UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Scalable Traffic Management for Data Centers and Logging Devices

Permalink
https://escholarship.org/uc/item/2hp6b5sm|

Author
Lam, Vinh The

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2hp6b5sm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Scalable Traffic Management for Data Centers and Logging Deages

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

Computer Science

by

Vinh The Lam

Committee in charge:

Professor George Varghese, Chair
Professor Tara Javidi

Professor Bill Lin

Professor Amin Vahdat

Professor Geoffrey Voelker

2013

Copyright
Vinh The Lam, 2013

All rights reserved.

The Dissertation of Vinh The Lam is approved, and it is acaklgtin quality and form

for publication on microfilm and electronically:

Chair

University of California, San Diego

2013

DEDICATION

To my parents

EPIGRAPH

Science is what we understand well enough
to explain to a computer.
Art is everything else we do.

Donald Knuth

Simplicity is prerequisite for reliability.

Edsger Dijkstra

TABLE OF CONTENTS

SIgNALUIE Page . . . oo e iii
DadiCAtION . . e e iv
[oo | =T o %
Table of CoNteNtS o Vi
LISt Of FIQUIES .« oo ottt e e e e e e viii
List Of Tableso e X
AcCKNOWIEdgEemMENTS e e Xi
- Xiii
Abstract of the DISSertationt e e Xiv
Chapter 1 IntrodUCHioN e e e e e 1
Chapter 2 Carousel: Scalable Logging for Intrusion Pregarystems 5
2.1 INtrodUCHION e e 5
2.2 MOAel . e 8
2.3 Analysisof aNaiVe LOQOErottt e e e e 10
2.3.1 TheNaive Logger AloNet i e 10
2.3.2 The Naive LoggerwithaBloomFilter oo, 14
2.4 Scalable loggingusing Carouselc.o i 15
2.4.1 Partitioningand 10gging 15
2.4.2 Collection Timesfor Carousel i 17
2.5 Carousel Implementations ittt e 21
2.5.1 Snortimplementation it e e 21
2.5.2 Hardware Implementation it 23
2.6 Simulation Evaluation. 24
2.6.1 Baseline Experiment e 24
2.6.2 Logger Performance with Logistic Modelo oo, 25
2.6.3 Non-uniformsource armrivalSt e 28
2.6.4 Effectof ChangingHash Functions.............ccouuii ... 28
2.6.5 Adaptively Adjusting Sampling BitS ien 32
2.7 SnortEvaluation 33
2.8 Related WOrKo e 34
2.0 SUMIMIAIY . oottt et et et e e e e 36
Chapter 3 Flame: Efficient and Robust Hardware Load BalgnftinData Center Routers 38
3.1 INtrodUCHioN . . .o e 38
3.2 Related WOrko 42
3.3 MEChANISMS . . .o e 44
3.3.1 Discounting Rate Estimator (DRE)cteeiiiineinennns 44
3.3.2 Choosingtheleastloadedlink0 immeiiii .. a7
3.3.3 Statetabledesign....... ... 49

Vi

3.3.4 Handling heavy-hitters e e 52

3.3.5 Profile-basedrebalancing i i 55
3.4 Hardware implementation e 56
3D ANAIYSIS . 58
3.5.1 DRE @NAIYSIS . ..ot 58
3.5.2 Analysis of Flame state tabledesign i i 60
3.6 EValuationo e 63
3.6.1 Load balancing goodness Metrics 64
3.6.2 SIimulation SEtUP o e 65
3.6.3 Simulation results 66
3.6.4 ImpactofpacketreorderingonTCP oioei ... 68
BT SUMMIAIY .ottt e et et e e e e e e 73
Chapter 4 NetShare and Stochastic NetShare: PredictabtimBdth Allocation for Data Centers 74
4.1 INtrodUCHION . ..o e 74
4.2 NetShare Specificationttt mmmm e e e 76
4.3 NetShare Algorithms e e e e 78
4.3.1 Group Allocation Leveraging TCP it eie i 78
4.3.2 Stochastic NetShare. i e 80
4.3.3 Rate Throtting forUDP e 82
4.3.4 Centralized Bandwidth Allocator. oot 84
A4 ANAIYSIS .ot e 86
4.4.1 Stochastic NetShare Model. i 86
4.4.2 Stability of Centralized Allocation« 87
4.5 Implementation 88
4.6 Evaluation 89
4.6.1 Single Path EXperimentsttt i et eeeenns 89
4.6.2 Multipath EXPerimentsttt e et 92
4.6.3 How Effectiveis Rate Throttling? 93
4.6.4 Scaling to Larger TOpologiesottt i e e e 96
4.6.5 Scalability of Stochastic NetShare coou i, 98
4.7 Automatic Weight ASSIgNMENtottt et e 100
4.8 Related WOrK oo e 101
4.9 SUMIMAIY ittt e e e e et e ettt e e e e e 102
Chapter5 CONCIUSIONSo e e o e e e e 103
BiblOgraphy . .o 104

