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Hydraulic fracturing (HF) is a widely employed technique for stimulating low-permeable 

underground reservoirs to enhance hydrocarbon production. Current HF models for the 

design of industrial HF treatments commonly assume fractures grow in an isotropic elastic 

solid. However, most sedimentary rocks, such as shales and mudstones, are made of fine-

scale layers that should be treated as transversely isotropic (TI) solids. The impact of such 

anisotropy on HF treatments has not been fully addressed in current HF models for 

practical applications.   

In this thesis, we focus on the study of vertical planar three-dimensional hydraulic fractures 

(PL3D) propagating perpendicular to the isotropic planes of various TI solids. The PL3D 

model is constructed based on the displacement discontinuity method (DDM) for fractures 

and the finite volume method (FVM) for fluid flow within fractures. The formula of the 
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stress field of a dislocation segment in a general anisotropic elastic solid is incorporated 

into DDM. As a consequence, we find the horizontal extension of fracture is greater than 

the vertical extension in TI solids. This elongation is more obvious for a solid with stronger 

anisotropy. The fracture energy is another important factor that can also have a significant 

impact on fracture geometry. These effects, influenced by various elastic parameters, are 

delineated and presented in quantitative detail. Finally, we demonstrate that approximate 

methods may be used to address the transversely isotropic effects in isotropic models for 

computational efficiency. 
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Chapter 1 
 

Introduction 

1.1 Hydraulic fracturing 

Hydraulic fracturing (HF) [1], commonly known as fracking, is a method of extracting oil 

and gas from shale and other unconventional reservoirs by injecting a high-pressure 

mixture of water, sand, and chemicals into the rock formation to create fractures or cracks 

(Figure 1.1). Hydraulic fracturing can both increase production rates and increase the total 

amount of gas that can be recovered from a given volume of shale. Pump pressure causes 

the rock to fracture, and water carries sand (“proppant”) [2] into the hydraulic fracture to 

prop it open allowing the flow of gas.  

The history of the fracturing can be traced to the 1860s, when liquid nitroglycerin (NG) 

was used to stimulate shallow, hard rock wells in Pennsylvania, New York, Kentucky, and 

West Virginia. In the 1950s, the first hydraulic fracturing was performed in Kansas by 

Stanolind Oil [3]. At the early stage, the HF project contains the traditional set of 

exploration and production practices where vertical drilling to strike oil reservoirs in high  
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porosity formations at the depth of 4 to 5 kms underground (conventional reservoirs). It is 

the so-called conventional hydraulic fracturing technology which is still the dominant way 

in the petroleum industry nowadays providing almost all the petroleum sold in the global 

markets. In the mid 1990’s, unconventional reservoirs [4-5] such as natural gas from coal 

and tight gas sands and carbonates were becoming more important as a supply of natural 

gas in North America. The transition towards unconventional gas reservoirs had begun and 

the importance of hydraulic fracturing was beginning to be realized by industry. The 

unconventional hydraulic fracturing [5-6] (Figure 1.1) was a major advancement in 

petroleum science and technology, as it expressed an innovative paradigm of production. 

Figure 1.1: Schematics of the hydraulic fracturing project. 

(Picture taken from gasbrasmg.com.br) 
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The technological breakthroughs were first realized in the Barnett shale gas play located in 

the Fort Worth Basin in Texas. With the application of horizontal drilling [7], this new 

technology has been developed to enable economic gas production from these “ultra” tight 

reservoirs which display a low rate of porosity and permeability compared with the 

conventional reservoirs. Also, the size of the fracture treatment as well as the number of 

treatments per well have steadily increased as a result of shale gas development. The 

development of unconventional hydraulic fracturing has allowed numerous unconventional 

reservoirs to yield increasing volumes of oil and gas. This achievement has enabled 

significant natural gas resources to be added to the country’s energy base and extend the 

potential supply by over 100 years. 

Over the past 50 years, there have been significant advances in hydraulic fracturing 

technology. Different types of fracture treatments have been developed ranging from 

packer [8] and pumping equipment to variations in treatment fluids and proppants [1]. Each 

natural reservoir is unique due to the variability in geology and geomechanics. As a result, 

there will be different types of hydraulic fracturing treatments used depending on what 

results are needed in the end and what the parameters of the zone are. In general, hydraulic 

fracturing still remains a relatively young technology in continuous improvement. 

1.2 Transversely isotropic formations 

Generally speaking, the rock formations exist in nature with various mechanical properties. 

In engineering projects, the rock mass is commonly considered as a continuous, 

homogeneous, isotropic medium. However, the real rock we explore in hydraulic fracturing 
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always exhibits more uncertainties such as anisotropy, heterogeneity and nonlinearity. 

Thus, more detailed treatment should be taken into consideration to capture the impact of 

the rock formations in this engineering application. 

 

 

 

Figure 1.2: Shale Sedimentary rock in Finnmark, Norway. Width of sample 9 cm. 

(Picture downloaded from Sandatlas) 

 

 

Transverse isotropy is a very common property in the sedimentary rocks which can be 

found in a variety of geological formations such as shale, sandstone and limestone. It is a 

direct result of the deposition and compaction processes [9] and occurs over a wide range 

of scales (metric to sub-metric). These rock materials are characterized by the presence of 

an intrinsic lamination in horizontal direction (Figure 1.2). Transversely isotropic rock in 

underground reservoirs exhibits a directional variation in its physical properties such as 

elasticity, conductivity and strength vertically [10]. Thus, the axis of material symmetry is 
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in vertical direction while the horizontal plane is considered as an isotropy plane (Figure 

1.3). The anisotropic properties of sedimentary rocks can have significant implications for 

various geological and engineering applications. For example, in oil and gas exploration, 

the anisotropic properties of transversely isotropic rocks can affect the propagation of the 

fracture, flow of oil and gas through the rock and the effectiveness of hydraulic fracturing 

operations. Therefore, understanding the anisotropic properties of transversely isotropic 

rocks is important for accurately predicting their behavior and optimizing various 

geological and engineering applications [11]. 

 

 

 

 

 

 

 

 

 

  

 

 

  Vertical axis of material 

symmetry 

 

  

  

Isotropy plane 

Figure 1.3: Schematics of the transversely isotropic formation 
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1.3 Modeling of the hydraulic fracturing 

As hydraulic fracturing becomes an essential stimulation technique for oil and gas 

production, there has been great interest in understanding how hydraulic fractures grow in 

certain conditions. The modeling of hydraulic fracturing involves simulating and 

predicting the behavior of the fracture process using mathematical and computational 

models. These models can help engineers and scientists understand how fractures 

propagate, interact with the rock formation, and influence fluid flow within the reservoir. 

The development of the first simplified theoretical HF model started in the 1950s. The 

ground-breaking paper in this area is proposed by Perkins and Kerns [12] using Sneddon’s 

classic crack solution [13]. Later, Nordgren [14] improved this model by adding the fluid 

loss and formulated the PKN model (Figure 1.4a). The PKN model is applicable to long 

fracture of limited height and elliptical vertical cross-section. Another classic HF model 

was invented by Khristianovic and Zheltov [15], and by Greertsma and de Klerk [16] 

independently in 1955 and 1969, respectively. This is the so-called KGD model which is 

applicable to the fracture that has much longer fracture height than the length (Figure 1.4b). 

The radial or penny-shaped model with constant fluid pressure was solved by Sneddon 

[17]. This model is used for the circular fracture in homogenous reservoir conditions where 

fluid injection region is practically a point source and fracture plane is perpendicular to the 

minimum confining stress. These three classic HF models (PKN, KGD and penny-shaped) 

were used frequently in the 1990s. But they have been largely replaced by pseudo-3D 

model (P3D) and planar 3D model (PL3D) nowadays. 
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(a) 

 

 

 

 

 

 

 

(b) 

 

 

P3D models were developed from PKN model in 1980s by allowing the fracture height to 

vary in time and space to capture the behavior of the multiple layers. It was built on the 

basic assumption that the reservoir elastic properties are homogeneous and averaged over 

all layers containing the fracture height. There are two categories: cell-based and lumped 

w 

L 

H 

Fluid Flow 

w 

L 

H 

Fluid Flow 

Figure 1.4: Schematic of KGD and PKN fracture geometries 
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models [18]. In lumped model, the fracture consists of two half-elliptical shapes connected 

at the middle (Figure. 1.5). The fracture lengths for both ellipses are calculated at each time 

step. In the cell-based approach, the fracture length is sub-divided into a series of PKN-

like cells, each with its own computed height (Figure 1.6). P3D models have become 

popular owing to their pre-fracture design and post-fracture analysis coupled with 

efficiency in computation and time requirements. 

 

 

 

 

 

 

 

 

 

 

The 1980-2000 period saw the development of planar 3D models [19-20]. These models 

solve the full 3D elastic rock deformation problem coupled with a 2D viscous fluid flow 

equation. (a more detailed solution is given in Chapter 3). Although these generations of 

PL3D provide the most comprehensive capabilities for hydraulic analysis and design, they 

require excessive central processing unit resources and lack the ease of operation required 

for practical use.   

Top half-ellipse 

Bottom half-ellipse 

Fracture 

height 

Fracture half-length 

Figure 1.5: Schematics of pseudo 3D lumped elliptical model 
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To describe the fracture twist, Carter et al. [21] proposed a fully 3D model. The fully 3D 

model is time-consuming even with today’s powerful computational resources. Xu et al. 

[22] developed a nonplanar multi-fracture simulator, called “FrackOptima,” in which the 

multi-fracture is assumed vertical 3D. The commercial application of fully 3D model is 

still unreported since the computational burden is extremely heavy and the unresolved 

physical questions about the propagation of fully 3D fractures. 

 

 

Figure 1.6: Schematics of pseudo 3D cell-based model 

 

         

  

Fracture 

height 

Cells 

Fracture half-length 
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Chapter 2 
 

Elasticity and dislocation theory 

2.1 Anisotropic material 

Anisotropic materials are substances that exhibit different physical properties when 

measured along different axes or directions. In most crystalline materials, the elastic 

properties are dependent on specific directions as a result of unique atomic arrangement. 

Under the most general conditions, the constitutive relation of a crystal undergoing elastic 

deformation can be expressed in the form: 

 ij ijkl klC =  (2.1) 

In Eq. (2.1), the fourth-order elastic tensor ijklC  has 81 independent components. However, 

most of these components are redundant, as is shown in the following arguments. For 

general anisotropic materials, both stress and strain tensors are symmetric 

 ij ji  ;     ij jiε ε  (2.2) 

Hence one can write 
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 ijkl jikl ijlkC C C= =  (2.3)  

This symmetry leaves only 36 independent components of ijklC . Moreover, assuming that 

there exists a strain energy from which the stress can be derived as 

 ij

ij

U





=


 (2.4)  

Combining this with Eq, (2.1), we can get 

 
2 2

ijkl klji

ij kl kl ij

U U
C C

   

 
= = =
   

  (2.5) 

We can conclude that the index symmetry of ijkl klijC C=  results in only 21 independent 

components. This most general condition is applicable to triclinic material. Serval special 

cases will be outlined next. Let us adopt a simpler notation here 

      1 2 3 4 5 6 11 22 33 23 13 12, , , , , , , , , ,
T

            = =  (2.6) 

      1 2 3 4 5 6 11 22 33 23 13 12, , , , , , , , 2 ,2 ,2
T

            = =  (2.7)  

The general constitutive elasticity relationship ij ijkl klC   can be rewritten as 

 

11 12 13 14 15 161 1

21 22 23 24 25 262 2

3 331 32 33 34 35 36

4 441 42 43 44 45 46

5 551 52 53 54 55 56

6 661 62 63 64 65 66

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 

 

 

 

 

 

    
    
    
       

=     
    
    
    
        

 (2.8) 

In the following, we discuss the special cases of symmetry that are usually encountered in 

anisotropic materials: 
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Orthotropic Materials  

If three mutually orthogonal planes of symmetry exist, the material is said to be orthotropic, 

which leaves 9 independent components of ijklC . Wood is a common example of 

orthotropic materials. Thus, 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C

C

C

C

 
 
 
 

=  
 
 
 
  

 (2.9) 

 

Transversely Isotropic Materials  

If an orthotropic solid exhibits symmetry with respect to arbitrary rotations about one of 

the axes, it is then called transversely isotropic, which reduces independent components of 

ijklC to only 5. For example, let 3x  be the symmetric axis and plane ( )1 2x x−  as the 

isotropic plane (Figure 1.3): 

 

11 12 13

12 11 13

13 13 33

44

44

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C

C

C

C

 
 
 
 

=  
 
 
 
  

 (2.10)  

with ( )66 11 12

1

2
C C C= − . Also, for certain special materials, the anisotropic coefficients 

may be expressed in terms of engineering coefficients such as Young’s moduli, shear 
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moduli and Poisson’s ratio. For example, transversely isotropic materials are characterized 

by five material coefficients: horizontal and vertical Young’s moduli and Poisson’s ratios 

1 3 1 3, , ,E E    and vertical shear modulus 3G . where subscripts stand for the direction of 

each parameter. The relationships between them and elastic constants are [23].   

