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Abstract

A fundamental challenge for big-data analytics is how

to efficiently tune and debug multi-step dataflows. This

paper presents Newt, a scalable architecture for captur-

ing and using record-level data lineage to discover and

resolve errors in analytics. Newt’s flexible instrumenta-

tion allows system developers to collect this fine-grain

lineage from a range of data intensive scalable com-

puting (DISC) architectures, actively recording the flow

of data through multi-step, user-defined transformations.

Newt pairs this API with a scale-out, fault-tolerant lin-

eage store and query engine.

We find that while active collection can be expensive,

real-world analytics often incur modest runtime over-

heads (<36%) and it enables novel lineage-based debug-

ging techniques. For instance, Newt can efficiently recre-

ate errors (crashes or bad outputs) or remove input data

from the dataflow to enable data cleaning strategies. Ad-

ditionally, Newt’s active lineage collection allows retro-

spective analyses of a dataflow’s behavior, such as iden-

tifying anomalous stages. As case studies, we instrument

two DISC systems, Hadoop and Hyracks, with less than

105 lines of additional code for each. Finally, we use

Newt to systematically clean input data to a Hadoop-

based de novo genome assembler, significantly improv-

ing the quality of the output assembly.

1 Introduction

Modern data-intensive scalable computing (DISC) sys-

tems support analytics that use many non-relational

transformations. We believe the next bottleneck to large-

scale data analysis will be debugging and tuning these

analytics. Errors arise at many levels—from semantic

bugs, bad data, or hardware errors. With large input data

sets, traditional debugging techniques are at best cumber-

some, if not intractable. For example, MapReduce users

run individual map or reduce tasks in isolation on small

inputs to debug their code. However many pathological

cases arise when running at scale on large input data sets.

While it may be possible to manually prune the inputs to

reproduce the bug, considerable programmer effort and

additional machine time is required.

This paper explores how to capture and use fine-grain

lineage, a record of how input records affect outputs,

during the tuning and debugging of big-data analytics.1

Though recent projects explore lineage in this very con-

text, they focus on drill-down queries (tracing backward

from outputs) [2, 19, 10], limit capture to one system

(e.g., Pig/Hadoop) [10, 19, 2], or support coarse-grain

or low-data rate collection [13, 19]. On the other hand,

novel lineage models [15] and use cases, such as output

refresh [11], offer sound theoretical underpinnings but

lack scalable realizations.

This work presents Newt, an instrumentation-based

approach for capturing lineage from DISC systems at

runtime. A key contribution of this work is the intro-

duction of novel debugging methodologies. For instance,

Newt enables lineage data mining strategies, such as

identifying changes in lineage to pinpoint suspect trans-

formations, e.g., those that suddenly produce much more

or less data. We also use Newt’s ability to remove data

from a pipeline to develop a general methodology for

cleaning analytic pipelines of bad data. We employ this

technique on non-trivial analytics, in particular to im-

prove de novo genetic assembly when input data sets are

polluted with DNA from multiple organisms [8, 18].

On the face of it, active capture of fine-grain dataflow

may appear expensive and impractical, even for use dur-

ing debugging and tuning. Such objections have driven

the development of lazy[7] or forensic [19] capture sys-

tems that must re-execute analytics (perhaps multiple

times) to produce lineage. This work questions that

premise by studying the real-world costs of such an ap-

proach and weighing those penalties against the bene-

fits of having the entire record-by-record dataflow im-

mediately available to the user or data scientist. We

believe that doing so provides both new abilities (men-

tioned above) and fast, arbitrary tracing queries and de-

bugging replays.

In addition to those listed above, this work makes the

following additional contributions:

• Generic lineage instrumentation: The Newt capture

API supports the groupwise processing constructs (e.g,.

MapReduce’s reduce) that underly many DISC systems.

It does so by offering paired capture (Section 3.2), which

independently records the arrival of inputs and depar-

ture of outputs from the operator. Post capture, Newt

1Newt collects lineage in the spirit of Cui et al. [7], a specific form

of why provenance [6].

1



reconstructs the lineage using the timing of data arrivals

and departures. This approach simplifies instrumenta-

tion, reduces capture overheads, and improves lineage

accuracy (Section 7.1). As case studies, we instrument

both Hadoop and Hyracks [5] DISC frameworks.

• Scalable capture and replay architecture: Newt

employs a scale-out, fault-tolerant architecture to store,

query, and replay captured lineage. Newt can actively

track fine-grain, record-level provenance with a mod-

est run time penalty of 12-49% and a 34-69% output

storage penalty for the PigMix benchmark (a set of Pig

scripts that compile to Hadoop jobs). For more com-

plex, non-relational dataflows, such as Contrail [17],

a Hadoop-based de novo genome assembler, and Ma-

hout [1], Hadoop-based machine learning, we observed

run time slowdowns of 20-36%. Finally, Newt’s efficient

replay recreates individual outputs with a subset of input

data, enabling step-wise debugging at a fraction of the

cost of the original execution (Section 7.2).

2 Overview

This section introduces a simple scenario to illustrate

how lineage helps tune and debug DISC analytics. Our

goal is to enable system developers2 to instrument the

underlying DISC system once, and then extract lineage

from any user-defined analytics that run on top.

Note that in some use cases, Newt’s contribution is

not the lineage facility itself, such as tracing or replay,

but a general and efficient realization of it. For instance,

while Ikeda et al. introduced a theoretical basis for cor-

rect replay [10], Newt develops the mechanisms for find-

ing feasible and efficient replays (Section 3.4). The fol-

lowing dataflow scenario is inspired by actual analytics

at a large mobile telecom.

2.1 The case for lineage

The telecom data scientist writes a Pig script [14] to pro-

duce aggregate statistics from daily mobile network traf-

fic logs with tuples containing a uid, agent, and bytes

transferred. The scientist wishes to consider only cellular

network users (no tethering), so they remove log entries

that contain agents suspected of tethering using a filter

containing a regular expression. Downstream analytics

join this intermediate output of (uid, agent) pairs with

the original input to produce aggregate statistics for non-

tethering users. Figure 1 shows the resulting sequence of

MapReduce jobs.

