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Abstract

Toward Autonomous Verification Systems

by

Kuo-Kai Hsieh

Design verification has been a challenging problem due to the increasing complexity

of modern system-on-chip (SoC) designs and it is considered one of the costliest processes

in hardware design flow. This dissertation investigates a major labor-intensive task, gen-

erating tests targeting at a given coverage point, in simulation-based verification, and

proposes an autonomous software system capable of completing the task. A key feature

of the proposed system is its learning capability – it can learn from examples provided by

human engineers to improve itself. There are three major components in the proposed

system: test generation, a knowledge database, and rule learning algorithms. The pro-

posed system is able to retrieve information from the database, use the information to

analyze simulation results, and generate new tests based on the analysis. Several machine

learning techniques are used in the proposed verification system. For test generation, a

novel method, constrained process discovery, is used to learn a test case generation model

from manually developed tests. The test case generation model can create new tests and

increase its test generation capability by learning from tests developed by humans. For

creating a knowledge database, text mining methods are used to extract important de-

sign features from design documents. Experiments showed that the extracted signals can

be utilized as observation points to infer important hardware events. Last, a novel rule

learning method, VeSC-CoL, is proposed to analyze simulation results. VeSC-CoL can

handle extremely imbalanced data, which is common in verification, while traditional

rule learning methods cannot.
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Chapter 1

Introduction

This work investigates methods to construct a smart software system to deal with a

verification task in hardware verification. The task to deal with is to create tests to

hit a given coverage point. In the proposed system, learning from engineers is a critical

and unique capability. In the ordinary process of software systems that deal with the

same task, engineers need to intervene every time the systems have trouble processing

a coverage point. After problems are solved, if engineers do not modify the systems,

they will still fail to process the same or similar coverage points again, in other words,

repeating its mistakes. However, the software system proposed in this study is able to

learn from experience, which means that once engineers intervene and provide new tests

that hit the coverage point, the system is expected to learn from the new tests and be

able to solve similar or more difficult tasks in the future.

In addition, the software system proposed in this study is expected to function as a

low-level human engineer who is able to ask for help “wisely. In the real world, when an

inexperienced human engineer fails to deal with a task, normally he/she will reach to

an experienced engineer for help via two kinds of questions as Figure 1.1 illustrated in

the following. While the first approach is to simply report a failure and ask for the next

1
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step, in the second approach, in addition to reporting a failure only, an inexperienced

engineer would also provide his/her analysis of the task. As the experienced engineer in

the first approach has to analyze the task from scratch on his own, the second approach is

preferred since with the initial analysis in hand, the experienced engineer spends less time

to deal with the task. Moreover, if an inexperienced engineer is capable of identifying

which sub-task fails in the analysis, experienced engineers could solve the problem much

more quickly. Hence, the proposed system is designed to function as an engineer who can

ask for help using the second approach, saving experienced engineers in the real world

time and energy during the intervention.

Figure 1.1: Two approaches that people seek for help from others

The proposed system uses the second approach – it can report failure and provide

analysis. The original task is partitioned into two sub-tasks. While the proposed system

is not able to create tests to hit a coverage point, it asks for help from human engineers

as well as points out which sub-tasks fails. In addition, human engineers can query

information in the failed sub-task to save analysis time.

Several machine learning techniques are used in the proposed system. There are three

key challenges to construct the proposed system. The first challenge is test generation.

The proposed system needs a method to create tests. Besides, the system must be able to

learn from tests that provided by experienced human engineers. After learning, its test

2
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generation capability increases and the system is able to create more complex tests. The

second challenge is to identify design knowledge that is required to solve the task and

formally represent such design knowledge in the system. The third challenge is about

the information the system can provide to human while failing to deal with a coverage

point. The information must be true, without any guessing, and helpful for experienced

engineers.

Theoretically, when enough examples are provided, the proposed system can deal

with every coverage points that experienced engineers can deal with. The system can

learn from many human engineers and accumulate knowledge from all of them.

The rest of this dissertation is organized as follows. Chapter 2 describes the required

background knowledge of this work. Chapter 3 discusses the problem, related works and

the overview of the proposed verification system. Chapter 4 proposes a method combin-

ing constraint solving and process mining to deal with the challenge of test generation.

Chapter 5 discusses the challenge of design knowledge and demonstrates a text mining

method that can extract design signals from design documents. Chapter 6 explores rule

learning methods to deal with extremely imbalanced data and to provide reasonable in-

formation to human engineers while not able to complete the task. Finally, Chapter 7

concludes this work.

3



Chapter 2

Background

2.1 Functional Verification

Functional verification is a chip design process in which the goal is to make sure the

design implementation meets design specification. The design implementation is typically

at Register-Transfer Level (RTL) and written in hardware description languages such as

Verilog and VHDL. The process of functional verification usually starts from a verification

plan, which specifies design features to verify and the criteria of successful verification of

these features. Then verification engineers use various methods to execute the verification

plan.

In general, there are two categories of methods in functional verification, simulation

approaches, and formal approaches. The idea of simulation approaches is to have tests,

or input stimuli, then simulate the tests with design implementation to check the design

behavior. The main problem of simulation approaches is that we do not know if a design

under verification is indeed bug-free. It is possible that a design has a bug but the bug

is not activated in the simulation. On the other hand, the idea of formal approaches is

mathematical proof. Formal approaches first convert a design into a mathematical model,

4
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then mathematically proves some properties are correct. For example, a property can be

“the value of signal A always equals to the value signal B.” If the design specification can

be converted to properties and all the properties are proved correct in the implementation,

then it is guaranteed the implementation is bug-free.

2.1.1 Formal Approaches

To apply formal approaches, typically there are two steps. The first step is to convert

a design into a mathematical model and the second step is to prove that a given property

is correct in the converted model. Examples of formal approaches include explicit-state

model checking [1], symbolic model checking [1], and symbolic simulation[2]. Although

there are off-the-shelf tools that can handle the two steps, in practice, formal approaches

are only utilized in limited verification tasks.

A critical problem of the applicability of formal approaches is scalability. It has

been shown that the complexity of formal approaches is in general NP-hard. Hence to

apply formal approaches in practice, a converted mathematical model must be simple

or a property to be verified must be simple. When a property to be verified is not

simple, people reduce a converted mathematical model by abstracting the functionality

of a design under verification. This abstraction method introduces another problem –

it is non-trivial to verify the correctness of the abstraction. Also, there is a high entry

barrier of applying formal approaches because the abstraction is conducted manually

and requires people having enough discipline about formal languages and a design under

verification. Another critical problem is to have a set of properties that are equivalent

to the design specification. Again, the equivalence is checked by human and there is no

systematic way to verify that a set of properties is equivalent to the design specification.

These are the reasons why formal approaches are not the mainstream approaches in

5
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functional verification.

2.1.2 Simulation-based Approaches

In industry, simulation-based approaches are the primary methods in functional ver-

ification due to its scalability, especially when the complexity of a design under verifi-

cation is high, e.g. a System-on-Chip (SoC). There are three standard components in

simulation-based approaches and simulation environments – test generation, checkers,

and coverage collection. Nowadays, simulation-based approaches are mature such that

there is an industrial-standard simulation-based verification methodology, Universal Ver-

ification Methodology (UVM) [3]. Figure 2.1 illustrates an overview of an simulation

environment and the three components are briefly described below.

Figure 2.1: Overview of an simulation environment

The goal of test generation is to have tests for simulation. Tests can be produced

manually by verification engineers, or generated by test generators. Modern test genera-

tors utilize constraint-random approaches. The idea of constraint-random approaches is

to overcome problems in pure random test generation. For pure-random test generation,

a generated tests can violate design assumptions and there is no way to have tests that

can stress a specific design functionality. For constraint-random approaches, constraints

6
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are used to limit the generated tests to the design assumptions as well as to target at

certain design behaviors. Constraints solvers are used to produce tests that satisfy the

input constraints [4]. Nowadays, test generators are manually designed by engineers and

it requires deep knowledge about a design under verification to write test generators. In

industry, there is an ongoing group, Portable Stimuli Working Group [5], that tries to

come out a standard methodology for test generation.

The goal of checkers is to check the correctness of each simulation run. There are

several types of checkers. Checkers can be implemented together in a test, which makes

the test self-checked. Checkers can be implemented as a monitor of a design under

verification and check the design behavior on-the-fly during simulation. Checkers can be

implemented as a post-processing software that checks design correctness by analyzing

simulation logs. Checkers are typically generated manually by designers and verification

engineers.

The goal of coverage collection is to know what functionality and events are simu-

lated during simulation. There are two categories of coverage, structural coverage ,and

functional coverage [6]. Structural coverage is defined according to the structure of HDL

code. For example, code coverage monitors whether each line of code is executed during

simulation. Finite state machine coverage monitors whether each state and each tran-

sition is traversed in simulation. Functional coverage is defined by human and it can

monitor specific and complex events. For example, a functional coverage point can mon-

itor whether a specific waveform appears during simulation. Typically all test items in a

test plan have corresponding coverage points.

When the checkers are properly implemented and the required coverage is properly

defined, the goal of functional verification becomes hitting all the defined coverage points,

which is the basic concept of Coverage-Driven Verification [6]. One key challenge of

coverage-driven verification is to produce tests that can hit the defined coverage points.

7
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This work proposes a verification system to deal with this challenge.

2.2 Rule Learning

Given a set of samples of different classes, rule learning algorithms aim at distin-

guishing samples from different classes. Samples are represented by features. There

are two categories of rule learning algorithms, predictive rule learning, and descriptive

rule learning [7]. The main difference between the two categories is that predictive rule

learning methods aim at prediction, while descriptive rule learning methods focus on an

explainable rule, e.g. an IF-ELSE relation, that can distinguish different classes. An

explainable rule is easily understood by humans. For example, a decision-tree based

algorithm can be a descriptive rule learning algorithm as an easily understandable rule

can be extracted as described in the next paragraph. Random forest [8] is a predictive

rule learning algorithm because there is no easily understandable rule can be converted

from the model. The prediction result of random forest is based on voting among many

decision trees. The voting part makes it not descriptive.

This work focuses on only descriptive rule learning methods on two classes and binary

features. Two classes are used to represent whether a coverage point is hit or not. Only

binary features are considered because pre-processing techniques can be used to convert

numerical and categorical features to binary features and this can isolate problems in

learning algorithms.

There are many off-the-shelf rule learning algorithms. Examples include subgroup

discovery [9], CN2 [10], ID3 [11] and Classification And Regression Trees (CART) [12].

These methods, in general, can be viewed as algorithms related to decision trees but using

different methods for splitting nodes and terminating tree growth. Hence it is worth to

describe the method to extract a rule from a decision tree.
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Figure 2.2 illustrates the method to extract a rule to a node in a decision tree. Each

path starting from the root of a decision tree model corresponds to a rule. The rule is the

conjunction of the decisions along the path. Note that a path does not necessarily end

at a leaf. Suppose the blue node contains only samples in the target class, a rule can be

extracted from the path starting from the root to the blue node, fA = false∧fB = true,

where fA = false is the first decision and fB = true is the second decision.

Figure 2.2: Rule extraction from a node in a decision tree

If samples of the target class are in multiple nodes, the extracted rule is simply the

disjunction of rules extracted from each node having samples of the target class. An

example is illustrated in Figure 2.3.

Figure 2.3: Rule extraction from a decision tree

2.3 Boolean Algebra

This section defines some terminologies of Boolean Algebra that will be used in this

work. More details of Boolean Algebra can be found in textbooks such as [13].
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• Boolean Values. Boolean values are true and false. Conventionally true can be

written as 1, and false can be written as 0.

• Boolean Variable. x is a Boolean variable if it can represent only Boolean values.

• Boolean Function. f is a n-variable Boolean function if the domain of f is {0, 1}n

and the range of f is {0, 1} or its non-empty subset. Conventionally, f is written

as f(x) or f(x1, x2, . . . , xn) where x is a n-dimensional Boolean vector and each xi

is a Boolean variable.

• Basic Operations.

– AND (Conjunction), a two-variable function, denoted x ∧ y, x ∗ y, or simply

xy.

x ∧ y = 1 if x = 1 and y = 1, otherwise x ∧ y = 0.

– OR (Disjunction), a two-variable function, denoted x ∨ y or x+ y.

x ∧ y = 1 if x = 1 or y = 1, otherwise x ∧ y = 0.

– NOT (Negation, Complement), a one-variable function, denoted ¬x or x′

¬x = 1 if x = 0, otherwise ¬x = 0.

• Literal. A literal is a Boolean variable, e.g. x, or a Boolean variable with negation,

e.g. ¬x.

• Satisfiable Assignment. Given a Boolean function f , x is a satistiable assignment

of f if f(x) = 1.

• Clause. A clause is a disjunction of one or more literals. For example, x1+x2+x3.