 

 
( )2

3 1

11

1 n ν E
C

AB

−
=          

( )2

1 3 1

12

ν n ν E
C

AB

+
=         3 1

13

ν E
C

B
=    

 
( )1 3

33

1 ν E
C

B

−
=        44 3C G=  (2.11) 

 11A ν= +      1 31 2B ν n ν= − −      1 3n E E=  

 

We introduce elastic constants for some TI materials [24] in Table 2.1. the anisotropy for 

the direct compression along 1x  and 3x  is computed using the ratio 11 33C C  which varies 

from 1 for isotropic material. 

 

Table 2.1: Example of elastic coefficients ijC  for TI rocks (in GPa) 

Material 11C  
33C  

12C  
13C  

44C  
11 33C C  

Stripa granite (isotropic) 73.17 73.17 19.45 19.45 26.9 1 

Olkiluoto mica gneiss 89.74 65.87 22.22 23.51 24 1.36 

Gas-saturated Shaly Coal 22.08 10.91 8.36 1.25 3.71 2.02 

Woodford53 shale 28 17.3 7.5 8.3 5.6 1.62 

Opalinius Clay 57.65 28.8 54.61 38.7 0.9 2 

Yeocheon schist 91.44 27.61 33.76 20.03 13.7 3.31 

Calcareous mudstone 90.4 35.13 51.57 39.85 6.49 2.57 

Callovo-Oxfordian argillite 20.5 13.11 8.16 4.87 5.22 1.56 

Jurassic shale 39.42 27.09 15.65 16.52 6.9 1.45 

Slate Del Carmen 35.4 26.4 0.41 1.03 21.2 1.34 
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Cubic Materials 

Cubic materials have similar symmetry about three mutually orthogonal planes and thus 

only 3 independent components of ijklC  are needed. Therefore, for materials of cubic 

symmetry, we have: 

 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C

C

C

C

 
 
 
 

=  
 
 
 
  

 (2.11)  

 

Isotropic Materials 

A material with point symmetry or an infinite number of material symmetry planes is said 

to be isotropic, which leaves only 2 independent components of ijklC . In this case, we have 

 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C

C

C

C

 
 
 
 

=  
 
 
 
  

 (2.12) 

with ( )44 11 12

1

2
C C C= −  and the elasticity tensor can be expressed by two constants  

 ( )ijkl ij kl ik jl il jkC G     = + +  (2.13) 

where   is Lame modulus, G is the shear modulus and ij  is the Kronecker operator.   
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2.2 Restrictions on the elastic moduli 

The strain energy density per unit volume U for a linear elastic material under a general 

state of stress is equal to: 

 ( )
3

11 11 22 22 33 33 12 12 13 13 23 23

1

1 1
2 2 2

2 2
ij ij

i , j

U              
=

= = + + + + +  (2.14)  

Since each of the stress and strain matrices are symmetric, they can be represented as 

vector. 

 ( ) ( )
1 1

2 2

T TU C   =  =   (2.15)  

We can use two physical restrictions on the materials to impose mathematical restrictions 

on the entries of the matrix C. These two restrictions are that the material is stable and 

deformable. Stability means that whenever a state of strain is applied, energy is stored in 

the material. Stability is also equivalent to the statement that material deformation increases 

in the direction of increasing stress. The equivalent mathematical restriction on  is 

 ( )
1

0
2

TU C =    (2.16) 

Since C is symmetric, the C has to be positive definite. This implies that all its eigenvalues 

have to be positive. This argument will be used to find restrictions on the values of the 

elastic moduli mentioned above. 

2.2.1 Restrictions on the elastic moduli of isotropic material 

The three distinct eigenvalues of the matrix C for isotropic material are  
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1 2

E

−
;     

1

E

+
;    

( )2 1

E

+
 (2.17) 

For this to be positive, the following inequalities have to be satisfied [25] 

 0E  ;      
1

1
2

−    (2.18)  

2.2.2 Restrictions on the elastic moduli of transversely isotropic material 

For transversely isotropic material with the 3x  as the axis of material symmetry and plane 

( 1 2x x ) as the isotropy plane, the positive definiteness of C implies the following 

inequalities [25]: 

 1 0E  ;   3 0E  ;   13 0G  ;   121 1−    (2.19) 

 3 3
13

1 1

E E

E E
−    (2.20)  

 
( ) ( )3 12 3 12

13

1 1

1 1

2 2

E E

E E

 


− −
−    (2.21)  

 

2.3 Transformation of stress, strain and elastic constant 

The elastic stiffness matrix C  are usually specified in a basis with coordinate axes aligned 

with symmetry planes in the material. Since the fracture always propagates in the plane 

normal to the minimum in-situ stress, the fracture plane is not in the plane of the material 
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symmetry. It is necessary to understand the transformation of coordinate axes for solving 

some anisotropic problems. 

Consider two orthogonal coordinate systems (
1 2 3, ,x x x ) and 

1 2 3( , , )x x x    with a common 

origin. The transformation between two coordinate systems is given as 

 i ij jx T x =  (2.22) 

where ijT  is the direction cosine between the ix  and jx  axes.  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

cos , cos , cos ,

cos , cos , cos ,

cos , cos , cos ,

x x x x x x

T x x x x x x

x x x x x x

   
 

  =  
    

 (2.23)   

T is a unitary orthogonal matrix; In practice, it can be computed in terms of the angle 

between two coordinates. It is straightforward to show that displacement, stress, strain and 

elasticity tensors transform as 

 i ij ju T u = ,  ij ik jl klT T  = ,  ij ik jl klT T  = ,  ijkl ip jq kr ls pqrsC T T T T C =  (2.24)  

Also, the transformation of the elastic stiffness matrix C is given by Bond [26]. 

 
T

i iC M CM =  (2.25)  

iM  is the 6x6 transformation matrix, subscript i stands for the rotational axis. 
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2 2

2 2

1 2 2

1 0 0 0 0 0

0 2 0 0

0 2 0 0

0 0 0

0 0 0 0

0 0 0 0

c s cs

s c cs
M

cs cs c s

c s

s c

 
 
 
 −
 =
 − − 
 

− 
  

2 2

2 2

2

2 2

0 0 2 0

0 1 0 0 0 0

0 0 2 0

0 0 0 0

0 0 0

0 0 0 0

c s cs

s c cs
M

c s

cs cs c s

s c

 
 
 
 −
 =

− 
 
− − 
  

 

2 2

2 2

3

2 2

0 0 0 2

0 0 0 2

0 0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0

c s cs

s c cs

M
c s

s c

cs cs c s

 
 

− 
 
 =
 
 −
 
 − − 

 (2.26) 

where sins θ  and cosc θ . θ is the rotational angle measured counterclockwise 

about the rotational axes.  

 

2.4 Dislocation in continuous elastic media 

In this section, we will explain some basic definitions and formulas for general curved 

dislocations. Understanding of the mathematical formalisms of these equations is essential 

in dislocation theory: the Burger formula for displacement produced by an infinitesimal 

dislocation element; The Peach-Koehler formula for the stress by such an element; The 

Blin formula for the interaction energy between two such elements [27]. This knowledge 

can give us insight of the numerical model we construct in Chapter 3. Much of the theory 

to be presented is generally valid for anisotropic media. 
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2.4.1 Displacements caused by curved dislocation   

The derivation of the displacements associated with a dislocation loop of arbitrary shape 

can be explained by the conservation of the energy in elastic field. Consider a material of 

infinite extent and suppose that a closed dislocation loop C of Burger vector b is created. 

(Figure 2.1). The creation of the dislocation produces some displacement ( )u r  at r. if a 

point force F acts at r while the dislocation is created, it does work 

 ( ) ( )m mW F u=  =F u r r  (2.27)  

Where mu  and mF  are the components of u and F, respectively. It equals to the work 

decreased for the creation of loop C  

 ( )m m i ij j
A

W F u b dA= = −r  (2.28)  

 

 

 

 

 

 

 

 

 

o 

F u 

A 

C 

  

r’ 

r 

Figure 2.1: A point force F within an elastic continuum containing a 

closed dislocation loop 
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By definition, the Green function G determines the displacement at r’ caused by a point 

force F applied at r as 

 ( ) ( )= u r' G r' - r F  (2.29)  

From the constitutive relations, the stress field of the point force F can be expressed by 

Green function as 

 ( )ij ijkl km m

l

C G F
x


 

=  
 

r'  (2.30)  

G is symmetric, km mkG G  and invariant with respect to change of sign 

  =R r' - r ;     ( ) ( )= −G R G R  (2.31)  

Incorporate Eq. (2.30) into Eq. (2.28), the displacement field ( )u r  of a loop C is  

 ( ) ( )m j i ijkl mk
A

l

u dA bC G
x'


= −

r R  (2.32)  

This expression was first derived by Burgers. Eq. (2.32) indeed gives a discontinuity b in 

u across A. The dislocation deformations should be continuous everywhere except on the 

dislocation line itself, suggesting that a line integral for the deformation should be possible. 

Starting from Eq. (2.32), Mura derived the line integral expression 

 
( )

( )m

jsn i ijkl mk n
C

s l

u
b C G dx'

x x'


 
= −

 
r

R  (2.33) 

where jsn  is the Einstein permutation operator. Eq. (2.32) and Eq. (2.33) are generally 

valid for an anisotropic material. If Green function ( )G R  is known, the displacement and 

strain fields of caused by a dislocation of any shape can in principle be calculated.  
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2.4.2 Stress field of curved dislocation in isotropic material 

From Eq, (2.13), the relation between stress and strain in isotropic medium can be 

expressed as 

 

( )

( )

( )

11 11 22 33

22 11 22 33

33 11 22 33

23 23

31 31

12 12

2

2

2

2

2

2

G

G

G

G

G

G

    

    

    

 

 

 

= + + +

= + + +

= + + +

=

=

=

  (2.34) 

With the use of Eq. (2.34), Eq. (2.32) becomes 

 ( ) ( ) ( ) ( )m j j mk j i mi j i mj
A A A

k j i

u dA b G G dA b G G dA b G
x' x' x'


  

= − − −
    r R R R  

  (2.35)  

The expression of the Green function in isotropic case is 

 ( )
2

21

8 2
ij ij

i j

G R
G R

G G x x




 

 + 
=  −  +   

R  (2.36)  

where ( )1 2 1
2

G

G






+
= −

+
 and   is the Poisson’s ratio. Substituting Eq. (2.36) into Eq. 

(2.35), the displacement field is  

 

( )

( )

2 2

2

1 1

8 8

1

8 1

m m j i mik k
A A

j

i ijk k
C

m j

u b ' RdA b ' Rdx'
x'

R
b dx'

x' x'


 


 


= −  − 




−

−  

 



r

 (2.37)  
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And the stresses for isotropic case can be obtained by differentiation of Eq. (2.37) and 

insertion of the result in Eq. (2.34) 

 

( )

2 2

3
2

8 8

4 1

αβ m imα β m imβ α

i iC C

m imk αβ k

i α β iC

G G
σ b ε ' Rdx' b ε ' Rdx'

π x' π x'

G R
b ε δ ' R dx'

π ν x' x' x' x'

 
= −  − 

 

  
− −   −     

 



 (2.38) 

This equation was first derived by Peach and Koehler. Eq. (2.38) enables one to determine 

the stress field of an arbitrary curved dislocation in isotropic media by line integration. 

2.4.3 Energy of interaction between two dislocation loops  

If dislocation loop 1C  is created while loop 2C  is present, the stresses 2  originating from 

loop 2 do work 12W , where 12W  is the interaction energy between the two loops (Figure 

2.2).  

 

 

 

 

 

 

 

The work needed for the creation of loop 1C  is reduced by 

 
1

12 1 2 1( ) ( ) ( )
A

W b d A  =   (2.39)  

    

  

  

  

  

  

  

O 

  
  

Figure 2.2: Two dislocation loops within the same elastic continuum 
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By means of Eq. (2.38) for 2( )  and further use of Stokes theorem to convert surface 

integral to line integral. We can get 

 

( ) ( ) ( )( )

( )
( ) ( )

1 2 1 2

1 2

12
4 4

4 1

C C C C

C C

d d d dG G
W

R R

G
d d

 

 

    
= +

+    
−

   

 

1 2 1 2 1 1 2 2

1 1 2 2

b b l l b l b l

b l T b l

 (2.40)  

where T is a tensor with components 
2

ij

i j

R
T

x x


=
 

  

The Eq. (2.40) is known as Blin’s formula. 

2.4.4 The stress field about a straight segment of dislocation in isotropic medium 

For problems involving the stress field of a complex dislocation configuration, a useful 

approximation that greatly reduces the labor of calculation is to divide the arbitrary 

dislocation line into a sequence of straight dislocation segments and to add the stress fields 

of the individual segments (Figure 2.4).  

 

 

 

 

 

 

 

 

r 

r' 

x 

y 

z 

R 

(x, y, z) 

(0, 0, z’) 

    

Figure 2.3: Coordinates for a stress dislocation segment 
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The coordinate system in Figure 2.3 is used to calculate the stress field of a straight 

dislocation segment. The r’ coordinates are fixed on the dislocation line, x’ = y’ = 0 and 

0z'  . We wish to determine the stresses at r, with coordinates x, y and z. we know

( )
22 2 2R x y z z'= + + − . 

