by providing insight on cell type-specific target genes and pathways in 

response to atherogenic stimuli. 

 

4. Conclusions and Future Directions 
 

In our multiomics integrative SCAD human study, we identified numerous canonical 

pathways and coexpression modules enriched in SCAD pathology, including extracellular matrix 

organization, clotting mechanisms, and various immune functions. Significant pathways and 

coexpression modules informed arterial and fibroblast gene regulatory BNs, and we pinpointed 

KDs CADM1, HOXB9, RP11-357H14.17, NTF3, and IGF1 as shared between our separate 

SCAD GWAS and TWAS analyses. PWAS KDs included SERPING1 and C4A in the 

complement and coagulation cascade. COL18A1 was the top significant KD in our 

GWAS/TWAS meta-analysis. Further, network- and overlap-based drug repositioning based on 

GWAS and TWAS network modeling revealed various sex-specific treatment options for SCAD, 

including medroxyprogesterone, etonogestrel, and estradiol.  

In our single cell dietary study of the Ldlr-/- mouse aorta, we examined the 

transcriptomic architecture of lesion-prone areas of the aorta under varying dietary conditions. 

HC and HC+TMAO dietary conditions in the Ldlr-/- mouse demonstrated atherogenic properties 

as shown by their cellular compositions (increased M1 macrophages and modulated SMCs), 

DEGs when compared to chow (Spp1 (up), Vcam1 (up), Lgals3 (up), and their perturbed 

pathways (extracellular structure organization, cell proliferation, immune and inflammatory 

response). The addition of TMAO to the HC diet highlighted apoptosis-related pathways as 

relevant to SMC and modulated SMC cell types, and mt-Nd3 (down) was the DEG shared 
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between the greatest number of cell types. Additionally, intercellular communications targeting 

modulated SMC and endothelial DEGs revealed endothelial Edn1 to target Ptgs2 in endothelial 

and Sod3 in modulated SMC. 

In both cardiovascular disease networks studies, EDN1 was highlighted as a key driver 

gene in SCAD TWAS network modeling and as a top prioritized endothelial ligand influencing 

modulated SMC and endothelial downstream target genes. EDN1 was highlighted at the 

transcriptomic level in both SCAD and CAD studies, and while EDN1 has been implicated in the 

pathogenesis of these two cardiovascular diseases, we propose EDN1 as an integral molecule 

in the continued development of both cardiovascular diseases. SCAD and CAD demonstrate 

opposite risk alleles at the PHACTR1/EDN1 locus24, but the role of EDN1 within the 

atherosclerotic plaque remains unknown. While we determined EDN1 to impact downstream 

antioxidant gene expression in modulated SMCs and inflammatory signals in endothelial cells, 

further study into the atherogenic effects of EDN1 is warranted to determine the potential of this 

peptide as a therapeutic target. Several pathways identified in our SCAD and CAD studies 

converged, including those related to ECM organization, immune function, and cell proliferation. 

Dysfunctions in such pathways certainly compromise vascular wall integrity and can contribute 

to SCAD onset or CAD plaque instability.  

For our SCAD study, we plan to integrate SCAD metabolomics to further clarify the 

holistic view of the disease, identifying metabolic pathways and molecules centrally involved in 

relevant tissues that may contribute to disease when perturbed. We also plan to examine the 

effect that various predicted drugs exert on disease susceptibility, particularly broadly used 

medications such as contraceptives. Also, for both cardiovascular disease studies, we aim to 

experimentally validate genes prioritized in our analysis that we hypothesize may be central in 

disease development and progression and observe the direction of effect for each disease. 

Overall, we aim to continue dissecting how genetic and external environmental factors 

contribute to pathogenesis in both cardiovascular diseases. 
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Tables 
Table 1. Clinical characteristics of the French, UK, and Mayo Clinic SCAD study 
populations. 
Q1: 25% quantile, Q3: 75% quantile, FMD: fibromuscular dysplasia, BMI: body-mass index, 
HTN: hypertension, T2D: type 2 diabetes. 

Study French Study SCAD-UK Study I SCAD-UK Study II Mayo Clinic Study 

  Cases (DISCO) Controls 
(3C-Study) 

Cases Controls Cases Controls Cases Controls 

Type Clinical based Population 
based 

Clinical based Population 
based 

Clinical based Population 
based 

Clinical 
based 

Healthy 
volunteers 

Inclusion 
criteria 

age> 18,  
 1) retrospective 

with a diagnostic of 
SCAD made from 

2010, or 2) 
prospective at the 

time of 
hospitalisation 

during which the 
diagnosis of SCAD 

was made. 

Geographic 
sampling 

SCAD 
confirmed on 

invasive 
angiography 

  SCAD 
confirmed on 

invasive 
angiography 

  SCAD 
confirmed 

by 
angiogram 

No reported 
SCAD 

Total (n) 313 1487 383 1925 139 815 506 1549 

Women (n,%) 285 (91) 876 (58.9) 361 (94.2) 1815 
(94.3) 

115 (82.7) 665 (81.6) 484 1477 

Age at study 
 inclusion 

(Median, Q1,Q3) 

51, 44, 59 74.36 ± 5.5 
 [65 - 94] 

  56,49,62   56, 48, 61 46.6 ± 9.2 64 ± 14.5 

Age at SCAD 
(Median, Q1/Q3) 

52.2, 44.55, 60 NR 47, 41, 52 NR 49.0, 43, 54 NR 46.6, 39, 
53 

NR 

SCAD Type (1, 
2, 3) 

49, 237, 32 NR   NR   NR Single 
vessel-397; 

