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Abstract

In native mass spectrometry, it has been difficult to discriminate between specific binding of a 

ligand to a multi-protein complex from the nonspecific interactions. Here, we present a 

deconvolution model that consists of two levels of data reduction. At the first level, the apparent 

association binding constants are extracted from the measured intensities of the target/ligand 

complexes by varying ligand concentration. At the second level, two functional forms representing 

the specific- and non-specific binding events are fit to the binding constants obtained from the first 

level of modeling. Using this approach, we found that an inverse power distribution described 

nonspecific binding of α-amanitin to yeast RNA polymerase II. Moreover, treating the 

concentration of the multi-protein complex as a fitting parameter reduced the impact of 

inaccuracies in this experimental measurement on the apparent association constants. This model 

provides an improved way of separating specific and non-specific binding to large, multi-protein 

complexes in native mass spectrometry.

Direct observations of ligand binding to protein complexes by native mass spectrometry 

offer a way to precisely measure association and/or dissociation constants. Since the 

discovery of native mass spectrometry1, many protein/ligand complexes have been observed 

and characterized2. In these experiments, measurements are made on pure protein/ligand 

complexes in an aqueous buffer containing volatile salt, such as ammonium acetate, through 

nanospray infusion. Even with significant purification efforts, unwanted adduct formation 

may still contribute to degradation of the observed spectra due to trace impurities, such as 

metal ions, other small molecules, and other proteins. In order to reduce the contribution of 

these unwanted adducts, collision activation in either electrospray source or collision cells is 

often applied. However, increased collisions may also cause dissociation of the bound 
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ligand(s) and disruption of multi-protein complexes. Non-specific interactions are often 

difficult to deconvolve from these spectra. Because an increasing number of important drug 

targets are multi-protein complexes3, it is important to develop better ways of studying 

ligand binding to these systems in native mass spectrometry.

The goal of this study is to develop a data model to extract specific binding constants and 

discriminate them from nonspecific ones. Several approaches towards this goal have been 

proposed. For example, van der Rest and coworkers4 developed a statistical method to 

model specific binding as a binomial distribution, while modeling nonspecific binding as 

Poisson distribution (which was originally proposed by Wang, et al5). The modeling of 

nonspecific binding as a Poisson is statistically sound if the target is a large protein assembly 

and there are many nonspecific binding sites that are randomly chosen. However, treating 

specific binding with a statistical distribution may introduce a significant amount of error, 

especially in cases in which there is only one specific binding site. Shimon et al6 introduced 

a simpler model with a single nonspecific binding constant, and this method was used to 

study ATP binding to a multi-protein chaperone, GroEL 7. However, because proteins, 

especially multi-protein complexes, are not perfectly spherical, binding of a ligand on the 

non-uniform surface would not be expected to be constant. In addition, if many ligands have 

already bound, additional nonspecific binding is likely to be affected (likely to be weaker). 

New methods are needed to overcome these issues.

In this study, we assume that the number of specific binding sites can be determined by how 

well the model fits to the experimental data. In addition, this value to often known from 

other studies, including those that employ isothermal calorimetry (ITC). The mass 

spectrometry algorithm is separated into two steps: first, the apparent association constants 

(containing contribution of both specific and nonspecific binding) are extracted together 

from the measured relative concentration (proportional to relative intensities) of target/

ligand complex. Second, contributions from specific and nonspecific binding are separated 

by fitting them with different functional forms to the apparent association constants obtained 

from the first level of data extraction. To test this idea, we measured binding of alpha-

amanitin to purified yeast RNA polymerase II. In addition, we treated the protein 

concentration as an unknown parameter and found that its value can be obtained by fitting 

the data model. This is an important observation because of the difficulties commonly 

encountered with accurately measuring the concentration of intact multi-protein complexes.

Experimental

Human FKBP12 was prepared as described8. Briefly, His-tagged human FKBP12 was 

expressed in E. coli and the protein purified using a nickel column. The protein 

concentration was measured using the BCA method, with bovine serum albumin as a 

standard. Rapamycin and α-amanitin were purchased (Sigma-Aldrich, St. Louis, MO). Yeast 

RNA polymerase II (Pol2) was prepared according to the previous described method9. Pol2 

was buffer-exchanged to 100 mM ammonium acetate using a molecular weight cutoff 

centrifugation filter (YM-10 from Millipore, Billerica, MA). Samples for native mass 

spectrometry analysis were prepared by mixing pol II with α-amanitin to final 

concentrations of 1, 5, 10, 20, and 50 μM. The samples were infused with glass static 
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infusion tips into an Exactive Plus EMR instrument (Thermo Scientific, Bremen, Germany). 

