UC Riverside UC Riverside Previously Published Works

Title

Enhancing the Carbon Monoxide Oxidation Performance through Surface Defect Enrichment of Ceria-Based Supports for Platinum Catalyst.

Permalink

https://escholarship.org/uc/item/2hm6d17s

Journal Environmental Science and Technology, 58(28)

Authors

Xie, Shaohua Lu, Yue Ye, Kailong <u>et al.</u>

Publication Date

2024-07-16

DOI

10.1021/acs.est.4c03078

Peer reviewed

pubs.acs.org/est

Article

OPt/CA-HD-

-a = activated

Enhancing the Carbon Monoxide Oxidation Performance through Surface Defect Enrichment of Ceria-Based Supports for Platinum Catalyst

Shaohua Xie, Yue Lu, Kailong Ye, Wei Tan, Sufeng Cao, Chunying Wang, Daekun Kim, Xing Zhang, Jeremia Loukusa, Yaobin Li, Yan Zhang, Lu Ma, Steven N. Ehrlich, Nebojsa S. Marinkovic, Jiguang Deng, Maria Flytzani-Stephanopoulos, and Fudong Liu*

the bottom layer of Pt atoms substituting the Ce cations in the CeO₂ surface lattice can be obtained through reduction activation. Embedded Pt_C can better facilitate CO adsorption and promote O₂ activation at Pt_C -CeO₂ interfaces, thereby contributing to the

KEYWORDS: surface defect enrichment, Pt single-atom catalyst, embedded Pt cluster, CO adsorption, O₂ activation

1.0Pt/CA-a

 $CA = CeO_2/Al_2O_3$

1. INTRODUCTION

Nowadays, supported metal single-atom catalysts (SACs) have garnered significant attention as a result of their 100% metal utilization efficiency and great benefits in various catalytic reactions, including organic catalysis, photocatalysis, electrocatalysis, and thermal catalysis.¹⁻⁶ In environmental catalysis, such as the catalytic oxidation of CO_{1}^{7} one of the critical reactions in purifying vehicle emissions, SACs usually exhibit low instinct activity. This is primarily attributed to the lack of synergistic effects from neighboring metal atoms,^{8,9} making their direct application highly challenging. In addition to the tuning of local structures of metal sites in SACs,^{10–14} reduction activation has been proven to be a facile and effective approach to activate less active SACs into more efficient oxidation catalysts,^{8,15} with SACs serving as catalyst precursors. Interestingly, the activated catalysts derived from SACs typically show significantly higher catalytic performance compared to those prepared directly using conventional methods, such as for CO and hydrocarbon oxidation reactions.¹⁵⁻¹⁷ Surface defects of metal oxide supports have been shown to be crucial for anchoring metal atoms,^{15,18,19} but the limited concentration of surface defects on regular metal oxides makes them difficult to afford high loading of metal

compared to their counterpart catalysts without defect enrichment.

Specifically, Pt is present as embedded single atoms on the CA

support with enriched surface defects (CA-HD) based on which the highly active catalyst showing embedded Pt clusters (Pt_C) with

superior low-temperature CO oxidation activity of the Pt/CA-HD catalyst after activation.

single atoms. Therefore, the development of a universal approach to increase the surface defects of metal oxide supports is highly desired for the preparation of SACs with a high metal loading and superior catalytic activity.

3.7 times higher at 100 °C

-HD = high density of defects

Precious metal catalysts are widely used in automotive exhaust control as a result of their excellent performance.^{20,21} However, the high usage amount of precious metals and poor low-temperature performance after long-term operation remain the major challenges in practical applications.²¹ In comparison to more expensive Pd and Rh catalysts nowadays, Pt catalysts have recently attracted huge interest, owing to their favorable cost-effectiveness and superior catalytic performance. In particular, Pt/CeO₂-based catalysts have been extensively investigated and show high potential in vehicle exhaust treatment systems.^{10,22} To further improve their catalytic activity and thermal stability, the preparation of CeO₂ supports

Received: March 27, 2024 Accepted: June 18, 2024 Published: July 3, 2024

Figure 1. Characterizations of surface defects: (a, d, and g) Raman spectra, (b, e, and h) Ce 3d XPS, and (c, f, and i) *in situ* DRIFTS of methanol adsorption at 25 °C on (a-c) CeO₂, (d-f) CeZrO_x, and (g-i) CA with and without H₂ reduction. The $O_v/(O_{latt} + O_v)$ ratios, $Ce^{3+}/(Ce^{3+} + Ce^{4+})$ ratios, and surface O_v concentrations are inserted in related figures.

with abundant surface defects as Pt anchoring sites can be a promising approach.¹⁹ Traditional methods for increasing the surface defects of CeO₂ involve the usage of dopants as structure modifiers or the controllable preparation of CeO₂ with specific exposed crystal planes.^{23–25} However, these methods usually require expensive raw materials (*e.g.*, La, Y, Pr, Nd, Sm, *etc.*) or complex preparation procedures (such as hydrothermal synthesis and precipitation method),^{26–29} limiting their wide applications.

Reducible metal oxides, which have lattice oxygen that can be easily removed by reduction treatment using reductive gases, such as H₂, at specific temperatures, show great potential for enriching the surface defects and serving as effective supports for SACs with increased metal loading. In this study, we demonstrate a general H₂ reduction strategy for enriching the surface defects of CeO2-based oxide supports, including pure CeO2, CeZrOx, and CeO2/Al2O3 (CA). It has been demonstrated that the Pt catalysts on the defect-enriched CeO₂-based supports exhibit much higher Pt dispersion and CO oxidation activity upon reduction activation compared to their counterparts without surface defect enrichment. For example, when 1 wt % Pt catalysts on CA supports are taken as examples, the Pt microstructures within the catalysts before and after reduction activation are systematically investigated using multiple techniques, including in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS),

scanning transmission electron microscopy (STEM), extended X-ray absorption fine structure (EXAFS), *etc.* Along with kinetics and *in situ* X-ray absorption spectroscopy (XAS) studies, the structure—activity relationship for CO oxidation on these Pt/CA catalysts has been clearly revealed. On the defectenriched CA support (CA-HD, where -HD is the high density of defects), a unique Pt cluster (Pt_C) site can be fabricated, where the bottom layer of Pt atoms embedded in the CeO₂ surface matrix. Such a unique Pt_C site originated from the reduction activation of Pt single atoms (Pt₁) on CA-HD, which can effectively facilitate the CO adsorption and O₂ activation at Pt_C–CeO₂ interfaces, resulting in superior activity in low-temperature CO oxidation.

2. MATERIALS AND METHODS

2.1. Catalyst Preparation. 2.1.1. Preparation of Ceria-Based Supports with/without Defect Enrichment. Commercial CeO₂ [Brunauer–Emmett–Teller (BET) surface area of 120 m²/g, Solvay], commercial CeZrO_x (40 wt % CeO₂, Solvay), and CeO₂/Al₂O₃ (30 wt % CeO₂) supports were used in this work for defect enrichment and subsequent Pt loading. The CeO₂/Al₂O₃ support was prepared using a conventional incipient wetness impregnation (IWI) method. Typically, a solution of Ce(NO₃)₃·6H₂O (99.5%, Acros Organics) with a predetermined concentration was added dropwise onto γ -Al₂O₃ (BET surface area of 150 m²/g, Sasol) under stirring. The CeO₂/Al₂O₃ support was obtained by subsequent calcination in air at 550 °C for 2 h. To enrich surface defects on CeO₂, CeZrO_x, and CeO₂/Al₂O₃ supports, the supports were reduced in 10% H₂/Ar flow at 750 °C for 2 h with a temperature ramping rate of 5 °C/min. These supports with defect enrichment are denoted as CeO₂-HD, CeZrO_x-HD, and CA-HD, respectively. For direct comparison, regular CeO₂, CeZrO_x, and CeO₂/Al₂O₃ (denoted as CA) were further calcined in air at 750 °C for 2 h with the temperature ramping rate of 5 °C/min.