2We distinguish system developers (or simply “developers”), those

that create DISC architectures, from the data scientists or users that

write programs, scripts, or dataflows that run on those DISC systems.

Filter by
agent regex

MapReduce Jobs

(uid,agent,bytes)

(1,iphone,100)

(1,iphone)

(uid,agent)

GroupBy uid

Raw input logs

Output Data

(1,100)

(uid,sumBytes)

Total traffic
per user

(4,ipad,200)

(5,badAgent,9000)

(4,ipad,300)

(8,winmob,200)

(8,ipad,200)

(agent, count)

Downloads per
agent

(4,ipad)

(5,badAgent)

(4,500)

(5,9000)

(iphone,1)

(ipad,3)

(badAgent,1)

Lineage Trace

Figure 1: This example dataflow first filters network traffic

logs looking for non-tethering user agents. The intermediate

output is joined repeatedly with the original input to produce

aggregate statistics, e.g., total traffic and downloads per user

agent. Dotted arrows indicate the lineage of suspect user with

a tethering agent.

Unfortunately, our scientist often encounters errors

when new agents or agent spellings pass the initial fil-

ter. In Figure 1 “badAgent” ultimately pollutes the inter-

mediate and final aggregate results. Without lineage the

scientist must debug the analytic by writing additional

Pig scripts. The first finds uid’s with abnormally high

download volumes, indicating tethering, and the second

script scans the input records for those uid’s, recording

their agent fields. The scientist then updates the regu-

lar expression and re-runs the entire job. While time-

consuming and fragile, this general process is common to

many analytics. As we explain later, genome researchers

attempt the same process to clean their input data sets.

Existing lineage-based facilities Fine-grain lineage

simplifies this process. First, backward tracing, often

called drill-down, allows a user to work backward from

outputs to the inputs (and preceding transforms). A sim-

ple backward trace from the (5, 9000) tuple gives the sci-

entist all bad inputs (and the offending agent) without

running the second Pig script. In the opposite direction,

forward tracing determines the outputs derived from the

bad input records, alerting the scientist to any intermedi-

ate results that may be invalid.

A more challenging scenario occurs when the original

Pig script silently fails due to malformed inputs. Now the

data scientist must modify the MapReduce code to catch

the offending record or manually scan for erroneous in-

put records. Instead, with lineage-based crash-culprit

determination [13] the scientist could record the offend-

ing inputs and issue a backwards trace to find the input

records that caused the crash. Finally replaying [10] that

backwards trace would re-run the dataflow only on the

affected subset of input data, reducing debugging time

and effort. Newt provides a practical implementation of

these existing techniques.
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DISC
actors

Newt client

input
tap

output
tap

TA

1.) Capture
association 

2.) Write associations
to replicated log file

3.) Migrate to
SQL tables

logDisk

SQL

Newt peer

TA

tableTB
4.) Perform
tracing query

logDisk

SQL

Newt peer

TB

tableTA
tableTX

Newt client

input
tap

output
tap

TB

Figure 2: A Newt client sends associations to a peer node

who writes them to local disk and then builds indexed SQL

tables. The peer backs up associations by lazily recording them

on another peer’s disk. Newt peers and clients may also be

co-located.

Facilities unique to Newt This work explores two new

facilities that address other potential problems for our

data scientist. First, after identifying the “badAgent”

records with a trace, typically the scientist wishes to re-

run the script with clean inputs. To do so, Newt provides

exclusive replay (ex-replay). While ordinary replay runs

the analytic on the subset of inputs indicated by a trac-

ing query, ex-replay excludes those inputs. In particular,

ex-replay can exclude or squash data from any stage in a

dataflow, not just the beginning.

Our example assumed the scientist could find bad out-

puts or experienced a crash. This, though, is not always

the case. Without known bad outputs, users need to ana-

lyze the dataflow for suspicious behavior in general. To

that end, Newt provides a set of debugging interfaces

(Section 4.1) that assist a user in inspecting lineage for

dataflow anomalies, as well as identifying faulty actors

given a bad output.

2.2 Design

Newt employs a scale-out architecture of Newt peers co-

located with each node in the DISC cluster (Figure 2).

System developers instrument each logical actor in the

DISC environment to capture lineage associations, the

relationship between data inputs and outputs. An actor is

an entity that transforms data; it may be a Dryad vertex,

a MapReduce job, individual map and reduce operators,

or an entire dataflow.

The lifecycle of a single instrumented dataflow con-

sists of three primary phases: capture, tracing, and re-

play. In the capture phase, Newt acts as a scalable, paral-

lel sink for lineage associations, delivering them directly

to local disk (possibly replicating the log file on a dif-

ferent peer). Once the capture phase has ended and the

analytic is finished, the system imports each actor’s asso-

ciation log into an indexed SQL table, called an associa-

tion table. At this point Newt can perform tracing queries

by issuing a sequence of joins across the association ta-

bles, matching the outputs of one actor with the inputs of

another (Section 3.3).

A logically centralized Newt controller (not shown)

distributes the load of ingesting associations, maintains

a directory of association tables stored in the cluster, and

manages failures by rebuilding tables as needed. For

instance, the controller decides the peer that will store

the SQL association table (chosen to optimize tracing

queries). The controller also performs the tracing queries

and orchestrates replay by restarting the necessary actors.

Beyond scalability, Newt must address two other key

challenges. First, a key feature of many DISC systems is

the ability for users to incorporate non-relational or user-

defined functions (UDFs). This makes tracking fine-

grain lineage in a transparent fashion difficult. Second,

the definition of lineage is a set of inputs sufficient to

recreate an output. However, lineage is not guaranteed to

be minimal; there may be unnecessary input items asso-

ciated with the output. Improving lineage accuracy can

minimize storage overheads, narrow the scope of input

data considered when debugging, and minimize dataflow

replay processing.