• Conjunction Normal Form (CNF). Conjunction Normal Form (CNF) is a con-

junction of one or more clauses. It is also known as Product of Sum (PoS). CNF is
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a Boolean function representation.

• Term. A term is a conjunction of one or more literals. For example, x1x2x3.

• Disjunctive Normal Form (DNF). Disjunctive Normal Form (DNF) is a dis-

junction of one or more terms. It is also known as Sum of Products (SoP). DNF is

a Boolean function representation.

• k-term DNF. k-term DNF is a DNF with exactly k terms.

2.4 Boolean Satisfiability Problem

The Boolean satisfiability (SAT) problem is that given a Boolean function f repre-

sented in CNF, determine if there is an satisfiable assignment and find an satisfiable

assignment if it exists. This problem is proved to be NP-complete [14]. Informally

speaking, there is no efficient algorithm to deal with SAT and the runtime can be very

long.

SAT is a fundamental problem of constraint solving problems. We can imagine that

each clause in CNF is like a constraint to be satisfied. A clause evaluates to 1 if and

only if it is satisfied. Then, if there is a satisfiable assignment of the CNF, all the clauses

must evaluate to 1 with the assignment, which means there is a solution that satisfies

all constraints. In theory, every constraint solving problem in discrete domain can be

converted to a SAT problem.

Designing SAT solvers is an active research topic and there are annual SAT com-

petitions [15] where people can find state-of-the-art SAT solvers and their performance

comparisons. Usually, the SAT solvers in the competition are open-sourced and people

can freely use them. This work only utilizes SAT solvers and does not discuss methods

to solve the SAT problem.
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2.4.1 SAT Encoding Techniques

SAT encoding, or converting a problem in discrete domain to a SAT problem, is not

a trivial task. [16] discusses several techniques for SAT encoding, in which two most

important techniques are thinking in circuits and translating circuits to CNF.

Thinking in circuits can be understood as representing a constraint in digital circuits.

For example, given two 32 − bit unsigned integers A and B, the CNF of A > B can be

converted from a comparator whose output is 1 if and only if the first input number is

larger than the second input number. It A is connect to the first input and B is connected

to the second input, we want a constraint that the output of the comparator is 1. The

comparator circuit can be obtained by logic synthesis tools.

For Translating circuits to CNF, the key idea is variable substitution. Instead of

representing the primary outputs of a circuit explicitly by the primary input variables, a

variable is introduced for the output of each gate and some clauses are added to maintain

the relation of variables. For example, for a 2-input AND gate z = a ∧ b, the relation of

z, a, b can be maintained by clauses (z ∨ ¬a ∨ ¬b) ∧ (¬z ∨ a) ∧ (¬z ∨ b). It is easy to

verify by enumeration that the CNF is 1 if and only if z = a ∧ b.

Using the above techniques, we can convert every Boolean formula to a CNF and the

size of formula grows polynomially. For example, to convert a DNF to a CNF, we can

first convert a DNF into a two-level AND-OR circuit, then apply Translating circuits to

CNF to get a CNF.

2.5 Binary Decision Diagram

Binary Decision Diagram (BDD) [17] is a canonical representation of Boolean func-

tions. BDD is also a data structure for efficiently storing and manipulating Boolean

functions [18]. It is generally assumed that BDD refers to reduced, ordered BDD. BDD
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is widely used in software that requires handling Boolean functions such as symbolic sim-

ulation, symbolic model checking, equivalence check, representing a set and performing

set operations, etc.

The basic idea of BDD is to represent a function in a graph model. Figure 2.4

illustrates the idea where left branches are false branch and right branches are true

branch, represents its parent node is assigned false or true respectively. The represented

function is f = a′bc+ ab. To get the value of an assignment, just trace the tree down to

the corresponding leaf. For example, given an assignment (a, b, c) = (1, 1, 1), f evaluates

to 1 from the formula. From the graph, (a, b, c) = (1, 1, 1) leads to the right-most leaf,

which is the same as function evaluation.

Figure 2.4: Idea of binary decision diagram

To make BDD manipulation efficient, it is required that BDD is reduced and ordered.

Reduced refers to removing redundant nodes (a node is redundant if both its child nodes

are the same) and sharing as many nodes as possible. Ordered refers to a fixed variable

ordering in the graph. For example, variable a can appear only in level 1, variable b can

appear only in level 2, etc. More implementation details can be found in [18].

Here uses two BDD operations to show the advantages of BDD and they can be

found in [18]. The first operation is equivalence checking. Since BDD is a canonical
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representation and it is reduced, equivalence checking of two BDDs takes constant time

(just check whether they have the same root node). The second application is calculating

the number of satisfiable assignments of a BDD. This task can be done based on a

recursive call on the tree-like structure and the overall complexity is the number of nodes

of the given BDD.
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Chapter 3

Overview of The Proposed Method

3.1 Problem Overview

This work investigates a task in functional verification at the system-level that given

a coverage point, produce a test that can hit the coverage point. A similar problem is

Coverage-Directed Test Generation (CDTG), which is a methodology that aims at ac-

celerating coverage closure by guiding test generation with coverage result analysis. The

primary difference between this work and CDTG is that CDTG assumes test generation

methods are available and fixed, while this work treats test generation as a system com-

ponent to be developed. Since this work deals with verification at system-level, formal

approaches do not work in practice and we focus on simulation-based approaches.

In general, the flow of CDTG is depicted in Figure 3.1. It is assumed that a

constrained-random test generation method is fixed and available. In the first itera-

tion, some tests are randomly generated and simulated to obtain initial coverage result.

Then CDTG methods are used to generate test parameters for test generators to gener-

ate tests in the next iteration. This iteration process continues until there is no coverage

gain. Previous works in CDTG focuses on developing methods to analyze coverage re-
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sults for obtaining test parameters. For example, [19] proposes a CDTG method based

on Bayesian networks, [20] proposes a CDTG method based on Genetic Algorithm, [21]

proposes a CDTG method based on Markov Models, and [22] proposes a CDTG method

based on rule learning.

Figure 3.1: General flow of coverage directed test generation

The goal of this work is to investigate a software system that can generate tests for a

given coverage points. Moreover, the software system can learn from examples to increase

its capability. This is similar to that a junior engineer learn from examples provided by

senior engineers. This software system differs from previous CDTG methods in terms

of (1) in addition to providing test parameters, the system can increase the capability

of test generation methods from examples and (2) when the system fails to deal with a

given coverage point, instead of simply return ”I do not know how to solve it,” it provides

its analysis to Senior engineers.

Our investigation starts from using descriptive rule learning methods whose learning

models are explainable, i.e. a human can easily understand the model. For a descriptive

rule learning model, given a model input, it is easy to know why the model produces

its output. In the next section, a related work [22] about rule learning based CDTG
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applications is described.

3.2 Rule Learning Applications in CDTG

Figure 3.2 shows the structure of the proposed method in [22]. This work demon-

strates that rule learning methods can be applied in functional verification to assist

engineers in generating tests for increasing coverage. The basic idea of the proposed

method in [22] is to learn a rule composed of important signal values, then engineers can

create test parameters based on the learned rule to generate tests in the next iteration.

Figure 3.2: Overview of rule learning application in CDTG

In Figure 3.2, simulation traces are pairs of time and value for each design signal,

coverage events are pairs of time and hit-or-not for a given coverage point, and features

are the time-value pairs of selected signals and their combinations in simulation traces.

The used rule learning algorithm is subgroup discovery [9].

Each sample in the data for rule learning is encoded as Boolean features and Boolean

label. Each sample corresponds to a timeframe, which is like taking a snapshot of the

circuit at a given time. A positive sample represents a given coverage point is hit at that

timeframe, while a negative sample represents a given coverage point is not hit at that
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timeframe. Features are defined by engineers manually. Discretization techniques are

used to convert numerical features and categorical features to Boolean features. Also, a

feature can capture temporal relations, e.g. a feature can represent signal transition that

the feature is true if and only if the signal is high in the current timeframe and is low in

the previous timeframe.

After learning a rule composed of the features, verification engineers generate test

parameters based on the learned rule. Typically the definition of features is related to

test parameters so it is not hard to come out the test parameters.

However, there are still several challenges to overcome in [22]. (1) Converting the

learned rule to test parameters may not be trivial. (2) It requires domain knowledge to

select features. (3) It is hard to analyze the reason of failures of sub-group discovery

learning results. (4) Rule learning methods do not work well on extremely imbalanced

data, i.e. one or few positive samples and many negative samples, which is a common

situation in verification. Also, [22] discusses only the rule learning application and does

not discuss situations that test generation methods do not have ability to generate the

intended tests.

3.3 The Proposed Method

This dissertation further investigates these challenges and proposes a software system

that can leverage rule learning methods to increase coverage. Moreover, the proposed

system has the ability to learn from examples to increase its capability in terms of test

generation and coverage analysis.

The framework of the proposed system is shown in Figure 3.3, where there are three

key components: test generation, a signals database, and rule learning methods. A test

generation method is proposed such that it is controllable and can increase its capability
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by learning from new test samples. A signals database stores important design signals and

their relationship. This database is introduced to deal with the feature selection problem

for rule learning. Last, a new rule learning method is developed to deal with extremely

imbalanced data. Also, it does not have any hyper-parameters and optimization heuristics

so it is easy to analyze a failed learning result.

Figure 3.3: The proposed verification system

In Chapter 4, a method called constrained process discovery is proposed to learn a test

generator from manually developed tests. The learned test generator is able to increase

its capability, i.e. generating tests for testing new design functionality, by learning from

tests provided by experienced engineers. In addition, the test generator is controllable

by its input parameters so we can direct test generation with coverage analysis results.

There are three key ideas of constrained process discovery. The first key idea is to

introduce primitives – each primitive is a block of code. With primitives defined, a

test can be represented symbolically by a sequence of primitives. Then, the problem

becomes to learn a finite state model that is able to generate the sequence of primitives.

However, the learned model can easily generate tests that violate design assumptions,

which are called invalid tests. Hence, the second key idea is to introduce constraints
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among primitives to overcome the challenge of getting rid of invalid tests. In addition to

the above constraints, test parameters are represented as constraints, e.g. some primitive

must appear or not appear in the generated tests. The third key idea is to convert a

learned finite state model and constraints into a SAT problem for generating tests that

satisfy both the model and constraints.

Chapter 5 discusses a signals database to store important design signals and the re-

lationship of the signals that can be utilized in data preparation for rule learning. The

database stores sets of signals, where each set represents a particular relationship of the

signals, e.g. the combination of the signals can infer a coverage point. In addition to

manually inputting design signals and their relationship, we propose using text mining

methods to extract the important signals and relations from design documents, to estab-

lish an initial database. Regarding the learning capability of the proposed system, the

database can increase its data by itself from the results of rule learning methods. For

example, if a rule is successfully learned, a new set of signals is stored. Moreover, the

verification system can generate new tests randomly and run rule learning methods to

capture new signal relationships. Also, the database can increase its data from experi-

enced engineers – recording the combination of signals experienced engineers used. The

database can be view as a place for knowledge accumulation.

Chapter 6 discusses the problems of decision tree based rule learning methods in the

proposed verification system and proposes a rule learning method, VeSC-CoL, to deal

with the problems. It is shown that decision tree based methods cannot properly handle

extremely imbalanced data, i.e. one or few positive samples and many negative samples.

Also, a critical problem of applying machine learning methods in practice, in general, is

that when a learning result does not work, to improve the learning result requires knowl-

edge and experience of the learning method. For example, some possible approaches

to improve learning results are gathering more data, finding necessary features, tuning
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hyper-parameters, etc. The decision varies from person to person based on one’s expe-

rience. In contrast, VeSC-CoL can handle extremely imbalanced data and suggest the

next actions to improve the learning results. An important property of VeSC-CoL is that

it is guaranteed to find the simplest model that fits data. If there are multiple simplest

models, VeSC-CoL can return all of them for analysis. This property enables VeSC-CoL

to handle extremely imbalanced data or even learning with only negative samples.

There are four situations where the proposed system reports unable to generate tests

to a given coverage points, as illustrated in Figure 3.4. There are two rule learning tasks

in the proposed system. The first learning task is to learn a relation between a coverage

point and design signals. The second learning task is to learn a relation between test

parameters and a rule composed of design signals. For each learning task, a failure can

be due to two reasons: (1) the candidate rules are too complex, and (2) there are too

many candidate rules for analysis. These two reasons can be determined by VeSC-CoL

while traditional rule learning methods cannot provide such information.

Figure 3.4: Four failure situations
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If it is the first learning failed and due to candidate rules too complex, the proposed

system asks engineers for a better set of design signals. Then, engineers can select a new

set of signals in the signals database or add more design signals to the signals database.