2.1.2. Preparation of Pt Catalysts. The catalysts with 1 wt % of Pt loading on CeO₂, CeO₂-HD, CeZrO_x, and CeZrO_x-HD supports were prepared using the IWI method and tetraammineplatinum nitrate (TAPN) as the precursor. The TAPN solution with a predetermined concentration was added dropwise onto the supports under stirring and then dried at 120 °C for 1 h. After calcination in air at 550 °C for 2 h with a temperature ramping rate of 5 °C/min, the catalysts were obtained and denoted as Pt/CeO₂, Pt/CeO₂-HD, Pt/CeZrO_x, and Pt/CeZrO_x-HD, respectively. The catalysts with x wt % of Pt loadings (x = 0.5, 1.0, and 5.0) on CA, CA-HD, and pristine γ -Al₂O₃ supports were prepared using IWI method as well with TAPN as the precursor. The obtained catalysts with different Pt loadings were denoted as xPt/CA, xPt/CA-HD, and xPt/ Al₂O₃, respectively. To study the effects of reduction activation on CO oxidation activity, all catalysts were reduced in 10% H₂ flow at 400 °C for 1 h with the temperature ramping rate of 10 °C/min and labeled with "-a" (where -a is activated).

2.2. Catalyst Characterizations. The detailed descriptions of catalyst characterizations by X-ray diffraction (XRD), Raman spectroscopy, STEM, *in situ* DRIFTS, X-ray photoelectron spectroscopy (XPS), XAS, H_2 temperature-programmed reduction (H_2 -TPR), and dynamic oxygen storage capacity (OSC) techniques can be found in the Supporting Information

2.3. Catalytic Performance Evaluation. The CO oxidation reaction was conducted in a flow-through fixed bed quartz tubular reactor (inner diameter = 4 mm) system. In each test, 25 mg of catalyst (40-60 mesh) was diluted with inert SiC powder (0.25 g) to prevent temperature gradients. The steady-state CO oxidation activity was measured with a duration time of 30 min at each temperature point. The feeding stream consisted of 1% CO and 1% O2 balanced with Ar. The total flow rate was fixed at 83.33 mL/min, achieving a weight hourly space velocity (WHSV) of 200 000 mL \cdot g⁻¹·h⁻¹. A catalytic stability test of 1.0Pt/CA-a and 1.0Pt/CA-HD-a catalysts was performed at 100 °C with or without 5% H₂O in the feedstock at a WHSV of 300 000 mL g^{-1} h^{-1} . The reactants and products were analyzed online by mass spectrometry (MS, HPR-20 R&D, Hiden Analytical) using the m/z ratios of 28, 32, and 44 used for monitoring CO, O_{2} , and CO_{2} , respectively. To avoid significant heat or mass transfer limitation, the kinetic study was performed with CO conversion below 16% under a WHSV of 500 000 mL \cdot g⁻¹·h⁻¹.

3. RESULTS AND DISCUSSION

3.1. Effects of Reduction on Enriching the Surface Defects of CeO₂-Based Supports. The formation of additional defects on CeO₂-based supports as a result of H₂ reduction was clearly evidenced by Raman spectra, Ce 3d XPS, and *in situ* DRIFTS of methanol adsorption (at 25 °C). When pure CeO₂ was taken as an example, as shown in Figure 1a, two characteristic peaks located at 448 and 400 cm⁻¹ were

observed in Raman spectra, which can be assigned to the typical vibration mode (F_{2g}) of the fluorite-type CeO₂ structure and the near-surface oxygen vacancies $(O_v)^{30,31}$ respectively. In comparison to CeO2, reduced CeO2-HD exhibited a much higher $O_v/(O_{latt} + O_v)$ ratio (19.1% for CeO₂-HD versus 15.3% for CeO₂, where O_{latt} is lattice oxygen) and a broader half-width of the F_{2g} peak (26 \mbox{cm}^{-1} for $\mbox{CeO}_2\mbox{-}$ HD versus 24 cm⁻¹ for CeO₂), suggesting a significant increase in the density of defects (mainly O_v) and a decrease in the crystallinity of CeO₂-HD.³¹ The increase in defect density was further confirmed by Ce 3d XPS and in situ DRIFTS of the methanol adsorption results. As depicted in Figure 1b, both surface Ce^{3+} and Ce^{4+} species were observed on CeO_2 and CeO_2 -HD supports.^{12,32} Notably, CeO_2 -HD exhibited a significantly higher concentration of surface Ce³⁺ species (24.3%) compared to CeO₂ (13.9%). Upon methanol adsorption, four types of methoxy species were identified on both CeO_2 and CeO_2 -HD (Figure 1c), including linearly adsorbed methoxy species (peak α), bridgingly adsorbed methoxy species on Ce⁴⁺ cations without O_v (peak β) and with O_v (peak γ) in the neighborhood, and three-coordinated methoxy species (peak δ),³³ respectively. It was clearly observed that more methoxy species adsorbed on Ce⁴⁺ cations with O_v nearby were present on CeO₂-HD than on CeO₂ (2.3% for CeO_2 -HD versus 1.4% for CeO_2). Such an effect of H₂ reduction on enriching the surface defects was also observed on CeZrO_x and CA supports. As shown in panels d-i of Figure 1, after H₂ reduction, the half-widths of the F_{2g} peak and the $O_v/(O_{latt} + O_v)$ ratios observed in Raman spectra, the $Ce^{3+}/(Ce^{3+} + Ce^{4+})$ ratios determined by Ce 3d XPS, and the surface O_v concentrations measured by methanol adsorption on CeZrOx-HD and CA-HD supports were broader or much higher than those on their counterparts without defect enrichment (CeZrO_x and CA), respectively. It should be noticed that, different from O_v observed on CeO₂ and CA supports (panels a and g of Figure 1), the bulk O_v defects (589) cm⁻¹) nearby Ce³⁺ species were obviously observed on $CeZrO_x$ supports (Figure 1d), which was mainly due to the formation of $CeZrO_x$ solid solution.³⁰ These results unambiguously indicate that H₂ reduction is a universally effective method to enhance the surface defects on CeO₂-based supports, thereby enabling their application as highly efficient supports for enhancing metal dispersion upon loading.