vii

Figure 1.1.
Figure 1.2.
Figure 1.3.
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8.

Figure 2.9.

Figure 2.10.
Figure 2.11.
Figure 2.12.
Figure 2.13.
Figure 2.14.
Figure 2.15.
Figure 2.16.
Figure 2.17.

Figure 2.18.

Figure 2.19.

Figure 2.20.

Figure 3.1.

LIST OF FIGURES

Logging problemin Chapter 2. e 2
Load balancing probleminChapter3............ i 3
Group QoS probleminChapterd i e 4
IPS logical model with logging component thaiften implemented naively 6
IPS hardware model with Carousel scalablellogge. 8
Abstractloggingmodel 9
Model of naive logging using an optimistic ramdmodel 11
Portion of timeline for random model shown ink®2.4 12
Flowchart of Carousel within Snort packetflow 21
Schematic of the Carousel Logger logic as paahdPS Chip. 23
Performance of Carousel with different loggiogulations 25
Performance of the Carousel scalablelogger. 27
High scan rate (60 SCANS/S)ttt s i e e ettt 27
Reduced monitoring Space (50%0) oot i 27
Logistic model of propagation - fastworm. o oo 29
Logistic model of propagation - slowworm. ..o, 29
Scaling up the vulnerable population 29
Logger performance under non-uniformsoundesds 30
Dynamic source samplinginCarouselcoc.o it 30
Comparison of fixed vs. changing hash funciio®@arousel 31
Logging performance of Snort instrumentedh iarousel under a random traffic

= 11 U= 1 33
Logging performance of Snort instrumentedh Wiarousel under a periodic traffic

= L= 1 o 1 34
Snort under non-uniformsource arrivalsoi i 35
Network topology for Example 2 showing the neecebalance flows. 40

viii

Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.

Figure 3.7.

Figure 3.8.
Figure 3.9.

Figure 3.10.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.
Figure 4.6.
Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 4.10.
Figure 4.11.
Figure 4.12.
Figure 4.13.

Figure 4.14.

Overview of Flame state tabledesign it a7
Overview of Flame scheme with an exact-matcheayy-hittertable 53
Flame hardware schematiCt 57
Convergence of DRE COUNter.ot e e e e 59
Load balancing performance on CAIDA trace acadlameasurement time scales. . 66

Load balancing performance with synthetic detater-like traffic across all mea-

surement time SCales. it 67
Testbed for TCP packetreorderingo, 68
TCP throughput experimentsat1Gbpsccceeee oo oo oo ceivieeeeeeee.. 70
Throughput experiments with one TCP flow at 1psGhith interleaving reordering

burstby load balancing. 72
Example of a data center network shared betWeea services A1, A2,and A3. . 77

Simple fair queuing at switches together witliPTi@plements max-min fair sharing
Of TCP flows [35]. .o e 78

Simple fair queuing at switches at Hevicelevel together with TCP achieves
hierarchicalmax-min fair sharing of services. couuee.... 79

Simple fair queuing at switches at sieevicelevel together with rate measurement

and rate throttling implements hierarchical max-min faeewith UDP. 83
Allocation mechanisms that divide excess baditivasing different weights. 85
Feedback control model for the Centralized Badith Allocator 88
NetShare testbed topologiesot e e e 89
Competition for bandwidth between a short leyesensitive (1GB file transfer) job

and a long running Hadoopjobonacorelinkc............ 91
NetShare with Group Allocation (DRR) + Rate Ttireg 93
No NetShare mechanisms e 94
NetShare with Group Allocation Alone cvue i ii i 94
NetShare with Rate Throttling Alone e oo 94
Three-tiered data center topology used fdabitidy experiments............... 96
Topologies for Stochastic DRR experiments -...........o, 98