We recognize that recording record-level lineage is

space intensive. However, storage is relatively inexpen-

sive versus compute, and we leave minimizing storage

overheads as future work. In addition, while Newt can

capture lineage from a non-deterministic operator, it can

only accurately replay deterministic transforms.

3 Lineage capture, tracing, and replay

This section discusses how Newt captures, queries, and

replays lineage. We first describe Newt’s notion and rep-

resentation of lineage. Next, we present the capture API

and how it accommodates common operators found in

DISC environments. The remainder of this section de-

scribes Newt’s Tracing function, as well as the seman-

tics, operation, and limitations of dataflow replay and ex-

replay.

3.1 Data lineage in Newt

Each actor in the DISC environment reads data items

from an input I and creates a set of output items O. Given

O = P(I), where P is an actor transform, provenance as-

sociates input records i ∈ I with output records o ∈ O.

Newt allows the programmer to associate a subset of in-

put records I′ ⊆ I with each o. An association takes the

form of (I′,P,o). To Newt, these associations represent

data lineage, a specific form of provenance developed to

perform tracing queries for arbitrary data warehousing

transforms [7].

To enable replay, Newt requires the instrumented ac-

tor to report complete data lineage. In this case, I′ con-

3



Function Description

Standard Capture API

capture(id,Hin,Hout)→ filter Create provenance association (Hin, pid ,Hout). If supporting replay, if filter is true, drop output.

Paired Capture API

addInput(id,Hin,T )→ filter Add Hin to current association set DT , where T is an optional tag. If supporting replay, if filter

is true, drop input.

addOutput(id,Hout,T ) Add provenance association (DT , pid ,Hout).

reset(T ) Reset association set DT to ∅.

Management

register(name,g,α)→ id Register actor of type g with Newt before processing. Returns unique identifier, id.

commit(id) Inform Newt that this actor has completed processing.

flow link(idsrc,iddst) Inform Newt that actor iddst receives data from actor idsrc.

Debugging Interface

trace(r[],dir,proot)→ F Trace elements in r[] produced by actor proot in dir direction. Returns a set of tracing dataflows, F.

mine(proot,obad ,Ogood[])→ R Mine the dataflow contained by actor proot to identify anomalies. See Section 4.1

fail(id,Hin,Hout) Records culprit input when actor encounters exception—Hout is optional.

Table 1: Newt API. Note that if tags (T ) are not supplied in the paired API, sys will use a default tag ∗.

tains all inputs considered by actor P when it created

o during P’s execution, and this ensures o ∈ O′ when

O′ = P(I′) [7]. Note that this I′ may not be unique; there

may be many other possible witness sets from which o

can be generated using P. While prior work tried to dis-

cover all such witness sets [16], here we are interested in

the one that occurred during a dataflow’s execution.

To collect data lineage, Newt instrumentation captures

individual association pairs, (din
,dout), that relate input

data din to output data dout for an actor instance p, where

each p is given a unique instance identifier. In prac-

tice din and dout are typically cryptographic hashes on

byte ranges or short, specific data fields that the system

developer knows the system will preserve (e.g., group-

ing keys or file-offset-length triples). When the dataflow

completes, Newt creates an association table Ap for each

actor instance p with a row per association and columns

for inputs and outputs.

Newt depends on the system developer to indicate a

connected set of actors to correctly perform tracing and

replay. Figure 3 illustrates a single Hadoop job that in-

vokes instrumentation for record readers, record writ-

ers, and map and reduce tasks. System developers use

the flow link API call (Table 1) to tell Newt the cap-

ture dataflow, a DAG of actor instances. Recording the

dataflow is often straightforward: DISC job controllers

know the explicit dataflow and actor identifiers.

Figure 3 shows the job and task-level captured

dataflows. However, to answer queries that span lev-

els, such as “which input records did a MapReduce job

read?”, Newt captures containment relationships. To do

so, an instrumented DISC system declares a set of ac-

tor and data types and arranges each into a logical con-

tainment hierarchy. For example, MapReduce jobs con-

tain maps and reducers, and files contain records. In ad-

filter
tether
agents

MapReduce Job
directory

files files

directory

input
logs

Job level
dataflow

Task level
dataflow

containment relationships

record
reader

reduce
task

Lineage
{in,out} {(file,off,len), rcd} {(k,v), rcd}

map
task

record
writer

{rcd, (file,off,len)}{rcd, (k,v)}

output
table

Figure 3: Newt records a MapReduce job and task level

dataflow, containment relationships that unify them, and the

flow of data between actors.

dition, Newt records instance containment relationships

(e.g, record y is contained in file x) at run time.

Here Newt extends the concept of containment,

introduced by the Ibis multi-granularity provenance

model [15], to support replay. In this case one actor

type contains another if it initiates that actor (directly or

transitively) and cannot complete until it completes. For

instance, each MR Job spawns record readers, maps, re-

duces, and record writers that must finish for the job to

complete. Newt depends on this semantic to garbage col-

lect lineage from speculative tasks (Section 5.3).

3.2 Capture API

Developers use the capture APIs in Table 1 to create lin-

eage associations. We found one-to-one or one-to-many

operators, such as the map operator, relatively easy to in-

strument with a single call to capture, which associates

an input element hash Hin with an output element hash

Hout.
3 In these cases, all the outputs of such an operation

can be associated with the same input.

3Developers define a set of data types (Section 3.1) for input and

output elements and these types determine how to compute H, the hash

of the data element.
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However, groupwise or many-to-many operators are

more challenging because they inherently buffer inputs

before emitting results. These transforms typically call

a user-defined function with an array of input data el-

ements. For example, Hadoop’s reduce task calls the

user’s reduce function with an iterator containing all val-

ues for a reduce key k. The downside is that such iterator-

based functions force us to associate all input values for

a given reduce key k with the reduce output k′,v′[]. The

left side of Figure 4 shows the (N ∗M) associations (ar-

rows) that the standard capture API produces—each out-

put associates with each input value.

paired capture
in[0]

in[1]

in[2]

out[0]

out[1]

out[2]

unpaired capture
in[0]

in[1]

in[2]

out[0]

out[1]

out[2]

time

Figure 4: Paired capture creates fewer associations (edges)

when used within an iterator-based function such as reduce. An

output only associates with inputs that occur earlier in time (e.g,

happened-before).