3.2. Impact of Defect Enrichment on CO Oxidation Activity. To determine if the supports with enriched defects were beneficial for obtaining highly active metal catalysts, the Pt catalysts supported on CeO2, CeZrOx, and CA with and without defect enrichment were prepared and tested for CO oxidation. As depicted in panels a-d of Figure S1 of the Supporting Information, upon Pt loading, a much brighter color of Pt/CeO₂-HD than that of Pt/CeO₂ was observed, suggesting a higher Pt dispersion achieved on CeO₂-HD than on regular CeO₂. As shown in Figure S1e of the Supporting Information, the as-prepared Pt/CeO₂ catalyst showed higher CO oxidation activity than the Pt/CeO2-HD catalyst, with a lower T50 (the temperature corresponding to 50% of CO conversion) achieved on the former (188 °C) than on the latter (266 °C). It has been reported that the reduction activation is highly crucial for Pt-CeO2-based catalysts to achieve excellent catalytic activity for CO oxidation, because it can help generate more active Pt_C species on CeO₂.¹⁶ After H₂ reduction activation in 10% H₂/Ar at 400 °C for 1 h, the lightoff curves for CO oxidation on Pt/CeO₂-a and Pt/CeO₂-HD-a

Figure 2. Structure characterizations: (a) photos, (b) in situ DRIFTS of CO adsorption, (c) Pt L_3 -edge XANES, (d) Pt L_3 -edge EXAFS, and (e-q) AC-STEM images for (e-j) 1.0Pt/CA and (k-q) 1.0Pt/CA-HD catalysts.

catalysts (where -a is activated) significantly shifted to a lower temperature range, with a much lower T50 achieved on Pt/ CeO₂-HD-a (85 °C) than on Pt/CeO₂-a (108 °C). These results clearly show that the defect enrichment of the pure CeO₂ support greatly improved the dispersion of loaded Pt species and significantly enhanced the CO oxidation performance upon reduction activation. Similarly, the activated Pt catalysts on defect-enriched CeZrO_x-HD also showed higher CO oxidation activity than that on $CeZrO_x$ (Figure S2 of the Supporting Information). Such results demonstrate that the defect enrichment strategy for CeO₂-based supports by H₂ reduction is universal for improving the low-temperature CO oxidation activity of supported Pt catalysts after activation and is worthy of systematic investigation, especially for the widely used CA support in industry. Accordingly, the CO oxidation activity of xPt/CA, xPt/CA-HD, and xPt/Al₂O₃ (x = 0.5, 1.0,and 5.0 wt %) before and after H_2 reduction activation was investigated (Figure S3 of the Supporting Information). Not surprisingly, the as-prepared xPt/CA catalysts always showed higher CO oxidation activity than xPt/CA-HD and xPt/Al₂O₃ at the same level of Pt loading, mainly as a result of the presence of more active Pt_C species on CeO₂ within xPt/CA catalysts, as confirmed in the subsequent sections. Upon activation, significant enhancement of CO oxidation activity was observed on both *x*Pt/CA-a and *x*Pt/CA-HD-a catalysts in comparison to the less pronounced or no activity promotion on *x*Pt/Al₂O₃. Interestingly, the defect-enriched *x*Pt/CA-HD-a catalysts constantly performed much higher CO oxidation activity than xPt/CA-a and xPt/Al₂O₃-a at the same Pt loading level. Even with the Pt loading as high as 5.0 wt %, the benefit of the support defect enrichment for improving the CO oxidation performance still obviously existed.

3.3. Impact of Defect Enrichment on the Pt Local Structures. The dispersion of precious metals is inherently linked to the density of surface defects on the supports. It was expected that CA-HD with a higher concentration of surface defects could be able to anchor more Pt1 than CA. To understand the Pt structures in detail, in situ DRIFTS of CO adsorption, X-ray absorption near edge structure (XANES), EXAFS, and aberration corrected scanning transmission electron microscopy (AC-STEM) measurements were conducted for 1.0Pt/CA and 1.0Pt/CA-HD. Similar to the observations for Pt/CeO2-HD and Pt/CeZrOx-HD catalysts, which showed brighter color than Pt/CeO_2 and $Pt/CeZrO_r$ counterpart catalysts, respectively, as a result of higher Pt dispersion benefiting from defect enrichment, the 1.0Pt/CA-HD catalyst also displayed brighter golden color compared to 1.0Pt/CA, which showed a gray greenish color (Figure 2a). In situ DRIFTS of CO adsorption (Figure 2b) clearly revealed that only Pt_1 (with $CO@Pt_1$ at 2095 cm⁻¹) was present on 1.0Pt/CA-HD, while both Pt1 sites (with CO@Pt1 at 2100 cm⁻¹) and Pt_C sites (with CO@Pt_C at 2055 cm⁻¹) were present on 1.0Pt/CA.^{8,34} The Pt L₃-edge XANES results showed that the Pt species within 1.0Pt/CA and 1.0Pt/CA-HD were both in oxidized states (Figure 2c), which were between Pt⁰ and Pt⁴⁺ but closer to Pt⁴⁺ based on the white line intensity. As evidenced by the XANES linear combination fitting results (Figure S4 and Table S1 of the Supporting Information), a lower average oxidation state of Pt species was present on 1.0Pt/CA-HD (+2.8) compared to 1.0Pt/CA (+3.1), which was mainly due to the presence of more interaction between $Pt^{4+} + 2Ce^{3+} \rightarrow Pt^{2+} + 2Ce^{4+}$ on 1.0Pt/CA-HD.¹⁴ The EXAFS results in R space (Figure 2d) showed the presence of the Pt-O bond (first shell) and Pt-O-Pt and Pt-O bonds (second

Figure 3. AC-STEM and EDS mapping images for (a-o) 1.0Pt/CA-a and (p-x) 1.0Pt/CA-HD-a catalysts.

shell) in 1.0Pt/CA. In contrast, only Pt–O bonds (first shell) and Pt-O-Ce bonds (second shell) were observed on 1.0Pt/ CA-HD. This is notable because the Pt-O-Pt bond appears slightly shorter compared to Pt-O-Ce bonds in phaseuncorrected EXAFS,^{35,36} although the length of the latter also depends upon the local structure of Pt on CeO₂. These results suggest the presence of Pt_C species within 1.0Pt/CA and exclusive Pt1 species within 1.0Pt/CA-HD. The EXAFS curvefitting results (Table S2 of the Supporting Information) confirmed that the Pt species in 1.0Pt/CA-HD showed a slightly lower coordination number (CN) of Pt–O (4.6) than that in 1.0Pt/CA (4.8), which was in accordance with the Pt oxidation state sequence within the two catalysts. Such Pt L₃edge XANES and EXAFS results overall suggested that a much stronger interaction between Pt and CeO₂ was present in 1.0Pt/CA-HD than in regular 1.0Pt/CA.

Figure S5 of the Supporting Information shows the energydispersive X-ray spectroscopy (EDS) mapping images for the 1.0Pt/CA and 1.0Pt/CA-HD catalysts. A highly consistent distribution of Pt and Ce was observed on both catalysts, suggesting that CeO₂ was beneficial for anchoring the Pt species rather than Al₂O₃. This finding was further supported by the AC-STEM images (panels e-q of Figure 2), which clearly showed both Pt₁ (Figure 2f) and Pt_C (panels g-i of Figure 2) on CeO_2 within 1.0Pt/CA, whereas only Pt_1 (panels n-q of Figure 2) was observed on CeO₂ within 1.0Pt/CA-HD, with Pt_1 substituting Ce sites in the CeO₂ lattice matrix. As expected, the defect enrichment strategy via prer-eduction resulted in a significant benefit in enhancing the dispersion of Pt on CeO₂-based supports. Afterward, the H₂-TPR technique was used to evaluate the reducibility of 1.0Pt/CA and 1.0Pt/ CA-HD catalysts with totally distinct Pt species and local structures. As depicted in Figure S6 of the Supporting Information, for both catalysts, three H₂ consumption peaks attributed to the reduction of surface-adsorbed oxygen species (O_{ads}) (85 or 100 °C), Pt–O species (130 or 141 °C), and Pt–O–Ce species (200 or 205 $^\circ \text{C})$ could be observed. In comparison to 1.0Pt/CA, higher reduction temperatures and a larger total H₂ consumption amount were observed for 1.0Pt/ CA-HD (268 μ mol/g for 1.0Pt/CA-HD versus 123 μ mol/g for

1.0Pt/CA below 300 °C), suggesting the much stronger interaction between Pt and CeO_2 in the 1.0Pt/CA-HD catalyst as a result of the presence of more Pt–O–Ce linkages, as evidenced by the EXAFS results.