The stress at r from a straight segment A Bz z   is given by 

  ( ) ( )ij ij B ij Az z   = −  (2.41) 

The calculation of ( )ij z   can be obtained from Eq. (2.38), the stress components are 

 
( ) ( ) ( ) ( )

2 2 2 2

2 2

0

1 1xx
x y

y x x x x x
b b

R R R R R R R R R R



    

   
= + + + − −   

+ + + +   
 

 
( ) ( ) ( ) ( )

2 2 2 2

2 2

0

1 1
yy

x y

y y y x y y
b b

R R R R R R R R R R



    

   
= − − − − + +   

+ + + +   
 

  

  

  

    

  

  

Dislocation 

segment  

Dislocation  

loop 

Figure 2.4: Arbitrary dislocation loop discretized into a finite number of straight 

dislocation segments 
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( ) ( )3 3

0

2 2zz
x y

y y x x
b b

R R R R R R

    

  

   
= + + − −   

+ +   
  

 
( ) ( ) ( ) ( )

2 2 2 2

2 2

0

1 1
xy

x y

x y y y x x
b b

R R R R R R R R R R



    

   
= − − − + − −   

+ + + +   
  (2.42) 

 
( )

( )

2

3 3

0

1
xz

x y z

yxy x
b b b

R R R R R

 

 

− 
= − + − + + 

+ 
 

 
( )

( )

2

3 3

0

1yz

x y z

yy xy
b b b

R R R R R

 

 

− 
= − + − 

+ 
  

 where ( )0 4 1G  = −  and z' z = − .  
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Chapter 3 
 

Planar three-dimensional hydraulic fracture (PL3D) 

3.1 Abstract 

Planar 3D (PL3D) fracture is a well-known model in hydraulic fracturing simulation which 

has the advantage to denote arbitrary fracture shapes remaining in a plane. The 

mathematical formulations and theories of this model are well-established in spite of 

different fracture propagation criterions implemented to capture the moving fracture front. 

In this chapter, I present the foundations of the fluid driven PL3D fracture in isotropic 

material, which includes the explanation of the governing equations and numerical 

methods we use to solve this problem. In our model, the displacement discontinuity method 

[28] is used to solve rock deformation and lubrication theory [29] is implemented to 

determine the fluid pressure inside fracture. The crack tip asymptotic solution and energy 

release rate criterion [30] are used to capture the fracture front in each time step. This 

numerical model is validated by comparing with the asymptotic solutions derived by 
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Savitski and Detournay [31] for impermeable rock and the analytical solution for penny-

shaped fracture with uniform internal fluid pressure.   

 

 

 

  

   

 

 

 

 

 

3.2 Introduction 

The classical facture models can be 2D, pseudo-3D (P3D), PL3D. The 2D models are PKN 

(Perkins-Ken-Nordgren) model [12] and KGD (Khristianovich-Geertsma-Daneshy) [15-

16], suitable for a single fracture with constant height. Pseudo-3D models include lumped 

model and cell model which have more engineering applications on the fracture analysis 

owing to their efficiency in computation and time requirements. The need for PL3D models 

arose because there are specified types of fracture treatments that P3D models are not 

suitable to model. For example, when the layer confining stress varies non-monotonically 

as a function of depth, or when unconfined height growth occurs, P3D models tend to break 

down numerically. Planar 3D hydraulic fracture models were developed in the 1980s. 

Interpolated fracture front 

Source 

elements 

Figure 3.1: Schematic showing planar 3D fracture geometry based on fixed rectangular cells 



 28 

Some researchers, such as Advani [32], Barree et al [33] proposed a planar 3D (PL3D) 

model to simulate fracture propagation. These models assume that the fracture footprint 

and the coupled fluid flow equation are described by 2D mesh of cells, typically a moving 

triangular mesh or a fixed rectangular mesh (see Figure 3.1) [34, 35]. The PL3D model 

uses the full 3D elasticity equation to solve rock which can make this model more accurate 

but computationally far more expensive than P3D. Adachi et al. [36] generalized the 

methods of computer simulation in Planar 3D hydraulic fractures. Peirce [37] proposed an 

implicit level set algorithm to simulate planar 3D fracture by introducing tip analytical 

solutions. Then Dontsov and Peirce [38] derived a universal tip analytical solution and used 

it in the implicit level set algorithm [39]. From the analysis of the present fracture models 

mentioned above, the PL3D model is most useful and feasible considering its accuracy and 

efficiency. And it has been widely used in dealing with some complicated hydraulic 

fracturing problems. 

In this chapter, we are going to describe the underlying mathematical formulations of HF 

growth. The explanation contains 1. The displacement discontinuity method is used for 

solving elasticity equation. 2. The finite volume method implemented in fluid equation 

inside the fracture. 3. The fracture growth condition. In the end, the numerical model is 

compared with the analytical solution used for penny-shaped fracture in isotropic material. 

The verification of this basic model is essential for the following study.   
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3.3 The displacement discontinuity method (DDM) 

3.3.1 The displacement discontinuity over one-dimensional crack 

Consider a tensile crack located at the region [ , ]x L L −  and y = 0 in an infinite isotropic 

elastic medium. It is subjected to an internal fluid pressure fp  (Figure 3.2a). This line crack 

can be discretized by a great number of elements with constant displacement discontinuity 

proposed by Crouch [28] or a series of distribution of edge dislocation dipoles (see Figure 

3.2b and Figure 3.2c).  

The displacement discontinuity iD  will be defined as the difference in displacement 

between the two sides of the segment as follow: 

 
( ) ( )

( ) ( )

0 0

0 0

x x x

y y y

D u x, u x,

D u x, u x,

− +

− +

= −

= −
 (3.1) 

The solution to this problem, known as Kelvin’s solution [40], can be expressed in terms 

of a function: 
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 (3.2) 

where   is the Poisson’s ratio. The stress field of this constant displacement discontinuity 

is given based on the derivatives of the function f: 
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 (3.3) 

function f and its derivatives are obtained from Kelvin’s solution: 

L -L x 

y 

w

, 

  
E,   

a. line crack profile 
x 

L -L 

  

E,   
y 

 b. constant displacement discontinuity 

x L -L 

E,   
y 

c. a series of edge dislocations 

Figure 3.2: DDM and dislocation dipoles implemented on a line crack 
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 (3.4) 

The stress components on y = 0 are also obtained by substituting the Kelvin solutions into 

the stress equations 
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For the numerical solution of the crack problem, we divide the crack into n line segments. 

If discontinuity yD  presents on the line segment of length 2 ja  centered at the point jx x=

, y = 0, then the opening stress component can be written as 
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The stress at the midpoint of ith element due to displacement discontinuity at the jth 

element can be expresses in below 

 ( )
( ) ( )

2
2

0
1

j

yy i y , j

i j j

aG
x , D

x x a


 
= −

− − −
 (3.7) 

The stress at the midpoint of ith element due to displacement discontinuity over all 

elements can be written in a summation form: 

 
1

N

yy ,i ij y , j

j

p A D
=

= − =  (3.8) 

The displacement discontinuity yD  can be obtained by solving the system of N linear 

equations. 

2.3.2 Implementation of the DDM with dislocation theory in planar 3D fracture 

 

 

 

 

 

 

 

 

 Figure 3.3: Schematics of the finite discretization of the planar 3D fracture 

using rectangular prismatic dislocation elements 
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The dislocation distributed technique [41] can be used for discretization of the fracture 

plane. As shown in Figure 3.3, the planar 3D fracture can be discretized by alignments of 

rectangular prismatic dislocation loops (mode I fracture) on the fracture plane. Each 

dislocation loop is composed of four linear dislocation segments. We order the sense of a 

rectangular dislocation loop in counterclockwise direction starting from the bottom 

segment and ending with the left segment. The stress field of a single dislocation loop is 

evaluated at the element center and can be obtained by adding the stress field generated by 

4 segments. Therefore, we need to give our first insight into the stress field of a dislocation 

segment in isotropic medium.  

The Peach-Koehler (PK) formula, Eq. (2.38), is an integral equation which enables us to 

determine the stress field of an arbitrarily curved dislocation in isotropic medium (Figure 

2.1). It is formed by three line-integral terms along the dislocation line.  
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 (3.9) 

Where ib  is the ith component of the Burgers vector, imk  is the permutation symbol, G is 

the shear modulus, and ν is the Poisson’s ratio. The prime, used a superscript, indicates 

quantities belonging to a traced differential line segment dI’ of the dislocation loop. The 

vector =R r' - r , with magnitude ( ) ( ) ( )
2 2 2

R x' x y' y z' z= − + − + − , is the difference 

vector between the position vector of dislocation segment r’ and position vector r of a field 

point P. 
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For the detailed integration of PK equation on the rectangular dislocation loop, we can refer 

to the work by Verecký et al. [42]. Here we only show the stress field of a square prismatic 

dislocation loop (a = b) in x-y plane (z = 0). 
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Figure 3.4: A rectangular dislocation loop in isotropic medium 
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Same as the one-dimensional case, using Eq. (3.10), the total stress field at element center 

can be written by the summation of the stress field of each dislocation element on the 

fracture plane 
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 (3.11)  

 

Elasticity Equation 

Given the assumptions that the rock is homogeneous and linear elastic, the elasticity 

equation relating the displacement discontinuity components and induced stress fields in 

the solid can be condensed into following equation [36] 

 ( ) ( )f h

S

p σ w x', y' K x x', y y' dA'− = − −  (3.12) 

Where the net pressure f hp −  controls the opening of the fracture. fp is the fluid pressure 

inside the fracture which is neither uniform nor constant during propagation and h  is the 

minimum in-situ stress normal to the fracture surface. K is the kernal function contains all 

information about the medium. Especially, for isotropic material, assuming ( )w x', y'  to be 

the piecewise constant, the K can be written as Eq. (3.11) and Eq. (3.12) can be expressed 

as 
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3.4 Fluid flow inside the fracture 

3.4.1 Lubrication Theory 

In fluid dynamics, lubrication theory describes the fluid flow in a geometry where one 

dimension is significantly smaller than the others. The application of lubrication theory in 

hydraulic fracturing is extremely popular because the aperture of a hydraulic fracture is 

always much smaller than its length and height. With the z-axis as the fracture opening 

direction and following assumptions made in fluid flow (Figure 3.5):  

1. Negligible body force and inertia force so that all the terms associated with  and 

g are zero 

2. Newtonian fluid with laminar flow 

3. Constant pressure and velocity through the thin film because the dimension in this 

direction is significantly smaller than the others 
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The flow flux inside the fracture can be expressed in Poiseuille’s law [43]: 

 
3

12

w
p


= q   (3.14) 

Where ( ),x y=      is the gradient operator, q is the flow rate, w is the fracture width, 

  is the viscosity of the fracturing fluid and p is the fluid pressure. 

The continuity equation [29] of the incompressible fluid flow can be written into 

 ( ) ( ), ,L

w
v Q x y x y

t



+ + =


q  (3.15)  

where w t   is the rate of the fracture volume change; q  is the fluid net flow; Lv  

denotes the velocity of the fluid leaking out of the two opposite faces of the fracture. Q is 

the injection rate of the fracturing fluid. 

The leak off fluid velocity Lv  is evaluated using Carter’s Leakoff model [36]: 

w(x, y) 

x 

y 

z 

Figure 3.5: The schematics of a 3D hydraulic fracture 
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 (3.16)  

where LC  is the Carter’s leakoff coefficient which depends on the rock and properties of 

the fracturing fluid; 0t  is the time that the fracture gets exposed to the fluid.   

3.4.2 Power-law fluids 

Almost all the working fluids used in hydraulic fracturing behave in the manner of Power-

law fluid. [43] 

 n'K' =   (3.15) 

where   is the shear stress;   is the shear rate; K'  is the consistency index and n'  is the 

flow behavior index. As 1n' = , the fluid is Newtonian fluid. 

 For one-dimensional laminar power-law fluid flow between two parallel plates along x 

and y directions, the flow flux is given by  
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where absolute value in pressure gradient is used to present the direction of the flow. 
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3.4.3 Finite Volume Method (FVM) 

We begin our derivation of the finite volume equations for 2D geometry by considering 

integration of the diffusion equation on a Cartesian mesh. The governing equation is 

written as     

 Φ

Φ Φ
λ λ S

x x y y

     
+ = −  
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  (3.17) 

Where λ  is a spatial dependent coefficient; Φ  is a physical property 

The computation domain is first split into a set of smaller control volumes or cells. A 

typical structured mesh is shown in Figure 3.6. All information is stored at cell centers, 

while fluxes are computed at cell faces. The cell centers are denoted by O, E, W, N and S, 

while the cell faces are denoted by e, w, n and s. 
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Figure 3.6: Schematics of finite volume grid 
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Next, we integrate Eq. (3.17) over the control volume O, shown in Figure 3.6. It yields 
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Φ Φ
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λ dxdy λ dxdy S dxdy
x x y y
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Where the face notations have been used to define the integration limits. To simplify Eq. 