However virtually all physical DISC operators execute

on a single machine and many are pipelined [15]. Thus,

the temporal order of outputs relative to inputs gives an

approximation of lineage—an output can only appear if

its inputs have been read. These observations lead to a

second API we call paired capture (Table 1). Here a de-

veloper can independently instrument the input and out-

put sides of an actor using addInput and addOutput re-

spectively. During capture Newt internally timestamps

these observations, and issues them to the lineage stor-

age peer without further processing. Thus an input is

only sent once to Newt, not once for each associated

output as in capture. This approach improves accuracy

for pipelined transforms, and reduces network traffic and

storage overheads.

Only after capture does Newt reconstruct the associa-

tions. For each actor in the trace, Newt simply associates

an output item with any input with a lesser timestamp

(i.e., it happened-before). Intuitively, each call to addIn-

put adds an input element to an association set D∗. When

the programmer invokes addOutput, Newt associates all

elements in D∗ with the output. However actors should

flush D∗ (by calling reset) when the next output does

not depend on any prior inputs in D∗. For instance, our

reduce task instrumentation calls reset when processing

the next key k. The right side of Figure 4 shows how this

paired API reduces the number of associations.

However, paired capture remains problematic for op-

erators that buffer all inputs before releasing outputs. For

instance, the Hyracks HashGroup operator groups all in-

put into a hash table before processing the found keys. To

assist in these cases, Newt provides tags. Developers add

a tag T to input items in addInput, and Newt associates

an output item with T with all inputs in DT .4 Note that

Newt does not propagate T ; it must either be an operator

artifact or communicated by other means (e.g., Inspec-

tor Gadget agents [13]). We use tags in our Hyracks in-

strumentation (Section 6.2) to provide fine-grain lineage.

Figure 5 illustrates tag-based associations.

out[0]{A} out[1]{A}

paired capture with tags

in[0]{A}
in[1]{B}

[count]{tag}

in[2]{A} in[3]{B}

time

out[2]{B} out[3]{B}

Figure 5: When the actor buffers inputs tags can tell Newt

about finer-grain associations.

3.3 Tracing and anonymous transforms

To express tracing queries, Newt provides an impera-

tive function F =Trace(r[],dir, proot) that takes as input

a set of target data elements r[], a direction, and an ac-

tor instance proot that produced r[]. Trace returns F, a

set of discovered tracing dataflows whose granularity is

equal to or contained by proot. Each tracing dataflow

is a topologically sorted set of actors that processed the

traced data, its precursors, or its derivations. The trac-

ing dataflow contains per-actor tracing tables Tp with

the data inputs (a backward trace) or outputs (a forward

trace) found during the trace. Tracing dataflows and ta-

bles are sub-graphs and sub-sets of the original dataflow

and association tables, respectively.

Tracing uses the original dataflow for actor p as a scaf-

fold on which to perform the tracing query. In most

cases, tracing is simply a recursive sequence of equal-

ity joins between the association tables of directly con-

nected actors in the dataflow graph. However, because

DISC systems often lack formal schemas; downstream

transforms often re-interpret input data in a different way

than it was written. For instance, an output web page

may be read as a sequence of input strings. Such anony-

mous transforms confound tracing—the instrumentation

will not hash identical bytes or fields.

Here we observe that many transforms in DISC

dataflows read and write to data types that are locatable.

A locatable data type, such as a file, allows actors to

reference sub-parts of an instance of that type. For ex-

ample, Hadoop record writers thus identify their outputs

with both a hash of the record and a location specifier

L consisting of a (file, offset, length) triple. Newt can

4While not shown, addInput and addOutput can take sets of tags.
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then perform tracing queries by comparing overlaps in

location specifiers. Other locatable data types include

network (TCP) streams and table-based stores. We dis-

cuss efficient ways to perform this tracing procedure in

Section 5.1.

3.4 Replay, ex-replay

Newt allows users to replay backward tracing queries to

recreate specific outputs or ex-replay a backward trace

to avoid errors by removing data. In both cases, Newt

improves performance by turning off lineage capture. In

Newt, replay is guaranteed to produce the target output

elements of a backwards trace.5 However, there may in

fact be additional records in the output. In fact, if all

transforms are monotonic, i.e., if for any two inputs sets

I′ ⊆ I then P(I′)⊆ P(I), then these additional records will

be members of the original output.

However, replaying a dataflow with non-monotonic

transforms must be done with care. In this case, a re-

play of a dataflow with one non-monotonic function will

produce the traced outputs o, but potentially create addi-

tional, unseen outputs. A replay with two or more non-

monotonic functions may not produce the original output

altogether. In order to correctly replay these dataflows,

any additional outputs must be filtered at each transform

during replay [10]. In Section 5, we describe how Newt

instrumentation provides input filtering for each actor,

ensuring that an actor only processes the lineage of the

data to be replayed.

Note that in the case of ex-replay, these filters ensure

that actors exclude data found in the tracing dataflow.

Currently an ex-replay only excludes data at one logical

stage in the dataflow. Unlike regular replay, we want to

incorporate changes to outputs, even in the presence of

non-monotonic operators. Thus, the dataflow will exe-

cute with the original universe minus the lineage at actor

instance p:
⋃

p−Tp. We use such replays as the basis for

data cleaning in Section 7.3.2.

4 Analytic debugging with Newt

Beyond tracing and replay, Newt provides additional

APIs for debugging. First, Newt supports a fail API

call for error or crash culprit determination. Develop-

ers may insert this call into exception handlers, allow-

ing Newt to record fault-causing inputs (stored as a sep-

arate table within Newt). We use this, for example, in

the Hadoop Map exception handler that runs when in-

puts cause faults. Users may specifically query for failed

actors and identify error-inducing inputs.