Multi-
vessel-87 

NR 

FMD (Yes, No, 
NA) 

140, 152, 21 NR 104,108,171   20,71,48   175, 140, 
169 

unknown 

BMI (kg/m2) 58 NA median 25 
(23,29)  

6 missing 
values 

  27 (23,31)  
1 missing 

value) 

NA 26.0 ± 5.9 unknown 

HTN (n,%) 96 (30.7) 1171 (78.7) 94 (24.6; 1 
missing value) 

  25 (18.0) NA 157 (32.4) unknown 

T2D (n,%) 12 (3.2)   7 (1.8)   2 (1.4%) NA 14 (2.9) unknown 

Migraine (n,%) 76 (28.4)   176 (48,9; 23 
missing 
values) 

  67 (48.2; 2 
missing 
values) 

NA 175 (36.2) unknown 

Smoking 
(Non/Current/Ex) 

Ever 
220/93 

  266/14/103   94/9/36  
(67, 6, 26)  

NA 343/ 12 
/129  
(71 

/2.5/26.7) 

unknown 
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Table 2. Clinical characteristics of the CanSCAD/MGI, DEFINE-SCAD, and VCCRI SCAD 
study populations. 
Q1: 25% quantile, Q3: 75% quantile, FMD: fibromuscular dysplasia, BMI: body-mass index, 
HTN: hypertension, T2D: type 2 diabetes. 
 

Study CanSCAD/MGI Study DEFINE-SCAD Study VCCRI Study I VCCRI Study II 

  Cases Controls Cases Controls Cases Controls Cases Controls 

Type Clinical based Population 
based 

Clinical 
based 

Clinical 
based 

Clinical 
based 

Population 
based 

Clinical 
based 

Clinical 
Based 

Inclusion criteria SCAD 
diagnosis was 
confirmed on 

coronary 
angiography by 
the UBC core 

laboratory 
research team, 

and 
categorized 
according to 
previously 

established 
Saw 

classification 

Age, Sex, 
PC (PC1-

PC3) 
matched 
controls 

SCAD 
confirmed 

on invasive 
angio 

Vascular 
disease 

excluded on 
history and 

physical 
exam. Also 
matched to 

SCAD cases 
by age, BMI, 

sex. 

SCAD 
confirmed by 
angiogram 

No reported 
SCAD 

SCAD 
confirmed by 
angiogram 

No 
Reported 

SCAD 

Total (n) 357 2125 42 153 88 1127 85 111 

Women (n,%) 315 (88.2%) 1873 
(88.1%) 

41 (97.6%) 153 (100%) 80, 90.9% 672, 59.6% 83, 97.6% 46, 41.4% 

Age at study 
 inclusion (Median, 

Q1,Q3) 

53, 46, 60 53, 46, 61 49, 41.5, 
53.75 

50 (43-58) 50, 44, 59 all >70 years 
old 

52, 48, 60 61, 52, 67 

Age at SCAD 
(Median, Q1/Q3) 

  NR 45.5, 36, 
50.25 

6 missing 
values 

NA 44, 39, 52 NA 49, 43, 56 NA 

SCAD Type (1, 2, 3) 117,193,36 NR 4; 32; 1; 
NA: 5 

NR 32, 50, 4,  
(2 NR) 

NA 29, 48, 6 NA 

FMD (Yes, No, NA) 149,123,85 NR 31, 10, 1 NR 14, 32, 42 NR 10, 22, 53 NR 

BMI (kg/m2) median 25.5 
(22,30;9 

missing values) 

NA 24.55 (22, 
29.15) 

23.85 (20.98, 
26.6) 

26.32 27.5 27.04 NR 

HTN (n,%) 108 ( 30%); 33 
missing values 

NA 18 (42.86%) 4 (2.61%) 17, 19% NR 19, 22.3% NR 

T2D (n,%) 9 (2.5%); 33 
missing values 

NA 0 (0%) 1 (0.65%) 3, 3.4% NR 6, 7% NR 

Migraine (n,%) 100 (28%); 33 
missing values 

NA 9 (21.4%) NA 41, 46.6% NR 48, 56.5% NR 

Smoking 
(Non/Current/Ex) 

211/25/88 NA 34/1/7 NA 54/ 3/ 28 NR 51/ 3/ 31 NR 
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Table 3. Top significant GWAS canonical pathways and coexpression modules 
associated with SCAD. 
Annotated pathways and modules with biological relevance and FDR<0.05 are shown. The 
pathway/module size refers to the number of genes within the pathway or module. Top 5 genes 
involved in each pathway or module are listed.  

Source Pathway Description Pathway/ 
Module Size 

FDR Top Genes 

GWAS catalog Positive control gene set for 
SCAD 

14 4.32E-03 
 

C1orf54; ECM1; ADAMTSL4; MRPS21; 
PHACTR1 

SCAD fibroblast 
transcriptome module 

Regulation of endothelial cell 
proliferation 

10 1.23E-02 
 

ERI1; P3H1; APMAP; SSR4; PRDX4 

GWAS catalog Positive control gene set for 
coronary heart disease 

88 1.27E-02 PHACTR1; MRPS6; COL4A2; COL4A1; HLA-
B 

SCAD fibroblast 
transcriptome module 

Parkin pathway, 
neurotransmitter secretion 

118 1.27E-02 C1orf54; ECM1; ADAMTSL4; MRPS21; 
IGF2R 

SCAD fibroblast 
transcriptome module 

Regulation of developmental 
process 

49 1.39E-02 ADK; MLKL; CIDECP; LMF2; CHMP7 

KEGG Complement and coagulation 
cascades 

45 1.43E-02 
 

C4A; C4B; CYP21A1P; CYP21A2; NOTCH4 

SCAD fibroblast 
transcriptome module 

Extracellular structure 
organization 

11 1.47E-02 C1orf54; ECM1; ADAMTSL4; MRPS21; 
SERPIND1 

KEGG 
 

Protein translation 11 1.47E-02 
 

PROCR; TRPC4AP; EDEM2; EIF6; GGT7 

KEGG Acute myocardial infarction 14 1.49E-02 COL4A1; COL4A2; DDB2; ACP2; NR1H3 
SCAD fibroblast 
transcriptome module 