Spray voltage was typically 1500V; in-source and HCD collision energies were typically 35 

and 150 respectively. Data were acquired with a mass resolving power of 8750. Other MS 

conditions were: micro scan count=10 and scans co-added=500-600. The raw data were 

exported and peak parameter extraction was performed using in-house developed charge 

state deconvolution script10.

Extraction of apparent association constants

The first level extraction model illustrated here is adapted from Zenobi and coworkers11, 

with the following modifications: (a) only one ligand is considered and (b) arbitrary number 

of binding (N) is allowed, and (c) the total target concentration is treated as a fitting 

parameter.

Scheme 1 lists binding reactions leading to N-number of ligand (L) bound to a target (P). 

The apparent association constants (Kapj, j=1…,N) are defined by

Equation 1

Mass conservation for the target is defined by

Equation 2

and mass conservation for the ligand by

Equation 3

[P]T and [L]T are the total concentrations of target and ligand, respectively. [P] and [L] are 

the free concentrations of target and ligand, respectively. [PLk], k=1,…,N, are the 

concentrations of PLk. Although experimentally [P]T can be a measured value, using BCA 

for example, it is treated in our model as a fitting parameter. This approach was taken 

because it is often difficult to accurately measure the concentration of proteins, especially 

multi-protein complexes. Therefore the first-level data model is reduced to a optimization 

procedure for extraction of N+1 parameters (Kapj, j=1…,N and [P]T ), given a series of 

(titration) experiments measuring [PLj] (relative to [P]T), against several total ligand 

concentrations ([L]T). One may be able to obtain analytical expressions for solutions of 

Equations (1-3) by eliminating N+2 intermediate variables [P], [L], and [PLj], j=1,…,N, 

manually or with aid of math software packages, such as Mathematica or Matlab. We solve 

the problem directly with Python code implementing functional minimization algorithms 

(available in Supplemental Material).

Deconvolution of nonspecific binding from specific binding

We model the nonspecific binding as an inverse power distribution described by the 

following equation
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Equation 4

The nonspecific binding is modeled by the inverse power function parameters of β, the 

coefficient and γ the power of the function. The rationales for choosing the inverse power 

distribution to represent the non-constant nonspecific binding constant distribution are: (1) 

the inverse power distribution is supported on the arguments of nonzero and nonnegative 

integers and (2) only one parameter (γ) is needed to define the shape of the distribution. The 

nonspecific binding strength is monotonically decreasing with the increase of number of 

ligands and the decreasing rate is determined solely by the value of γ. Therefore, only two 

parameters (β and γ) are needed to specify the nonspecific (non-constant) binding 

distribution. β is the scaling factor for the inverse power distribution.

If the target has only one specific binding site, the apparent association constants (Kapj, j=1,

…,N) obtained by the first-level of data modeling can be expressed as

Equation 5

where Ks is the specific binding association constant (one specific site) and the first 

apparent association constant is the combination of the specific binding association constant 

and the contribution of the nonspecific binding distribution of one ligand.

The inverse power distribution model for nonspecific binding can be reduced to the constant 

nonspecific binding model by simply setting the power value of γ to zero. The physical 

interpretation of a constant nonspecific binding constant is all nonspecific binding sites are 

the same. Equation 5 now becomes

Equation 6

Python code for deconvolution of specific binding constant from the nonspecific one can 

also be found in Supplemental Material.

Results and Discussion

Extraction of binding constant and target concentration

The simplest method to measure binding constant(s) of a ligand bound to a target is to keep 

the target solution concentration constant while titrating the ligand. Often the concentration 

of the ligand can be determined with much greater accuracy than the protein. In our 

experiments, we started with a model system of FKBP12 binding to the immunosuppressant, 

rapamycin. The concentration of rapamycin was readily determined through accurate 

weighing and NMR to determine purity. The concentration of purified FKBP12 was 

determined by BCA assay and purity estimated from SDS-PAGE to be >90% (data not 

shown). To explore binding, FKBP12 and its rapamycin complex were measured under 

native MS conditions (Figure 1). The dominant peaks for charge state 7 have two major 
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components, corresponding to the FKBP12 sequence containing a His-tag with and without 

a nickel ion. Nonspecific binding was not observed in this case, which was expected because 

of the high selectivity of rapamycin12. To calculate the apparent association constant of 