5This is not true for forward-trace replays; such traces do not con-

tain the complete set of inputs required for a downstream record.

4.1 Mining lineage for anomalies

In complex analytics, a user may be suspicious of the

dataflow whether or not they have a known bad output.

To address these cases, Newt provides mine interface to

collect a set of lineage associates for data mining. In par-

ticular, our hypothesis is that changes in output multiplic-

ity (the number of outputs associated to each input) can

identify anomalous actors. For instance, a map task may

incorrectly parse an input record (producing zero out-

puts) or correctly parse a bogus input record (producing

many more outputs) [19]. Thus our anomaly detection al-

gorithm (Section 7.3.1) calculates output multiplicity for

actors in a dataflow, runs an outlier detection algorithm,

and returns a ranked list of suspect actors.

However, this anomaly detection process is sensitive

(both in accuracy and computation cost) to the set of lin-

eage associations considered. The purpose of mine is to

create an informed subset of lineage to mine for anoma-

lies. Users call mine(proot,obad,Ogood[]) with a root ac-

tor instance and two optional parameters. These further

refine the number and size of returned association tables.

If the user only specifies proot, mine behaves like trace;

it identifies one or more mine dataflows rooted or con-

tained by proot and produces per-actor mine tables that

contain all of the original associations.

To reduce the number of suspect actors, the user can

provide a known bad output, obad. In this case, Newt

performs a backward trace on obad and only returns the

actors found in the resulting tracing dataflows. The mine

tables for each found actor still contain all original asso-

ciations. Finally, the user can supply a set of known good

outputs, Ogood[], to find baseline behavior. This version

refines the mine table associations in the bad output trace

to those found in the union of lineage of obad and Ogood[].

Figure 6 illustrates this winnowing process.

Figure 6: Users use mine to find a relevant subset of lineage

to study. The inclusion of bad and known good outputs further

winnows the lineage returned.
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4.2 Data cleaning with ex-replay

In our original telecom analytic (Figure 1), the presence

of malformed or unexpected inputs led to erroneous re-

sults and dataflow crashes. Combining the backward

trace of a bad output with ex-replay, Newt makes it trivial

to re-run an analytic without faulty inputs. For instance,

consider iterative machine learning algorithms, which

may execute tens or hundreds of processing steps [1].

Many such analytics produce a set of outputs that can

be ranked by quality, including clustering algorithms,

collaborative filtering, and item recommendation. Input

data may be polluted by data with corrupt measurements,

that came from untrusted sources, or simply contained

unwanted outliers.

This indicates a general approach that ranks outputs

by quality, finds the input data that created the lowest

quality outputs, and ex-replays the analytic to improve

the results. Note that during ex-replay Newt avoids the

majority of Newt overheads since it does not re-collect

any lineage. We build a proof-of-concept of this idea

by applying it to the area of de novo genome assembly,

which we describe in Section 7.3.2.

5 System details

Before Newt can be used, the system developer must first

declare a set of actor and data types and arrange each

into logical containment hierarchies (Section 3.1). When

an actor starts, it registers with the Newt controller by

providing an actor type g and a set α of unique instance

identifiers or id’s of parent actors. The controller inserts

this information into the actor instance table AInstance,

returns a unique id, and chooses a peer on which to repli-

cate the association logs (if desired).

When the actor finishes processing it calls commit,

which tells Newt that this actor’s log is complete, and the

controller may begin to import the log as a SQL A table.

Note that Newt can only answer tracing queries after all

actors commit. To do so, Newt periodically sweeps the

actor instance table for actor commits, indicating that the

contained actors have finished and that they may be ar-

ranged into a dataflow. Note that Newt uses an exponen-

tial weighted moving averages of CPU and disk utiliza-

tion to determine peer selection and SQL table creation

respectively.

5.1 Tracing query optimization

Newt includes a distributed tracing query engine that fed-

erates the set of MySQL stores across the cluster. It

performs the output-input matching required by tracing

queries with a simple sequence of relational joins. This

engine also performs the lineage analysis queries we dis-

cuss in Section 7.3. Newt optimizes query execution by

placing A tables according to the discovered dataflow.

The policy should try to minimize network traffic by co-

locating tables while leveraging the combined processing

capacity in the cluster. We found that assigning tables to

the same (randomly chosen) node if directly connected

in a dataflow outperformed strategies that grouped tables

by actor type for all tested tracing queries.

Finally, as mentioned in Section 3.3 Newt uses lo-

catable data types to create dataflow connections across

anonymous transforms. To do so, Newt builds an asso-

ciation table to connect the actor instance pout with pin.

We call this a ghost table, since an unseen actor (Newt)

has translated between them. Ghost tables are given

unique actor ids, and are otherwise treated as actor in-

stances. Newt scans both actors’ A tables, comparing the

location specifiers L for each pair of records (Hout,Lout)

and (Lin,Hin). In case of overlap, Newt inserts the row

(Hout,Hin) into the ghost table.

5.2 Replay

Here we describe how Newt ensures accurate and effi-

cient replay. A corner stone of accurate replay is the

ability for each actor to filter data inputs. By filtering

input data, the actor only processes inputs that existed in

the prior execution, ensuring Newt’s ability to correctly

replay dataflows that contain non-monotonic transforms

(Section 3.4). Newt filters data by installing the tracing

table at the client when a replayed actor registers with

the controller. A Newt actor filters data by observing the

boolean return value of calls to the capture API, filter.

If filter is true, then the actor must drop the data in

question, i.e., it was not found in the tracing table. This

arrangement allows replay to proceed with no further in-

teraction with the Newt controller. As we show in the

evaluation, the tracing table’s row count is often a small

fraction of the data observed in the original run.

Users may either manually re-execute the dataflow in

replay mode or have Newt restart actors6. For each re-

playNewt uses the tracing query output to decide how

to replay the dataflow. Newt checks for actor instances

that are both restartable and that take materialized input

data. Our current replay engine determines the minimum

number of actors to restart by finding the highest-level

restartable actors with materialized input. While this re-

play enables step-wise debugging through each actor, it

may not be the fastest replay to recreate lost outputs. We

intend to explore other replay strategies in the future.