The Pt structures in the reduction-activated catalysts, including 1.0Pt/CA-a and 1.0Pt/CA-HD-a, were also systematically characterized using in situ DRIFTS, XAS, and AC-STEM techniques. As shown in Figure S7a of the Supporting Information, upon H₂ reduction activation and CO adsorption, similar and broad infrared (IR) bands consisting of several subpeaks showed up on both 1.0Pt/CA-a and 1.0Pt/CA-HD-a catalysts. The IR peaks at 2087, 2069, and 2045 cm⁻¹ were attributed to the CO linearly adsorbed on terrace sites, step sites, and corner sites (under-coordinated Pt) of formed Pt_C, respectively.^{16,37,38} The similar CO adsorption behavior observed on 1.0Pt/CA-a and 1.0Pt/CA-HD-a probably suggested a comparable Pt_C average size within both catalysts.³⁹ As observed from Pt L₃-edge XANES results (Figures S7b and S4 and Table S1 of the Supporting Information), the reduction activation resulted in a significant decline in the oxidation states of Pt species within 1.0Pt/CA-a (1.5) and 1.0Pt/CA-HD-a (1.7), with the latter catalyst showing a slightly higher Pt oxidation state. This decline was mainly due to the formation of $Pt-PtO_x$ clusters with mixed oxidation states between Pt metal and Pt oxide, as verified by the Pt L₃-edge EXAFS results (Figure S7c and Table S2 of the Supporting Information). These results clearly showed the presence of Pt–Pt bonds (2.63–2.69 Å) from the Pt metallic phase and Pt–O bonds (2.00 Å) from the PtO_x phase within 1.0Pt/CA-a and 1.0Pt/CA-HD-a. The varied Pt-Pt bonds suggest distinct Pt structures within the catalysts. In addition, the higher CN of the Pt-O bond (3.5 versus 2.5) and lower CN of the Pt-Pt bond (2.2 versus 4.3) in 1.0Pt/CA-HD-a compared to that in 1.0Pt/CA-a well elucidated the higher average oxidation state of Pt observed on 1.0Pt/CA-HD-a (1.7 versus 1.5). These phenomena could be attributed to either the formation of smaller $Pt-PtO_x$ clusters or the presence of a stronger interaction between Pt species and CeO2 within 1.0Pt/CA-HD-a compared to 1.0Pt/CA-a. Further clarification can be obtained by the following AC-STEM analysis.

Figure 4. Effect of defect enrichment on CO oxidation activity: (a) scheme for the benefit of defect enrichment and AC-STEM images of 1.0Pt/CA, 1.0Pt/CA-HD, 1.0Pt/CA-a, and 1.0Pt/CA-HD-a catalysts and CO oxidation activity on 1.0Pt/CA-a and 1.0Pt/CA-HD-a catalysts (b) during the cycling test (from 40 to 500 °C) and (c) with H₂O in the feedstock. Reaction conditions: steady-state testing, $[CO] = [O_2] = 1\%$, 5% H₂O (when used), and balanced with Ar, at WHSV of 200 000 or 300 000 mL·g_{cat}⁻¹·h⁻¹.

Figure S8 of the Supporting Information shows the EDS mapping images for 1.0Pt/CA-a and 1.0Pt/CA-HD-a. It was observed that there were no apparent changes on the morphology of the catalysts after reduction activation, and the Pt distribution was still closely associated with Ce distribution. Consistent with the observation from in situ DRIFTS of CO adsorption and EXAFS results, in AC-STEM images (Figure 3 and Figure S9 of the Supporting Information), Pt_C was present on both catalysts with similar size distributions but totally different interactions with CeO2. Specifically, on 1.0Pt/CA-a, Pt_C species with an average size of ca. 1.8 nm were observed, primarily in the adsorbed state on the CeO₂ surface without crystal plane matching between Pt_{C} and CeO₂ (panels a-o of Figure 3 and Figures S9a and S10a of the Supporting Information). In clear contrast, on 1.0Pt/CA-HD-a, Pt_{C} species with an average size of ca. 1.7 nm and the crystal plane matching between Pt_{C} (111) and CeO_{2} (020) were clearly observed (panels p-x of Figure 3 and Figures S9b and S10b of the Supporting Information), with the bottom layer of Pt atoms embedded in the CeO₂ surface matrix. Such a unique Pt_C structure embedded in the CeO_2 surface matrix, which originated from the reduction activation of Pt₁ species on CA-HD with an enhanced Pt-CeO₂ interaction, could be responsible for the superior CO oxidation activity of the 1.0Pt/ CA-HD-a catalyst. In our previous study, we concluded that the CeO₂ surface-embedded Pt single-layer structure could more effectively activate the oxygen species at the Pt-CeO₂ interface than the CeO₂ surface-adsorbed Pt single-layer structure,⁴⁰ and this phenomenon should also be applicable to the case of multilayer Pt_C in this study, which can be verified in the following characterization sections.

As summarized in Figure 4a, the surface defects of the CA support could be significantly increased by H_2 reduction treatment, leading to the exclusive formation of Pt_1 species on the Pt/CA-HD catalyst with Pt_1 embedded in the CeO₂ surface matrix substituting the Ce site, in clear contrast to the mixture state of Pt_1 and Pt_C species on regular Pt/CA without defect enrichment. Reduction activation was con-

firmed to be an effective way to transform the less active Pt₁ species into more active Pt_C species on both catalysts. The unique Pt_C structures with the bottom layer of Pt atoms embedded in the CeO₂ surface matrix could be formed after the reduction activation of Pt/CA-HD, while only randomly adsorbed Pt_C structures could be formed on activated Pt/CA. Considering that the 1.0Pt/CA-HD-a catalyst showed much higher activity and a similar Pt cluster size compared to 1.0Pt/CA-a, it can be concluded that the bottom-layer-embedded Pt_C structures in the CeO₂ lattice matrix were more active for the CO oxidation reaction than the adsorbed Pt_C structures on the CeO₂ surface.