FKBP12 and rapamycin, the relative abundances for the free and bound target were obtained 

by summation of intensities of target (FKBP12) 7+ ions with and without a nickel ion. Then, 

the target titration curves were constructed after normalization of abundances by the total 

intensities (either bound or free forms, shown in Figure 2a). Fitting of the experimental data 

with a single binding constant model yielded the association constant (Ka) of 1.02 × 108M−1 

(or Kd = 9.8 nM) and the target concentration was estimated to be 1.61 μM. The 

concentration of FKBP12 estimated from the BCA method was only 1 μM, nearly 40% 

lower. Because of the selectivity of the well-known rapamycin/FKBP12 complex, we 

conclude that the native MS titration is a superior way of accurately measuring effective 

(e.g. folded, intact) proteins concentration. In addition, a titration curve (Figure 2B) of the 

free ligand (rapamycin) can also be constructed and the ligand titration curve can be used to 

determine the concentration of the target without direct measurement of target and target/

ligand complex. Although this approach may not be necessary for a relatively simple 

system, such as FKBP12, it is often much more difficult to deconvolve the effective 

concentration of multi-protein complexes.

Extraction of apparent association constants from relative abundances of ligand/target 
complexes

As a more complex example, we adapted α-amanitin binding to RNA polymerase II (Pol2). 

Titrations of the ligand into Pol2, followed by native MS were conducted (Figure 3). To 

submit the data to the model, relative abundances of the complexes between the target (Pol2) 

and different numbers of (α-amanitin) ligands were extracted from the raw spectra by use of 

an in-house software tool called PeakSeeeker (described elsewhere 10). Briefly, PeakSeeeker 

detects overlapping peaks by counting zero crossings in second derivatives and deconvolutes 

raw data into individual Gaussians. Those individual Gaussians are grouped (fitted) into 

second-level Gaussian-distributed charge state envelopes. PeakSeeker effectively converts 

the complex and overlapping raw data into deconvoluted (charge state aggregated) spectral 

peaklists. The relative abundances are implicitly averaged among the charge states.

In the Pol2 complex, two charge state envelopes were detected corresponding to the full 12-

component assembly (theoretical MW of 514,154 Da) and the 10-component assembly 

(Δrpb4/7, theoretical MW of 469,682 Da). For simplicity, the 12mer and its ligand-bound 

complexes are described below, but similar findings were observed for the 10mer complex. 

The relative abundances were formatted as a two dimensional array (Figure 4A), with the 

first dimension describing the total ligand concentrations and the second dimension 

describing the number of bound ligands from 0 to a maximal number. The observed 

maximal number of ligands also determined how many apparent association constants would 

be calculated. For the target/ligand complexes that were not observed, their relative 

abundance values were set to zero. In order to increase the robustness of the algorithms, the 

set of equations in Equation 1 was converted into
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Equation 7

They are solved together with Equations 2 and 3 for [L], [P], and [PLj], j=1,2,…,N, to 

given [P]T, [L]T, and Kapj. The advantage for solving the multiple equations simultaneously 

is that there is no need to derive tedious analytical expressions. Fitting Kapj (j=1,2,…,N) 

against the relative intensities was done using a standard nonlinear function minimization 

(Simplex algorithm based) procedure. Due to the complex topology of nonlinear 

minimization error function surfaces, initial guesses must be carefully chosen to ensure the 

fit was not a local minimum.

We found that there was excellent agreement between the experimental relative abundances 

(Figure 4A) and the simulated relative abundances (Figure 4B) using the fitted Kaps. The 

fitted Pol2 12mer concentration was estimated to be 6.1 μM.

Deconvolution of specific and nonspecific binding

Unlike the simple case of FKBP12/rapamycin, up to eight α-amanitin molecules were found 

bound to Pol2. In order to obtain the specific binding constant(s) accurately, contributions 

from nonspecific binding must be separated. Accordingly, application of the second-level 

deconvolution inverse power model of Equation 5 for the eight apparent association 

constants yields a Ks of 9.6 × 105M (Kd = 1.06 μM). The nonspecific binding was modeled 

by two parameters of the power inverse function (equation 5 or 6): β = 4.2 × 105M and γ = 

1.8 or

Equation 8

in which Knj have a unit of M. As shown in Figure 5A, the binding model characterized by 

the three parameters (Ks, β, and γ) fits experimental association binding constants 

distributions well. On the other hand, the constant nonspecific binding model of Equation 6 

does not fit the same data as well (Figure 5B). The fitted values are the nonspecific 

association constant, β = 4.2 × 104M and the specific association constant, Ks = 1.34 × 

106M.