Formation of fibrin clot clotting 
cascade 

56 1.63E-02 C1orf54; ECM1; ADAMTSL4; MRPS21; PRCP 

SCAD fibroblast 
transcriptome module 

MAPK pathway 12 1.92E-02 VHL; BRK1; CRELD1; EMC3-AS1; MAP3K2 

SCAD fibroblast 
transcriptome module 

Wnt pathway; intercellular 
signaling 

136 2.10E-02 C1orf54; ECM1; ADAMTSL4; MRPS21; 
IGF2R 

KEGG VEGF, hypoxia, and 
angiogenesis 

21 2.18E-02 RP11-54A4.2; CERS2; GOLPH3L; 
HORMAD1; ARNT 

SCAD fibroblast 
transcriptome module 

Protein metabolism 19 2.21E-02 SMG1P6; TBX6; YPEL3; BOLA2; GDPD3 

SCAD fibroblast 
transcriptome module 

mRNA metabolism 17 2.26E-02 AM86B3P; C14orf79; PHYKPL; ARFIP1; 
RNGTT 

Reactome Regulation of hypoxia-
inducible factor by oxygen 

20 2.27E-02 RP11-54A4.2; CERS2; GOLPH3L; 
HORMAD1; ARNT 

KEGG Renal cell carcinoma 51 2.28E-02 RP11-54A4.2; CERS2; GOLPH3L; 
HORMAD1; ARNT 

SCAD fibroblast 
transcriptome module 

Regulation of angiogenesis 41 2.31E-02 LXN; PROCR; TRPC4AP; EDEM2; EIF6 

KEGG Intrinsic prothrombin 
activation pathway 

16 2.35E-02 COL4A2; COL4A1; DDB2; ACP2; NR1H3 

Reactome Signaling by PDGF 133 2.36E-02 STAT6; COL4A1; COL4A2; SMG1P6, TBX6 
KEGG Insulin signaling pathway 107 2.39E-02 PPP1R18; FLOT1; SMG1P6; TBX6; YPEL3 
GWAS catalog Positive control gene set for 

low density lipoprotein 
cholesterol 

41 2.41E-02 FRK; PPP1R3B; ABO; DNAH11; MYLIP 

KEGG AKT/mTOR pathway 31 2.43E-02 GSK3B; EIF4E; PDK2; EIF2S1; PDPK1 
SCAD fibroblast 
transcriptome module 

Glycosaminoglycan 
metabolism 

28 2.77E-02 C1orf54; ECM1; ADAMTSL4; MRPS21; 
PEAR1 

GWAS catalog Positive control gene set for 
high density lipoprotein 
cholesterol 

63 2.86E-02 LRP1; MACF1; PABPC4; PPP1R3B; DDB2 

SCAD fibroblast 
transcriptome module 

Extracellular matrix receptor 
interaction; focal adhesion 

72 2.86E-02 C1orf54; ECM1; ADAMTSL4; MRPS21; 
COL4A1 

SCAD fibroblast 
transcriptome module 

Extrinsic pathway 13 2.89E-02 C1orf54; ECM1; ADAMTSL4; MRPS21; 
ZFYVE28 

KEGG Integrin signaling pathway 32 3.29E-02 ITGA1; SMG1P6; TBX6; YPEL3; BOLA2 
SCAD fibroblast 
transcriptome module 

TCA cycle and respiratory 
electron transport 

55 3.30E-02 RNASEH2C; KAT5; BANF1; SIPA1; 
MAP3K11 

SCAD fibroblast 
transcriptome module 

DNA base excision repair 19 3.41E-02 MCL1; ARL5B; AQP11; RP11-91P24.1; RP11-
91P24.5 

SCAD fibroblast 
transcriptome module 

Glucose transport; glycerolipid 
metabolism 

133 3.71E-02 PSMD4; PABPC4; TNFRSF10B; RSRC1; 
TMEM120B 

SCAD fibroblast 
transcriptome module 

Mitotic cell cycle 29 4.59E-02 ANP32E; CENPQ; NUP155; ZNF714; ARSJ 

Reactome Assembly of collagen fibrils 40 4.77E-02 COL4A2; COL4A1; RP11-54A4.2; CERS2; 
GOLPH3L 
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Table 4. Top significant TWAS canonical pathways and coexpression modules 
associated with SCAD. 
Annotated pathways and modules with FDR<0.05 are shown. The pathway/module size refers 
to the number of genes within the pathway or module. Top 5 genes involved in each pathway or 
module are listed. 