3.4. Catalytic Stability. The catalytic stability of the 1.0Pt/CA and 1.0Pt/CA-HD catalysts before and after reduction activation was measured at temperatures up to 500 °C for CO oxidation (Figure 4b). It was observed that there was no apparent change in the CO oxidation activity for both 1.0Pt/CA and 1.0Pt/CA-HD catalysts during the cycling test, suggesting that the Pt sites in these two as-prepared catalysts were stable under the reaction conditions. On 1.0Pt/CA-a and 1.0Pt/CA-HD-a catalysts, the CO oxidation activity only slightly declined after the first run and then remained stable during the following test cycles. Notably, the 1.0Pt/CA-HD-a catalyst consistently showed much higher CO oxidation activity than the 1.0Pt/CA-a catalyst, with the stabilized T50 at 118 °C on 1.0Pt/CA-HD-a compared to that at 145 °C on 1.0Pt/CA-a. With the presence of H_2O in the reaction flow, significant improvement of CO oxidation activity was observed on both 1.0Pt/CA-a and 1.0Pt/CA-HD-a catalysts (Figure 4c and Figure S11 of the Supporting Information), which was in line with the observation that H₂O has a positive effect on CO oxidation over Pt-CeO₂ based catalysts.^{8,41,42} It is noteworthy that the 1.0Pt/CA-HD-a catalyst always outperformed the 1.0Pt/CA-a catalyst under the wet reaction conditions, at either the fixed reaction temperature (Figure 4c) or the varied reaction temperatures (Figure S11 of the Supporting Information). These results confirmed that the Pt/CA catalysts were catalytically stable and exhibited excellent H₂O tolerance,

with the 1.0Pt/CA-HD-a catalyst performing the best. The CO oxidation rate and turnover frequency (TOF) on 1.0Pt/CA-HD-a were further calculated and compared to other Pt-CeO₂-based catalysts reported in the literature. As listed in Table S3 of the Supporting Information, at 125 °C, the reaction rate (418 mmol·g_{Pt}⁻¹·s⁻¹) and TOF (0.601 s⁻¹) on 1.0Pt/CA-HD-a surpassed those on most Pt-CeO₂-based catalysts, showing high potential for practical applications.

3.5. Crystal Structure and Surface Elemental Composition. As shown in Figure S12 of the Supporting Information, all 1.0Pt/CA and 1.0Pt/CA-HD catalysts exhibited similar crystal structures, containing a mixture of γ -Al₂O₃ and cubic fluorite CeO₂, before and after reduction activation. No Pt species was detected in these catalysts, which should be due to the low Pt loading and relatively high Pt dispersion. The crystallite sizes of CeO2 were calculated using the Scherrer equation and were found to be smaller in the 1.0Pt/CA-HD (9.5 nm) and 1.0Pt/CA-HD-a (6.7 nm) catalysts compared to those in the 1.0Pt/CA (10.3 nm) and 1.0Pt/CA-a (7.6 nm) catalysts, respectively, as inserted in Figure S12 of the Supporting Information. In addition, it is interesting to see that the reduction activation led to a significant decrease of the CeO₂ crystallite size in 1.0Pt/CA-a and 1.0Pt/CA-HD-a catalysts compared to their unreduced 1.0Pt/CA and 1.0Pt/ CA-HD precursor catalysts, respectively, possibly as a result of the disruption of the long-range order of CeO2 and the formation of rich Ce³⁺ species in the activation process. The Ce 3d XPS results, as depicted in Figure S13 of the Supporting Information, revealed the presence of both surface Ce^{3+} and Ce⁴⁺ species in all of the 1.0Pt/CA and 1.0Pt/CA-HD catalysts before and after activation. As expected, the 1.0Pt/CA-a and 1.0Pt/CA-HD-a catalysts indeed exhibited much higher concentrations of surface Ce³⁺ species (Figure S13 and Table S1 of the Supporting Information) compared to those of their precursor catalysts before activation. Previous work reported that the formation of richer Ce³⁺ species was usually associated with the generation of more oxygen defects on the CeO₂ surface, which was beneficial for O₂ activation.³⁰ The slightly higher concentration of surface Ce3+ species observed on 1.0Pt/CA-HD-a than on 1.0Pt/CA-a could have contributed to the higher CO oxidation activity achieved on 1.0Pt/CA-HD-a.

3.6. Structure-Activity Relationship for CO Oxidation. The reaction orders for CO and O_2 in CO oxidation were determined on all catalysts before and after activation, and the results are shown in panels a and b of Figure 5. For CO oxidation on 1.0Pt/CA, 1.0Pt/CA-a, 1.0Pt/CA-HD, and 1.0Pt/CA-HD-a, the CO reaction orders were determined as 0.20, 0.20, 1.49, and 0.11, respectively, while the O_2 reaction orders were determined as 0.30, 0.31, 0.56, and 0.19, respectively. The high CO reaction order on the 1.0Pt/CA-HD catalyst could be explained by the difficult CO adsorption on embedded Pt1 sites without oxygen vacancies nearby, as already evidenced in our previous work.⁴⁰ On other catalysts with Pt_C sites, CO could be easily adsorbed and involved in CO oxidation, resulting in low CO reaction orders (≤ 0.20). The lowest CO reaction order achieved on the 1.0Pt/CA-HDa catalyst suggests that the embedded Pt_C sites were more beneficial for CO adsorption than adsorbed $\ensuremath{\text{Pt}}_{\ensuremath{\text{C}}}$ and $\ensuremath{\text{Pt}}_1$ sites. The O₂ reaction orders showed a sequence similar to that of the CO reaction orders on all catalysts, decreasing in the sequence of 1.0Pt/CA-HD (0.56) > 1.0Pt/CA-a (0.31) \approx 1.0Pt/CA (0.30) > 1.0Pt/CA-HD-a (0.19). On 1.0Pt/CA-HD-

pubs.acs.org/est

Figure 5. Kinetic study results: (a) CO reaction orders and (b) O_2 reaction orders in CO oxidation, (c) intensity for CO adsorption detected by DRIFTS at 50 °C and (d) normalized intensity for CO adsorption at different temperatures, and (e) OSC of 1.0Pt/CA, 1.0Pt/CA-a, 1.0Pt/CA-HD, and 1.0Pt/CA-HD-a catalysts at 100 and 120 °C. The kinetic study experiments were conducted under the CO conversions below 16% and the WHSV of 500 000 mL·g_{cat}⁻¹·h⁻¹. The intensity for CO adsorption was referring to the main CO adsorption peak detected by *in situ* DRIFTS experiments, and the normalized intensity for CO adsorption at different temperatures was determined by dividing the corresponding CO adsorption intensity at 50 °C.

a, the lowest $\rm O_2$ order for CO oxidation could be achieved, suggesting that the embedded $\rm Pt_C$ sites favored the $\rm O_2$ adsorption/activation compared to the adsorbed $\rm Pt_C$ and $\rm Pt_1$ sites. In summary, the embedded $\rm Pt_C$ sites could better facilitate both CO adsorption and $\rm O_2$ adsorption/activation, contributing to the superior CO oxidation activity of the 1.0Pt/CA-HD-a catalyst. It should be noted that the similar CO and O_2 reaction orders obtained on 1.0Pt/CA-a and 1.0Pt/CA were due to the presence of adsorbed $\rm Pt_C$ sites in both catalysts, and the higher CO oxidation activity achieved on 1.0Pt/CA-a was mainly due to its higher density of $\rm Pt_C$ sites.