LIST OF TABLES

Table 4.1. Comparison of different NetShare mechanisms.................... 86
Table 4.2. Completion time of the latency-sensitive FTPfidifferent file sizes 90
Table 4.3. Traffic pattern that indicates times during whidferent flows are active.......... 95

Table 4.4. Application bisection bandwidth under sevesadfit parameters and with and with-
out NetShare (DRR ONlYy). ... e e e 97

Table 4.5. Scalability of Stochastic DRR ot e e e 99

ACKNOWLEDGEMENTS

First and foremost, | would like to express my sincere gudgtto my PhD advisor, Professor
George Varghese, for his inspirations and support durin@hiy years at UCSD. George has been always
generous in giving me help and guidance every time | need Hiave learned a great deal from him, not
only his technical expertise, but more importantly, theuiiat process to approach research problems. He
made the last six years a truly life-changing experiencefer | am also grateful to my other committee
members: Tara Javidi, Bill Lin, Amin Vahdat, and Geoff VoglKor being in my doctoral committee and
giving me invaluable feedbacks during my thesis proposadipeparation of this dissertation.

During my graduate studies at UCSD, | have had the fortunelalmwrate with many smart
and wonderful people, especially my co-authors: Tom Edaaltly Fingerhut, Erran Li, Michael Mitzen-
macher, Rong Pan, Sivasankar Radhakrishnan, Yousuk Séomg Vahdat, and Thomas Woo. Without
them, my research would have taken much longer. | would revget the long nights that they worked
with me to complete multiple drafts of my papers.

My research internship opportunities at Bell Labs and Geegtre supplementary to my PhD
research and prepared me well to work in the software indusStpecially | would like to thank Thomas
Woo at Bell Labs, Jerry Chu, Nandita Dukkipati, and Abdul Kahi at Google. My interactions with
them during my internships have been truly eye-opening afjgeld me make up my career choice.

I would like to acknowledge Kostas Anagnostakis, my tecld lagthe Institute for Infocomm
Research, Singapore, where | had my first full-time job asseaech engineer. It was during my time
working with Kostas that | first picked up research skills gniblished my very first major research
papers. Kostas was also a strong source of encouragementiyphepared my application package to
PhD programs.

| have been extremely fortunate to have my fantastic frier@lsristos Kozanitis for being a
greatly helpful friend; Son Ngoc Duong for many times givimg valuable insights into modern mathe-
matics; Son Kim Pham for being a source of academic musiras;Ngjuyen for constantly reminding
me of mindfulness; Alan Pham for being an “extraordinaryidbord.

Finally, there are not enough words to describe how much Itowey parents, my sister, and my
brother. They have been always with me and always believetkinAll my achievements would never
have been possible without their unconditional sacrifiak@arbounded patience with me during my time
in graduate school in the United States.

Chapter 2, in full, is a reprint of the material as it appear$Garousel: Scalable Logging for

Xi

Intrusion Prevention Systems” Proceedings of USENIX Symposium on Networked SystemaRexslg
Implementation (NSDI)Lam, Vinh The; Mitzenmacher, Michael; Varghese, Georg&SENIX, 2010.
The dissertation author was the primary investigator ankaawf this paper.

Chapter 3, in part, is a reprint of the material as it appeatElame: Efficient and Robust Hard-
ware Load Balancing for Data Center RoutersU@SD CSE Technical Report (CS2012-0988)sall,
Tom; Fingerhut, Andy; Lam, Vinh The; Pan, Rong; Vargheseoi@e. UCSD, 2012 The dissertation
author was the primary investigator and author of this paper

Chapter 4, in part, is a reprint of the material as it appearfNetShare and Stochastic Net-
Share: Predictable Bandwidth Allocation for Data Center$?’roceedings of ACM SIGCOMM Computer
Communication Review (CCR)am, Vinh The; Radhakrishnan, Sivasankar; Pan, Rong; &alnin;

Varghese, George. ACM, 2012. The dissertation author waptimary investigator and author of this

paper.