Source Pathway Description Pathway/ 
Module Size 

FDR Top Genes 

SCAD fibroblast 
transcriptome module 

Cytosolic sulfonation of small 
molecules 

47 1.39E-13 COL11A2; MAPK8IP3; HYPK; SPACA6P; 
RAPGEFL1 

SCAD fibroblast 
transcriptome module 

Meiotic synapsis; packaging of 
telomere ends 

100 1.053E-10 
 

OBFC1; AKIP1; OSTF1; TAC1; ZNF3 

SCAD fibroblast 
transcriptome module 

Regulation of NFkB cascade 68 1.22E-10 TPPP3; GHDC; ANO10; PELI1; KLHL29 

SCAD fibroblast 
transcriptome module 

TCA cycle intermediate metabolic 
process 

65 1.55E-10 MRPL40; SOD1; OBFC1; AIP; FRS2 

SCAD fibroblast 
transcriptome module 

Molecule transport 22 2.32E-10 HYPK; MYSM1; SRRM2; SNAPIN; NPIPB11 

SCAD fibroblast 
transcriptome module 

Cross presentation of antigens 35 5.35E-09 AIP; CYP20A1; CCDC167; PSMD4; MED11 

SCAD fibroblast 
transcriptome module 

Mitotic cell cycle 163 9.72E-09 
 

PL7P46; ZNF587; MAPK8IP3; SNAPC4; 
NXF1 

SCAD fibroblast 
transcriptome module 

Oxidative phosphorylation; 
electron transport 

58 1.30E-08 PSMB6; RFX7; ADSL; SNRPD2; COX6B1 

SCAD fibroblast 
transcriptome module 

Platelet activation, signaling, and 
aggregation 

100 5.15D-07 FXYD5; CNPY3; TECR; TXLNG; CALM1 

SCAD fibroblast 
transcriptome module 

Cardiomyopathy 32 2.16E-06 BNC2; UCP2; ST3GAL6; PRICKLE1; 
SESTD1 

SCAD fibroblast 
transcriptome module 

Interleukin signaling 37 1.23E-05 QRICH2; NAV3; EIF4EBP2; SLC30A1; 
AC144831.1 

SCAD fibroblast 
transcriptome module 

Insulin signaling pathway 60 2.18E-05 SDE2; FRS2; KLHL15; CCNT1; YTHDF3 

SCAD fibroblast 
transcriptome module 

Glucose transport; glycerolipid 
metabolism 

133 2.73E-05 PSMD4; PABPC4; TNFRSF10B; RSRC1; 
TMEM120B 

Reactome mRNA metabolism 214 2.77E-05 RPL26L1; PSMB6; PSMA7; PSMB4; PSMC1 
SCAD fibroblast 
transcriptome module 

Cholesterol biosynthesis 318 1.03E-04 LSMEM1; ZNF445; NDUFS8; TCF20; 
AC093162.5 

SCAD fibroblast 
transcriptome module 

ECM receptor interaction; focal 
adhesion integrin cell surface 
interactions 

57 1.42E-04 SRRM2; PKD1P1; NPIPB11; ATAT1; PSMC1 

SCAD fibroblast 
transcriptome module 

DNA base excision repair 19 2.25E-04 MCL1; ARL5B; AQP11; RP11-91P24.1; 
RP11-91P24.5 

SCAD fibroblast 
transcriptome module 

Cell apoptosis 19 3.15E-04 FRS2; ROR2; HIAT1; FAM53C; FASTKD5 

SCAD fibroblast 
transcriptome module 

Cytokine signaling in immune 
system 

77 3.30E-04 SCG2; MLPH; TRPV2; CCND2; PDLIM3 

SCAD fibroblast 
transcriptome module 

Wnt pathway; intercellular 
signaling 

136 3.30E-04 C1orf54; ECM1; ADAMTSL4; MRPS21; 
IGF2R 

SCAD fibroblast 
transcriptome module 

Parkin pathway, neurotransmitter 
secretion 

118 3.74E-04 C1orf54; ECM1; ADAMTSL4; MRPS21; 
IGF2R 

SCAD fibroblast 
transcriptome module 

Antigen processing 47 3.75E-04 GSTM4; ADSL; CCDC62; HSD17B10; MEA1 

SCAD fibroblast 
transcriptome module 

Membrane organization 42 6.16E-04 CTTNBP2; NRCAM; MIF4GD; UBE2QL1; KL 

SCAD fibroblast 
transcriptome module 

Anatomical structure development 377 2.06E-03 HSPA2; SCG2; LINC00517; TOM1L1; 
TRPV2 

SCAD fibroblast 
transcriptome module 

Glycoprotein metabolism 32 2.34E-03 MARCH4; MIF4GD; BASP1; EBF1; SOX4 

SCAD fibroblast 
transcriptome module 

TCA cycle and respiratory 
electron transport 

55 3.97E-03 RNASEH2C; KAT5; BANF1; SIPA1; 
MAP3K11 

Reactome Activation of NFkB in B cells 61 9.05E-03 PSMB6; PSMA7; PSMB4; PSMC1; PSMB7 
SCAD fibroblast 
transcriptome module 

Regulation of endothelial cell 
proliferation 

12 1.88E-02 LMAN2; MYDGF; SSR4; PRDX4; ERP29 

KEGG IL-10 anti-inflammatory signaling 
pathway 

15 3.14E-02 IL1A; BLVRB; BLVRA; STAT3; IL10RB 

SCAD fibroblast 
transcriptome module 

Extrinsic pathway 13 3.50E-02 C1orf54; ECM1; ADAMTSL4; MRPS21; 
ZFYVE28 

SCAD fibroblast 
transcriptome module 

Extracellular matrix organization 63 3.84E-02 RPL26L1; ZNF275; FGF5; CAPN2; DAB2IP 

SCAD fibroblast 
transcriptome module 

Formation of fibrin clot clotting 
cascade 

69 4.72E-02 TFB1M; CNIH2; MRPL9; TMEM62; STAU2 

SCAD fibroblast 
transcriptome module 

Actin cytoskeleton organization 
and biogenesis 

13 4.97E-02 GSTT2; GSTT2B; FAM124A; DYRK1A; 
AP000350.5 
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Table 5. Top significant PWAS canonical pathways and coexpression modules 
associated with SCAD. 
Annotated pathways and modules with FDR<0.05 are shown. The pathway/module size refers 
to the number of genes within the pathway or module. Top 5 genes involved in each pathway or 
module are listed. 