To further investigate the CO adsorption capability of different Pt structures, in situ DRIFTS experiments of CO adsorption (at 25 °C)-desorption (from 50 to 200 °C) were conducted on all catalysts before and after reduction activation (panels c and d of Figure 5 and Figure S14 of the Supporting Information). At 50 °C, the CO adsorption intensity on all catalysts (Figure 5c) increased in the following order: 1.0Pt/ CA-HD (0.010) < 1.0Pt/CA (0.022) < 1.0Pt/CA-a (0.027) < 1.0Pt/CA-HD-a (0.042). This trend was in accordance with the kinetic study results (CO reaction order), confirming again that the 1.0Pt/CA-HD-a catalyst with embedded Pt_C sites showed higher CO adsorption capacity, while the CO adsorption on the 1.0Pt/CA-HD catalyst with embedded Pt1 sites was rather difficult. Furthermore, the higher CO adsorption capacity on the 1.0Pt/CA-a catalyst than 1.0Pt/ CA was mainly attributed to the presence of more adsorbed Pt_C sites in the former catalyst. As shown in Figure S14 of the Supporting Information, the CO adsorption intensity on all

catalysts decreased monotonically with the increased temperature. The normalized CO adsorption intensities (on the basis of the corresponding reference CO intensity at 50 °C) as a function of the desorption temperature are shown in Figure 5d, to reveal the CO desorption rates on different catalysts. It can be clearly seen that the decline degree of CO adsorption intensity followed the order of 1.0Pt/CA-a > 1.0Pt/CA-HD-a> 1.0Pt/CA-HD > 1.0Pt/CA. In combination with the CO oxidation activity, these results suggest that the amount of Pt sites for CO adsorption was more critical than the strength of CO-Pt bonding for the CO oxidation on different catalysts. To further investigate the O₂ activation and oxygen mobility within all catalysts, the dynamic OSC was determined by CO/ O₂ pulse cycling experiments for 1.0Pt/CA and 1.0Pt/CA-HD catalysts before and after activation (Figure 5e). It can be observed that the OSC values for all catalysts followed the sequence of 1.0Pt/CA-HD < 1.0Pt/CA < 1.0Pt/CA-a < 1.0Pt/ CA-HD-a at different temperatures. Consistent with the kinetic study results (O₂ reaction order), the 1.0Pt/CA-HD-a catalyst with embedded Pt_C sites indeed exhibited superior O_2 activation ability. To better reveal the relationship between the CO adsorption capacity, OSC function, and CO oxidation activity on these catalysts, the plots of the CO adsorption intensity and OSC values versus T50 for the CO oxidation light-off are presented in Figure 6. It was evident that the CO

Figure 6. Correlation between the T50 for the CO oxidation reaction and the intensity of CO adsorption at 50 $^{\circ}$ C as well as the OSC values measured at 120 $^{\circ}$ C on all Pt/CA catalysts.

oxidation activity on Pt-CeO₂-Al₂O₃ serial catalysts was strongly correlated to the Pt sites with distinct CO adsorption capacity and an O₂ activation ability. The 1.0Pt/CA-HD-a catalyst with embedded Pt_C sites showed significantly enhanced CO adsorption and promoted O₂ activation, thus contributing to its superior CO oxidation activity at low temperatures.

To clarify the role of Pt active sites in CO oxidation, in situ XANES analysis of the Pt L3-edge in 1.0Pt/CA-a and 1.0Pt/ CA-HD-a catalysts was conducted under different testing conditions. As shown in Figure 7 and Figure S15 of the Supporting Information, a consistent trend in the changes of white line intensities of Pt L₃-edge XANES and, accordingly, the average Pt oxidation states was observed on both catalysts from experimental steps 1–4. In the reaction flow $(CO + O_2)$, with the temperature increasing from 25 to 100 °C, both catalysts exhibited a decline in the Pt oxidation state, indicating the partial reduction of PtO_x clusters by CO during the reaction. Upon the change from a $CO + O_2$ flow to a CO flow at 100 °C, a further decrease in the Pt oxidation state occurred as a result of a further reduction of PtO_x clusters. Interestingly, when the reaction flow was switched back to the reaction flow $(CO + O_2)$ at 100 °C, there was no substantial change in the Pt oxidation state on both catalysts. These results suggest that the partially reduced Pt species remained stable and showed high resistance to reoxidation by O2, underscoring the crucial role of partially reduced Pt species in the CO adsorption and activation, while the O₂ activation should not take place on the Pt surface (but at the Pt_C -CeO₂ interface). In comparison of the Pt oxidation state in 1.0Pt/CA-HD-a to that in 1.0Pt/CA-a under different testing conditions, a consistently higher Pt oxidation state was observed in the former catalyst. These results suggest that the stronger interaction between Pt_C and CeO_2 in the 1.0Pt/CA-HD-a catalyst remained constantly stable under different conditions and could effectively facilitate the oxygen mobility at the Pt_C-CeO₂ interface. Therefore, the 1.0Pt/CA-HD-a catalyst showed both significantly enhanced CO adsorption and promoted O2 activation, on which the abundant CO species adsorbed on embedded Pt_C sites could readily react with facilely mobile O from CeO2 at the interfaces, thus exhibiting excellent low-temperature CO oxidation performance.

Figure 7. In situ XANES of Pt L_3 -edge in (a) 1.0Pt/CA-a and (b) 1.0Pt/CA-HD-a catalysts and their corresponding (c) average Pt oxidation states under different testing conditions. The average Pt oxidation states were determined by the linear combination fitting of Pt L_3 -edge XANES using Pt foil and PtO₂ as references.

CO gas emitted from diverse sources, including vehicle exhaust and industrial activities, poses significant risks to both the environment and human health. There is a continuous demand for the development of highly efficient catalysts to mitigate CO emissions at low temperatures. Precious metal catalysts, such as Pt-CeO₂, have shown great promise, although further improvement in the low-temperature activity is still needed. In this work, a universal defect enrichment strategy involving reduction pretreatment was developed for CeO2-based supports, including CeO_{2i} , $CeZrO_{xi}$ and CeO_2/Al_2O_3 (CA). On these defect-enriched supports, Pt catalysts showed improved Pt dispersion and enhanced low-temperature CO oxidation activity upon reduction activation. Specifically, using the CeO_2/Al_2O_3 support with enriched surface defects (CA-HD), embedded Pt clusters (Pt_C) with the bottom layer of Pt atoms substituting the Ce cations were generated within the 1.0Pt/CA-HD-a catalyst after reduction activation (where -a is activated). These embedded Pt_C sites exhibited superior catalytic activity in CO oxidation in comparison to the adsorbed Pt_{C} sites on CeO₂ within the 1.0Pt/CA-a catalyst, although they were showing similar cluster sizes. In-depth characterizations and mechanism studies suggested that the uniquely embedded Pt_C sites had a stronger interaction with CeO₂, which not only benefited the CO adsorption on Pt_C sites but also improved the O₂ activation and interfacial oxygen mobility on CeO₂. Collectively, the significantly enhanced lowtemperature CO oxidation at the interfaces between Pt_C and CeO₂ could be achieved on the 1.0Pt/CA-HD-a catalyst. This work offers valuable insights into the support defect enrichment and the synthesis of metal catalysts with improved metal dispersion and superior catalytic performance for environmental catalysis applications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.4c03078.