(3.18), the order of the integration in the second term on the left- hand side is changed, and 

both terms on the left-hand side integrated once to yield 
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Using the definition of volume average and realizing that the quantities within square 

brackets represents average fluxes at individual faces of the cell, Eq. (3.19) may be further 

simplified to write as 
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  (3.20) 

In deriving Eq. (3.19) from (3.20), it has been assumed that the average flux at a face is 

equivalent to the value of the flux computed at the geometric center of the face. This 

assumption is commensurate with the assumption that the volume average of a variable is 

same as the value of the variable evaluated at the geometric centroid. 

The first derivative appearing in Eq. (3.20) may be approximated using the Taylor series 

expansion-based procedure and coefficient λ  can be evaluated by linear interpolation 

between two adjacent nodes. Thus, the Eq. (3.20) can be written as  
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  (3.21) 

Eq. (3.21) is valid only for the interior cells and its range of validity excludes the cells 

adjacent to the boundaries. This is because the central difference method cannot be used 

for the cells at the boundaries. The derivation of these flux terms requires application of 

the boundary conditions. 

 

3.4.4 Implementation of FVM in planar 3D hydraulic fracture 

The fluid flow inside the fracture follows lubrication theory [29]. Under the assumption of 

an incompressible power-law fluid and an impermeable surrounding formation (no 

leakoff), the width averaged fluid mass conservation equation reduces to the following 

form from Eq. (3.15): 

 0 ( , )
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Q x y
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q


+ =


  (3.22) 

0Q  denotes the constant injection rate. The fluid flux q is related to the fluid pressure 

gradient and fracture opening via the Poiseuille’s law from Eq. (3.15) and Eq. (3.16). 

Following the FVM mentioned in Section 3.4.3 and using the forward-Euler schemes for 

time integration, in any element not on boundary, the Eq. (3.22) can be rewritten as  
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where 
0Q  is only a nonvanishing term at the injection elements. We incorporate Eq. (3.15) 

and Eq. (3.16) into the Eq. (3.23) and follow the method in Eq. (3.21), we can get 
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and i denotes cell centers by E, W, N, S, O. For our 

convenience, Eq. (3.24) can be rearranged as  
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 (3.25) 

Eq. (3.25) explicitly shows how fracture width in the next time step depends on fluid 

pressure and fracture width in the current time step. Alternatively, Eq. (3.24) can also be 

written by the width averages as 
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 (3.26) 

where 
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and i denotes cell centers by E, W, N, S, O. 

As the same, Eq. (3.25) can be written as  
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Boundary conditions 

We restrict here to the case where the fluid and fracture fronts coincide. Thus, along the 

perimeter of the fracture ( ( ))t , we specify a zero fluid flux boundary condition given by 

the Detournay and Peirce [44] 

 ( ), 0w t =x ,  ( ), 0t =q x ,  ( )t x  (3.28) 

Let’s only focus on the control volumes adjacent to the left boundary, the flow flux 

through the left edge of the cell equals to the zero according to the Eq. (3.28). Thus Eq. 

(3.23) can be expressed as  

 ( ) ( )
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0Δ Δ Δ Δ
Δ
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O O
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w w
q y q q x Q δ x, y x y

t

+ −
+ − = − 

 
 (3.29) 

Then Eq. (3.25) and Eq. (3.27) can be rewritten by dropping the corresponding term. For 

Eq. (3.25), we can obtain 
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 (3.30) 
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This strategy is applicable to all boundary elements. Even though some of elements are 

adjacent to multiple fracture boundaries, we only need to drop more terms which 

correspond to these boundary conditions. 

3.5 Fracture propagation criterion 

We use linear elastic fracture mechanics (LEFM) and energy-based fracturing criterion. 

The criterion states that a fracture extends if the energy release rate of the fracture front is 

greater than the critical energy release rate cG  for creating a new material surface. The 

critical energy release is a property of the material that the fracture is propagating in.  

3.5.1 Asymptotic solution in isotropic material 

The critical stress intensity factor IcK  introduced by Irwin in 1948 [30], also known as 

fracture toughness, can be derived from cG , For mode-I fractures in isotropic material, 

the relationship is 

 
2 2

2 1Ic
c Ic

K
G K

E' E

 −
= =  

 
 (3.31)  

The stress intensity factor is a fundamental quantity that governs the stress field near the 

crack tip. According to the LEFM, the asymptotic stress field at the crack tip has a 

square-root singularity. For the mode-I fracture in isotropic material, it is given as [45] 
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 (3.32a) 
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The associated displacement is 
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where ( )3 4 = −  for plane strain and ( ) ( )3 1  = − +  for plane stress. For isotropic 

material, the quasi-static linear elastic fracture mechanics propagation condition ( cG G= ) 

can alternatively be written as equality of the stress intensity factor with the material 

fracture toughness ( I IcK K= ). The asymptotic solution Eq. (3.33b) can be used as the 

fracture propagation criterion. 

 
1 232 IcK

w r
E'

=  (3.34)  

where w is the fracture width; r is the distance to the fracture front and ( )21E' E = −  is 

the plane strain Young’s modulus. 
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3.5.2 Asymptotic solution in the anisotropic solid 

In the general case, the Irwin relation for the energy release rate per unit area of co-planar 

crack extension as function of the stress intensity factor 
iK  (i = 1, 2, 3) is given by 

Barnett and Asaro [30]. 

 11

2
e i ij jG K B K−=       i, j = 1, 2, 3 (3.31) 

where ijB  is the matrix of elastic moduli in anisotropic material that depends on the 

direction of the crack front and elastic tensor ijklC . However, ijB  is not necessarily 

diagonal for an anisotropic solid. Its expression can be obtained by numerical integration 

or solving an eigenvalue problem which will be explained in Chapter 4 (see section 4.3 

and 4.4). The direction of stress intensity factor and corresponding fracture mode are 

shown in Figure 3.7. Especially, for isotropic case, 11 22 2B B E'= = ,  
( )

33
2 1

E
B G

ν
= =

+
.  

 

 

 

 

 

 

  

 

Figure 3.7: Fracture front in anisotropic medium 

  

  

  



 47 

With reference to the Figure 3.7, the three stress intensity factors 
iK  are defined as  

  
( )1 2

2 1 20 0
2

i
i x ,x

K
σ

πx
→ =

=  + non-singular terms (3.33) 

where 
1 IIK K  (sliding mode), 

2 IK K  (opening mode), 
3 IIIK K  (tearing mode).  

Similarly, the asymptotic displacement solution near the crack front can be expressed as 

[46] 

 

1 2

14
2π

i ij j
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u B K−  
=  

 
 (3.34) 

 

3.6 Simulation results on planar 3D model 

3.6.1 Static solution for penny-shaped fracture 

For the three-dimensional crack created in the infinite isotropic medium, it is called ‘penny-

shaped’ with radius of R. the fracture is axially symmetry about the z axis, as shown in 

Figure 3.8.  The exact solution to a static penny-shaped fracture without leakoff under the 

constant net pressure 0p  is given by the following equations [47]: 

The fracture width:  

 ( ) 2 208p
w r R r

πE'
= −  (3.35) 

This static analysis can be carried out by setting a long-time shut-in period after the 

injection so that the fracture will not grow and fluid pressure becomes uniform. 
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Test parameters: 

20 GPaE = ; 0 2ν .= ; 1MPa mIcK =  ; 0 005 Pa sμ .=  ; 
3

0 0 02 m sQ .=  (injection 

rate); 10 sinjt =  (injection time); 10000stotalt =  (total time)  

 

Figure 3.9: Geometry of the penny-shaped fracture 

 

r = R 

w(r) 

r 

z 

  
p(r) 

Figure 3.8: Penny-shaped fracture in cylindrical coordinates 
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Figure 3.10: Comparison results of static penny-shaped fracture 

 

Figure 3.9 shows the circular geometry of the penny-shaped fracture after a long shut-in 

period. The fracture width is demonstrated by color filling. Figure 3.10 gives the 

comparison results on fracture width between numerical solution and analytical solution. 

The maximum error at injection is about 4%. 

3.6.2. Asymptotic solution for a penny-shaped fracture in an impermeable rock 

An asymptotic solution to the fluid-driven penny-shaped fracture in an impermeable elastic 

rock is constructed rigorously by Savitski and Detournay [31]. This solution is applicable 

to the fracture model driven by an incompressible Newtonian fluid injected from a source 

at the center of the fracture. Asymptotic solution is differentiated by two propagating 
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regimes: toughness-dominated regime and viscosity-dominated regime which related with 

only one dimensionless parameter .The dimensionless toughness  is defined as  

 

1

2 18
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 (3.35) 

where
2

4Ic IcK K
π

 = , 12μ' μ= , 
( )21

E
E'

ν
=

−
 and t is the injection duration. 

  

Viscosity-dominated regime ( 0κ = ): In this regime, the fracture toughness effect can be 

neglected. The energy is dissipated by viscous fluid flow and the fracture shape can be 

identified by fluid front.  

Toughness-dominated regime ( κ =  ): In this regime, the fluid viscosity effect can be 

neglected. The energy is dissipated in the rock to create a new surface and the fracture 

shape can be determined by crack tip asymptotic solution. 

In the real simulation, these two regimes can be distinguished by the specific value of the

κ . As 1κ , we can use the zero-toughness solution; 3 5κ . , we use the large-toughness 

solution. Two solutions are given in Appendix A. 

I compare numerical results corresponding to small (viscosity-dominated regime) and large 

(toughness-dominated regime) values of dimensionless parameter κ  to the asymptotic 

solution. Figure 3.11 shows the dimensionless opening displacement and fluid pressure in 

the viscosity scaling for small values of κ . It is clear that while the parameter κ  is small 

the matching between the numerical solution and zero-toughness asymptotic solution is 

very good.  
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Figure 3.11: Comparison of the opening displacement and fluid pressure of analytical 

solution and numerical simulation given in the viscosity scaling for 0 2 0 5 2κ . , . ,   

 

The results of the large-toughness comparison are given in Figure 3.12. The solid line 

corresponds to the asymptotic solution in toughness scaling. The error between the 

numerical result and analytical solution for large toughness cases is more significant than  
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the zero-toughness one. As the dimensionless parameter  decreases. The difference 

between them becomes more and more evident.  

 

 

Figure 3.12: Comparison of the opening displacement and fluid pressure of analytical 

solution and numerical simulation given in the viscosity scaling for 3 5 3 9 4 5. , . , .   
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Chapter 4  
 

Dislocation in anisotropic media 

4.1 Introduction 

The anisotropic elasticity theory of dislocations was developed several decades ago. 

Similar to the case of isotropic elasticity, the stress field of a dislocation line can be written 

as a line integral. Unfortunately, in general the explicit expression for the integrand does 

not exist, because there is no closed-form solution of the elastic Green function in generally 

anisotropic medium. In this chapter, we will focus on developing methods for actual 

calculations on the stress field of dislocations in anisotropic media. The emphasis will be 

on straight dislocation segment which is considered as the basic element in distributed 

dislocation technique.  

Several methods are available for straight dislocations in anisotropic media. The classical 

theory is that of Eshelby et al. [48]. We will start with the work of Stroh [49], who 

reformulated and extended the classical theory to make it more convenient and powerful. 

On the basis of the Stroh eigenvector theory, one may develop an integral theory, 
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generalizing the work of Barnett and Swanger [50], which in some respects has advantages 

over the eigenvector theory. Then the stress field of dislocation segment and infinite 

dislocation line are given in the form of Brown [51] and Willis-steeds-Lothe formulae [52]. 

In the end of this chapter, the accuracy of the anisotropic formulas is compared with the 

analytical solution in isotropic case. Also, the analytical solution for penny-shaped fracture 

in the isotropy plane of TI material is used to verify the result of the planar fracture model 

incorporated with the anisotropic formula. 

 

4.2 Statement of the problem 

Consider an infinite homogeneous anisotropic linear elastic solid with elastic constants 

ijklC  relative to fixed crystal axes. Denote by x the position vector from the origin to a point 

in the medium and imbed a fixed triad of mutually orthogonal unit vectors m, n and t in 

the solid (Figure 4.1). We seek displacement field solution ku  to the equilibrium equations 

of elasticity which are independent of t, i.e., we shall investigate a certain class of plane 

problem in which the elastic fields depend only on two orthogonal coordinates m and n.  
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Figure 4.1: The relationship between m-n-t coordinate system 

  

4.3 Stroh theory (The matrix formalism) 

Infinite straight dislocations present a two-dimensional problem. Let m, n and t be three 

mutually orthogonal unit vectors, and let t be the direction of the dislocation line 

perpendicular to the plane of the two-dimensional problem (see Figure 4.1). 