Source Pathway Description Pathway/ 
Module Size 

FDR Top Genes 

SCAD plasma 
protein module 

Adaptive immune system; 
phagosome pathway, 
neurotrophin signaling  

473 
  

1.75 E-08 
 

ADH5; ICAM4; ORC4; DCP1A; IGBP1 

SCAD plasma 
protein module 

Arginine and proline 
metabolism 

56 5.09E-07 
 

DCP1A; IGBP1; PNKD; TPRKB; RAB22A 
 

SCAD plasma 
protein module 

Mitotic G1 S phases 66 5.76E-06 ORC4; ASH2L; CDIPT; AFAP1; YTHDF1 
 

SCAD plasma 
protein module 

Complement and 
coagulation cascades, 
platelet activation and 
signaling pathway 

23 7.48E-05 RHOG; PF4V1; ALB; SERPING1; SERPINF2 
 

SCAD plasma 
protein module 

Regulation of mitotic cell 
cycle, antigen processing 
ubiquitination proteasome 
degradation 

59 6.62E-03 ORC4; CDIPT; GIMAP8; DIRAS1; SPR 
 

 
 
 
Table 6. Top significant canonical pathways and coexpression modules shared between 
GWAS and TWAS. 
Annotated pathways and modules significant across GWAS (FDR<5%) and TWAS (FDR<5%) 
with a significant meta-FDR<5% are listed.  

Source Pathway Description GWAS FDR TWAS FDR Meta-FDR 

SCAD fibroblast 
transcriptome 
module 

Parkin pathway; neurotransmitter secretion 1.27E-02 3.74E-04 1.19E-06 

SCAD fibroblast 
transcriptome 
module 

Glucose transport; glycerolipid metabolism 3.71E-02 2.73E-05 1.99E-06 

SCAD fibroblast 
transcriptome 
module 

Wnt pathway; intercellular signaling 2.10E-02 3.30E-04 3.09E-06 

SCAD fibroblast 
transcriptome 
module 

DNA base excision repair 3.41E-02 2.25E-04 9.34E-06 

SCAD fibroblast 
transcriptome 
module 

Regulation of endothelial cell proliferation 1.23E-02 1.88E-02 5.26E-05 

SCAD fibroblast 
transcriptome 
module 

TCA cycle and respiratory electron transport 3.30E-02 3.97E-03 1.21E-04 

SCAD fibroblast 
transcriptome 
module 

Formation of fibrin clot clotting cascade 1.63E-02 4.72E-02 2.89E-04 

SCAD fibroblast 
transcriptome 
module 

Extrinsic pathway 2.89E-02 3.50E-02 7.01E-04 
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Table 7. Significant prioritized drugs within cardiovascular tissue for SCAD treatment via 
network-based repositioning. 
Drugs functioning within the cardiovascular system were considered statistically significant if 
p<0.05. Top overlap genes refer to the genes shared between the input disease and drug 
networks. 

SCAD Dataset Drug Name Drug Category Z score Rank P value Top Overlap Genes 

SCAD GWAS Medroxyprogesterone Hormone -4.07 1 2.35E-05 CRISPLD2, MGP, GPX3, 
ACTG2, EFHD1 

SCAD 
transcript 

Medroxyprogesterone Hormone -3.03 0.99 1.21E-03 H19, MGP, GPX3, CFD, 
IGFBP2 

SCAD 
transcript 

Etonogestrel Hormone -2.58 0.98 4.89E-03 H19, MGP, BMP6, SOX4, 
IGFBP2 

SCAD GWAS Etonogestrel Hormone 
 

-2.44 0.98 7.42E-03 CRISPLD2, MGP, DSTN, 
CPE, HTRA1 

SCAD GWAS Contraceptive Hormone -2.30 0.98 1.06E-02 CRISPLD2, MGP, AXIN2, 
PAWR, GAS6 

SCAD 
transcript 

Rofecoxib Anti-
inflammatory 

-1.93 0.94 2.68E-02 TGFB2, KLF13, EDN1, JUNB, 
ZNF331 
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Table 8. Top significant prioritized drugs within Homo Sapiens cardiovascular tissue for 
SCAD treatment via overlap-based repositioning.  
The top 10 significant drugs (p<0.05) functioning within the homo sapiens cardiovascular 
system from each of the GWAS and TWAS overlap-based repositioning are shown. Top overlap 
genes refer to the genes shared between drug signature and input disease genes. 