Catalyst characterization, curve fitting results of Pt L₃edge EXAFS, surface atomic concentrations and Pt average oxidation states, CO oxidation activity on 1.0Pt/ CeO₂-HD, 1.0Pt/CeZrO_x-HD, and xPt/CA-HD catalysts, linear combination fitting results of Pt L₃-edge XANES, AC-STEM and EDS mapping images, H₂-TPR profiles, XRD patterns, XPS results, and *in situ* DRIFTS study (PDF)

AUTHOR INFORMATION

Corresponding Author

Fudong Liu – Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States; Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States; orcid.org/0000-0001-8771-5938; Phone: 951-827-1480; Email: fudong.liu@ucr.edu

Authors

Shaohua Xie – Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States; orcid.org/0000-0003-1550-7421

- **Yue Lu** Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; © orcid.org/0000-0001-9800-3792
- Kailong Ye Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- Wei Tan Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China;
 orcid.org/0000-0002-1481-9346
- Sufeng Cao Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States; Aramco Boston Research Center, Cambridge, Massachusetts 02139, United States
- Chunying Wang Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China; orcid.org/0009-0005-0987-4534
- Daekun Kim Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- Xing Zhang Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States;
 orcid.org/0009-0001-6566-1921
- Jeremia Loukusa Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States; orcid.org/0009-0000-1636-0092
- Yaobin Li Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China; © orcid.org/0000-0002-6496-8382
- Yan Zhang Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China; © orcid.org/0000-0002-5423-8255
- Lu Ma National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States

12739

- Steven N. Ehrlich National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
- Nebojsa S. Marinkovic Department of Chemical Engineering, Columbia University, New York, New York 10027, United States; orcid.org/0000-0003-3579-3453
- Jiguang Deng Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China; orcid.org/ 0000-0001-7768-3688
- Maria Flytzani-Stephanopoulos Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.est.4c03078

Notes

The authors declare no competing financial interest.

▲Maria Flytzani-Stephanopoulos passed away on October 28, 2019.

ACKNOWLEDGMENTS

Fudong Liu acknowledges the National Science Foundation (Grant CHE-1955343) and Startup Fund from the University of California, Riverside (UCR). Shaohua Xie, Daekun Kim, and Xing Zhang thank the support from the Preeminent Postdoctoral Program (P3) at the University of Central Florida (UCF). Fudong Liu sincerely thanks Dr. Marcos Schöneborn at Sasol for providing raw materials in catalyst synthesis and Prof. Laurene Tetard for providing resources in Raman spectra measurement. This research used beamline 7-BM (QAS) of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the U.S. DOE Office of Science by Brookhaven National Laboratory under Contract DE-SC0012704. Beamline operations were supported in part by the Synchrotron Catalysis Consortium (U.S. DOE Office of Basic Energy Sciences, Grant DE-SC0012335).

REFERENCES

(1) Li, X.; Huang, Y.; Liu, B. Catalyst: Single-atom catalysis: Directing the way toward the nature of catalysis. *Chem* **2019**, *5* (11), 2733–2735.

(2) Kaiser, S. K.; Chen, Z.; Faust Akl, D.; Mitchell, S.; Perez-Ramirez, J. Single-atom catalysts across the periodic table. *Chem. Rev.* **2020**, *120* (21), 11703–11809.

(3) Liu, D.; He, Q.; Ding, S.; Song, L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. *Adv. Energy Mater.* **2020**, *10* (32), 2001482.

(4) Resasco, J.; Christopher, P. Atomically dispersed Pt-group catalysts: Reactivity, uniformity, structural evolution, and paths to increased functionality. *J. Phys. Chem. Lett.* **2020**, *11* (23), 10114–10123.

(5) Xue, Z.; Yan, M.; Zhang, Y.; Xu, J.; Gao, X.; Wu, Y. Understanding the injection process of hydrogen on Pt_1 -TiO₂ surface for photocatalytic hydrogen evolution. *Appl. Catal., B* **2023**, *325*, 122303.

(6) Zhu, M.; Zhao, C.; Liu, X.; Wang, X.; Zhou, F.; Wang, J.; Hu, Y.; Zhao, Y.; Yao, T.; Yang, L. M.; Wu, Y. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in protonexchange membrane fuel cells. *ACS Catal.* **2021**, *11* (7), 3923–3929. (7) Zhang, N.; Ye, C.; Yan, H.; Li, L.; He, H.; Wang, D.; Li, Y. Single-atom site catalysts for environmental catalysis. *Nano Res.* **2020**, *13* (12), 3165–3182.

(8) Wang, H.; Liu, J.-X.; Allard, L. F.; Lee, S.; Liu, J.; Li, H.; Wang, J.; Wang, J.; Oh, S. H.; Li, W.; Flytzani-Stephanopoulos, M.; Shen, M.; Goldsmith, B. R.; Yang, M. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt₁ atoms. *Nat. Commun.* **2019**, *10* (1), 3808.

(9) Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. *Science* **2015**, *350*, 189–192.

(10) Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L.; Datye, A. K.; Wang, Y. Activation of surface lattice oxygen in single-atom Pt/CeO₂ for low-temperature CO oxidation. *Science* **2017**, 358 (6369), 1419–1423.

(11) Lu, Y.; Zhou, S.; Kuo, C.-T.; Kunwar, D.; Thompson, C.; Hoffman, A. S.; Boubnov, A.; Lin, S.; Datye, A. K.; Guo, H.; Karim, A. M. Unraveling the intermediate reaction complexes and critical role of support-derived oxygen atoms in CO oxidation on single-atom Pt/ CeO₂. ACS Catal. **2021**, *11* (14), 8701–8715.

(12) Jeong, H.; Shin, D.; Kim, B. S.; Bae, J.; Shin, S.; Choe, C.; Han, J. W.; Lee, H. Controlling the oxidation dtate of Pt dingle stoms for maximizing catalytic activity. *Angew. Chem., Int. Ed.* **2020**, *59* (46), 20691–20696.

(13) Jiang, D.; Yao, Y.; Li, T.; Wan, G.; Pereira-Hernandez, X. I.; Lu, Y.; Tian, J.; Khivantsev, K.; Engelhard, M. H.; Sun, C.; Garcia-Vargas, C. E.; Hoffman, A. S.; Bare, S. R.; Datye, A. K.; Hu, L.; Wang, Y. Tailoring the local environment of platinum in single-atom Pt_1/CeO_2 catalysts for robust low-temperature CO oxidation. *Angew. Chem., Int. Ed.* **2021**, *60* (50), 26054–26062.

(14) Tang, Y.; Wang, Y. G.; Li, J. Theoretical investigations of $Pt_1@$ CeO₂ single-atom catalyst for CO oxidation. *J. Phys. Chem. C* 2017, 121 (21), 11281–11289.

(15) Pereira-Hernández, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; Xiong, H.; Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y.; Datye, A. K. Tuning $Pt-CeO_2$ interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. *Nat. Commun.* **2019**, *10* (1), 1358.

(16) Xie, S.; Tan, W.; Wang, C.; Arandiyan, H.; Garbrecht, M.; Ma, L.; Ehrlich, S. N.; Xu, P.; Li, Y.; Zhang, Y.; Collier, S.; Deng, J.; Liu, F. Structure-activity relationship of Pt catalyst on engineered ceriaalumina support for CO oxidation. *J. Catal.* **2022**, *405*, 236–248.

(17) Xie, S.; Wang, Z.; Tan, W.; Zhu, Y.; Collier, S.; Ma, L.; Ehrlich, S. N.; Xu, P.; Yan, Y.; Xu, T.; Deng, J.; Liu, F. Highly active and stable palladium catalysts on novel ceria-alumina supports for efficient oxidation of carbon monoxide and hydrocarbons. *Environ. Sci. Technol.* **2021**, 55 (11), 7624–7633.