If it is the first learning failed and due to too many candidate rules, the proposed system

reports this situation and engineers can decide to let the system run a few more iterations

to reduce the number of candidates, or if running more iterations is time-consuming, add

a new set of signals. Similarly, for the second learning failed, if a failure is due to rule too

complex, the proposed system asks engineers to provide a test that can satisfy the rule

obtained from the first learning result. If a failure is due to too many candidate rules,

engineers can decide to run more iterations or provide new tests.
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Chapter 4

Learning to Generate Tests

4.1 Introduction

The proposed verification system requires a test generation method that has the fol-

lowing three properties: (1) it can be controlled by some parameters, (2) it can increase

its capability by learning from new test examples, and (3) it has the ability of general-

ization to generate tests different from the test examples, so the test generation method

does not just memorize the test examples. This chapter proposes a method to construct

a test generator possessing these properties.

The approach presented in this work is rooted in grammatical inference [23]. How-

ever, this work presents a novel implementation that combines process discovery [24] and

constraint solving to achieve the learning.

4.2 Grammatical Inference

Without loss of generality, assume each direct test is a C program. To learn from

a set of C programs, we need a way to represent the programs. This representation is
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the basis for learning and decides the learnability of the learning problem we formulate.

In this work, each C program is represented by a set of primitives. One can think of a

primitive as a parametrized script that, when it is called, produces a piece of C code.

These primitives serve as a TPI (Test Programming Interface) for a person to write direct

tests.

With primitives defined, a direct test can be represented symbolically. For example, a

test can be represented as a sequence of steps, e.g. [A,B,C,. . .]. After primitive encoding,

each test then can be viewed as a “sentence” example derived from an unknown formal

language [25]. In other words, primitives are words of the unknown language. Then,

grammatical inference [23] can be applied to discover an automata model (such as a

finite automaton) to describe this language based on a given set of examples.

The learnability problem in grammatical inference asks whether a model can be

learned with a finite number of samples. Define in-model samples and out-model samples

as the samples complying with and not complying with the model to be learned, respec-

tively. The main result of [26] points out that if only in-model samples are available,

the only learnable class is the set of finite-length languages, i.e. there is a bound on the

maximum length of a sentence. If both in-model and out-model samples are available,

then all classes up to the Context-Sensitive grammar in the Chomsky Hierarchy can be

learned [25]. In this work, we consider the case that only in-model samples are available,

i.e. all the available direct tests comply with the hidden model.

Most grammatical inference algorithms do not handle only in-model samples because

to invalidate a learned model, it requires out-model samples, i.e. Regular Positive Neg-

ative Inference (RPNI) [27] and Biermann & Feldman’s algorithm [28]. Without out-

model samples, grammatical inference algorithms can return the most general model, i.e.

a model that accepts every sequence. To learn from only in-model samples, there is a

research field, process discovery.
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4.2.1 Process Discovery

Since the work in [26], the learnability of a finite automaton is among those that

received the most attention [29]. More recently, process discovery emerged as a separate

field targeting business applications. Process discovery is applied to learn a process

model from an event log recording instances of business transactions [30]. Each instance

is represented as a sequence of transaction steps, similar to our representation of a test

as a sequence of primitive steps. In process discovery, a common representation for the

process model is Petri Net [30] where the graph model allows loops and concurrency.

Hence, learning such a process model is as hard as learning a finite automaton.

Process discovery and the proposed approach have fundamentally different objectives.

Process discovery is for discovering business intelligence from event logs. Hence, it is

important for the learning model to be interpretable. Simplicity of the model to enable

visualization is a key consideration. Our goal for the model is to enable test generation.

Therefore, it is not necessary for our learning to produce a model summarizing all the

learned information into a single interpretable model. This difference enables us to

develop a novel learning approach described in the next section.

4.3 Learning from Test Examples

To illustrate the basic idea of learning in process discovery, consider the follow-

ing simple example. Suppose A-G represent the primitives. Suppose we have three

tests: [A,B,C,D,H], [B,C,E,F,D,H], and [A,B,C,E,G,D,H]. Fig. 4.1 shows a process model

learned from these three tests.

This model is built based on a so-called prefix rule [24]. A prefix rule decides whether

two steps with the same name should be represented with the same node in the process

model. Suppose one test contains a segment αX and another test contains a segment
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Figure 4.1: Process model using 1-prefix rule

βX, where α and β each is a sequence of one or more steps and X is a step. Given a

length requirement l ≥ 0, let αl be the last l steps in α and βl be the last l steps in β.

An l-prefix rule means that the two X steps would be represented by one node in the

process model if αl = βl.

Fig. 4.1 is based on the 1-prefix rule. For example, there is one C node in the model,

representing the three C steps in the three tests. This is because every time C is involved,

the step before is always B. Hence, the 1-prefix rule infers that there is only one way to

use the C primitive, resulting in one C node in the model.

A process discovery algorithm essentially decides if two or more steps should be rep-

resented as a single node [30]. Observe that merged nodes can also cause new instances

to be included. Including new instances not shown in the training set is called general-

ization in machine learning. In Fig. 4.1, three new tests are highlighted. For example,

because of the merged node C, the two segments [A,B] and [E,F,D,H] can be combined

to produce the new test [A,B,C,E,F,D,H].

Consider now a new test [S1, S2, B,C,D,H, S3, S4] is provided for learning. Fig. 4.2

shows the resulting model by adding this new test (with 1-prefix rule). S1 to S4 are new

primitives. It is interesting to observe that the resulting model contains two new tests

(as highlighted) involving the new S’s primitives.

If we consider Fig. 4.1 as the verification knowledge learned from direct tests and the

new test as a penetration test example provided by an expert, Fig. 4.2 illustrates how
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Figure 4.2: Process model by adding one more test

process learning can generalize from one penetration test to more penetration tests. Of

course, if more penetration tests are provided, generalization can also take place among

them.

Note that a process model generated based on a prefix rule can be viewed as a

deterministic finite automaton (DFA). If concurrency is allowed in the tests (i.e. two

segments are executed concurrently), then the model can be treated as a nondeterministic

finite automaton (NFA). However, since each NFA can be converted into a DFA, for the

rest of the discussion, we consider a process model as a DFA.

4.3.1 Constrained process discovery

Instead of learning a single process model as that in process discovery, our approach

splits the learning into two parts: (1) learning an upper-bound model, and (2) learning a

set of constraints. Fig. 4.3 depicts this approach.

The goal of an upper-bound model is to capture a bound on the space of all possible

tests such that a desired test is ensured to be in the space. However, because it is an upper

bound, the model can include many undesirable tests. A separate constraints database

is maintained to impose constraints between and among primitives. Constraints can be

learned independently of the process learning. Then, for test generation, the upper-bound

model and the constraints from the database are combined for constraint solving. Each

solution represents a test. In this work, we use a Boolean satisfiability (SAT) solver for
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constraint solving.

Figure 4.3: Overview of the proposed method

The constraints database provides a natural place to accumulate and share verification

knowledge. This knowledge can be added manually, based on previous learning sessions

or based on a separate constraint discovery method. It is intuitive to observe that as

more constraints are included, the test space becomes smaller, enabling more focus tests

to be generated. Unlike process discovery where a process model (e.g. a Petri Net model)

stores all the learned information, in Fig. 4.3 the information is split into two parts and

there is no single structure to represent all learned information.

In process discovery, one major concern is to control the underfitting and overfitting of

a model [24]. In our context, underfitting means the model contains undesirable tests and

overfitting means the model excludes some desirable tests. If a prefix rule is used, the key

concern becomes choosing an l for the best tradeoff between underfitting and overfitting.

However, because of the inflexibility of such a learning algorithm, the resulting model

usually has both issues, containing undesirable tests and missing some desirable tests.

Our approach starts with an underfitting model (the upper-bound model) which is

gradually refined with constraints. Suppose every constraint added to the database is

valid (e.g. validated by a person before adding it to the database). Then, the approach
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ensures no desirable tests would be missed. As more constraints are added, the resulting

model (implicitly existing) becomes closer to the desirable model. It is important to

recognize that the gap between this resulting model and the desirable model is reflected

in the loss of efficiency, i.e. Fig. 4.3 would produce undesirable tests that are not perceived

as useful by the user.

4.3.2 The upper-bound model

Observe that for using an l-prefix rule, a larger l imposes a more stringent requirement

for merging multiple steps into a single node. Hence, a larger l also leads to a less

generalized model. Therefore, the upper-bound model based on a prefix rule is the 0-

prefix rule model. Algorithm 1 depicts the detail of generating the upper-bound model

using the 0-prefix rule.

Algorithm 4.1: Learning an upper-bound model

Input: a set of direct tests T
Output: a process model M

1 M ← empty, Add states start and end to M ;
2 foreach t in T do
3 q0 ← start;
4 foreach q in t do
5 if state q not in M then
6 Add state q to M ;
7 end
8 if arc (q0, q) not in M then
9 Add arc (q0, q) to M;

10 end
11 q0 ← q;

12 end
13 if arc (q0, end) not in M then
14 Add arc (q0, end) to M;
15 end

16 end
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4.3.3 Constraint examples

A constraint describes a dependency relationship among multiple primitives. Ta-

ble 4.1 illustrates four types of constraints to describe a relationship, which are a subset

of temporal logic where B denotes before and F denotes future.

Table 4.1: Four constraints to describe a relationship

X → B Y
If X is executed,

Y is executed before X.

X → F Y
If X is executed,

Y is executed after X.

X → Bk Y
If X is executed,

Y is executed within k steps before X.

X → Fk Y
If X is executed,

Y is executed within k steps after X.

The constraints can be used with a negation “¬” to describe a relationship. Fig. 4.4

shows four example constraints between two primitives. Another useful example to forbid

primitive X to be used twice, i.e. preventing loop back to X, is the constraint (X → ¬B

X).

X Y… X → F Y

X Y… Y → B X

X Y… X → ¬F Y
X

X
X Y… Y → ¬B X

Figure 4.4: Example constraints between 2 primitives

Constraints involving more than two primitives can be added as well, for example

manually or by a constraint discovery method such as frequent episode mining [31] which

might discover that a segment [A,B,C] occurs frequently. As a result, the constraint that

A,B,C should be used together and in the particular sequence can become a recommended

constraint for a user to include or exclude.
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4.4 Test Generation - SAT Encoding

To use a SAT solver for test generation, we need the three sets of clauses: (1) those

to encode the 0-prefix process model, (2) those to encode the cross-primitive constraints,

and (3) those to ensure generation of new tests.

4.4.1 Encoding the process model

Inspired by [14], we use an approach that is similar to the proof of NP-completeness,

but instead of encoding a Turing machine, we encode a DFA (i.e. a process model).

Let N be the number of states in the DFA and L be the maximum length of the

generated tests. The proposition symbols are

• Qi
t, for 1 ≤ i ≤ N, for 1 ≤ t ≤ L.

Qi
t is True if and only if the DFA is at state qi at step t.

The encoding of transition relation is composed of two components. First, for each

state qi, the next state of the machine can only be the states that are directly connected

from qi. Thus, transition relation at step t is encoded as (Qi
t → ∨jQ

j
t+1), where j belongs

to the set of state indices of all the child states of qi. The overall encoding for all the

steps and all the states is

ΠtΠi(¬Qi
t ∨ (∨jQj

t+1)). (4.1)

The number of clauses of this component is O(LN).

Second, the machine cannot stay in more than one state at a time, i.e. Onehot0

constraint. A naive encoding for this property is ΠtΠi,j(¬Qi
t ∨ ¬Q

j
t) for all the pairs

of the states and all the steps, however, the naive encoding requires O(LN2) clauses

that potentially leads to a complexity problem in reality. To deal with the complexity
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problem, we use an approach described in [32], where the number of clauses reduces to

O(N) at the expense of extra O(N) symbols. The extra proposition symbols are

• H i
t , for 1 ≤ i ≤ N, for 1 ≤ t ≤ L.

H i
t is True if and only if one of Qj

t is True for j ≤ i. Equivalently, H i
t is True if and only

if H i−1
t is True or Qi

t is True. Note that H0
t is set to False. Then the Onehot0 property

can be encoded as at most one of H i
t and Qi+1

t is True. The overall encoding is

ΠtΠi(¬H i
t ∨H i−1

t ∨Qi
t)(H

i
t ∨ ¬H i−1

t )(H i
t ∨ ¬Qi

t) (4.2)

and

ΠtΠi(¬H i
t ∨ ¬Qi+1

t ). (4.3)

Overall, the number of clauses of this component is O(LN) and the number of extra

symbols is O(LN).

The encoding for the start state and the end state will be discussed in Sec. 4.4.2.1.

4.4.2 Encoding the constraints database

There are four types of constraints in the constraints database,→ B,→ F ,→ Bk and

→ Fk. The following describes their encoding separately. The similar encoding approach

can be applied to encoding the constraints with negation. We omit this part due to space

limitation.