SCAD Dataset Drug Name Drug Category Jaccard 
Score 

Odds 
Ratio 

P value Top Overlap Genes 

SCAD GWAS Contraceptive Hormone 0.051 12.2 3.88E-27 CRISPLD2, MGP, AXIN2, 
PAWR, GAS6 

SCAD GWAS Medroxyprogesterone Hormone 0.051 19.1 4.64E-24 CRISPLD2, MGP, GPX3, 
ACTG2, EFHD1 

SCAD GWAS Progesterone 
receptor agonist 

Hormone 0.034 6.94 1.32E-15 CRISPLD2, MGP, GPX3, 
ACTG2, EFHD1 

SCAD 
transcript 

Medroxyprogesterone Hormone 0.036 13.8 9.68E-14 H19, MGP, GPX3, CFD, 
IGFBP2 

SCAD 
transcript 

Progesterone 
receptor agonist 

Hormone 0.031 7.16 1.16E-13 BMP6, H19, MGP, IGFBP2, 
CTHRC1 

SCAD 
transcript 

Contraceptive Hormone 0.032 8.27 1.62E-13 H19, MGP, BMP6, IGFBP2, 
AXIN2 

SCAD 
transcript 

Omeprazole Proton pump 
inhibitor 

0.035 13.9 4.37E-13 GPX3, NR4A2, SELP, 
CYTL1, NR4A3 

SCAD 
transcript 

Anti-ulcerative Anti-inflammatory; 
proton pump 
inhibitor 

0.035 13.9 4.37E-13 GPX3, NR4A2, SELP, 
CYTL1, NR4A3 

SCAD 
transcript 

Proton pump inhibitor Proton pump 
inhibitor 

0.035 13.9 4.37E-13 GPX3, NR4A2, SELP, 
CYTL1, NR4A3 

SCAD 
transcript 

Antisecretory Proton pump 
inhibitor; 
antimuscarinic 

0.035 13.9 4.37E-13 GPX3, NR4A2, SELP, 
CYTL1, NR4A3 

SCAD GWAS Etonogestrel Hormone 0.028 13.7 8.13E-11 CRISPLD2, MGP, DSTN, 
CPE, HTRA1 

SCAD 
transcript 

Thrombin Clotting promoter 0.028 7.60 2.11E-10 NR4A2, CTGF, RGS2, 
ALDH3A1, EGR3 

SCAD 
transcript 

Blood coagulation 
factor 

Clotting promoter 0.028 7.60 2.11E-10 NR4A2, CTGF, RGS2, 
ALDH3A1, EGR3 

SCAD 
transcript 

Hemostatic Antihemorrhagic 0.028 7.60 2.11E-10 NR4A2, CTGF, RGS2, 
ALDH3A1, EGR3 

SCAD GWAS Analgesic Pain relief 0.026 6.13 2.03E-09 KLF13, EPS8L2, C3orf52, 
ELN, GDF10 

SCAD GWAS COX-2 inhibitor Anti-inflammatory 0.026 6.13 2.03E-09 KLF13, EPS8L2, C3orf52, 
ELN, GDF10 

SCAD GWAS Celecoxib Anti-inflammatory 0.024 11.6 1.07E-08 KLF13, C3orf52, ESM1, 
EPS8L2, MYLK 

SCAD GWAS Omeprazole Proton pump 
inhibitor 

0.023 8.07 1.04E-07 GPX3, CLMP, COL4A6, 
LYVE1, TMEM37 

SCAD GWAS Anti-ulcerative Anti-inflammatory; 
proton pump 
inhibitor 

0.023 8.07 1.04E-07 GPX3, CLMP, COL4A6, 
LYVE1, TMEM37 

SCAD GWAS Proton pump inhibitor Proton pump 
inhibitor 

0.023 8.07 1.04E-07 GPX3, CLMP, COL4A6, 
LYVE1, TMEM37 
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Table 9. HC vs. chow DEGs and biological pathways. 
“Up” refers to DEGs with increased expression in HC compared to Chow. “Down” refers to 
DEGs with decreased expression in HC compared to Chow. Cell types denoted in parentheses 
did not have a sufficient number of DEGs at FDR<5% to reveal significant pathways, so DEGs 
reaching a threshold of p < 0.01 (number of DEGs for this threshold in parentheses) were used 
to predict suggestive pathways for these cell types. 

Cell Type No. DEGs Top DEG pathways Top 5 representative DEGs 

SMC 94 Smooth muscle contraction Down: Tpm1, Myl6, Myl9, Tpm2, Acta2 
  

Extracellular structure organization Up: Spp1, Lum; Down: Sparc, Cst3, Itgb1 

Modulated SMC 101 Extracellular structure organization Up: Lum, Vcam1, Fn1, Spp1, Bgn 
  

Collagen fibril organization Up: Lum, Col3a1, Aebp1, Col1a1, Col5a2 

Fibroblast 109 Triggering of complement pathway Up: C1s, C3, C2, Cfb, C4b 
  

Extracellular structure organization Up: Spp1, Lum; Down: Ccn2, Myh11, Eln 

Endothelial 37 Regulation of cell differentiation Up: Spp1, Igfbp5, Nfkbia, Gdf10, Hes1 
  

Migration of endothelial cells Up: Ptgs2, Nr4a1, Pdgfb, Dcn, Cdh13 

Macrophage 275 Immune response Up: Fabp5, Lgals3, Syngr1, Ctss, Itgax 
  

Inflammatory response Up: Spp1, Lpl, Adam8; Down: Pf4, Cd163 

(Pericyte) 4 (197) Respiratory electron transport Up: mt-Nd3, mt-Nd2, mt-Atp8, mt-Nd4, mt-Co3 
  

Cell growth Up: Igfpb5, Caprin2, Vegfa, Rgs4, Ntrk3 

Unknown1 90 Extracellular structure organization Up: Spp1, Vcam1, Lum, Crispld2; Down: Cst3 

(Unknown2) 5 (237) Protein translation Down: Rps8, Rpl10, Rpl26, Rps12, Rps13 

(Unknown3) 16 (229) Protein translation Down: Rps9, Rps14, Rpl13, Rpl23a, Rps15 
  

Smooth muscle contraction Down: Myl6, Tpm2, Tpm1,Mylk, Myl9 

Unknown 4 196 Protein translation Down: Rpl21, Rpl8, Rps5, Rpl28, Rpl10 
  

ECM receptor interaction Up: Spp1, Col2a1, Fn1, Col1a2, Col3a1 
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Table 10. HC+TMAO vs. HC DEGs and biological pathways. 
“Up” refers to DEGs with increased expression in HC+TMAO compared to HC. “Down” refers to 
DEGs with decreased expression in HC+TMAO compared to HC. Cell types denoted in 
parentheses did not have a sufficient number of DEGs at FDR<5% to reveal significant 
pathways, so DEGs reaching a threshold of p < 0.01 (number of DEGs for this threshold in 
parentheses) were used to predict suggestive pathways for these cell types. 