In this problem, the displacements will not depend on the 𝒕 ∙ 𝒙, 

 ( ), u = u m x n x  (4.1) 

The displacement must satisfy the conditions of equilibrium: 

 0
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=


 (4.2)  
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Following Stroh [53] we assume a displacement field solution of the form: 

 ( )α αf p=  + u A m x n x  (4.4)  

Where 
αA  is a constant complex vector, 

αp  is a complex constant and f is an analytic 

function of its argument. We seek conditions αA  and αp  to ensure Eq. (4.4) is an 

admissible solution to Eq. (4.2). Thus, the secular equation 

 ( ) ( ) ( ) ( ) 2 0α α αmm p mn nm p nn+ + +  =   A  (4.5)  

must be fulfilled. Here, the matrices ( )mm , ( )mn , ( )nn  etc. are defined as 

 ( ) jk i ijkl lab a C b  (4.6) 

The requirements of a zero determinant in Eq. (4.5) gives six solutions for αp , in pairs of 

complex conjugates. Assuming for the moment that the six roots are distinct, corresponding 

to each αp  is an associated eigenvector αA , apart from length, not yet specified. We can 

always arrange to order the eigenvalues αp  has a positive imaginary part for 1 2 3α , ,  and 

a negative imaginary part for 4 5 6α , ,=  with 

 
3

3

1 2 3
α α

α α

p p
α , ,



+



+

= 
=

= A A
 (4.7) 

Stroh [49] extended this three-dimensional formalism to a six-dimensional framework by 

introducing a second vector, related to αA  as 

 ( ) ( )α α αnm p nn= − +   L A  (4.8)  

which together with αA  form a six-dimensional vector  
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





 
=  
 

A
ξ

L
  (4.9) 

where 
αξ  is an eigenvector of the 6 6  secular equation 

  α α αN pξ ξ  (4.10) 

where N in block notation is 

 
( ) ( ) ( )

( )( ) ( ) ( ) ( )( )

1 1

1 1

nn nm nn
N

mn nn nm mm mn nn

− −

− −

 
 =
 − 

 (4.11) 

Since N is real, the six p  and six αξ  each occur in three complex conjugate pairs. If the 

six p  are distinct (as they are in the general case) then the six 
αξ  form a complete set of 

distinct eigenvectors. There do exist degenerate cases in which the p  are not distinct: in 

isotropic media ( )1,2,3p i= =   and ( )4,5,6p i = − =  so that one must employ a 

mathematical extension in order to construct the appropriate complete set of eigenvector

ξ . Such degeneracies shall not concern us here. These special cases may be treated by 

limiting the process described by Nishioka and Lothe [54]. In fact, in Section 4.4 we shall 

develop an alternative formalism in which such degeneracies never appear. 

αA  and αL  are selected to satisfy the following orthonormal relations: 

  α β β α αβδ +  =A L A L   (4.12) 

The length of αA  and the corresponding length of αL  in Eq. (4.8) are normalized by 

 2 1α α =A L  (no summation over α ) (4.13) 
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Eq. (4.12) is the central result in the Stroh theory. The power of the Stroh scheme derives 

from this orthogonality relation.  

In dislocation problems, and in line-force problems (an external force per unit length along 

an infinite straight line), the function f in Eq. (4.4) must be the logarithm. The multivalued 

of the logarithm is required for the Burgers circuit discontinuity and stresses inversely 

proportional with the distance from the line are what is required for line force. We seek a 

solution in the form of a superposition of partial solutions 

 ( )
6

1

1
( ) log

2
α α

α

D α p
πi =

=  + u A m x n x  (4.14)  

Matching the many valued of u with the displacement discontinuity b in the Burger’s 

circuit, we obtain the condition 

 ( )D  = A b  (4.15) 

And the requirement of balance with an external force f per unit length at the line leads to 

the condition 

 ( )D  = − L f  (4.16) 

where plus sign is used for 1, 2, 3α =  and the minus sign is used for 4, 5, 6 = , 

respectively. The six equations Eq. (4.15) and Eq. (4.16) determine ( )D  , and by means 

of the orthogonality relation, Eq. (4.12), the solution 

 ( )( )D   =   −  b L f A  (4.17)  

is readily found. For a pure dislocation line, 0f =  and ( )D  =  b L . The dislocation 

solution must be 
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  

 =

=    + u b L A m x n x  (4.18) 

From Eq. (4.18), the dislocation stress field is derived to be 
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C m p n
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+
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m x n x
 (4.19)  

The Q, B and S matrices can be expressed in terms of the normalized eigenvectors as 

 
6 3

1 1

2js j s j sQ i A A i A A   
 = =
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6 3
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α α

B i L L i L L
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=  =   (4.20) 

 
6 3
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2ij iα jα iα jα ij

α α

S i A L i A L δ
= =

 
=  = − 

 
   

We shall show in the following section the matrices Q, B and S can be calculated in a  

very simple way using numerical integration. It will turn out that most of the elastic solution 

of interest to us can be determined solely from a knowledge of Q, B and S, so that we may 

entirely circumvent the need for solving the sextic eigenvalue problem originally posed by 

Stroh. The method of circumvention is termed ‘the integral formalism’ in order to 

distinguish it from Stroh technique. 

4.4 The integral formalism 

Because the matrix N given in Eq. (4.11) depends on the choice of the plane basis m and 

n. For a two-dimensional problem, t is the only vector to be specified. We want to 
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determine the dependence of the
αA , 

αL and 
αp  on rotating the orthogonal vectors m and 

n by angle   to the fixed datum 
0 0( , )m n  in the plane (Figure 4.2). 

 

Figure 4.2: The angle   defining m and n relative to the datum in the plane normal to t 

 

The matrices Q, B and S can also be expressed in the integral formalism as [51,55] 
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 ( ) ( )
2 1

0
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ij ik kj

S nn nm d
−

= 



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Thus, according to Eq. (4.21), direct integration of explicitly known  -dependent matrices 

is an alternative to finding the roots and eigenvectors of a sextic eigenvalue problem and 

the construction of matrices Q, B and S by Stroh theory. Even though the matrix N and its 

eigenvectors A and L depend on the choices of m and n, the matrices Q, B and S only 

depend on the direction vector t. This can be simply seen from the integral formalism. 

  
 

  

   

   

    

Datum 
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4.5 Stress field of an infinite straight dislocation  

Consider an infinitely long straight dislocation passing through the origin and parallel to 

the unit vector t (the dislocation direction vector), with Burgers vector b. we are interested 

in its stress field at arbitrary field point x. Choose two unit vectors m and n such that m, n 

and t form a right-handed coordinate system and x is contained in the m-t plane, as shown 

in Figure 4.1. The stress field ij

  for an infinite straight dislocation line can be written as 

[55] 

 ( )
1

, ,mn mn
d

m t b
 =   (4.22)   

where the superscript   indicates this is an infinite dislocation line, mn  is the angular 

stress factor and d is the shortest distance from the field point x to the dislocation line. 

Following Barnett and Lothe [56], let dm x = and 0 =n x , the displacement gradients 

can be expressed as  

 ( ) ( ) ( ) 11
, ,

2
mn mnip s p ki p ks rsik kr

C b m S n nn B nm Sm t b
−
  = − + + 

 (4.23)  

B and S are the matrices that can be evaluated using the matrix formalism and the integral 

formalism from section 4.3 and section 4.4. 

Alternatively, we can compute the stress field from the displacement gradient 

 ( ) ( ),, , , ,ij ijkl k lC u  =x t b x t b  (4.24)  

 Willis-Steed-Lothe [51] formula for displacement gradient of an infinitely long dislocation 

line is 
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  (4.25) 

 where jsn  is permutation tensor. Eq. (4.22) with Eq. (4.23) and Eq. (4.24) with Eq. (4.25) 

are equivalent and give identical numerical results.  

The stress field of isotropic material is used to test the accuracy of the anisotropic WSL 

formula for infinite dislocation line. The distribution of stress components calculated by 

anisotropic and isotropic equations (see Appendix C and [51]) in the plane perpendicular 

to the straight dislocation is shown in Figure 4.3 and Figure 4.4. All computations are 

performed for the stress field of an infinite dislocation line passing through the origin along 

t = [1 2 3] direction with the Burger vector b = [1 0.5 2] in isotropic material where 

30GPaE =  and = 0.2 . The stress components have the singularity (infinite value) at the 

dislocation line.  
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Figure 4.3: Comparison results of the stress components ( , ,xx yy zz   ) in isotropic 

material ( 30GPaE =  and = 0.2 ) using isotropic and anisotropic equations 
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Figure 4.4: Comparison results of the stress components ( , ,xy yz xz   ) in isotropic 

material ( 30GPaE =  and = 0.2 ) using isotropic and anisotropic equations 
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4.6 Stress field of a finite dislocation segment 

Brown’s formula    

Brown developed a two-dimensional theorem to evaluate the stress field of an arbitrary 

dislocation configuration where the field point and the dislocation line are coplanar. Then 

the stress field of a general dislocation in three-dimension was first developed by Indenbom 

and Orlov [51]. Based on Brown-Indenbom-Orlov theory, an alternative derivation with 

simpler expressions was given by Asaro and Barnett where the resultant stress field for a 

given dislocation segment is expressed in terms of angular stress factor and its derivative 

for infinite dislocation line. 

 

Figure 4.5: The geometry pertinent to Brown’s formula. Consider a plane containing the 

straight segment AB and the field point P.  is the angle between the segment AB and an 

arbitrary datum in the same plane. 1  and 2  measure the orientations of line AP and line 

BP, relative to the datum, respectively. 
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The stress field of a finite and straight dislocation segment AB at point P, as specified in 

Figure 4.5 can be expressed as [57] 

 ( ) ( ) ( ) ( )
2

1

1
cos sin

2
ij ij ij

d
 = − −  + −  




        (4.26) 

where ij  is the angular stress factor of an infinite straight along AP or BP. ij
  is its 

derivative with respect to the angle   and can be expressed in terms of angular derivatives 

of B and S.  
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−

 
= −

  

    
+ + −   

     

 (4.27) 

Expressions for angular derivatives of matrices Q, B and S are given in Appendix B. It is 

easy to show that as the length of the segment goes to infinity, 1θ α→  and 2θ α π→ + , Eq. 

(4.26) reduces to the stress field of an infinite dislocation line given by Eq. (4.22). Unlike 

the stress field of an infinite dislocation line, the stress field of a finite dislocation segment 

is not unique. The case of P colinear with segment AB but not on AB requires special 

attention because d = 0 and Brown’s formula gives zero in this case. 

 

Willis-Steed-Lothe formula  

 The stress field of a finite segment can also be obtained through the Willis-Steeds-Lothe 

(WSL) formula for the displacement gradient (see Figure 4.6). 
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As mentioned before, the WSL formula can give a different stress field from Brown’s 

formula for a dislocation segment. But two formulas become equivalent for a complete 

dislocation loop or an infinite dislocation line. According to the work of the Yin and Barnett 

[57], the WSL formula is more convenient because it avoids the calculation of derivative 

of angular stress factor ' , which would require evaluation using a more cumbersome 

formula.  It is easy to show that as the length of the segment goes to infinity, Eq. (4.28) 

reduces to the Eq. (4.25). 

Unlike the case of Brown’s formula, the stress field using the Willis-Steed-Lothe formula 

is non-zero in the colinear limit d = 0 (with the field point not on the segment). The 

displacement gradient in the colinear limit is  
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 (4.29) 

where 1r = AP and 2r = BP , as 0d → , the angular derivatives of the matrices Q and S 

are required and can be obtained from Appendix B. 
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Since the stress field of a finite dislocation segment is not unique, it makes no sense for us 

to compare the stress field of a single dislocation segment. Thus, we add a sequence of 

dislocation segments along a specific direction t and compare it with an infinite dislocation 

line in transversely isotropic material (Opalinius Clay, see Table 2.1), which is given in 

Figure 4.7 and Figure 4.8. An infinite straight dislocation is along t = [1 2 3] with Burger’s 

vector b = [1 0.5 2]. 100 dislocation segments are used to discretize this straight dislocation 

line and each of them are with 10 meters of length. Stress field of infinite straight 

dislocation and superposition of dislocation segments are compared in the plane 

perpendicular to the dislocation line. Also, in Figure 4.9, since our 3D planar hydraulic 

model is constructed by prismatic square dislocation loops, we will compare the result of 

the stress component zz  by adding four dislocation segments of square elements with the 

isotropic solution, Eq. (3.11), in isotropic material. 
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Figure 4.6: The geometry of the WSL formula 
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Figure 4.7: Comparison results of the stress components ( xx yy zz, ,   ) between an infinite 

dislocation line and superposition of dislocation segment in TI material (Opalinius Clay) 
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Figure 4.8: Comparison results of the stress components ( , ,xx yy zz   ) between an infinite 

dislocation line and superposition of dislocation segments in TI material (Opalinius Clay) 
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Figure 4.9: Stress field ( zz ) of a prismatic square dislocation loop using the anisotropic 

formula and isotropic solution 

 

4.7 Penny-shaped crack in infinite transversely isotropic medium 

The penny-shaped crack in the unbounded transversely isotropic solid is selected to 

demonstrate the accuracy of the anisotropic formula. In this configuration, the crack plane 

is located to coincide with the plane of isotropy ( 1 2x x ) of the transversely isotropic 

material. Let 3x  be the axis of material symmetry (Figure 4.10). The crack surfaces are 

subjected to the uniform fluid pressure 0p . The solution to this problem is summarized in 

the work of the Sih and Chen [58].  
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Figure 4.10: Penny-shaped fracture under uniform pressure in transversely isotropic 

medium 

 

The opening displacement of the crack is  

 
2 20

3

4Ap
u R r

π
= −  (4.30) 

Where
( )( )
( )( )

1 2 1 2

11 13 44 1 2

44 13 11 1 13 11 2
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+ +  

; 1n  and 2n  are the roots of the quadratic 

equation: 

 ( )2

11 44 13 13 44 11 33 33 442 0c c n c c c c c n c c+ + − + =    (4.31)  

The comparison of the fracture width between the analytical solution, in Eq. (4.30) and 

anisotropic result (WSL formula) is shown in Figure 4.11. The anisotropic equation can 

give a very accurate result on the fracture width in radial direction with only about 3% 

error at the crack center. This comparison displays an accurate result of the anisotropic 

formula implemented in the fracture model.  