To encode qi → Bqj, a naive method is Πt(Q
i
t → ∨s<tQj

s). This encoding ensures that

if the machine is at qi at step t, there exist s < t such that the machine is at qj at step

s. However, the naive encoding may lead to a complexity problem because the number

of literals required for each constraint is O(L2). We propose another encoding method

to reduce the number of literals to O(L) at the expense of extra O(L) symbols.
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We introduce new proposition symbols

• Bj
t , for 1 ≤ j ≤ N, for 1 ≤ t ≤ L.

Bj
t is True if and only if the machine is at state qj at some steps < t. The property of the

new symbols are maintained by the following relations: (1) Bj
1 is False. (2) Bj

t is True

if and only if Bj
t−1 is True or Qj

t−1 is True. The first relation is encoded as (¬Bj
1). The

second relation is encoded as

Πt(¬Bj
t ∨B

j
t−1 ∨Q

j
t−1)(B

j
t ∨ ¬B

j
t−1)(B

j
t ∨ ¬Q

j
t−1). (4.4)

With the help of symbols Bj
t , the encoding of qi → Bqj becomes Πt(Q

i
t → Bj

t ), whose

final encoding is

Πt(¬Qi
t ∨B

j
t ). (4.5)

This new encoding for qi → Bqj, including the encoding of the relation of new symbols,

requires O(L) clauses, which is the same as the naive encoding, but the number of literals

is reduced to O(L). Overall, let Cb be the number of constraints of this type, the number

of clauses required is O(LCb) and the number of extra symbols is O(L ∗ min(Cb, N)).

Note that the number of extra symbols is always no larger than O(LN).

The method to encode qi → Fqj is similar to encoding qi → Bqj. We introduce new

proposition symbols

• F j
t , for 1 ≤ i ≤ N, for 1 ≤ t ≤ L,

where F j
t is True if and only if the machine is at state qj at some steps > t. The encoding

for the relation of the new symbols is

Πt(¬F j
t ∨ F

j
t+1 ∨Q

j
t+1)(F

j
t ∨ ¬F

j
t+1)(F

j
t ∨ ¬Q

j
t+1), (4.6)
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and the encoding of qi → Fqj is

Πt(¬Qi
t ∨ F

j
t ). (4.7)

The idea for encoding qi → Bkqj is straightforward, Πt(Q
i
t → ∨sQj

s) for s in {t−1, t−

2, ..., t− k}. Hence, the corresponding SAT clauses are

Πt(¬Qi
t ∨ (∨sQj

s)). (4.8)

There are O(L) clauses for each constraint. Let Cbk be the number of constraints of this

type. Then the overall number of clauses of this type is O(LCbk).

Encoding qi → Fkqj is similar to encoding qi → Bkqj. The corresponding SAT clauses

are

Πt(¬Qi
t ∨ (∨sQj

s)) (4.9)

for s in {t+1, t+2, ..., t+k}.

4.4.2.1 Generating new tests

To generate a test, we set the start state to be the first state. The corresponding

clause is

(Qstart
1 ). (4.10)

To ensure the generated test reaches the end state, we add a clause

(Bend
L ∨Qend

L ). (4.11)

Recall that Bend
L is True if and only if the machine is at qend before step L. With this

constraint, the length of the generated tests is not fixed to L but can be any length
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smaller than or equal to L.

To ensure the generated test are not the same with the training direct tests and the

tests already generated, we add additional clauses for each test that has been seen. Let

α = qt1qt2 . . . qtM be a test with length M. To avoid generating α, we add an clause

(¬Qt1
1 ∨ ¬Qt2

2 ∨ · · · ∨ ¬Q
tM
M ). (4.12)

Let τ be the number of tests that have been seen. The number of clauses of this type is

τ .

Table 4.2 summarizes the number of symbols and the number of clauses of the SAT

encoding.

Table 4.2: The number of symbols and clauses of the proposed SAT encoding.
# symbols for states O(LN)
# symbols for Onehot0 O(LN)
# symbols for constraints O(L ∗min(C,N))
# symbols, overall O(LN)
# clauses for transitions O(LN)
# clauses for Onehot0 O(LN)
# clauses for constraints O(LC)
# clauses for new tests O(τ)
# clauses, overall O(L(N + C) + τ)
L is the maximum length. N is the number of states.
C is the number of constraints. τ is the number of
tests that have been seen.

4.5 Experimental Results

We implemented the approach based on an in-house simulation based RTL verification

environment for a commercial dual-core microcontroller SoC. There are 194 verification

primitives and each of them corresponds to a block of C code. The tests in the verification
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environment are written in terms of these primitives, then compiled into object code and

executed by the cores.

There are 22 cross-primitive constraints. These constraints were added manually

when the primitives were developed. In the first experiment, for learning we took 30

direct tests used for verifying the on-chip system controller module that manages resource

allocation, power modes, and security policies. The test length is between 46 and 63

primitives.
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Figure 4.5: The upper-bound process model from the 30 direct tests

Fig. 4.5 shows the resulting upper-bound process model using the 0-prefix rule. There

are 196 states in the graph including the start state and the end state. The model

together with the database is then given to the SAT solver, zChaff[33], to generate tests.

The maximum length L is set to 70, which is larger than the maximum length of the 30

direct tests. The SAT encoding involves 41090 symbols and 110659 clauses. Note that if

using the naive encoding for Onehot0, the number of clauses would exceed 107. The run

time of the SAT solver is negligible. It takes less than one second to generate a test.

The effectiveness is measured based on the coverage of a set of coverage points (CPs)

defined by the verification engineers for the system controller. The original 30 direct tests

cover 167 CPs. Then, 500 new tests were randomly generated by the proposed method.

Fig. 4.6 shows the newly-covered CPs by those tests cumulatively as each new test is

produced and simulated. Together, the 500 new tests cover additional 85 CPs. The

result shows that the newly generated tests are capable of covering new functionality.
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Figure 4.6: Coverage improvement

Table 4.3 summarizes the finding with additional results. The benefit is shown by

seeing that new tests produced from the process model can always improve the coverage.

Table 4.3: Additional coverage results
# manual

tests
# originally
covered CPs

# generated
tests

# newly
covered CPs

30 167 500 85
35 216 500 64
40 244 100 64

Fig. 4.7 then shows the result from a separate experiment. 30 different direct tests

for verifying the system controller were used for learning. While the earlier results show

coverage improvement, this result illustrates coverage frequency improvement (and also

shows that the coverage improvement is not specific to a particular set of direct tests

in use for learning). In this experiment, 100 new tests were generated. They cover 68

additional CPs. More importantly, the coverage frequency is improved across almost

all CPs. This frequency improvement shows that the new tests can cover the similar

functionality of the original tests, i.e. they capture the same intent of the original 30

tests.
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Figure 4.7: Coverage count improvement

4.6 Summary

In this work, a novel approach called constrained process discovery is proposed for

learning from the direct tests developed by experts. After the learning, the software

machine functions as a surrogate for the experts to generate new direct tests. The

software machine comprises two components, an upper-bound model, and a constraints

database. The constraints database serves as a knowledge center for accumulating veri-

fication knowledge.

A SAT solver is used for generating tests that comply with both the upper-bound

model and constraints database. The SAT encoding is based on the concept of step-

extension. Two techniques are used to reduce the complexity in terms of the size of

SAT encoding. The number of symbols of the proposed encoding method is O(LN) and

the number of clauses of the proposed encoding method is O(L(N+C)), where L is the

maximum length of the generated tests, N is the number of states and C is the number

of constraints.

The proposed test generator has the three required properties in the proposed veri-

fication system: (1) It can be controlled by test parameters where test parameters are

treated as additional constraints, (2) It can learn from new test samples by adding new
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states to its upper-bound model, and (3) It can generate tests different from the test

samples as long as test samples have shared primitives.

The proposed approach is implemented in a verification environment for a commercial

SoC. Experiment results show that the proposed approach can generate new tests, and

the new tests can cover new design functionality.
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Chapter 5

Extracting Design Signals from

Documents

5.1 Introduction

In the proposed verification system, a signal database is required to store design sig-

nals that have high-level meaning, i.e. understandable by human engineers, and some

combination of the signals if the combination is meaningful. The reasons for this is three-

fold. First, rule learning algorithms cannot process a large number of signals in a design

under verification, so signal selection is required. Second, when human involvement is

required to generate tests according to a learned rule learning result, if the rule is com-

posed of low-level signals, it is hard for a human to understand the meaning of the design

states satisfying the rule. Last, the performance of rule learning algorithm is better when

irrelevant signals are not presented in training data, hence a smaller set of signals helps.

In addition to establishing a signal database manually, this chapter proposes a method

to establish a signal database from design documents. It is assumed that the signals

described in design documents are at high-level, important, and meaningful to human
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engineers. Intuitively, design documents are concise and only important signals are pre-

sented. Also, design documents can be views as places where experienced engineers put

their knowledge.

5.2 Text Mining and Signal Mapping

The proposed approach is illustrated in Figure 5.1, where there are two steps: text

mining and signal mapping. Text mining techniques are utilized process design document

to extract words that is relevant to design signals. Then, signal mapping methods are

employed to map the extracted words to real design signals.

Figure 5.1: The overall flow of the proposed approach.

5.2.1 Text Mining

The goal of this procedure is to extract words that are relevant to design signal names.

Text mining is a process of extracting information from text and typically it involves

natural language processing. There are two natural language processing techniques used

in our approach: tokenization and part-of-speech tagging (POS tagging). The tagging

results are then passed to a selection method to extract words of interest.

5.2.1.1 Tokenization

Tokenization is a technique used to segment a string into substrings. There are two

types of tokenization: sentence tokenization and word tokenization. Sentence tokeniza-
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tion aims at partitioning text into sentences, while word tokenization splits a sentence

into words.

The left side of Fig. 5.2 shows an example of sentence tokenization, where the input

text is

“Are you OK? Dr. Pete is nearby.”,

and the expected sentence tokenization result is

{“Are you OK?”, “Dr. Pete is nearby.”},

which is the same as how human understand the text. Sentence tokenization is not as

trivial of a task as it may seem. For example, one may think that splitting a text by

periods just works, however in the given example, splitting by periods ends up considering

“Dr.” as a sentence. One approach to solving this problem is to train a model to identify

sentence boundaries [34].

Are you OK? Dr. Pete is nearby. 

Are you OK? | Dr. Pete is nearby.

Sentence 
tokenization

Word 
tokenization

There | ‘s | a | book | .

There’s a book.

ref: http://textminingonline.com/dive-into-nltk-part-ii-
sentence-tokenize-and-word-tokenize

Figure 5.2: Exmaples of tokenization.

The right side of Fig. 5.2 shows an example of word tokenization, where the input

text is

“There’s a book.”,

and the expected sentence tokenization result is

{“There, “’s”, “a”, “book”, “.”}.
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Note that different tokenizers may treat punctuation differently, e.g. making individual

punctuations as tokens. Although splitting a sentence by spaces works most of the time,

special cases must be taken care of such as verb contractions (e.g. can’t) and Saxon

genitive (e.g. mother’s).

5.2.1.2 POS tagging

Part-Of-Speech (POS) tagging is a process to set a POS label to each word in a

sentence (which is word-tokenized), where a POS is a word category in which words

possess similar grammatical properties. Some simplified examples of POS are noun,

verb, adjective, etc. In reality, there are more specific categories. Fig. 5.3 shows an

example of POS tagging where the input sentence is:

FOO is a read-only, one-hot register.

In the tagging results, NNP stands for proper noun, VBZ stands for present and singular

verb, DT stands for determiner, JJ stands for ordinal adjective, and NN stands for

common singular noun. Commonly used methods include rule-based models [35] and

stochastic models [36].

FOO is a read-only one-hot register 

NNP VBZ DT JJ JJ NN

FOO is a read-only, one-hot register.

tagging

FOO      is      a    read-only    one-hot    register 

NNP   VBZ   DT          JJ                JJ NN   

Figure 5.3: An example of POS tagging.

The POS tags provide grammatical information of each word in a sentence, which is

useful for analyzing text. In our application, it is intuitive that the majority of signal

43



Extracting Design Signals from Documents Chapter 5

names will be nouns or proper nouns, and are highly unlikely to be labeled as tags such

as adjective and verb.

5.2.1.3 Word selection

The objective of this step is to extract words relevant to the names of design signals.

Typically it is customized and ad-hoc. We use a rule-based approach for word selection.

First, we find all the words that are labeled as common noun or proper noun. Second,

we design rules to select words of interest. Our rules are based on regular expressions

and it is easy to add or remove a rule in our rule-based implementation. Example rules

for hardware signal extractions include (1) words composed of only uppercase letters,

and (2) words that have a underscore, “ ”. Lastly, a word is not selected if it is in our

exclusion list, which contains known words that do not refer to design signals.

5.2.2 Mapping Text to Design Signals

This procedure maps the words extracted by text mining to the real design signals.