Cell Type No. DEGs Top DEG pathways Top 5 representative DEGs 

SMC 68 Regulation of cell proliferation Up: Tpm1, Itgb1; Down: Fbln5, Zfp36l1, Btg1 
  

Regulation of apoptosis Up: Ptgis, Lgals1, Rpl10; Down: Zfp36l1, Btg1 

Modulated SMC 32 Metabolism of mRNA and proteins Up: Rpl9, Rps5, Rpl18, Rpl17, Rpl13 

  Apoptotic process Up: Rpl10, Rps3a1, Rps3, Rps7; Down: Hk2 

Fibroblast 89 Protein translation Up: Rpl10, Rps15, Rpl17, Rps14, Rpl12 
  

Fiber organization Up: Tpm2, Myh11, Tmsb4x; Down: Tmsb10, 
Col1a1 

(Endothelial) 9 (263) Metabolism of mRNA Down: Rps29, Rpl41, Rps28, Rpl38, Rpl6 
  

Vasculature development Down: Ptgs2, Hes1, Tnfaip2, Smoc2, Nr4a1 

(Macrophage) 6 (100) Metabolism of proteins Up: Rpl10, Rps9, Rps7, Rpl26; Down: Tuba1c 

(Pericyte) 0 (197) Cell growth Down: Igfbp5, Caprin2, Vegfa, Rgs4, Ntrk3 

(Unknown1) 3 (170) Focal adhesion Up: Tln1; Down: Col3a1, Tnc, Pik3r1, Spp1 
  

Extracellular structure organization Up: Cst3; Down: Col3a1, Fbln5, Eln, Tnc 

Unknown2 38 Protein translation Up: Rps8, Rpl10, Rpl26, Rps12, Rps13 

(Unknown3) 7 (229) Protein translation Up: Rps9, Rps14, Rpl13, Rpl23a, Rps15 
  

Collagen fibril organization Down: Dpt, Col3a1, Col1a1, Col1a2, P4ha1 

Unknown4  101 Protein translation Up: Rpl9, Rpl10, Rpl19, Rpl18, Rps14 
  

Muscle contraction Up: Myl6, Tpm2, Tpm1, Myl9, Tcap 
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Table 11. HC+TMAO vs. chow DEGs and biological pathways. 
“Up” refers to DEGs with increased expression in HC+TMAO compared to Chow. “Down” refers 
to DEGs with decreased expression in HC+TMAO compared to Chow. Cell types denoted in 
parentheses did not have a sufficient number of DEGs at FDR<5% to reveal significant 
pathways, so DEGs reaching a threshold of p < 0.01 (number of DEGs for this threshold in 
parentheses) were used to predict suggestive pathways for these cell types. 

Cell Type No. DEGs Top DEG pathways Top 5 representative DEGs 

SMC 44 Extracellular structure organization Up: Spp1, Lum; Down: Sparc, Ccn2, Ccn1 

Modulated SMC 90 Integrin binding Up: Vcam1, Fn1, Spp1, Col3a1; Down: 
Adam23,  

  
Collagen fibril organization Up: Lum, Aebp1, Col3a1, Sfrp2, Col5a2 

Fibroblast 47 Extracellular structure organization Down: Sparc, Eln, Col1a1, Mfap4, Serpinh1 

  
Platelet degranulation Up: Serpina3n, Fn1; Down: Sparc, Manf, Igf1,  

(Endothelial) 11 (303) Cell proliferation Up: Lrg1, Lgmn, Vcam1, Mdk, Sox4 

  
Hemostasis Up: Clu, Selp, Timp1, C1qbp, Pde1a 

Macrophage 151 Immune activation Up: Fabp5, Lgals3, Syngr1, Fth1, Trem2 

  
Macrophage migration Up: Lgals3, Trem2, Mmp14, P2rx4; Down: 

Cd81 
(Pericyte) 0 (130) Respiratory electron transport Down: Ndufa2, Ndufa3, Ndufs6, Cox6c, Idh3a 

(Unknown1) 15 (169) Cell adhesion Up: Spp1, Fn1, Itga5, Lamb2, Ctnnb1 

  
Extracellular matrix binding Up: Spp1, Lgals3, Sparc1l, Ecm1; Down: 

Lgals1 
Unknown2 54 Protein translation Up: Rpl23a, Rps12, Rps25, Rps9, Rps14 

(Unknown3) 7 (83) Extracellular structure organization Up: Spp1, Vcam1; Down: Sparc, Mfap5, Ccn1 

Unknown4 65 Extracellular structure organization Up: Spp1, Vcam1, Lum, Fn1, Timp1 
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Figures 

Figure 1. Multiomics systems biology of SCAD: study overview.  
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Figure 2. Top GWAS key drivers within a vascular-specific network. 
Key drivers are denoted by their larger size. Annotated pathways or coexpression modules of 
KDs are labeled.  
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Figure 3. Top transcript key drivers within a vascular-specific network. 
Key drivers are denoted by their larger size. Annotated pathways or coexpression modules of 
KDs are labeled.  