  

  

  

R 
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Figure 4.11: Comparison of the anisotropic solution and analytical solution for the penny-

shaped fracture in isotropy plane of the Transversely isotropic material 
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Chapter 5 
 

Propagation of a PL3D hydraulic fracture in transversely 

isotropic rock 

5.1 Abstract 

The configuration of a hydraulic fracture propagating perpendicular to the isotropy plane 

of a transversely isotropic material is encountered in many sedimentary rocks. We 

investigate fracture growth driven by the injection of a Newtonian fluid at a constant rate 

from a point source. Anisotropic distributed dislocation technique is used to compute the 

stress field in transversely isotropic (TI) material. The direction-dependent elastic modulus 

B is used in fracture energy propagation criterion and the near- tip solution to compute the 

local stress intensity factor. The ratio   of elastic modulus in horizontal direction and 

vertical direction is defined to quantify the elastic anisotropy in TI material. The evolution 

of the fracture in different TI rocks is displayed for showing the impact of the material 

anisotropy. Different ratios of the engineering elastic parameters ( 1 3E E , 1 3G G , 1 3  ) 

in TI material are tested to capture the specific influence parameters in material anisotropy 
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and final fracture geometry (aspect ratio and fracture width). We also confirm that the 

fracture energy (material toughness) plays a crucial role in fracture propagation. The 

elongations of the fracture can be affected significantly by the energy release rate 
cG . 

Moreover, different isotropic average algorithms are compared for the accuracy of the 

approximations on fracture shapes in TI material. Voigt scheme gives the best estimation 

in a broad range of the   and horizontal parameters (
1E , 

1 ) work good in some particular 

cases. 

5.2 Introduction  

Hydraulic fracturing is a well-established technique to stimulate oil and gas. In this well 

stimulation technique, a high-pressure fluid is injected into a reservoir to fracture 

hydrocarbon-bear rocks. Thus, it increases the flow of oil or gas. [59]. 

Transverse isotropy is a common feature in sedimentary rocks due to the deposition and 

compacting processes. In particular, the reservoirs are composed of beds of metric and sub-

metric scales. Such a lamination yields the layered structure, which is known as the 

transversely isotropic medium. Based on these characteristics of the formation, we model 

the growth of planar three-dimensional (PL3D) fluid-driven fracture (Chapter 3) 

perpendicular to the isotropic plane and minimum in-situ horizontal stress [60]. This 

configuration notably corresponds to the case where the rock layers are horizontal and 

fracture propagates vertically (see Figure 5.1). In the presence of weak bedding planes 

(isotropy plane), the fracture may deviate from the vertical direction resulting in T-shape 
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like geometries [61]. We don’t account for this possibility and only focus on the case where 

fracture grows in single plane perpendicular to the material isotropy. The anisotropy effect 

is first investigated numerically on 2D plane strain hydraulic fracture by many publications 

[62, 63]. The aspect ratio of the 3D hydraulic fracture in TI material is studied in the work 

of Bessmertnykh and Dontsov [64] based on the Hoenig [65] solution assuming the 

elliptical crack. The impact of toughness anisotropy is accounted for fracture propagation 

in different dominated regimes by Zia [66]. And then Moukhtari [67] extended the previous 

model to quantify how these dimensionless anisotropic elastic parameters can influence the 

fracture shape in different propagation regimes.  

In this chapter, we first briefly recall the formulation of the planar 3D hydraulic fracture 

and explain how the anisotropic effect can be incorporated in to the PL3D model. The 

elastic modulus B is extracted from the Irving matrix which relates the fracture energy to 

the stress intensity factor. And as in previous discussion, this B can be obtained from 

numerical integration or solving an eigenvalue problem. Particularly, in the configuration 

shown in Figure 5.1. The exact solution of the elastic modulus B in horizontal and vertical 

direction is given in terms of the elastic constants. The engineering elastic parameters are 

used to represent the TI material and the effect of these parameters is analyzed by 

comparing the corresponding results of the fracture geometry. Then we investigate the 

impact of the fracture toughness (or fracture energy) on the elongation of the fracture. In 

the last part of this chapter, we introduce the average algorithm to approximate the fracture 

geometry in TI material. The validity and accuracy of different methods is discussed. 
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5.3 Problem Formulation 

We consider a 3D planar hydraulic fracture in transverse isotropic impermeable media, 

propagating in a plane perpendicular to the isotropy plane and normal to direction of the 

minimum in-situ stress h  (see Figure 5.1). We introduce an orthogonal coordinate 

1 2 3( , , )x x x  where 
3x  is the axis of symmetry and 1 2( , )x x  is the plane of material isotropy. 

The transversely isotropic elastic tensor ijklC  can be expressed in terms of five elastic 

parameters 
13 33 4411 12 , , , )( , C C CC C  in Voigt notation. We focus on the case of the vertical 

hydraulic fracture subjected to an internal fluid pressure fp  by the injection of Newtonian 

fluid at a constant rate from a point source.  

5.3.1 Elasticity Theory 

Under the configuration of Figure 5.1, the planar fracture exhibits a pure opening mode 

(model I). The elasticity equation relates the displacement discontinuity (see section 3.3) 

across the fracture and the internal fluid pressure inside the fracture.  

  ( )1 3 1 3
( )

( , , ) ( , , , ) , ,f h
A t

p x x t T x x w t d d      − =   (5.1) 

Where ( )A t  denotes the fracture footprint, fp  is the fluid pressure inside the fracture, h  

is the minimum in-situ stress and w is the fracture width. Influence function 1 3( , , , )T x x    

represents the normal elastic stress at point 1 3( , )x x  due to a unit displacement discontinuity 
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at point ( , )   at given time t. T can be obtained by adding the stress field of dislocation 

segments discretized in the fracture domain in transversely isotropic material [51, 55].  

 

 

 

 

 

 

 

 

 

 

 

5.3.2 Fluid flow inside the fracture   

The fluid flow inside the fracture follows lubrication theory which is explained in section 

3.4. Under the assumption of Newtonian fluid flowing in the fracture plane ( 1 3x x ), the 

width averaged fluid mass conservation equation reduces to following form: 

  

  

  

  

  

 

  

  

  

  

  

B 
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C 

Figure 5.1: Schematic of a planar 3D hydraulic fracture propagating in a transverse 

isotropic medium perpendicular to the isotropy plane 1 2( , )x x  and normal to the direction 

of the minimum in-situ stress. Point A ( 2) =  and B ( 0) =  are fracture fronts along 

vertical direction and horizontal direction. iK  is the direction of the local stress intensity 

factor corresponding to different fracture mode 
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 0 1 3( , )
w

Q x x
t

q


+ =


  (5.2) 

where ( )1 3,x x=     , 
0Q  denotes the constant injection rate located at the origin, the 

fluid flux q is related to the fluid pressure gradient and fracture opening via Poiseuille’s 

law.  

 
3

12
f

f

w
p


= − q  (5.3) 

where f  is the fluid viscosity. Zero fluid flux at fracture front is implemented as boundary 

condition in Eq. (5.2). 

5.3.3 Fracture propagation conditions 

The fracture energy criterion is used as the fracture propagation condition (section 3.5.2), 

which is given in Eq. (5.4).  

 11

2
e i ij jG K B K−=        i, j = 1, 2, 3 (5.4)  

In the configuration we investigate here the planar fracture is perpendicular to the isotropy 

plane of a transversely isotropic material, the fracture mode decouples and as a result the 

22B  is an only nonzero element in the matrix of elastic modulus ijB . Thus, Eq. (5.4) can be 

rewritten as  

 
( )

2 2

2 I

222 2
e

K K
G

B B 
= =  (5.5)  
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where 
22 ( )B B α=  is a near-tip elastic modulus which depends on the angle   between the 

local direction of the fracture front and material axis 
1x . The exact expressions of ( )B   

along the horizontal axis 
1x  ( 0 = ) and vertical axis 

3x  ( 2 = ) can be derived as [68] 

 ( )1 1 11
1 2 2

11 12

2
0

C
B α B

C C

− −= = =
−

 (5.6) 

 ( )1 1 33
3 2

11 33 13 44 13 11 33

1 2
2

C
B α π B

C C C C C C C

− −
 

= = = + 
 − + 

 (5.7) 

Alternatively, as we mentioned previously, for arbitrary direction of the fracture front, 

( )B   can be computed by numerical integral or solving an eigenvalue problem (see 

section 4.3 and 4.4 for details). In order to quantify the degree of the elastic anisotropy, we 

use the ratio between the horizontal elastic modulus and vertical elastic modulus 

1 3β B B . According to the Eq. (5.4), quasi-static linear elastic fracture mechanics 

propagation condition ( e cG G ) can alternatively be written as the equality of mode I 

stress intensity factor with the material fracture toughness IcK . We will investigate the case 

where material shows elastic transverse isotropy but critical fracture energy cG  is isotropic 

anywhere. In other words, the fracture toughness of the material may also vary depending 

on the local fracture front propagation direction. As a result, the propagation condition for 

a hydraulic fracture perpendicular to the isotropy plane of transversely isotropic material 

can be written as  

 ( ) ( )I Ω IcK ,t K α=x , ( )Ω Ω tx   (5.8) 
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for all point 
Ωx  along the fracture front Ω  with a local propagation direction defined by 

the angle  . The near-tip asymptotic solution in the anisotropic solid is implemented to 

capture the local stress intensity factor at the fracture front [46] 

 

1 2

1

I4
2π

r
w B K−  
=  

 
  (5.9) 

where r is the closest distance to the fracture front in the propagation direction.  

5.4 Numerical Solution 

The fracture plane is discretized using a Cartesian grid consisting of uniform rectangular 

elements (see Figure 5.2). We discretize elasticity Eq. (5.1) based on rectangular 

displacement discontinuity elements. The distributed dislocation method is used to 

determine the stress field of a rectangular element by adding the stress field of each side of 

this element (see section 4.6). The fracture width is thus constant over a cell and the fluid 

pressure is evaluated at the cell center. The lubrication flow is discretized spatially with 

finite volume method and a forward Euler scheme for time integration. The propagation 

algorithm relies on the local stress intensity factor computed in the crack tip element using 

Eq. (5.9). In the case of a transversely isotropic material, the fracture toughness in different 

directions needs to be calculated by Eq. (5.5) for the given critical energy release rate as 

the propagation criterion.   
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5.5 Anisotropic effect on fracture geometry 

5.5.1 Anisotropic effect on the transversely isotropic rock 

In this section, we select 6 different transversely isotropic rocks which can demonstrate 

different anisotropy (from weak to strong) from Table 2.1. The evolutions of PL3D 

fractures in different rocks are illustrated to show the anisotropic impact of the material.  

The ratio of elastic moduli   for each rock is computed in Table 5.1. The corresponding 

engineering parameters of these rocks are given in Table 5.2 and the simulation parameters 

we use are as follows: 

Figure 5.2: Schematics of the finite discretization of the fracture plane. The rectangular 

displacement discontinuity element is used. The piece-wise constant fracture width and 

fluid pressure are evaluated at element center 
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Critical energy release rate 
2

50J mcG = ; 0.02 Pa sf =  ; 2

0 0.05m sQ = ; 10 MPah =  

and injection time 3000sinjt = . 

  

Table 5.1: Example of elastic stiffness coefficient (Voigt notation) of different 

transversely isotropic (TI) rocks (all values in GPa). 

 
11C   33C   12C   13C   44C      

Olkiluoto mica gneiss 89.7 65.9 22.2 23.5 24 1.16 

Gas-saturated Shaly Coal 22.1 10.9 8.36 1.2 3.7 1.26 

Woodford53 shale 28 17.3 7.5 8.3 5.6 1.31 
Opalinius Clay 57.6 28.8 54.6 38.7 0.9 1.33 

Yeocheon schist 91.4 27.6 33.7 20 13.7 1.43 

Calcareous mudstone 90.4 35.1 51.6 39.8 6.5 1.9 

 

 

Table 5.2: Values of engineering elastic parameters corresponding to the different rocks 

given in Table 5.1 ( 1E , 3E , 3G  are in GPa) 

 
1E   3E   1   3   3G   

Olkiluoto mica gneiss 78.9 56.0 0.17 0.21 24 

Gas-saturated Shaly Coal 18.9 10.8 0.37 0.04 3.7 

Woodford53 shale 23.5 13.4 0.15 0.23 5.6 

Opalinius Clay 4.39 2.10 0.46 0.35 0.9 

Yeocheon schist 72.1 21.2 0.25 0.16 13.7 

Calcareous mudstone 44.3 12.8 0.14 0.28 6.5 
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Figure 5.3: Fracture geometry in transversely isotropic rocks 
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Figure 5.3 displays the planar fracture geometry in different transversely isotropic rock. 