Our approach is based on name matching and filtering. Fig. 5.4 depicts the flow of the

proposed name mapping procedure.

Name 
matching

Filtering signal(s)word

Partial 
matching

has signals

no signal

Signal list

Figure 5.4: The flow of the proposed mapping procedure.

For each word, we search if there are matches from the list of all the design signals.

The first step is to find the signals whose names exactly match the queried word. If

there is no such signal found, a partial matching method is applied, which tries to find
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if there are matches for certain substrings of the queried word. A typical substring to

be matched can be chosen from segments of the queried word separated by underscores.

Sometimes substrings that happen to be commonly used words (e.g., start, stop and etc)

are also considered.

A filtering mechanism is required because normally there are lots of signals in the

matching result. The filtering outputs signals with the highest score, where the score is

calculated based on the length of matched string, the depth of the signal in the design

hierarchy and whether the signal is in the module we are interested in.

5.3 Data Processing and Rule Learning

This section describes the data processing method and introduces the basic of decision

tree based rule learning method. The goal of the data processing method is to convert

simulation traces into a format ready for rule learning.

5.3.1 Data Processing

For each simulation trace, we first decide the required timestamps, and each sample

correspond to a timestamp. Next, we define Boolean features that are used to represent

each sample. Last, post-processing is used to remove duplicate samples.

5.3.1.1 Time discretization

Given a set of signals, for each test, we are interested in the timestamps whenever

a value change of the signals occurs. Formally speaking, given a test, given a set of

signals, and let V (t) be the vector of the signal values at time t, we extract the set of

timestamps {t1, t2, . . . , tn} satisfying that ∀t ∈ [ti, ti+1), V (t) holds the same and that

∀i, V (ti) 6= V (ti+1).
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5.3.1.2 Binarization

We treat the data as categorical. Suppose during simulation, the set of observed

values of SigA is {v1, v2, . . . , vn}, then n features are created: ”SigA=v1”, ”SigA=v2”,

. . . , ”SigA=vn”. At time t, the value of ”SigA=vi” is 1 if the value of SigA is vi, otherwise

”SigA=vi” is 0.

There are potential exponential explosion problems. To our experience, it happened

only for data path signals. If a signal has more than 16 values, then we let the users

decide whether they want to include this signal in the feature set. Alternatively, they

can decide to create fewer bins for the signal on their own.

5.3.1.3 Including Value Transitions

For each signal, we create another set of features to indicate the value transitions.

Our empirical study shows that without these features, the performance of rule learning

is not acceptable because most assertion coverage points involve temporal properties.

The procedure is similar to binarization, but the created features are ”SigA=vi to

vj”. At time tk, the value of the feature is 1 if SigA is vi at time tk − 1 and SigA is vj at

time tk, otherwise 0.

5.3.1.4 Time alignment

The purpose of time alignment is to deal with the asynchronous relation between

assertion coverage and signals. We observed several cases where assertion coverage has

its dedicated clock. Creating new timestamps doesn’t work because we can have two

timestamps, t1 and t2, such that V (t1) = V (t2) but one hits the coverage point and the

other does not.

For each assertion coverage point, we find the maximum timestamp that is not greater
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than the time when the coverage point is hit. Then we use this timestamp as when the

coverage point is hit.

5.3.2 Rule Learning Algorithms

Given a set of samples of different classes, rule learning algorithms aim at finding

a rule that is able to distinguish samples from different classes. In our application, we

have two classes of samples, i.e. positive samples that hit the target assertion coverage

point and negative samples that do not. Our goal is to find a rule, composed of features

processed from the previous procedure, that can explain why the target assertion coverage

point can be hit. For example,

!(SigA=1) ∧ (SigB=0 to 1) ⇒ hit target coverage.

There are many off-the-shelf rule learning algorithms. Examples include subgroup dis-

covery [9], CN2 [10], and Classification and regression trees (CART) [12].

The proposed approach does not depend on a specific rule learning algorithm. In our

experiment, we used CART.

CART belongs to a family of decision tree classifiers. Training decision tree classifier

models is an iterative process. Given a set of samples, the training algorithm checks all

the features and decides which one can best split the set into two subsets, where the best

split is that where the two subsets are close to pure. A set is pure if it contains only

samples of a single class. Commonly used metrics to measure the quality of splitting

are Gini impurity and information gain. Then, the same procedure continues on the two

subsets. This iterative process ends when a subset is pure, or there is no feature for

further splitting.

Each path starting from the root of a decision tree model corresponds to a rule.

The rule is the conjunction of the decisions along the path. Note that a path does not
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necessarily end at a leaf. Fig. 5.5 shows a decision tree example. All the right branches

are True branches, and all the left branches are False branches. The highlighted path

corresponds to the rule

!(SigA=1) ∧ (SigB = 0 to 1).

Depending on the training results, we have different methods to extract rules from

a decision tree. (1) If there are nodes that are pure and contain only positive samples,

then the extracted rule is the disjunction of rules that correspond to the paths to all

the pure and positive nodes. All the pure and positive nodes are treated equally. (2)

Otherwise, the extracted rule is the one corresponding to the path leading to the node

with the highest ratio of positive samples.

…

…

T

TF

F

The corresponding rule:

𝑆𝑖𝑔𝐴 = 1

𝑆𝑖𝑔𝐵 = 0 𝑡𝑜 1 ! (𝑆𝑖𝑔𝐴 = 1) ⋀

(𝑆𝑖𝑔𝐵= 0 𝑡𝑜 1)

Figure 5.5: Rule extraction of a given node.

5.3.2.1 Dealing with Overfitting

Overfitting is a common machine learning problem whose root cause is either too

many features, i.e. high dimensionality, or too few training data samples. To overcome

this problem, we need to either remove irrelevant features or increase the number of

training data samples. Increasing the number of training data samples does not work

because of the extremely low hit rates of some assertion coverage points. Therefore, we

resort to learning from smaller groups of features. This leads to the question of what

features should be discarded and what features should be kept.
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The idea is to learn from other assertion coverage points. Often, not all the assertion

coverage points are independent. A group of features that is relevant to one assertion cov-

erage point can be relevant to another assertion coverage point. Following this thought,

for each assertion coverage point that has 100%-accurate rules, a group is created con-

taining all the features used in its decision tree. After this step, multiple groups are

created. Then, for each group, rule learning algorithms are applied to assertion coverage

points that have no 100%-accurate rule. The rule with the highest accuracy is reported

as the final result.

5.4 Experimental Results

The proposed approach was evaluated on a commercial dual-core microcontroller SoC

targeting ultra-low power applications. The experiments focused on its system low-power

control unit, which controls the system to enter and exit various power modes. This unit

monitors triggering events of power mode transitions and then generates proper control

sequences to clocks, power, and system memories to execute the transitions.

The in-house verification environment was a C-test based environment. The C stimuli

were compiled into machine code and then executed on cores in RTL simulation. The

correctness was insured both by self-checks in C-stimuli and the checkers in the testbench.

Assertion coverage data was collected by a commercial coverage reporting tools.

We applied the proposed approach to 168 assertion coverage points created by other

engineers during project development. Note that these assertion coverage points concern

not only the system low-power control unit activities, but also other activities in the

system to capture the overall system states of interest.

1000 tests were pre-run in this experiment, and they were partitioned into two equally

sized sets for training and validation respectively. For each assertion coverage point, based
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on the features extracted from the document, a rule was learned from the training tests.

Then, each rule was validated on the other 500 tests. We show the effectiveness of our

approach by comparing the hit rate of the training tests, which are randomly generated,

to the hit rate of tests satisfying the rules of all the assertion coverage points.

Without feature selection processes, it is infeasible to apply rule learning algorithms.

Before running into the theoretical overfitting problem, in practice, the cost of collecting

and processing simulation data is prohibitive in terms of time and space. For instance, it

required more than 2TB storage to save the whole chip simulation traces of 1000 tests.

5.4.1 Signal Extraction Based on Design Documents

The design document to start with is the design reference manual, which is a 49-

page PDF file. There is no formal format of this document. In natural language, it

describes design functionality, register usages, interface protocols, etc., with plenty of

tables, diagrams, and waveforms.

We processed this document in Python2.7. The Python package pdfminer [37] was

used to extract text from the PDF document. Next, the Python package nltk [38] was

used to tokenize the text and tag the words. An exclusion list was created to ensure

that we did not select words that were obviously irrelevant to design signals. After this

procedure, 66 words were extracted from the document for the mapping procedure.

After executing the mapping procedure, there were 42 words that could be mapped

to design signals. The 24 words that did not have mappings included the names of other

hardware modules and special abbreviations. 46 design signals were obtained after the

mapping procedure. We observed that two words may map to the same design signals,

which is reasonable because the document is written in natural language and there is no

strict format requirement to the document. Also, a word may map to multiple design
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signals with different prefix or postfix in the signals names. These facts explain why the

number of words having signal mapping is different from the number of signals of the

mapping result. The signal extraction results is shown in Table 5.1.

Table 5.1: Text mining results
# words after text mining 66
# words having signal mapping 42
# signals of the mapping result 46

5.4.2 Rule Learning Based on the Extracted Features

We implemented our learning methods in Python using Pandas [39] and scikit-learn

[40]. Pandas was used to process data, and scikit-learn provided us the implementation

of CART.

There are 300 features in total after running the data processing procedure. The

number of training samples for rule learning is 9216.

Fig. 5.6 shows the rule learning results based on all the signals extracted from docu-

ments. The y-axis is the hit rate, and the x-axis is the assertion coverage point sorted by

its hit rate after learning. Each assertion coverage point has two bars. The orange bar is

the hit rate after learning, and the blue bar is the hit rate of random test generation. The

results show that for more than 60% of the assertion coverage points, 100%-accurate rules

can be learned. The result implies that given an assertion coverage point, with chances

over 50%, an engineer without much design knowledge can obtain accurate rules.

To overcome the overfitting problem, we ran the rule learning algorithms again with

smaller groups of features. For each assertion coverage point that has 100%-accurate

rules, a signal group is created comprising all the features in the corresponding decision

tree. Then the rule learning algorithm is applied with each signal group.

Fig. 5.7 shows the learning results on the assertion coverage points that have no
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Figure 5.6: Hit rate improvement between random and rule learning results of all the
assertion coverage points.

100%-accurate rule at the previous stage. 38 out of 58 assertion coverage points have hit

rate improvement. In addition, 11 assertion coverage points have 100%-accurate rules.
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Figure 5.7: Hit rate improvement after learning from signal groups.

Table 5.2 shows the hit rate improvement of selected assertion coverage points with

very low random hit rate. It clearly demonstrates the overfitting phenomena: when

data is insufficient and the number of features is large, the learning result cannot be

generalized, thus we have rules with 0 hit rate when learning with all the signals from

documents. However, if we can exclude irrelevant features, the learning works with the

same amount of data. This explains why we got hit rate improvement by learning from

smaller groups.
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Table 5.2: Hit rate improvement between learning from all the extracted signals and
from signal groups

random all doc signals signal groups
Assertion 1 1/500 0% 25%
Assertion 2 1/500 0% 22%
Assertion 3 1/500 0% 17%
Assertion 4 2/500 0% 15%

Table 5.3 summarizes the overall results of our experiments. With the signals ex-

tracted from documents, we obtained 100%-accurate rules for more than 70% of the

assertion coverage.

Table 5.3: The percentage of the assertion coverage having 100%-accurate rules
random all doc signals signal groups

0.0% 64.9% 71.4%

The result suggests that the set of signals extracted from documents provides a good

starting point for engineers who do not have deep knowledge of the design under ver-

ification. If the goal is to find accurate rules for all the assertion coverage points, the

proposed approach ramps up from nothing to 70% without much effort. On the other

hand, rules not 100%-accurate also provide information for engineers to analyze designs

and tests, and assist in applications such as generating more tests and debugging.

5.5 Summary

Text mining methods are applied to obtain words likely to be the names of design

signals. These words are then mapped to the real design signals to create the feature

set. The effectiveness of these features is experimented by learning rules for improving

assertion coverage. The experimental result shows that for more than 70% assertions,

100%-accurate rules can be obtained. Also, experimental result shows that using a smaller
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set of signals can lead to a better rule learning result and suggests that a set of signals

able to infer a coverage point may be able to infer another coverage point.
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Chapter 6

Boolean Concept Learning

6.1 Introduction

The problem definition of Boolean concept learning is as follows. Suppose there is

an unknown Boolean concept, i.e. a Boolean function, h(x1, x2, . . . , xn)→ {0, 1}, where

n is the number of input variables. Given m samples and each sample is represented by

(~x, y), where ~x ∈ {0, 1}n is an input assignment and y = h(~x). A sample is positive if its

y value is 1. A sample is negative if is y value is 0. The goal of Boolean concept learning

is to find the unknown function h by analyzing the given samples. This function h is also

called a rule that can distinguish the positive samples and negative samples.