 
 
Figure 4. Top protein key drivers within a PPI network. 
Hub proteins central to the network are denoted by their larger size. All annotated pathways or 
coexpression modules involved in the network are labeled. 
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Figure 5. Cell type identification and specific cell-type markers. 
(a) Labeled UMAP plot of single cells in the two-dimensional space by diet condition. (b) Top 
cell type-specific markers: Mylk4 for SMC, Spp1 for modulated SMC, Cygb for fibroblast, 
Pecam1 for endothelial, Lyz2 for macrophage, Timp4 for pericyte. The lack of specificity for 
Unknown clusters 1, 2, and 4 demonstrate how a combination of markers from known cell types 
constitute these clusters. (c-e) Additional canonical markers of endothelial (Egfl7), macrophage 
(Cd14), and fibroblast (Pi16) within the UMAP space and highlighted in their respective clusters.  
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Figure 6. Modulated SMC subclustering to reveal three distinct clusters. 
(a) UMAP plot of modulated SMC single cells in the two-dimensional space by diet condition. (b) 
UMAP plot of modulated SMC single cells from HC and HC+TMAO conditions. (c) Average 
expression of fibromyocyte markers by modulated SMC subcluster and by diet condition. 
mSMC=modulated SMC. (d) Trajectory analysis for SMC and modulated SMC subclusters. 
SMC (dark green) was assigned as the origin cluster for the trajectory analysis. (e) Top 
subcluster-specific markers for subcluster 0 (Tcap), 1 (Gas7), and 2 (Col11a2).  
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Figure 7. Macrophage subclustering to reveal distinct M0, M1, and M2 macrophage types. 
(a) UMAP plot of macrophage single cells in the two-dimensional space by diet condition. (b) 
UMAP plot of macrophage single cells from chow, HC, HC+TMAO conditions. (c) Scaled 
expression of previously known M1 markers by macrophage subtype and diet condition. (d) 
Scaled expression of previously known M2 markers by macrophage subtype and diet condition. 
(e) Top subcluster-specific markers for subcluster M0 (Fermt2), M1 (Gngt2), and M2 (Cd163). 
(f) Trajectory analysis for M0, M1, and M2. M0 (green) was assigned as the origin cluster for the 
trajectory analysis. 
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Figure 8. Cell type distribution by diet. 
The proportions of each cell type or subcluster within each diet are illustrated. Significance 
between two diet conditions for a single cell type or subcluster was considered p < 0.05. (a) The 
proportionate numbers of each cell type by diet. (b) The proportionate numbers of each 
modulated SMC subcluster by diet. mSMC=modulated SMC. (c) The proportionate numbers of 
each macrophage subcluster (M0, M1, M2) by diet.  
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Figure 9. Overlap in differentially expressed genes between high-cholesterol and chow 
conditions. 
Significant (FDR<5%) cell-type specific DEGs (red) and shared DEGs between cell types 
(black) between the Chow and HC dietary conditions. Shared DEGs between cell types are 
labeled if the number of genes ≤ 3. The set size indicates the total number of DEGs per cell type 
(sum of cell type-specific and shared). 
 

 
 
Figure 10. Overlap in differentially expressed genes between high-cholesterol+TMAO and 
high-cholesterol conditions. 
Significant (FDR<5%) cell-type specific DEGs (red) and shared DEGs between cell types 
(black) between the HC and HC+TMAO dietary conditions. Shared DEGs between cell types 
are labeled if the number of genes ≤ 3. The set size indicates the total number of DEGs per cell 
type (sum of cell type-specific and shared). 
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Figure 11. Overlap in differentially expressed genes between high-cholesterol+TMAO and 
chow conditions. 
Significant (FDR<5%) cell-type specific DEGs (red) and shared DEGs between cell types 
(black) between the chow and HC+TMAO dietary conditions. Shared DEGs between cell types 
are labeled if the number of genes ≤ 3. The set size indicates the total number of DEGs per cell 
type (sum of cell type-specific and shared). 
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Figure 12. Intercellular interactions targeting modulated SMC genes in response to 
TMAO. 
(a) Top predicted ligands targeting modulated SMC genes as ranked by Pearson correlation 
coefficient between prior regulatory potential scores and target gene set assignments. (b) 
Percent expression and average expression of each top predicted ligand in the known aortic cell 
types. mSMC=modulated SMC. (c)  Log fold-change (LFC) of each top predicted ligand in the 
known aortic cell types between HC+TMAO and HC conditions. (d) Modulated SMC active 
target genes of the top predicted ligands. (e) Summary of top prioritized ligands from each cell 
type and their corresponding target genes in modulated SMC. Weight of the edge represents 
the regulatory potential of the ligand on the downstream target gene.  
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Figure 13. Intercellular interactions targeting endothelial genes in response to TMAO. 
(a) Top predicted ligands targeting endothelial cell genes as ranked by Pearson correlation 
coefficient between prior regulatory potential scores and target gene set assignments. (b) 
Percent expression and average expression of each top predicted ligand in the known aortic cell 
types. (c)  Log fold-change (LFC) of each top predicted ligand in the known aortic cell types 
between HC+TMAO and HC conditions. (d) Endothelial cell active target genes of the top 
predicted ligands. (e) Summary of top prioritized ligands from each cell type and their 
corresponding target genes in the endothelial cell type. Weight of the edge represents the 
regulatory potential of the ligand on the downstream target gene.  
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