The color filling is used to indicate the fracture width. As shown in this figure, for the 

increasing  , the elongation of the fracture in horizontal direction is more obvious than 

the vertical direction. The fracture in Calcareous mudstone ( 1 9. = ) demonstrates the 

minimum aspect ratio b / a   with a difference of 20% between the vertical extension and 

horizontal extension. In addition, according to Figure 5.3 and Figure 5.4, the fracture in 

Opalinius Clay exhibits the minimum fracture area but the maximum fracture width. It can 

be explained by Eq. (5.5) and Eq. (5.9). the asymptotic displacement solution of the fracture 

front can be found as cw G B . The minimum value of the elastic modulus B in 

Opalinius Clay can give the maximum value of the displacement. In the case of the same 

fluid injection, the fracture is supposed to show the minimum extension. Particularly, for 

Figure 5.4: Fracture width along major axis (horizontal) and minor axis (vertical) 
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isotropic material, the elastic modulus ( )21B E = − . Thus, the greater value of Young’s 

modulus in the medium can give fracture larger propagation velocity and less fracture 

width. The engineering elastic constants of the rocks in Table 5.2 give the support to this 

fact in transversely isotropic material as well. The horizontal and vertical Young’s moduli 

in Opalinius Clay show the minimum values among all the rocks. 

In this section, we have a better understanding that the ratio of the elastic moduli   could 

have some impacts on the fracture geometry (aspect ratio, fracture width, fracture area) in 

the case of the isotropic critical fracture energy. But we are still very curious about how 

the   is relevant to the properties of the material. In other words, we are going to analyze 

the effect of the specific elastic constants on the fracture shape in transversely isotropic 

material. 
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5.5.2 Anisotropic effect due to the different engineering elastic constants  

 

Figure 5.5: Ratio of the elastic moduli   versus ratio of the Young’s moduli 1 3E E  in 

the cases of different ratio of shear moduli 1 3G G . ( 1 80GPaE ; 1 3 0 2. = = ) 

 

 

Figure 5.5 demonstrates the ratio between horizontal and vertical elastic moduli in different 

ratios of the Young’s moduli and shear moduli in transversely isotropic material. It is 

shown clearly that as the ratio between the horizontal and vertical Young’s moduli and 

shear moduli increase, the rock can display stronger elastic anisotropy (   increases). In 

the case of 1 3 1E E = , the vertical axis shows that   varies from 1 to 2.3 as the 1 3G G  

varies from 1 to 8. while in the case of 1 3 1G G = , the   only changes from 1 to 1.3 as the 

1 3E E  from 1 to 8. This fact tells us the elastic modulus   is more sensitive to the shear 
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moduli than the Young’s moduli. And the effect of these elastic parameters can be observed 

from fracture geometry in Figure 5.6 as well.  

 

Figure 5.6: Fracture geometries in cases of different ratios of Young’s moduli and shear 

moduli ( 1 3 0 2. = = ) 

 

 

Figure 5.6 gives us a visible result on the fracture geometry in different combinations of 

the ratios of Young’s moduli and shear moduli. The first plot ( 1 3 1E E =  and 1 3 1G G = ) is 

the isotropic case where the fracture shows a circular shape (aspect ratio b/a = 1). As the 
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ratio of the Young’s moduli or shear moduli increases, the fracture starts to deviate from 

the circle more and more obviously. The aspect ratio b/a of the fracture is 0.6 in the case 

of 1 3 8E E =  and 1 3 8G G = . The fracture shapes in Figure 5.6 correspond to the values of 

  in Figure 5.5. It agrees with our expectation that the greater value   has, the stronger 

anisotropic effect rock displays. In addition, when comparing three plots in a row and 

column, we can conclude that the ratio of the shear moduli can have a more evident effect 

on the evolution of the fracture geometry than the Young’s moduli.  

 

 

Figure 5.7: Ratio of the elastic moduli   versus ratio of the Poisson’s ratio 1 3   in the 

cases of different ratio of Young’s moduli 1 3E E . ( 1 80GPaE = ; 1 0 2. = ) 
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Figure 5.8: Ratio of the elastic moduli   versus ratio of the Poisson’s ratio 1 3   in the 

cases of different ratio of shear moduli 1 3G G  ( 1 80GPaE = ; 1 0 2. = ) 

 

Figure 5.7 and Figure 5.8 display the influence of the Poisson’s ratio on the elastic 

parameter   in different ratios of the Young’s moduli and shear moduli. In Figure 5.7, the 

curves of 1 3 0 5 0 6 0 8. , . , .  =  cannot be plotted in all range of the 1 3 1 to 8E E = because 

of the restriction conditions on the engineering parameters mentioned in section 2.2.2. The 

value of the   is less than 1.35 in full range of 1 3E E . This small   cannot have 

observable influence on the fracture shape and thus the effect of the Poisson ratio can be 

neglected in the cases of different ratio of Young’s moduli. Similar results can be found in 

Figure 5.8. The maximum difference of the   between the curves of the Poisson’ ratio 

occurs at 1 3 8G G = . In this case,   varies from 2.2 to 2.6 and the corresponding fracture 
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geometry is plotted in Figure 5.9. According to the simulation results, the Poisson ratio 

does not appear to influence the fracture shape significantly. Young’s moduli and shear 

moduli have more obvious effect on the anisotropic parameter   and the fracture 

geometry. 

 

Figure 5.9: Fracture geometry in different ratio of the Poisson ratio in the case of  

1 3 8G G =  

 

5.5.2 Anisotropic effect of the energy release rate 

In our simulation, we consider the isotropic fracture energy ( )c cG α G= , which gives 

( ) ( )2Ic cK α G B α=  according to Eq. (5.5). Because fracture toughness is used as the 

fracture propagation criterion, the critical energy release rate cG  may also be an influence 

factor on the fracture geometry in transversely isotropic material.  In this section, we will 

compare the fracture shapes in the same transversely isotropic material with different 
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critical energy release rates. The corresponding fracture toughness in horizontal direction 

1

IcK  and vertical direction 3

IcK  are given in Table 5.3. 

 

Table 5.3: Horizontal and vertical fracture toughness ( 1

IcK  and 3

IcK  are in MPa m ) in 

Calcareous mudstone ( 1 9. = ) in the cases of different critical energy release rate 
2( J m )cG   

Calcareous mudstone 
1

IcK   3

IcK   

10cG =   0.8 0.6 

50cG =   1.7 1.3 

200cG =   3.5 2.5 

500cG =   5.5 4.0 

1000cG =   7.8 5.6 

1500cG =   9.5 6.9 

 

The results for the different fracture energy cases are given in Figure 5.10. the toughness 

ratio here is a square root of the ratio of elastic moduli 1 3

1 3Ic IcK K B B = = . From 

( ) ( )2Ic cK α G B α= , we know that as the energy release rate increases, the difference 

between the horizonal toughness and vertical toughness becomes larger, which can also 

affect the aspect ratio of the fracture and the fracture width. It is clearly depicted in Figure 

5.10. For the small value of the cG  (
2

10J mcG = ), the aspect ratio b/a = 0.87 and fracture 

width at the injection 0w  is 3.3mm. While for the large cG  (
2

1500J mcG = ), the aspect 

ratio decreases to the b/a = 0.6 and 0 4 0mmw . . This indicates that for the large fracture 

energy case, the large variations of the fracture toughness can make fracture a significant 
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difference in the extension along the major axis and minor axis. Therefore, fracture 

geometry can be influenced a lot. 

 

Figure 5.10: Fracture geometry in Calcareous mudstone with different critical energy 

release rate (
2

10 50 200 500 1000 1500J mcG ; ; ; ; ;= ) 
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5.6 Average algorithms on Anisotropic material 

In most problems involving dislocations of differing orientations and Burgers vectors, the 

anisotropic elasticity theory of dislocation is much computationally inefficient than the 

isotropic case because there is no closed-form solution of the Green function in anisotropic 

media. We have to do some extra calculations of the line integral on Green function or 

solving fundamental matrices to get the stress field of dislocation segment. The most 

convenient way is to average the anisotropic elastic constants ijklC  into the isotropic 

constants ( avgE , avgν ). For this purpose, the most appropriate averaged elastic constants can 

be found with the use of certain combinations of them which are invariant to rotation of 

the coordinate system. In this section, two average algorithms (Voigt scheme and Reuss 

scheme) [69] are introduced to compare with the anisotropic results. The detailed 

derivations of these two methods are explained in Appendix D. In addition to average 

methods, for simplicity, the horizontal Young’s modulus ( 1E ) and Poisson’s ratio ( 1ν ) are 

selected as the dominated engineering elastic parameters in fracture extension. These two 

parameters are used to make the comparisons as well. 

 

5.6.1 Average algorithms in different elastic anisotropy 

In order to the capture the toughness anisotropic effect ( )IcK α  and solely compare the 

accuracy of the different average methods on elastic anisotropy of transversely isotropic 
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material, the fracture toughness anisotropy is still considered in different propagation 

directions but averaged isotropic parameters ( avgE , avgν ) are used in the material. Figure 

5.11 shows the test points and corresponding domain used to make the comparisons. 9 

points are selected in cases of 2; 2 5; 3. . Three points for each value of   are used to 

represent different combinations of the elastic parameters ( 1 3E E and 1 3G G ). For 

covering a large range of domain, the ratios of the Young’s moduli are selected to equal to 

2,5 and 8, and the corresponding 1 3G G  can be found for the desired  .  The comparison 

results of fracture geometries obtained by different algorithms in cases of 2; 2 5; 3. =  are 

displayed in Figure 5.12 to Figure 5.14, respectively.  

 

 

Figure 5.11: Test points used for average methods 
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Figure 5.12: Fracture Geometries of anisotropic result and different average schemes in 

the case of 2 =  (
2

500J mcG = ) 

 

Each row in Figure 5.12 to Figure 5.14 stands for the fracture shape comparison of one 

point shown in Figure 5.11 using different methods. For the weak anisotropy shown in 

Figure 5.12 ( 2 = or less), maximum errors of three different average algorithms occur at 

point 1 where 1 3 2E E =  and 1 3 5 2G G .= . The anisotropic result shows the fracture aspect 

ratio b/a = 0.75 and width at injection 0w = 3.10mm. the best approximation on aspect ratio 

is given by horizontal parameters ( 1E  and 1 ) with 15.5% error while 19.5% and 24.8% 

are given by Voigt and Reuss, respectively. However, the Voigt method has the    
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minimum error in fracture width at injection which is only 2%. The differences in 

horizontal parameters and the Reuss method are 5.2% and 9.4%. In the material with weak 

anisotropy, Voigt method and horizontal parameters can provide more accurate results than 

Reuss method. Errors in these two algorithms are in tolerance and both are acceptable 

average algorithms.  

 

  

Figure 5.13: Fracture Geometries of anisotropic result and different average schemes in 

the case of 2 5. =  (
2

500J mcG = ) 

 

In the case of the medium anisotropy ( 2 5. = ), the maximum errors of the fracture aspect 

ratio in Voigt method and horizontal parameters are 15.6% and 16.4% given at point 6 in 
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Figure 5.13. For the Reuss method, error reaches the largest value at point 5 which is 

26.8%. In addition, Voigt method is still the best algorithm for fracture width with less than 

 

Figure 5.13: Fracture Geometries of anisotropic result and different average schemes in 

the case of 3 =  (
2

500J mcG = ) 

  

3% error in all three points. Horizontal parameters are relatively accurate with 7.3% error 

at most compared with the 15.2% in Reuss scheme. For the large elastic anisotropy ( 3 =

or greater), the inaccuracy in Reuss method is more obvious which shows a difference of 

34.3% in b/a and 20.9% in 0w  (Figure 5.14). However, the Voigt method and horizontal 

parameters can still provide a good estimation on the fracture geometry. The maximum 
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error in b/a is 16.3% and in 0w  is 4.2% in Voigt scheme, and 10.4%, 6.9% for aspect ratio 

and width in horizontal parameters, respectively.  

In summary, the Voigt method and horizontal parameters can give good approximation on 

the anisotropic material in a wide range of elastic anisotropy, although the Voigt is slightly 

better. In the case of weak anisotropy ( 2  ), the result of Reuss method is acceptable. 

But the error is more and more significant for increasing  . For a strong anisotropic 

material, the Reuss method cannot provide an accurate estimation on the fracture shape 

and is not applicable in this case. On the contrary, the horizontal parameters work better as 

the anisotropic effect is more evident.  In this case, the ratios of the Young’s moduli and 

shear moduli both have a large value and thus horizontal parameters can dominate vertical 

parameters in transversely isotropic material.  