6Restartable actors must implement a restart(name,conf) RPC

method. The name is the same name recorded in the AInstance table

when the original instance registered and conf is Newt-opaque actor

configuration data.
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5.3 Fault tolerance

It is important for Newt to provide fail-over capability

since long-running dataflows are expensive to re-execute.

First Newt attempts to ensure complete lineage capture

if a Newt peer fails. Note that clients backup lineage

logs to a secondary peer, and on peer failure, the Newt

controller will make the secondary peer the primary for

those log records. The controller will also re-distribute

any lost SQL tables by re-importing them from the new

primary. Note that our current design assumes that failed

DISC tasks restart from the beginning, a common design

for many architectures.

The Newt controller manages a number of tables in a

local SQL database, but it can rebuild its state from local

storage and information stored across the peers. Peers

will store a copy of each actor’s registration in the actor

instance table. If the controller’s failure is catastrophic, it

can rebuild its entire state, including AInstance and the

committed actors from information on the peers. To pre-

vent lineage capture from stalling during reconstruction,

one could employ a hot standby.

Note that Newt must also gracefully deal with DISC

systems that run speculative actors, such as Hadoop.

Successful actors call commit, and the Newt controller

places a committed mark in the AInstance table indi-

cating that all child instances started by this actor must

also have committed. In these cases, the DISC system

only commits the “winning” actor and Newt will only

import and index that actor’s logs. When the parent ac-

tor commits, Newt can garbage collect any un-committed

actor’s log files.

6 Instrumenting DISC systems

This section describes how we instrumented Hadoop and

Hyracks [5] to capture fine-grain provenance.

6.1 Hadoop

Job controller First, the Hadoop job controller uses

the Newt capture API (Table 1) to register and link in-

stances of record reader, map, reduce, and record writer

actors. The job controller calls commit when those in-

stances complete successfully. Finally, the job controller

implements the restartable API, allowing Newt to re-

submit jobs.

Map and reduce tasks Record readers implement a

simple interface next(k,v) that consumes a portion of

the raw data (e.g. a line in a text file) and outputs the

next (k,v) pair. Record readers use a File Locatable in-

put data type, which uses a location specifier of the form

L=(file, offset, length). The output data type is a Record,

though Hadoop treats it as a (k,v) pair. We use the cap-

ture API to send L and a hash of the (k,v) pair as prove-

nance. Record writer instrumentation is symmetrical.

Maps read input Min=(k,v) pairs from the record

reader and call the user-supplied map function. A user’s

map function reads Min pairs and emits Mout=(k,v) pairs

to the output using Hadoop’s Context interface. We in-

strumented the Context mechanism to intercept emitted

Mout pairs and record the pair (hash(Min), hash(Mout)) as

provenance, using the capture interface.

Reducers call a user-supplied reduce function for ev-

ery group of values. Unlike the map function, the reduce

function takes a key and value list, (k,v[]). As described

in Section 3.2, Hadoop passes the value list as an iterator

to the user’s reduce function. Thus a reduce output may

depend on any prefix of input values, and we capture this

dependence using the paired capture interface. We have

instrumented the Context mechanism to (i) intercept in-

put values and hash and record them using the addInput

interface and (ii) intercept emitted output (k,v) pairs and

record them using the addOutput interface. Upon exit

from the reduce function, we call reset, to prepare the

system for the next reduce call.

6.2 Hyracks

Hyracks is a generalized dataflow engine roughly in the

same spirit as Dryad [12] where programs are DAGs of

operators. However, the majority of the instrumentation

is similar to Hadoop’s. For instance we instrument the

Hyracks job controller to track the lifecycle of operators

with calls to register,flow link,and commit. In addition,

we instrumented the Hyracks operators that are analogs

to Hadoop’s record readers and writers: the FileScan

and FileWriter operator respectively.

The interesting Hyracks operator is HashGroup,

which implements a hash-based grouping operator and

applies a user-defined aggregation function per group.

HashGroup first reads an un-ordered set of input tuples

and builds a hashtable based on a grouping attribute. Af-

ter reading all input tuples, it then updates the aggregate

(e.g. a count) in each hashtable entry and emits an output

tuple. Thus, HashGroup buffers all inputs before emit-

ting a single output, and we use the tagged capture API

to logically partition input tuples as they are read. As

before, we intercept input reads, but now we associate

every input tuple with a tag that is a hash of the group-

ing key, calling addInput(rin,tag). For every output tuple,

we call addOutput(rout,tag) to associate with input tuples

that correspond to the specific tag only, and subsequently

call reset(tag) to reset the association for the tag.
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7 Evaluation

Our evaluation first establishes the impact of provenance

capture on a range of workflows in terms of space and

time overheads. A series of experiments quantify the ac-

curacy of provenance Newt collects, and how that trans-

lates into efficient replay. We then highlight the use of

the mine API to pinpoint faulty stages in a multi-join

dataflow. And finally we demonstrate how tracing and

ex-replay can be used to clean an input data set for the

Contrail de novo genome assembler, ultimately improv-

ing output assembly quality.

We instrument version 0.20.2 of Hadoop, adding 53

lines of instrumentation to the job controller, 9 lines to

the map object, and 11 lines to the reduce. For Hyracks

(version 0.1.8) we added 60 lines to the job controller,

10 lines for FileWrite, 15 lines for FileScan, and 20 lines

for HashGroup. In our Newt prototype, each peer uses

MySQL version 5.5 as the peer relational engine. The

Newt controller is written in 3.1k lines of Java.

Unless noted otherwise, all experiments use a 17-node

cluster of Dual Intel Xeon 2.4GHz machines with 4GB

of RAM, a single SCSI disk, and connected by giga-

bit Ethernet. One node runs the job tracker and Newt

controller while the other 16 nodes run Newt peers and

Hadoop slaves. While we do not report Hyracks results,

our experiments confirmed similar runtime overheads as

Hadoop for our microbenchmarks.