In the proposed verification system, Boolean concept learning is used in two tasks:

(1) to learn the relationship between a coverage event and features, and (2) to learn

the relation between features and test parameters, as depicted in Figure 6.1. For the

first task, given a coverage event, the goal is to find a concept, which is composed of

values of important signals, to infer the activation of the coverage event. In this task,

a positive sample refers to an occurrence of the coverage event. For the second task,

given a combination of signal values, the objective is to find a concept comprising test
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parameters to infer the occurrence of the combination of signal values. In this task, a

positive sample refers to an occurrence of the combination of signal values. Then, new

tests can be generated by the test generator with the learned test parameters. Ideally,

the generated tests can create the combination of signals values and hit the coverage

event.

Figure 6.1: Concept learning in the proposed system

In the proposed verification system, it is assumed that an unknown concept is a k-

term DNF with k less than a pre-defined number. The reason is that each term in a

DNF is a cause of the positive samples and from our experience the number of causes is

a small number.

For concept learning application in functional application, it is common that the data

in the concept learning task is extremely imbalanced – only one or few positive samples

and thousands of negative samples. Handling extremely imbalanced data is a challenge

and traditional concept learning methods do not handle it well.

In this chapter, the problem of learning with extremely imbalanced data is described

first. Then the occam’s razor assumption and the uniqueness requirement is discussed.

Last, based on the uniqueness requirement, a new concept learning tool, Version Space

Cardinality based Concept Learning (VeSC-CoL), is proposed to deal with the extremely
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imbalanced data.

6.2 Problems with Extremely Imbalanced Data

This section discusses two main problems of learning with extremely imbalanced

data. First, there is no validation data and test data due to data limitation of positive

samples. Hence, common machine learning techniques that uses validation data to access

the validity of a learned model cannot be applied. Second, for decision tree based concept

learning methods, it is impossible to learn some k-term DNF with extremely imbalanced

data.

6.2.1 No Validation Data

Validation Data is commonly used to assess whether there is overfitting or not. Some

new tests will be generated based on the learned concept. Then simulation is required

to know whether the target coverage is covered or not. If it is not covered, which means

the learned concept is incorrect, then another iteration of running rule learning method,

generating tests and simulation is required.

There problem is that simulation takes time. Suppose there are 100 tests generated

and each tests requires 5-minute cpu time for simulation, then each iteration takes 500-

minute cpu time for simulation.

Also, in each iteration, it is not clear how to improve the learning result. Is the

problem in the first learning task or second learning task? Should I obtaining more data

or refining features. Typically the decision is heavily based on one’s experience about

the learning algorithm and the design under verification.

57



Boolean Concept Learning Chapter 6

6.2.2 Inability to Learn k-term DNF

For a decision tree based concept learning method with limited positive samples,

there are situations that it is impossible to learn a k-term DNF formula. Suppose the

target concept is a 2-term DNF, say h = ab+ cd, and there are only two positive samples

available. Without loss of generality, suppose the method selects a to be the first feature

for splitting. There are two cases: (1) The two positive samples are in the True branch

and (2) One positive sample is in the true branch and the other positive sample is in the

false branch. For the first case, the learned result is h1 = ag for some function g and

clearly each term in h1 contains a that cannot be simplified. However the term cd doesn’t

contains a and thus h1 never equals h. For case two, The learned result is h2 = ag1+a′g2.

To make h2 = h, g1 must be functionally equal to b + cd and g2 must be functionally

equal to cd. However to obtain this result, at least three positive samples are required,

two positive samples for g1 and one positive samples for g2. Thus h2 is not equal to h.

This example shows that with limited positive samples, decision tree is not capable of

learning some k-term DNF.

6.3 The Uniqueness Requirement

Without validation data, we still need some performance measurement of the learn-

ing result to reduce the number of iterations in the concept learning process. Let’s first

discuss the advantages provided by validation data and what is the cause of such ad-

vantages. The main advantage of using validation data is to detect overfitting – when a

learned model is too specific, it looses its generalization ability and performs badly on

unseen data. However, is using validation data the only way to detect overfitting?

The Occam’s razor principle states that if there are two models with the same per-

formance on the training samples, then the simpler one is preferred. In machine learning
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community, though there is no proof, it is usually assumed and accepted that a simpler

model has better generalization ability [41]. Another result from Structural Risk Min-

imization [42] also states the same idea – simpler models are preferred. Follow these

results, we prefer a concept learning algorithm that is guaranteed to find a simplest

model.

However, there are cases that finding a simplest model is not enough. Consider a

case that there are 1000 simplest concepts fit training samples. If the only requirement

is to get a simplest model that fits the data, then any one of the 1000 concepts can be

the learned concept. Intuitively, people are more confident to the result if there is an

unique answer. If there are 1000 alternatives, it is an indicator of data insufficiency. This

uniqueness requirement is discussed in [43].

However, in practice, simply checking the uniqueness is still not enough. It is possible

that it is just by chance to have an simplest and unique concept that fits data. The idea

of reducing the chance of getting false learning result is to test the learned concept

with more negative samples (recall that positive samples are rare but there are a lot

of negative samples). If a learned concept is not the unknown concept, the probability

that the learned concept does not agree with a new randomly generated sample can be

calculated, as shown in the next paragraph. Hence, an idea is to test a learned concept

with new randomly generated samples.

Given an unknown target concept h, a concept g and m uniformly random-generated

negative samples. Let Pagree be the probability that g agrees with the m negative samples.

Then

Pagree = (1− pr)m, (6.1)

where pr is the probability that g does not agree with a uniformly random-generated
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negative sample. pr can be calculated by

pr = Nminterms(g ∧ ¬h)/Nminterms(¬h), (6.2)

where Nminterms(g ∧ ¬h) is the number of minterms of g ∧ ¬h and Nminterms(¬h) is the

number of minterms of ¬h. The explanation of equation (6.2) is that (a) if a sample is

negative, it must be a satisfiable assignment of ¬h and (b) if g does not agree with the

sample, it must be a satisfiable assignment of g. Note that pr depends on both h and

g ∧ ¬h hence there is no closed form independent to g or h.

Follow the discussion above, we want a method to find a simplest concept and check

its uniqueness, then test the concept with some number of negative samples.

6.4 VeSC-CoL Overview

In this work, VeSC-CoL adopts a particular learning strategy enabled by the capa-

bility to calculate version space cardinality. In VeSC-CoL, the complexity measurement

of a hypothesis h is defined as the number of literals in h. The whole hypothesis space,

i.e. k-term DNF with limited k, is then partitioned into hypothesis sub-spaces, where

two hypotheses have the same complexity if and only if they are in the same hypothesis

sub-space. VeSC-CoL then tries to find the simplest hypothesis. The search proceeds

from the lowest-complexity sub-space to highest-complexity sub-space. The search pro-

cess stops when it first finds a hypothesis that fits the data. The partition and search

process is illustrated in Figure 6.2.

For example, suppose the hypothesis space is k-term DNF and k ≤ 3. The simplest

hypothesis sub-space has all hypotheses with 1 literal, e.g. a, b′, c. The second sim-

plest hypothesis sub-space has all hypotheses with 2 literals, e.g. a′b, a + b. The third
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Figure 6.2: Hypothesis space partition by the number of literals

hypothesis sub-space has all hypotheses with 3 literals, e.g. abc, ac+ b′, a+ b+ c′.

6.4.1 VeSC-CoL FLOW

Figure 6.3 depicts the flow of VeSC-CoL. It starts with calculating the version space

cardinality of the simplest hypothesis sub-space. If there is no hypothesis consistent with

the data, i.e. |V S| = 0, then VeSC-CoL moves onto the next hypothesis sub-space. The

iteration stops when it first finds a non-empty version space. At this point, VeSC-CoL

reports at most B hypotheses in version space as well as version space cardinality as a

measure of learning quality, where B is an application-specific parameter and usually is

set to the maximum number of hypotheses that a user can handle in model evaluation.

Figure 6.3: Illstration of VeSC-CoL flow

In theory, this problem is proved to be no easier than #P-complete [44]. Even deter-
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mining whether a version space is empty or not for k-term DNF is NP-hard [45].

Though this problem is intractable in theory, in practice a useful tool can still be

developed. In this paper, we propose two methods to calculate version space cardinality.

The first method is based on Ordered Binary Decision Diagram (BDD) [17]. The version

space cardinality can be obtained by calculating the number of minterms in BDD. The

second method is based on Boolean Satisfiability (SAT). For the SAT implementation,

VeSC-CoL does not calculate version space cardinality. Rather, VeSC-CoL tries to find

at most B + 1 hypotheses in the version space.

6.5 Calculating Version Space

6.6 BDD-Based Implementation

Given the maximum number of terms kmax, to calculate the version space of a sub-

space Hl that have all l-literal hypotheses, kmax BDD runs will be executed. The ith run

calculates the fitting hypotheses with exactly i terms and l literals. The result version

space of cardinality the sub-space can then be obtained by the summation of the number

of fitting hypotheses in each run.

6.6.1 Representation of A Subset

The idea of using BDD to calculate version space cardinality starts with using BDD

to represent a subset of a given finite set. In our case, the finite set is the set of all

hypotheses in a given hypothesis sub-space. A subset is the version space after seeing the

input samples. This subset is revised as more input samples are provided. The following

three points are the basic idea using BDD to represent a subset of a given finite set.
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• Generally speaking, a BDD represents a Boolean function, where a Boolean function

is defined as f : {0, 1}n → {0, 1}.

• Given a finite set S, let T be a subset of S. We use a Boolean function to represent

T .

• The representation is the following. First, we use a function g to map elements of

S to points in a Boolean space. Let g : S → {0, 1}n be an injection (because S is

finite, with large n, g exists). Then, to represent T in the Boolean space, we use a

function fT : {0, 1}n → {0, 1} where fT (x) = 1 iff g−1(x) exists and g−1(x) ∈ S.

The last point indicates that the cardinality of T is equal to the number of minterms

in fT .

In the implementation of VeSC-CoL, S is the set of all k-term DNF formulas with

given k. An element in S is a hypothesis, i.e. a k-term DNF formula. Also, note that

for a given hypothesis sub-space constrained by the number of literals l, this constraint

needs to be represented by another BDD C. Then, the AND operation of the BDDs S

and C will represent the desired hypothesis sub-space.

The mapping g is described in Section 6.6.3 and 6.6.4. Computing version space is

done by performing intersection on several subsets of S, i.e. performing AND operation

on several BDDs.

6.6.2 High-level Idea

The basic idea of the proposed BDD-based version space learning method is based

on set intersection [46]. Figure 6.4 illustrates this idea.

The calculation starts with creating a set of hypotheses with a given complexity, which

is the hypothesis sub-space. Then, each sample is converted into the set of hypotheses
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Figure 6.4: Version space learning by set intersection

that agree with the sample. The version space can be obtained by intersecting the

hypothesis sub-space and all the sample spaces.

Set intersection can be performed via Boolean AND operation of BDDs. To determine

the size of version space, we can simply calculate the number of minterms in the version

space BDD. Note that if a hypothesis has multiple representations, special treatment is

required and it is discussed in Section 6.6.8.1.

In the following sections, k is the number of terms and l is the number of literals.

6.6.3 Idea of Encoding

Given the number of features n and the number of terms k. Let xji represent the

status of the i-th feature in the j-th term, wherein xji ∈ {neg, pos, dcare}, which denotes

appearing in negative form, in positive form and don’t care (not appearing). Since xji is

a three-value variable, we use two Boolean variables to represent it in BDD. An example

is shown in Figure 6.5. In sum, there are 2nk variables in BDD.

6.6.4 Base Hypothesis Space Encoding

Algorithm 2 shows the method to create a BDD representing an n-feature and k-term

DNF hypothesis space. This algorithm simply forces each xji to be in its three possible
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Figure 6.5: Using BDD to encode a three-value variable

values. Note that there is a bijection between a satisfiable assignment in the returned

BDD and a k-term DNF representation.

Algorithm 6.1: Creating a BDD representing a n-variable, k-term DNF space

Input: Integers n, k
Output: BDD dd

1 dd ← BDD One();
2 for j ∈ {1, 2, . . . , k} do
3 for i ∈ {1, 2, . . . , n} do

4 tmp dd = BDD Or(xji == pos, xji == neg, xji == dcare);
5 dd ← BDD And(dd, tmp dd);

6 end

7 end
8 return dd;

6.6.5 Hypothesis Sub-space Encoding

Algorithm 3 describes the method to create a BDD representing an n-feature, k-term

DNF, l-literal space. Essentially it creates a length constraint that exactly l literals are

there in its DNF representation. Dynamic programming is used to reduce its space usage.