(18) Dvořák, F.; Farnesi Camellone, M.; Tovt, A.; Tran, N. D.; Negreiros, F. R.; Vorokhta, M.; Skála, T.; Matolinová, I.; Mysliveček, J.; Matolín, V.; Fabris, S. Creating single-atom Pt-ceria catalysts by surface step decoration. *Nat. Commun.* **2016**, *7*, 10801.

(19) Li, X.; Pereira-Hernandez, X. I.; Chen, Y.; Xu, J.; Zhao, J.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C.; Liu, J. Functional CeO_x nanoglues for robust atomically dispersed catalysts. *Nature* **2022**, *611* (7935), 284–288.

(20) Farrauto, R. J.; Deeba, M.; Alerasool, S. Gasoline automobile catalysis and its historical journey to cleaner air. *Nat. Catal.* **2019**, 2 (7), 603–613.

(21) Lu, Y.; Zhang, Z.; Lin, F.; Wang, H.; Wang, Y. Single-atom Automobile Exhaust Catalysts. *ChemNanoMat* **2020**, *6* (12), 1659– 1682.

(22) Boronin, A. I.; Slavinskaya, E. M.; Figueroba, A.; Stadnichenko, A. I.; Kardash, T. Y.; Stonkus, O. A.; Fedorova, E. A.; Muravev, V. V.; Svetlichnyi, V. A.; Bruix, A.; Neyman, K. M. CO oxidation activity of Pt/CeO_2 catalysts below 0 °C: Platinum loading effects. *Appl. Catal., B* **2021**, 286, 119931.

(23) Yang, C.; Lu, Y.; Zhang, L.; Kong, Z.; Yang, T.; Tao, L.; Zou, Y.; Wang, S. Defect engineering on CeO₂-based catalysts for heterogeneous catalytic applications. *Small Struct.* **2021**, 2 (12), 2100058.

(24) Huang, B.; Gillen, R.; Robertson, J. Study of CeO_2 and its native defects by density functional theory with repulsive potential. *J. Phys. Chem. C* **2014**, *118* (42), 24248–24256.

(25) Zhang, S.; Huang, Z.-Q.; Ma, Y.; Gao, W.; Li, J.; Cao, F.; Li, L.; Chang, C.-R.; Qu, Y. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO₂. *Nat. Commun.* **2017**, *8*, 15266.

(26) Lee, W.; Chen, S. Y.; Chen, Y. S.; Dong, C. L.; Lin, H. J.; Chen, C. T.; Gloter, A. Defect structure guided room temperature ferromagnetism of Y-doped CeO_2 nanoparticles. *J. Phys. Chem. C* **2014**, *118* (45), 26359–26367.

(27) Choudhury, B.; Choudhury, A. Lattice distortion and corresponding changes in optical properties of CeO_2 nanoparticles on Nd doping. *Curr. Appl. Phys.* **2013**, *13* (1), 217–223.

(28) Soni, S.; Kumar, S.; Dalela, B.; Kumar, S.; Alvi, P. A.; Dalela, S. Defects and oxygen vacancies tailored structural and optical properties in CeO₂ nanoparticles doped with Sm³⁺ cation. *J. Alloys Compd.* **2018**, 752, 520–531.

(29) Yuejuan, W.; Jingmeng, M.; Mengfei, L.; Ping, F.; Mai, H. Preparation of high-surface area nano- CeO_2 by template-assisted precipitation method. *J. Rare Earths* **2007**, *25* (1), 58–62.

(30) Schilling, C.; Hofmann, A.; Hess, C.; Ganduglia-Pirovano, M. V. Raman spectra of polycrystalline CeO₂: A density functional theory study. *J. Phys. Chem. C* **2017**, *121* (38), 20834–20849.

(31) Daniel, M.; Loridant, S. Probing reoxidation sites by in situRaman spectroscopy: Differences between reduced CeO_2 and Pt/CeO_2 . J. Raman Spectrosc. **2012**, 43 (9), 1312–1319.

(32) Zhang, S.; Li, X. S.; Chen, B.; Zhu, X.; Shi, C.; Zhu, A. M. CO oxidation activity at room temperature over Au/CeO_2 catalysts: Disclosure of induction period and humidity effect. *ACS Catal.* **2014**, 4 (10), 3481–3489.

(33) Wu, Z.; Li, M.; Mullins, D. R.; Overbury, S. H. Probing the surface sites of CeO_2 nanocrystals with well-defined surface planes via methanol adsorption and desorption. *ACS Catal.* **2012**, 2 (11), 2224–2234.

(34) Bazin, P.; Saur, O.; Lavalley, J. C.; Daturi, M.; Blanchard, G. FT-IR study of CO adsorption on Pt/CeO_2 : Characterisation and structural rearrangement of small Pt particles. *Phys. Chem. Chem. Phys.* **2005**, 7 (1), 187–194.

(35) Bera, P.; Priolkar, K. R.; Gayen, A.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Jayaram, V.; Subbanna, G. N. Ionic dispersion of Pt over CeO_2 by the combustion method: Structural investigation by XRD, TEM, XPS, and EXAFS. *Chem. Mater.* **2003**, *15*, 2049–2060.

(36) Derevyannikova, E. A.; Kardash, T. Y.; Stadnichenko, A. I.; Stonkus, O. A.; Slavinskaya, E. M.; Svetlichnyi, V. A.; Boronin, A. I. Structural insight into strong Pt-CeO₂ interaction: From single Pt atoms to PtO_x clusters. *J. Phys. Chem. C* **2019**, *123* (2), 1320–1334. (37) Ke, J.; Zhu, W.; Jiang, Y.; Si, R.; Wang, Y. J.; Li, S. C.; Jin, C.; Liu, H.; Song, W. G.; Yan, C. H.; Zhang, Y. W. Strong local coordination structure effects on subnanometer PtO_x clusters over CeO₂ nanowires probed by low-temperature CO oxidation. *ACS Catal.* **2015**, 5 (9), 5164–5173.

(38) Avanesian, T.; Dai, S.; Kale, M. J.; Graham, G. W.; Pan, X.; Christopher, P. Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with *in situ* TEM and IR. *J. Am. Chem. Soc.* **2017**, 139 (12), 4551–4558.

(39) Meunier, F. C. Relevance of IR spectroscopy of adsorbed CO for the characterization of heterogeneous catalysts containing isolated atoms. *J. Phys. Chem. C* **2021**, *125* (40), 21810–21823.

(40) Xie, S.; Liu, L.; Lu, Y.; Wang, C.; Cao, S.; Diao, W.; Deng, J.; Tan, W.; Ma, L.; Ehrlich, S. N.; Li, Y.; Zhang, Y.; Ye, K.; Xin, H.; Flytzani-Stephanopoulos, M.; Liu, F. Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation. J. Am. Chem. Soc. 2022, 144 (46), 21255–21266.

(41) Wang, C.; Gu, X.-K.; Yan, H.; Lin, Y.; Li, J.; Liu, D.; Li, W.-X.; Lu, J. Water-mediated Mars–Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt_1 catalyst. *ACS Catal.* **2017**, 7 (1), 887–891.

(42) Wang, Y.; Ma, J.; Wang, X.; Zhang, Z.; Zhao, J.; Yan, J.; Du, Y.; Zhang, H.; Ma, D. Complete CO oxidation by O₂ and H₂O over Pt– $CeO_{2-\delta}/MgO$ following Langmuir–Hinshelwood and Mars–van Krevelen mechanisms, respectively. ACS Catal. **2021**, 11 (19), 11820–11830.