7.1 Capture overheads and selectivity

We first measure the impact of recording fine-grain

provenance on execution performance. In general, the

observed overhead is a complex function of how many

records an actor creates from an input, as well as the

amount of time the instrumentation overhead will be

amortized against, such as per-record CPU processing

and data shuffling on the network. For example an iden-

tity map-only job is a worst-case situation for Newt, ex-

hibiting a 124% run time overhead. However, most jobs

actually process inputs. To get a feel for a range of com-

mon Hadoop transforms, we first ran PigMix (version 1

on Pig 0.9.1) on our instrumented Hadoop cluster. Pig-

Mix generates a variety of Pig queries, including joins,

orderby, and unions.

Figure 7 illustrates the runtime overhead for both

timed and non-timed capture when compared to an un-

modified Hadoop. For all queries timed capture outper-

forms non-timed capture. In the cases where non-timed

capture overheads were very large, we noticed that the

Pig jobs reduce tasks had few groups with very large

numbers of values, causing Newt instrumentation to cre-

ate many explicit associations. Timed capture defers that

computation (and space usage) to post-capture, and ex-
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Figure 7: The run time overhead of individual PigMix jobs

with and without timed capture. The break indicates where

non-timed capture overheads exceed 100%.
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Figure 8: Space overhead (relative to total output data) of stor-

ing provenance for individual PigMix jobs.

hibits overheads of 12-49%.

Next we study the benefits of using paired vs. unpaired

capture. Figure 8 shows the storage overhead as a per-

centage of the size of the output data for the same bench-

mark. Here we calculate the total number of bytes Newt

uses to store all association A tables as compressed, se-

rialized SQL tables. Note that this includes two indices

for each A table (on input and output), which adds an av-

erage 10% overhead on table size. Here paired capture

creates fewer associations, improving lineage accuracy

and reducing storage overhead by 31% on average.

For many scenarios, we believe these overheads are

reasonable when Newt is used for tuning and debugging.

While space overheads approach 70% for paired capture,

storage is cheap relative to additional CPU time. How-

ever PigMix experiments consist of short dataflows (2-

3 jobs) that mostly use relational transforms. Many in-

teresting “big data” analytics, such as processing large-

scale graphs, involve non-relational tasks and dataflows

with many stages.

To test Newt on real-world dataflows, we ran Con-

trail [17], a de novo genomic assembler, and two collabo-

rative filtering analytics from the Mahout machine learn-

ing library [1]. Contrail attempts to recreate the original

genome from a large set of short DNA sequences called

“short reads.” It uses an existing assembly method, de

Bruijn graph assembly, to build a large graph and then

repeatedly refine it to discover large contiguous regions
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Analytic # jobs # actors overhead(%)

Contrail 145 34927 20%

Item Similarity 7 21 31%

Recommender 10 30 36%

Table 2: Time overhead for real-world analytics. We run

Contrail and two collaborative filtering applications from

the Apache Mahout project.

of the genome. Contrail experiments leverage Amazon’s

EC2 service, running on 64 large instances with 7.5GB

memory, 4 EC2 compute units, and “high” I/O perfor-

mance. Mahout jobs ran on our 17-node cluster de-

scribed previously.

Table 2 shows the number of jobs, captured actors, and

time overheads for these analytics. The Contrail dataflow

produce over 20 times as much lineage per second as

the most intensive PigMix program. Assembly of our

bacterial genome used 145 MapReduce jobs and Newt

recorded provenance from 34927 actor instances. How-

ever, running with Newt increased run time by only 20%

using the same hardware footprint as the original run.

The assembly created 306GB of intermediate and final

data; relative to this amount Newt incurred space over-

heads of 86%.
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Figure 9: The tracing selectivity for PigMix jobs.

Last we study trace selectivity, the per-actor ratio of

the tracing table size to the A table size, for both PigMix

and for Contrail. Trace selectivity is a metric for deter-

mining lineage accuracy and gives us a lower bound on

the amount of work that would be performed to replay

the dataflow. Figure 9 shows the average percentage of

input items that a randomly selected output depends upon

for PigMix. By this measure paired capture improves ac-

curacy (12% over original), with all traces selecting less

than 18% of the original input.

7.2 Replay

This section investigates the ability of Newt to accurately

and efficiently reproduce outputs. These experiments

used a Word Count job with an input of 635,000 lines

that created 1,173,443 output records. We choose out-

put records to recreate at random, and verified that the

reproduced output was indeed exact. Beyond running

time, we use a range of metrics to measure the “accu-

racy” of the replay. Recall that a replayed dataflow may

produce more records than those that were originally re-

quested. Those records will be in the original output, but

they represent potentially unnecessary work. To capture

accuracy, we observe the relative number of these unnec-

essary records the replay creates.
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Figure 10: The percentage of data required to replay Word

Count for each logical actor in the dataflow.

Figure 10 summarizes tracing selectivity for each log-

ical actor. As expected, the selectivity increases as we

move from the output to input. For instance, the record

reader must replay at least 4.5% of the input to reproduce

10E3 records, while the record writer processes less than

one percent (the exact size of the output).
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Figure 11: The percentage of normal time required to re-

produce a fraction of the output data set. Note the abso-

lute count of reproduced records is identical to Figure 10.

Lastly, we look at replay running time. Figure 11 plots

the percentage of normal running time as a function of

the fraction of the output data set to regenerate. While

the replay is not as fast as a scaled version of the orig-

inal execution, for small numbers of records—less than

a 100—this holds true for Word Count. In fact a single

record replay can execute in 0.3% of the original execu-

tion time. Thus for debugging, where quick testing is im-

portant, or regenerating small sets of output (from a disk

latent sector error), it can be vastly less time intensive to

regenerate the outputs with Newt.

7.3 Dataflow debugging

This section explores the effectiveness of our anomaly

detection facility using a microbenchmark three-stage

join dataflow. We also present a proof-of-concept ap-
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plication of our data cleaning methodology to clean and

improve a genome assembly.