The state variable lit dd[w] is a function f , i.e a BDD, such that f = 1 if and only if

there are at least w literals up to the current iteration.
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Algorithm 6.2: Creating a BDD representing a n-variable, k-term, l-literal space

Input: Integers n, k, l
Output: BDD dd

1 lit dd[0] ← BDD One();
2 for w ∈ {1, 2, . . . , l + 1} do
3 lit dd[w] ← BDD Zero();
4 end
5 for j ∈ {1, 2, . . . , k} do
6 for i ∈ {1, 2, . . . , n} do

7 var dd ← BDD Or(xji == pos, xji == neg);
8 for w ∈ {l + 1, l, . . . , 1} do
9 tmp dd ← BDD And(lit dd[w − 1], var dd);

10 lit dd[w] ← BDD Or(lit dd[w], tmp dd);

11 end

12 end

13 end
14 dd ← BDD And(lit dd[l], BDD Not(lit dd[l + 1]));
15 return dd;

Line 1 to Line 4 is the initialization process for dynamic programming. Line 5 to

Line 13 updates the state variable, i.e. lit dd in dynamic programming. At line 10,

an assignment that makes lit dd[w] == 1 can be mapped to a DNF formula with at

least w literals in the processed xji . The outer two loops iterate all xji , then for each xji ,

lit dd is updated accordingly. Note that lit dd is updated from the highest index to the

lowest index because the current lit dd[w] depends on the lit dd[w − 1] in the previous

iteration. After processing all the xji , line 14 creates the result BDD representing the

l-literal sub-space.

Note that the returned BDD does not guarantee a bijection between a minterm and a

DNF representation due to the NOT operation. To have this bijection, a minterm in the

returned BDD must be in the base hypothesis space BDD as well. Hence the sub-space

BDD can be obtained by the AND of the returned BDDs of Algorithm 2 and Algorithm

3. Also, with proper BDD variable ordering, it can be shown that the complexity of
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Algorithm 3 is Θ(nkl).

6.6.6 Positive Sample Space Encoding

Algorithm 4 converts a positive sample to a BDD representing a set of consistent

hypotheses. Its input parameters are n, the number of features, k, the number of terms,

and s[i] ∈ {0, 1}, the value of the i-th feature. The key idea is in line 12, given a

hypothesis, at least one term of the hypothesis must be evaluated as true so the hypothesis

is evaluated as true.

Algorithm 6.3: Converting a positive sample to BDD

Input: Integers n, k, and an n-dimensional Boolean vector s
Output: BDD dd

1 dd ← BDD Zero();
2 for j ∈ {1, 2, . . . , k} do
3 term dd ← BDD One();
4 for i ∈ {1, 2, . . . , n} do
5 if s[i] == 0 then

6 tmp dd ← BDD Or(xji == neg, xji == dcare);
7 else

8 tmp dd ← BDD Or(xji == pos, xji == dcare);
9 end

10 term dd ← BDD And(term dd, tmp dd);

11 end
12 dd ← BDD Or(dd, term dd);

13 end
14 return dd;

Suppose s = 101. For a single term to be evaluated as true, feature 1 and feature

3 must not be negative literals and feature 2 must not be a positive literal in the term.

Otherwise, this term is evaluated as false. The generalization of this idea shown in line

3 to line 11.

At line 10, each minterm in term dd can be mapped to a DNF term that fits the

positive sample. At line 14, each minterm in dd can be mapped to a k-term DNF formula
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that fits the postive sample. With proper BDD variable ordering, the complexity of this

algorithm 4 is O(kn).

6.6.7 Negative Sample Space Encoding

The algorithm of converting a negative sample to its space BDD is similar to algorithm

4. The differences are (1) all the terms must be evaluated as false and (2) the conversion

rule for a single term is negated. Algorithm 5 shows the conversion algorithm.

Algorithm 6.4: Converting a negative sample to BDD

Input: Integers n, k, and an n-dimensional Boolean vector s
Output: BDD dd

1 dd ← BDD One();
2 for j ∈ {1, 2, . . . , k} do
3 term dd ← BDD Zero();
4 for i ∈ {1, 2, . . . , n} do
5 if s[i] == 0 then

6 tmp dd ← (xji == pos);
7 else

8 tmp dd ← (xji == neg);
9 end

10 term dd ← BDD Or(term dd, tmp dd);

11 end
12 dd ← BDD And(dd, term dd);

13 end
14 return dd;

Again, suppose s = 101. For a single term to be evaluated as false, one of the following

conditions must hold: at least one of feature 1 and feature 3 appears as a negative literal,

or feature 2 appears as a positive literal. The generalization of this idea shown in line

3 to line 11. At line 12, since all the terms must be evaluated as false, the result dd is

the AND of all the term dd. With proper BDD variable ordering, the complexity of this

algorithm 5 is O(kn).
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6.6.8 Obtaining Version Space

Version space can be obtained by performing an AND of all the above BDDs. Recall

that each BDD represents a set of hypotheses inside the hypothesis sub-space, which

agree with a positive sample or a negative sample. The AND is equivalent to the set

intersection operation so the resulting BDD represents the version space.

In actual implementation, the AND of a set of BDDs is accomplished by performing

a sequence of AND operations on two BDDs. We observed that the ordering of AND

operations on BDDs significantly influences the runtime. There can be two prferences:

(1) Process the hypothesis sub-space BDD first and (2) If k ≤ 2, process positive sample

BDDs before negative sample BBDs; otherwise process negative sample BDDs before

positive sample BDDs.

To illustrate the first preference, Figure 6.6 shows the number of BDD nodes in the

version space BDD versus the number of processed samples. There are 100 features, 3

positive samples, and 800 negative samples. For the red line, the first AND operation

is applied to the hypothesis sub-space BDD and a positive sample BDD. The next two

ANDs involve the remaining two positive sample BDDs. The negative sample BBDs

are processed afterward. For the green line, the first three positive sample BDDs are

processed first, followed by processing negative sample BDDs. The hypothesis sub-space

BDD is processed last.

The runtime is proportional to the number of BDD nodes. It can be clearly observed

that the difference in runtime between the two cases is significant. The reason is that

processing the hypothesis sub-space BDD first can more effectively trim the version space.

Table 6.1 shows the runtime comparison between processing positive sample BDDs

first and processing negative sample BDDs first. The comparison is presented as a ratio

between the two. In each case, there are 100 features, 250 positive samples, and 250
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Figure 6.6: Example to illustrate that processing hypothesis sub-space BDD at the
beginning is more efficient

negative negative samples. The number of literals l is randomly selected in each run and

l ≤ 15. In each case, there are 10 runs for the positive first and 10 runs for the negative

first. A geometric mean of the 10 runtimes is calculated. Then, the ratio is calculated

from the two geometric means. The reason to use the geometric mean is that the 10

runtimes can differ significantly based on the selection of l. Table 6.1 shows that for

k ≤ 2, processing positive sample BDDs before negative sample BDDs saves time, and

vice versa.

Table 6.1: Runtime ratio of processing positive sample BDDs first over processing
negative sample BDDs first

k pos-first/neg-first
1 1.89 ∗ 10−6

2 8.70 ∗ 10−2

3 1.76 ∗ 103

4 2.38 ∗ 105

For k = 1, the problem is monomial learning. For monomial learning, it is well

known that positive samples are far more important than negative samples, i.e. positive

samples are far more effective to reduce the version space than negative samples. As a

result, processing positive sample BDDs first is more effective. This property seems to

somewhat carry over to the case k = 2. It is interesting that the situation reverses for
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k = 3 and k = 4. The theoretical reason for this reverse is still unclear and should be

investigated further in the future.

6.6.8.1 Handling Non-Canonicality

A hypothesis can be represented by different DNF formulas, e.g. a+ b = b+a. Hence

the size of version space cannot be obtained by counting the number of minterms in the

version space BDD in general. Here we introduce another BDD that forces each term

in a DNF representation to be in lexicographical order, which reduces the permutation

among terms. Algorithm 6 shows the procedure to create a BDD having lexicographical

order among two terms. In total k−1 such BDDs are required. Next, when the number of

minterms in the version space BDD is in the same order as B, we convert each minterm

to its DNF formula and then use a BDD to represent it. Since BDD is a canonical

representation, we are able to obtain the size of version space.

Algorithm 6.5: BDD representing the k1-th term is lexicographically smaller than
the k2-th term

Input: Integers n, k1, k2
Output: BDD dd

1 dd ← BDD Zero();
2 eq dd ← BDD One();
3 for i ∈ {1, 2, . . . , n} do

4 cond1 ← BDD And(xk1i == neg, xk2i == pos);

5 cond2 ← BDD And(xk1i == neg, xk2i == dcare);

6 cond3 ← BDD And(xk1i == pos, xk2i == dcare);
7 cond = BDD Or(cond1, cond2, cond3);
8 tmp dd ← BDD And(eq dd, cond);
9 dd ← BDD Or(dd, tmp dd);

10 eq dd ← BDD And(eq dd, xk1i == xk2i );

11 end
12 return dd;
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6.7 SAT-Based Implementation

The idea of SAT-based version space learning is similar to BDD-based encoding. The

basic components are the same: the hypothesis sub-space, the positive sample spaces,

and the negative sample spaces. Let n be the number of features, l be the number of

literals, k be the number of terms, mp be the number of positive samples and mn be the

number of negative samples. The proposed encoding method results in a CNF formula

with Θ(nkl + kmp) symbols and Θ(nkl + nkmp + kmn) clauses.

6.7.1 Base Hypothesis Space Encoding

Same as BDD encoding, each feature can appear in positive, negative or does not

appear in a term. Hence, three symbols are used to represent each case.

• Xj
i,1 is True iff the i-th feature in the j-th term appears in negative form

• Xj
i,2 is True iff the i-th feature in the j-th term appears in positive form

• Xj
i,3 is True iff the i-th feature in the j-th term does not appear

Since exactly one of the three cases is true, one-hot constraints are required to enforce

the requirement:

Πk
j=1Π

n
i=1(X

j
i,1 +Xj

i,2 +Xj
i,3)(¬X

j
i,1 + ¬Xj

i,2)

(¬Xj
i,1 + ¬Xj

i,3)(¬X
j
i,2 + ¬Xj

i,3).

6.7.2 Hypothesis Sub-space Encoding

For a given (l, k), we need to constrain the space to contain only l literals. It is the

cardinality constraint. The performance of different encoding methods for a cardinality

constraint can be found in [47]. In our implementation, we choose the sequential counter
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method [48] because its performance is comparable to other encoding methods and it

has the unit propagation property [47]. The encoding formula shown in [48] cannot be

used directly because it is for cardinality ≤ l. A straightforward modification is used for

cardinality = l, based on converting the sequential counter circuit to SAT clauses. The

encoding for the cardinality constraint requires additional l(nk − 1) new symbols and

Θ(nkl) clauses.

For this encoding, we use the same notation and symbol in [48], so it is easier to

get the difference between the modification and the original encoding, wherein k is the

number of symbols passing to the cardinality constraint and Si,j are additional symbols.

(x1 + ¬S1,1)(¬x1 + S1,1),

Πk
j=2(¬S1,j),

Πn
i=2(¬xi + ¬Si−1,k),

Πn−1
i=2 (xi + Si−1,1 + ¬Si,1)(¬xi + Si,1)(¬Si−1,1 + Si,1),

Πn−1
i=2 Πk

j=2(xi+Si−1,j+¬Si,j)(Si−1,j−1+Si−1,j+¬Si,j)(¬Si−1,j+Si,j)(¬xi+¬Si−1,j−1+Si,j),

(xn + Sn−1,k)(Sn−1,k−1 + Sn−1,k).

6.7.3 Positive Sample Space Encoding

Again, given a positive sample s = 101. For a single term to be evaluated as true,

feature 1 and feature 3 must not appear in negative form and feature 2 must not appear in

positive form. Then, at least one term must be evaluated as true. A naive encoding leads

to nk clauses, which is not feasible. To overcome this challenge, additional k symbols,

A1, A2, . . . , Ak, are used such that Aj is true if and only if the j-th term is evaluated as

true. With these additional symbols, the number of clauses reduces to (n+ 1)k+ 1. The

requirement of at least one term is evaluated as true is encoded by a single clause:

(Σk
j=1A

j),
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and for each j, the relation of Aj and Xj
i,δ is maintained by

Πn
i=1(¬X

j
i,2−s[i] + ¬Aj), and

(Σn
i=1X

j
i,2−s[i] + Aj).

6.7.4 Negative Sample Space Encoding

Given a negative sample s = 101. For a single term to be evaluated as false, at least

one of feature 1 and feature 3 must appear in negative form or feature 2 appear in positive

form. Besides, all the terms must be evaluated as false. For each sample, k clauses are

required and each clause encodes that a term is evaluated as false. The overall encoding

is

Πk
j=1(Σ

n
i=1X

j
i,2−s[i]).