Traditionally, a Hill plot can be constructed of a ligand/protein binding event and the slope 

of curve is suggestive of cooperative or anti-cooperative binding. However, as demonstrated 

by Dyachenko and coworkers (8), the Hill coefficient is no longer a constant against the 

ligand concentration under native mass spectrometry conditions. Several data models have 

been developed to separate specific and nonspecific binding to solve this problem. 

Daubenfeld and coworkers modeled the experimentally observed data as a sum of binomial 

distributed specific binding and Poisson distributed nonspecific binding 4. Their model 

predicts that the nonspecific events contribute ~38% of total binding of ADP to creatine 

kinase (CK). In our pol2/α-amanitin experiments, deconvoluting apparent association 

constants with the inverse power function suggested that nonspecific binding accounted for 

30% of total binding of α-amanitin to Pol2. The constant nonspecific binding model is 
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equivalent to that of Shimon and coworkers6, which does not fit the apparent association 

constants as well. In this case, the nonspecific binding accounts for merely 3% of the first 

binding event.

In the work of Daubenfeld and coworkers 7, nonspecific binding events were modeled from 

the relative intensities as a Poisson distribution. Instead, our data model operated on the 

apparent association constants, giving us flexibility to choose functional forms. Indeed, the 

inverse power function that we chose has desirable properties. For example, if the power 

parameter (γ) is zero, the function becomes a constant (a single nonspecific binding 

constant). Physically, this implies an infinite and uniform large surface for ligands to bind 

and the model is equivalent to the Langmuir adsorption isotherm. If the power parameter (γ) 

is negative, association binding constants grow with the number of ligand. The model is then 

describing a process of ligand polymerization in which ligand/ligand interaction initiated by 

binding to the target molecule grows stronger. Second, because the target surface available 

for nonspecific binding is like to be heterogeneous, with the binding to the first ligand likely 

to be stronger than that of the second and later ligands. Microscopically, this is intuitive 

because the first binding event occupies one of the available positions. Of course, the rate of 

the decrease, encoded in the power parameter of the inverse power function, depends on the 

nature the target/ligand interaction.

To explore this concept further, we also examined other functional forms, such as the 

exponential function (result shown in Supplemental Material). The exponential function fits 

better than the constant model but poorer than that of inverse power. The exponential decay 

with the number of ligands is too fast and the association constants for large numbers of 

ligands are selectively discriminated against. Therefore, it seems more appropriate to use 

polynomial rate of decay.

Theoretically, we should be able to extract specific and nonspecific binding functions and 

the total target concentration from the relative concentrations of target/ligand complexes 

directly or in a single stage. In doing so, the ratio of the number of fitting parameters over 

the number of raw data points is indeed quite small (four over 45) in the case of the inverse 

power nonspecific binding function or (three over 45) in case of the constant nonspecific 

model. However, the dependence of the extraction parameters to the raw data (the relative 

concentrations) becomes more complicated and the fitting process can easily be trapped to a 

local minimum. Dividing the model into two stages also allows for the inspection of 

intermediate data of the association binding constants and provides visual aids for a better 

understanding of binding mechanisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Native mass spectra of FKBP12 and Rapamycin. FKBP12 contains a his-tag and both ions 

with and without Ni atom were observed. Nonspecific binding products for the charge state 

of 7 were not observed.
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Figure 2. 
Titration curves of FKBP12 against Rapamycin. A. complex of FKBP12 and Rapamycin of 

charge state 7. Red curve: FKBP12/Rapamycin relative intensity; blue curve: free FKBP12 

relative intensity. B. Rapamycin (at m/z 936.6)
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Figure 3. 
Native MS spectra of Yeast RNA polymerase II (pol2) and α-amanitin.
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Figure 4. 
Titration curves of Yeast RNA polymerase II (pol2) and α-amanitin. A. Experimental. B. 

predicted titration curves using the fitted association binding constants.
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Figure 5. 
Deconvolution of specific binding constant from nonspecific constants. A. nonspecific 

binding is modeled by inverse power distribution (Equation 5). B. nonspecific binding is 

modeled by a constant (Equation 6). Blue circles: apparent association constants; Green 

bars: contributions of nonspecific binding; Red bar: specific binding component.
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Scheme 1. 
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