7.3.1 Finding selectivity anomalies

Recall that we perform actor anomaly detection by cal-

culating the output multiplicity (number of outputs per

input) across a subset of lineage records found through

the mine API (Section4.1). To identify anomalous ac-

tors, Newt uses a modified version of Grubbs’ outlier de-

tection technique [9] that can find multiple outliers in the

dataset. Our anomaly detector works in two phases. It

first examines individual actors for changes in multiplic-

ity across their inputs. It then compares the average mul-

tiplicity of each actor instance to other instances of the

same actor type. Newt ranks and places these outliers in

the suspect set. We note that more sophisticated method-

ologies may leverage other statistics or compare across

dataflow executions.

We test our anomaly detection technique on a dataflow

that uses a sequence of three MapReduce jobs to join four

different datasets. The dataflow has a total of 42 actor in-

stances and we instrument two map instances (one in the

second and one in the third MR job) to produce spurious

outputs for specific input keys. The number of spurious

outputs produced is called the error magnitude.
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Figure 12: This figure shows the size of suspect actors

(“Good”) and found faulty actors (“bad”) for anomaly detec-

tion with and without a known bad output. Using a bad output

to winnow the analyzed lineage results in smaller suspect sets

(there are 42 actors in total).

We measure the efficiency of anomaly detection by the

size of the suspect actor set and the presence of the faulty

actor. Figure 12 shows the size of the suspect set (the

“Good” bar) and the number of bad actors present (the

“Bad” bar) as we vary the error magnitude. We run the

detector on two sets of lineage: “w/o outputs” calls mine

without any bad outputs and “w/ bad output” calls mine

with a known bad output. First, no test finds a bad ac-

tor until they inject over 50 spurious outputs. At this

point, mining either lineage set discovers the faulty ac-

tors, but winnowing the lineage by specifying a bad out-

put reduces the number of false positives (suspect but not

guilty actors) from six to one.

Finally, we performed a similar experiment, but fur-

ther reduced the lineage set returned by mine by also pro-

viding good outputs. This improved the ability of Newt

to rank the suspected bad actor, moving the faulty actors

(when found) from the 50th percentile to the 80th. More-

over, providing more information (bad and good outputs)

limits the number of actors and associations Newt con-

siders. This decreases the anomaly detection runtime by

85% relative to the general anomaly detection query.

7.3.2 Data cleaning genome assembly

A key software tool for building and understanding the

human genome is de novo genome assembly [4]. Be-

cause it is difficult for gene sequencing machines to

read the entire 3 billion character human genome string,

they instead read short pieces of a cell’s DNA. These

are called short reads and they are typically ≤ 200 base

pairs (bp) in length (i.e., A, C, T, or G). For the human

genome, de novo assembly takes a set of 200-300 billion

short reads and tries to re-create the original genome. In

reality, assemblers output a handful of contigs, the as-

sembler’s best guess as to the original genome, and these

output contigs can vary greatly in quality and length.

Like our telecom example, though, the input data set

can contain bad data. In this case, the pollution is DNA

from organisms other than the target genome [18], and

even small amounts of pollution (<5%) affect assem-

bly [8]. Here we use Newt to clean the input dataset and

re-execute the assembly, with the goal of improving out-

put contig quality.

Our first task is to produce a polluted input data set.

Here we use Contrail to assemble a bacterial genome

while simultaneously polluting the input data set with

DNA from a viral genome. Using freely available soft-

ware to simulate the input short reads [3], we produced

an input data set with a 2.8% contamination rate, lower

(and more challenging) than the 5% rate used for a recent

assembly bake off [8].

Next we run the assembly on the simulated data set

and assess output contig quality. For each output con-

tig, we used Nucmer (mummer.sourceforge.net), a pack-

age for aligning large DNA sequences, to measure the

percentage of bases that match to the original bacterial

or viral sequence. We flagged any output contigs whose

DNA was < 30% bacterial as “bad.” We then use Newt to

backward trace these bad output contigs to identify bad

input data throughput the pipeline.

Unsurprisingly, we found that each bad output con-

tig depended upon over 95% of the original input short

reads. Thus we needed to identify an intermediate stage

from which to remove bad data. To do so, we analyzed

the lineage at each successive MapReduce job, looking

for a stage where there was minimal overlap between the
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lineage of the bad output contigs and the lineage of the

very best output contig. Through this empirical process

we determined that it was best to remove data and restart

from the 35th job (out of 51).

These experiments were performed on an AWS EC2

cluster of 15 large instances (with 1 master). The orig-

inal execution took 6626 seconds, used 51 MapReduce

stages, and produced 11 contigs, three of which we

flagged as bad. Restarting without removal from that

point took 2471 seconds, with ex-replay it took 1986 sec-

onds, a 19% reduction in runtime.

Figure 13 shows the results of this process. We look at

the percent and absolute amount of viral contamination

in the output contigs before and after we used ex-replay

to clean the data pipeline. Comparing the before picture

(Figure 13(a)) with the after ex-replay (Figure 13(c)) (the

other figures show absolute contig lengths), data cleaning

not only removes large percentages of bad data, but also

improves the average length of the returned contigs.

(a) Percent contamination. (b) Absolute contamination.

(c) Cleaned percent. (d) Cleaned absolute.

Figure 13: This percent and absolute contamination of the

assembled contigs with bacterial and viral DNA before (top)

and after (bottom) we use Newt to remove bad data. Removal

improves contig quality and length.

8 Conclusion

Understanding, debugging, and managing the increasing

volumes of derived data may soon become the limiting

factor for data-intensive analytics. While Newt’s use of

timed capture dramatically lowers the overhead of active

collection, it remains relatively expensive. However, the

power of having all lineage “at hand” allowed us to re-

think traditional techniques, and introduce new lineage-

based data mining and data cleaning strategies. We hope

Newt can serve as a platform for further refinement of ac-

tive capture (e.g., through sampling) and exploring novel

debugging techniques.
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