6.7.5 Size of Version Space

Each satisfiable assignment in the above SAT problem can be mapped to a DNF

formula. The size of version space can be obtained by counting the number of satisfiable

assignments. A common approach is to add new clauses to remove previous satisfiable

assignments and then call the SAT solver again. Removing a satisfiable assignment is a

standard approach and omitted here. Note that we use the same approach to deal with the

non-canonicality problem described in BDD-based learning, except the lexicographical

order constraint is represented by SAT clauses.

6.8 Experimental Results

We use CUDD-3.0.0 [49] to implement the BDD-based learning and use Lingeling

[50] for the SAT-based learning. The dynamic variable re-ordering option in CUDD is
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disabled to facilitate the study of various aspects of the tool performance.

6.8.1 Effect of Uniqueness

In the experiment, we assume the number of features n = 100. We further assume

the length of the true answer is 5 which can be a k-term DNF formula for k = 1, 2, 3. In

each case, a k is randomly picked and the true answer is also randomly picked from all

the k-term DNF hypotheses. The dataset contains exactly k positive samples which is

randomly generated. Then, negative samples are also randomly generated.

Figure 6.7 shows a comparison result for VeSC-CoL and CART [12]. The experiment

includes 100 cases. The x-axis shows the number of negative samples used in the learning

up to that particular point. In the experiment, the k positive samples are always used

first, before any negative samples are used. The maximum number of negative samples

is 5000.

Figure 6.7: Correctness and uniqueness, comparing to CART

For CART, the figure shows the number of cases the CART tool correctly reports

the true answer at each x value. For VeSC-CoL, the figure shows two numbers at each

x value. The first is the number of cases where VeSC-CoL reports a unique hypothesis
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as its answer. This is marked as a orange dot. The second is the number of cases where

VeSC-CoL correctly finds the true answer. This is marked as a blue dot. Where these

two numbers coincide, the figure shows an overlap of orange dots with blue background.

For CART, the best scenario is that it finds the true answer in 67 out of the 100

cases. This happens occasionally on some particular x values after 4899. For the range

of the x values shown, CART has a trend that as more negative samples are provided it

performs better, but its performance fluctuates quite frequently.

For VeSC-CoL, notice that a unique hypothesis found by the tool does not always

guarantee it is the correct answer. However, this happens only when the x value is

still relatively small. More interestingly unlike CART has performance fluctuation as x

increases, VeSC-CoL Correct is monotonically increasing to x. After x = 1000, VeSC-

CoL finds all the 100 true answers and the result does not change with more negative

samples added.

Figure 6.8 presents the result of VeSC-CoL from a different perspective and focuses

on x value up to 250 and randomly picked 20 cases from the previous experiment. For

each of the y label from 1 to 20, the figure marks the x values where VeSC-CoL finds a

unique hypothesis but it is not the true answer. We can call each range of such x values

a mistake window. Figure 6.8 shows where such mistake windows occur as the number

of samples increases.

In the figure, for each case there are at most 4 continuous windows because the length

of unknown targets is 5. For some cases the number of continuous windows is less than

4 because a hypothesis space may go from not-unique to empty as a negative sample is

added.

The largest mistake window in figure 6.8 is 48, which means if a unique but incorrect

result is obtained, it will be removed within 48 new negative samples. More experiments

were conducted for target l ≤ 6, k = 1, 2, 3 and for each l there were 100 cases. The
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Figure 6.8: Window of unique and incorrect result

largest mistake window was less than 100.

6.8.2 Runtime Comparison between BDD and SAT

We observed different characteristics of runtime between the SAT-based method and

the BDD-based method. For example, we use a simple experiment to illustrate their

differences. In this experiment, the target concept is assumed to be a 5-literal monomial

(i.e. k = 1 and l = 5). There are 1000 randomly generated negative samples. There can

be 0, 1, and 2 positive samples. Figure 6.10 and Figure 6.9 show the runtime results.

Each point is the average of runtimes over 10 runs. The size bound B is set to 1, so if

the size of version space is large than 1, the SAT-based learning would stop after finding

the second fitting hypothesis. Note that in this experiment, for all cases with l < 5 the

calculated size of version space is always 0, for l = 5 the calculated size of version space is

exactly 1, and for l > 5 the calculated size of version space is always larger than 1. This

shows that both learning methods can identify the correct hypothesis sub-space and the

correct hypothesis.

The results show that the runtime of the BDD-based method is exponential to l. On
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the other hand, the SAT-based method has a peak runtime at l = 5, i.e. the size of version

space is 1. Figure 6.11 shows another interesting property of BDD-based learning where

the number of positive sample is 1. In each case, the positive sample BDD is processed

first, followed by processing the negative sample BDDs. The figure shows the number of

BDD nodes as a function of the number of processed samples. As it can be observed, the

peak number of BDD nodes occurs earlier in the process than later, for example within

the first 200 samples. This implies that the computational limitation occurs within the

processing of the first 200 samples. As a result, it is not the case that a larger dataset

implies a longer run time. As mentioned above, the deciding factor for the runtime is

the length l.

Figure 6.12 shows similar runtime results as those shown in Figure 6.11. In this

experiment, the target concept is a 2-term DNF with l = 5 where one term is of length

2 and the other item is of length 3. The number of positive samples is 5, the number

of negative samples is 500, and the number of features is 100. Similarly, positive sample

BDDs are processed first. Observe that the peak number of BDD nodes also occurs

earlier in the process and the length l is the deciding factor for the runtime.

BDD vs SAT: runtime trend
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Figure 6.9: BDD runtime
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Computational limitation in BDD
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Figure 6.11: The peak number of nodes grows as l increases

6.8.3 Comparison with Other Methods

To compare VeSC-CoL with other concept learning methods such as CART and ID3

[11], we continue the experiment above where the target concept is a 5-literal monomial.

There are 100 features, 2 positive samples, and 1000 negative samples. Table 6.2 shows

the learning result. In each case, VeSC-CoL is able to correctly identify the target

concept. On the other hand, the results from CART are less meaningful. For the first

three tasks, each CART result has only 1 literal relevant to the target concept while

providing 6 unrelated literals and missing 4 literals in the target. For the last task, the

CART learning result is a 2-term DNF in which no feature is related to the target. The

learning results from ID3 are dissimilar to the target concept as well.

Table 6.2: VeSC-CoL learns the target monomial, while CART and ID3 produce
irrelevant results

VeSC-CoL CART ID3
x2x63x75x78x80 x3x4x28x47x53x55x80 x2x3x4x30x47x53x81
x39x45x72x74x95 x5x16x35x45x55x56x59 x8x40x45x64x74x87
x2x14x52x57x87 x11x14x24x61x64x90x92 x5x6x16x35x45x56x59
x40x45x64x74x87 x4x8x45x47x64x74x89 x2x14x24x61x64x90x92
x57x58x77x95x98 x5x29x38x43x79x99 + x3x5x29x38x43x49x79x99 x5x6x11x14x18x34x45
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Figure 6.12: Similar result for 2-term DNF

If the target concept is a 2-term DNF, the results from CART and ID3 can be much

less meaningful. We use a simple experiment to demonstrate the irrelevance of the target

and the results from CART and ID3. In this experiment, the target concept is a 2-term

DNF with 5 literals. There are 100 features, 6 positive samples and 100 negative samples.

Table 6.3 shows the results, where VeSC-CoL successfully learn the target, while CART

produced a 3-term DNF with 15 literals and ID3 produced a 3-term DNF with 19 literals.

Table 6.3: VeSC-CoL learns the target 2-term DNF, while CART and ID3 produce
irrelevant results

VeSC-CoL x2x80 + x68x85x89

CART
x2x51x80+

x1x2x30x33x51x80+
x7x28x51x80x81x100

ID3
x2x51x59x64x80+

x2x8x35x51x59x64x98+
x2x13x37x51x64x59x80

80



Boolean Concept Learning Chapter 6

6.8.4 Complexity Ordering

As mentioned before, for two hypothesis sub-space Hi and Hj of k-term DNF, we

consider the complexity of Hi is smaller than Hj if li < lj where li and lj are the numbers

of literals in the hypotheses in Hi and Hj, respectively. Recall that each hypothesis sub-

space comprises hypotheses of equal length. Note that this complexity ordering is based

on two main reasons: (1) As shown above, BDD-based learning is sensitive to the length

l. Hence, the ordering ensures that the learning processes the computationally-easier

hypothesis sub-spaces first. (2) In practice, a concept with a smaller length is easier to

interpret than that with a larger length. Therefore, it is preferred to uncover a shorter

concept if possible.

6.8.5 Accuracy of VeSC-CoL

In the experiments to compare VeSC-CoL with CART and ID3, we observe that

VeSC-CoL can always uncover the correct answer. Note that it is possible to construct

a dataset to fool the VeSC-CoL tool so that it reports an incorrect answer even with the

cardinality bound B = 1. However, with randomly generated datasets, we observe that

when the data is sufficiently large and B = 1, VeSC-CoL always finds the correct target

concept assuming the concept is in the hypothesis space considered (e.g. 3-term DNF up

to length 15). In particular, we observed in the following experiments that VeSC-CoL

always find the correct answer:

• All 1-term DNF cases with up to 100 features and l up to 7. The number of positive

samples can be 0 to 2 and the number of negative samples is 10000.

• All 1-term DNF cases with up to 500 features and l up to 8. The number of positive

samples is larger than 5 and the number of negative samples is 10000.

81



Boolean Concept Learning Chapter 6

• All 2-term DNF cases with up to 100 feature and l up to 8. For each term, there

exists a positive sample that can be explained only by the term. The number of

positive samples is larger than 5 and the number of negative samples is 10000.

• All 3-term DNF cases with up to 100 feature and l up to 9. For each term, there

exists a positive sample that can be explained only by the term. The number of

positive samples is larger than 10 and the number of negative samples is 10000.

6.9 Summary

We propose VeSC-CoL, a version space cardinality based concept learning tool, for

learning extremely imbalanced datasets. We use experiment results to note several key

properties of the tool. VeSC-CoL is applicable without cross-validation. The version

space cardinality bound is used to control the quality of the learning result. In our study,

we observed that VeSC-CoL can always identify the correct target concept assuming that

the concept is included in one of the hypothesis sub-spaces to be analyzed. VeSC-CoL

is supported by two implementations, one based on BDD and the other based on SAT.

Their runtimes can be quite different. Therefore VeSC-CoL runs the two methods in

parallel and stops when one of them completes.

For future work, one challenge is to generalize the encoding method. The current

encoding method is closely related to the k-term DNF representation and complexity

measurement. Suppose a hypothesis is represented in BDD and the complexity measure

is the number of BDD nodes, the encoding will be different. Given a hypothesis repre-

sentation and a complexity measure, finding an encoding method is a non-trivial task

that needs further investigation.
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Chapter 7

Conclusion

This work proposes a learning-based system for coverage-directed test generation. The

main contribution of this work is to extend the scope of learning-based coverage-directed

test generation from learning the relationship between coverage and test parameters to

learning test generation and design knowledge. Three key components and challenges

are identified in the proposed work, test generation, signals database for design signals

and rule learning algorithms.

The proposed test generation method has the ability to learn from test examples to

increase its capability. The proposed signals database can learn from the results of rule

learning, from design documents and can be input directly by experienced engineers.

The proposed rule learning method can output the version space explicitly to reduce the

number of iterations in the rule learning and validation process. When the proposed

learning system fails to handle a certain coverage point, because the proposed learning

algorithm provides information about the size of version space and its hypothesis sub-

space, it is easy to identify that more data is required or another set of features are

required. After this information to experienced engineers, they can provide examples in

terms of new tests, to increase test generation capability, or a new set of features, to
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increase the design knowledge.

7.1 Future Works

Ideally, the proposed verification can deal with all the coverage points as long as

it has enough capability in test generation and signals database. In practice, it is still

unknown that how much time and engineering efforts are required to achieve the closure

of capability increasing. This problem needs to be further investigated in the future.

Another problem in functional verification in practice is that the design implemen-

tation can be updated during verification, i.e. the implementation can be time-varying.

When there is an update in the design implementation, some knowledge stored in the

test generation model and signals database may no longer be valid. Though dealing with

time-varying design implementation is not discussed in this work, it is an important topic

in practice.

Component-wisely, there are interesting topics worth investigation in each component.

For constrained-process discovery, methods that can extract primitives from manually

developed tests can be explored. Such methods can free human engineers from developing

code in the representation of pre-defined primitives and make the process of providing

test samples more natural. For signals database, more information can be stored to assist

people in identifying signal importance and relevance. For example, when and where a

set of features are from, the number of coverage points that can be inferred by a given

set of features, etc. This information may help improve the efficiency of the system by

not running rule learning algorithms for every set of signals. Also, this information can

help human analyze a failure. For rule learning methods, it is unknown whether the

proposed encoding and implementation methods are optimal. Beside, theoretically there

can be different definitions of hypothesis complexity. Different complexity definitions
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have different encoding schemes and may performs differently.
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