 

5.6.2 Average method in different fracture energy 

In above simulations, the critical energy release rate is select as 
2

500J mcG =  and we 

compare the accuracies of the different average algorithms in cases of different elastic 

anisotropy. But we still need to figure out whether there is any influence on the average 

algorithms by the fracture energy. Thus, we compare the results of anisotropic method and 

the Voigt average method in a medium anisotropic material ( 2 5. = ) with different critical 

energy release in Figure 5.15.  



 100 

As shown in Figure 5.15, in the material with low fracture energy (
250 J mcG = ), the 

aspect ratio b/a of the fracture solved by anisotropic result is 0.8 and fracture width at 

injection 0w  is 3.04mm. The Voigt solution gives an obvious different fracture aspect ratio 

which nearly equals to 1 (25% difference) but very accurate fracture width 3.05mm. In the 

case of 
2500 J mcG = , the error in b/a is 15.4% and in 0w  is 2%. For the material with a 

large critical energy release rate (
21500 J mcG = ), the error of the fracture aspect ratio 

keeps decreasing, which is only 7.1% and fracture width is 1.5%. From these results, we 

can conclude that as the fracture energy increases, the average algorithm can give a better 

approximation on the fracture geometry. This fact can be deduced from the factors related 

to the fracture extension. In the case of small fracture energy cG , the fracture shape is 

dominated by the elastic anisotropy (value of  ). Thus, the average method is supposed 

to have large error in a strong anisotropic material. However, as the critical fracture energy 

increases, the fracture energy will have more evident effect on the propagation of the 

fracture. By contrast, the effect of the elastic anisotropy becomes less significant and the 

average algorithm can give a relatively accurate result.  
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Figure 5.14: Comparison results of anisotropic method and Voigt average method in 

anisotropic material ( 2 5. = ) with different fracture energy (
250; 500;1500 J mcG = ) 
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5.7 Conclusion 

Propagation of a planar hydraulic fracture (HF) perpendicular to the isotropy plane is the 

most common configuration encountered during the stimulation of the unconventional 

reservoirs. Utilizing a planar 3D fracture model, we have investigated the impact of 

transverse isotropy on the growth of a hydraulic fracture. In addition, the average algorithm 

is analyzed to improve the efficiency of our numerical model. 

Using the displacement discontinuity method combined with the anisotropic dislocation 

theory, the stress field of the planar fracture in transversely isotropic material can be solved 

numerically. An elastic modulus B is introduced in Irving matrix relating the energy release 

rate and stress intensity factor in our configuration. This parameter B is also a near-tip 

elastic operator as the function of the angle between the local fracture propagation direction 

and the isotropy plane. In addition, an exact solution to B is given in horizontal and vertical 

direction in transversely isotropic material. Fracture toughness is also a direction-

dependent parameter which can be obtained from the near-tip asymptotic solution and used 

as the fracture propagation condition. 

In the result part, we first analyze the anisotropic effect on the planar 3D fractures in some 

transversely isotropic rocks. The ratio of the elastic moduli between horizontal direction 

and vertical direction   is used to quantify the elastic anisotropy in TI material. The 

material displays a stronger elastic anisotropy for increasing   and thus the fracture shows 

an elongation in horizontal direction and shortening in vertical direction. Then   is 

investigated for the relationship between the 5 engineering parameters ( 1 3 1 3 3E , E , , ,G  ). 
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The ratios of the Young’s moduli and shear moduli ( 1 3E E , 1 3G G ) have dominated effect 

on the  , even though the ratio of shear moduli is more significantly. The alternation of 

the fracture geometry is displayed in different sets of the engineering parameters. In the 

case of 1 3 8E E =  and 1 3 8G G = ,   reaches the maximum value 3.3 and aspect ratio b/a 

of the fracture reaches minimum value 0.6, which shows a strong anisotropic effect on the 

fracture geometry. Since the fracture toughness is implemented as the condition of the 

fracture propagation, the fracture energy cG  is considered as another influence factor in 

anisotropic effect. As cG  increase, the ratio of the toughness between horizontal and 

vertical direction does not change ( 1 3

Ic IcK K = ) but variation between them is larger. It 

can cause a significant difference in fracture propagating speed along horizontal axis and 

vertical axis. The aspect ratio of the fracture decreases to the 0.6 for 
21500 J mcG = .  

In the last section, For the purpose of reducing the computational burden of the simulation, 

the average method is used to approximate the anisotropic material into isotropic one while 

the toughness anisotropy is still considered. In this averaging algorithm, we only need to 

compute the elastic modulus B in different propagation directions and use the isotropic 

formula to calculate the stress field of the fracture surface. Thus, the tedious computation 

of anisotropic equations can be eliminated. For a large range of the   ( 1 3 = ), the 

Voigt scheme and horizontal engineering parameters can provide more accurate results 

than the Reuss scheme. Difference is more obvious in large values of  . However, 

horizontal engineering parameters can give better estimation in the strong anisotropic rocks 

where the horizontal elastic moduli dominate other parameters. The impact of the fracture 



 104 

energy on average algorithm is tested in the end. For the material with small cG  where 

elastic anisotropy has more significant effect on evolution of the fracture, the average 

algorithm is less accurate. As the cG  increases, the fracture geometry is largely influenced 

by the fracture energy and elastic anisotropy effect is not obvious. The average algorithm 

works quite well in this case.  
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Appendix A 
 

Asymptotic solution for a penny-shaped fracture in an 

impermeable isotropic medium 

Scaling analysis is applied to the governing equations of this problem by using following 

dimensionless quantities: 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

w r,t ε t L t ρ,λ t

p r,t ε t E' Π ρ,λ t

R t L t γ λ t

= 

=

=

  (A.1) 

Where ρ r R , , Π and γ  are dimensionless crack opening, net pressure and fracture 

radius, respectively. ( )ε t  is a small scaling number and ( )L t  is a length scale of the same 

order of ( )R t . ( )λ t  is a dimensionless parameter depending monotonically on t. 

Scaling analysis indicates that for two limiting cases: the viscosity-dominated regime (

0κ = ) and toughness-dominated regime ( κ =  ), the solution is self-similar and thus does 

not depend on the initial conditions. The dimensionless parameter κ  used to distinguish 

two propagating regimes is defined as 
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where
2
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π

 = , 12μ' μ= , 
( )21
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ν
=

−
 , 0Q  is the injection rate and t is the injection 

duration.  

 

Viscosity-dominated regime 

As 1 , the zero-toughness solution can be used as the asymptotic solution for the 

viscosity-dominated regime, which is given as 
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 (A.4)  

where
(1)

1 0 3581A .= , (1) 0 09269B .= ,
(1)

1 0 6846C .= ,
(1)

2 0 07098C .= , 1 2 479ω .= ,

( ) ( )1
0 0 6955mγ .=  and ( ) ( ) ( )1(1) (1)

0 0 0m m mρ, γ = , ( )(1) (1)

0 0m mΠ Π ρ,= . The superscript (1) 

means the first order solution and subscript m represents the viscosity scaling. Also, two 

viscosity scaling parameters are defined as  
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Toughness-dominated regime 

As 3 5. , the large-toughness solution is used for toughness-dominated regime and two 

toughness scaling parameters are 
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 (A.6)  

The first order large-toughness solution is given by 

 ( ) ( ) ( )
1 2 1 2
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8 4 6
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1 1
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3 5
k k kΠ Π A ρ ρ  
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 (A.8) 

where subscript k represents toughness scaling. 1 0 6380kΠ . = , 1 709kA .= , 0 8264kB .= , 

0 0 8546kγ .=  and function ( )
2

1

2 2

1
arcsin d

ρ

ξ
I ρ ξ ξ

ξ ρ

 −
=

−  has to be evaluated numerically. 
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Appendix B 
 

Angular derivatives of Q, B and S 

In the matrix formalism, the angular derivatives of Q, B and S can be obtained by studying 

the angular derivative of matrix N.  Referring to the Figure B.1, we know  

 
t

m
θ


=


       

2

2

t
t

θ


= −


  (B.1) 

and 
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  (B.2) 

where 

 ( )( ) ( ) ( )( ) ( ) ( ) ( )
1 1

tn nn nm mn nn nt tm mt
− −

= + − −q  (B.3) 

The derivatives of the Stroh eigenvectors can then be obtained 
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where 
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where I is 3x3 identity matrix 

Recall that 
α

A
ξ

L





 
=  
 

, this gives us the angular derivatives of both A and L. the angular 

derivatives of Q, B and S can now be expressed as follows. 
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Also, the angular derivatives of the Q, B and S can be expressed in the integral formalism. 

using the geometry of Figure B.1, we can get 
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Figure B.1: The geometry used to compute angular derivatives of the line dislocation in a 

plane whose unit normal is 0n   
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Appendix C 
 

Elastic field of infinite dislocation line in isotropic medium 

The edge dislocation 

The edge dislocation is characterized by a Burgers vector ⊥b ξ , where ξ  is the direction 

of straight dislocation. It can be described as due to the insertion of a half infinite slab of 

thickness b perpendicular to the glide plane (Figure C.1). 

 

 

 

 

 

 

 

 

 

b 
x 

y 

z 
  

  

Figure C.1: The coordinate system of edge dislocation. The dislocation line ξ  

is along z-axis and Burger’s vector is along x-axis 
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Referred to the coordinate system in Figure C.1, the displacements are  

 
( )( )

-1

2 2
tan

2 2 1
x

b y xy
u

π x ν x y

 
 = +

− +  

 

  
( )

( )
( )( )

2 2
2 2

2 2

1 2
ln

2 4 1 4 1
y

b x y
u x y

x y



  

 − −
 = − + +

− − +  

 (C.1)  

or in cylindrical coordinates 

 
( ) ( )

1 2 sin
sin ln cos

2 2 1 4 1
r

b
u r

 
  

  

 −
= − + + 

− − 
  

 
( ) ( )

1 2 cos
cos ln sin

2 2 1 4 1

b
u r

 
  

  

 −
= − + − 

− − 
 (C.2) 

0zu = ; The edge dislocation is a case of plane strain. In cartesian coordinates, the formulae 

for the stress components are 
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and, in cylindrical coordinates, more simply 
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The screw dislocation 

A straight dislocation with b ξ  is a screw dislocation, right-handed when b and ξ  point 

in the same direction and left-handed in the opposite case (Figure C.2). For a right-handed 

screw dislocation along the z-axis in an infinite medium, the displacement is simply 
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Figure C.2: A right-handed screw dislocation along the axis of a cylinder 
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when we choose the surface y = 0, x > 0 as the discontinuity surface. From Eq. (C.5), one 

obtains the stresses 
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 0xy xx yy zz   = = = =   

or, in cylindrical coordinates 
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Appendix D 
 

Average elastic constants 

The most appropriate values of the averaged elastic constants are those averaged over all 

possible orientations of the coordinate system relative to the crystal axes. The question 

remains of whether to average over the elastic constants ijklC  or over the elastic 

compliances ijklS . The former is appropriate for the material in which grains have the same 

state of strain, as in Figure D.1a and the Voigt averages over ijklC  are applicable; the latter 

for the case when they have the same stress, as in Figure D.1b and Reuss averages are 

appropriate.  
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Figure D.1: material under simple tension. (a) Grain boundaries parallel to the tensile axis 

(uniform strain) (b) Grain boundaries perpendicular to the tensile axis (uniform stress) 

 

The Voigt Averages 

The 6x6 matrix for the elastic constant ijklC  undergoes an orthogonal unitary 

transformation when the reference coordinate system is rotated. The trace of a matrix is 

invariant to this transformation, so that 

 1 constijijI C= =  (D.1)  

A second invariant follows from the invariance of the strain-energy density. For the special 

case of homogeneous expansion, 11 22 33

1

3
iiε ε ε ε= = =  and 0ijε =  for i j , Eq. (2.14) 

gives 

 2 constiijjI C= =  (D.2)  

Especially, we can find that the two invariants for isotropic solid are 
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(b) 
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 1 3 12I λ G= +  (D.3) 

 2 9 6I λ G= +  (D.4)  

where λ  is the Lame Modulus and G is the shear modulus. Incorporate Eq. (D.1) into Eq. 

(D.3) and Eq. (D.2) into Eq. (D.4) and then solving for the G and λ  gives the average 

values 

 ( ) ( )
1 1

3 2
30 30

V ijij iijj V iijj ijijG C C C C= − = −  (D.5) 

where subscript v indicates the Voigt averages. And averaged Young’s modulus and 

Poisson’s ratio can be expressed by these two parameters as 
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The Reuss Averages 

The compliance tensor ijklS  relates strain to the stress as 

 ij ijkl klS =  (D.7)  

Thus, the 6x6 compliance matrix S can be written as 
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In analogy to Eq, (D.1), the trace of S is invariant and in analogy to Eq. (D.2), a second 

invariant is found by considering the invariance of strain energy under the case of stress 

11 22 33

1

3
ii   = = =  and 0ij =  for i j , giving 

 1 constijijI S= =  (D.9) 

 2 constiijjI S= =  (D.10) 

The averaged Young’s modulus and Poisson’ ratio can be expressed by these two 

invariances as 

 ( ) ( )
1 1 1

2 2
15 15

R
ijij iijj ijij iijj

R R

S S , S S
E E

= + = −  (D.11) 

where the subscript R indicates the Reuss averages 
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