Xii

VITA

2004 B. E. in Electrical and Electronic Engineering, Nanydechnological University, Singa-
pore
2005 M. S. in Computer Science, National University of Spg&, Singapore

2006-2013 Graduate Student Researcher, University dio@ak, San Diego, California, United States
2013 Ph. D. in Computer Science, University of Californian®iego, California, United States

PUBLICATIONS

Edsall, Tom; Fingerhut, Andy; Lam, Vinh The; Pan, Rong; Verge, George. “Flame: Efficient and Ro-
bust Hardware Load Balancing for Data Center RouterdJ@8D CSE Technical Report (CS2012-0980)
2012

Lam,Vinh The; Radhakrishnan,Sivasankar; Pan,Rong; \lahatdn; Varghese,George. “NetShare and
Stochastic NetShare: Predictable Bandwidth AllocationData Centers”, irACM SIGCOMM Com-
puter Communication Review (CCR)12.

Seung, Yousuk; Lam, Vinh The; Li, Li E.; Woo, Thomas. “Clolele Seamless Scaling of Enterprise
Applications into the Cloud”, iIHEEE International Conference on Computer CommunicatidN§O-
COM) 2011.

Lam, Vinh The; Mitzenmacher, Michael; Varghese, Georgear&lisel: Scalable Logging for Intrusion
Prevention Systems”, iIdSENIX Symposium on Networked Systems Design and Impéimei{NSDI)
2010.

Akritidis, Periklis; Chin, Wee Yung; Lam, Vinh The; Sidirtmy, Stelios; Anagnostakis, Kostas. “Proxim-
ity Breeds Danger: Emerging Threats in Metro-area Wireletsvorks”, inUSENIX Securit007.

Lam, Vinh The; Antonatos, Spiros; Akritidis, Periklis; Agiaostakis, Kostas. “Puppetnets: Misusing Web

Browsers as a Distributed Attack Infrastructure”A@M Conference on Computer and Communications
Security (CCS2006.

Xiii

ABSTRACT OF THE DISSERTATION

Scalable Traffic Management for Data Centers and Logging Deges

by

Vinh The Lam

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor George Varghese, Chair

Traditional network resource allocation is not scalabledose it requires per-flow state, large
amount of memory in switches and routers, and control osthim this dissertation, we propose innova-
tive and scalable mechanisms for network traffic managemehtee emerging contexts: network event
loggers, network load balancing, and cloud services in datders. First, we describe a probabilistic
event logger calle€Carouselto collect unique items in a large stream of online events.thi&pretical
analysis, we prove that Carousel can collect almost allsterith high probability. Our simulation and
implementation prototype show an improvement factor ofieavent collection time. Second, we design
a new load balancing algorithm callédamethat is implementable in high speed switches with small
memory usage. Flame achieves fine granularity of load badgrat sub-flow level and binds flows to
hash functions. Through trace simulation, we show that Elaan improve our load balancing perfor-

mance metrics by an order of magnitude. Furthermore, Fldlmesagraceful degradation to the standard

Xiv

ECMP in the worst case. Lastly, we propose a mechanism ddé¢8hardo provide predictable network
resource allocation for cloud services based on simple gigtrative weights. We describe mechanisms
to implement and scale NetShare to a large number of serugirg a generalization of Stochastic Fair

Queueing. We validate our NetShare design on a hardwaletbstith MapReduce workloads.

XV

Chapter 1

Introduction

Traffic management is a critical problem in high speed coepand communication networks.
The ultimate goal of traffic management is to ensure thatsusehieve a desired quality of service. This
problem is difficult due to several practical challengesrstridata traffic demands are highly unpre-
dictable [31, 76]. Second, recent hardware developmems imade high speed links common at the
network edges (e.g., network adapters at 40 Gbps and 100[&ppshich creates high amounts of over-
subscription to core network links [31] and exacerbatdfi¢rmnanagement especially during periods of
heavy loads. This is why traffic rate control, despite beinly @ part of traffic management, is a central
aspect of traffic management [37].

Conceptually, the goal of rate control problems is to creslegionsamong the rates of various
data packet streams in a network subject to certain obgtiMhe objectives include fairness among
traffic flows? (e.g., max-min fairness [35]), simplicity for implemeritat in networking devices (e.g., no
maintenance of per-flow state, which led to the preferenaatefbased congestion control over credit-
based congestion control in ATM networks [37]), and goodigrenance (e.g., high throughput, low
latency, balanced resource utilization to reduce netwdrastructure cost [31]).

Much research has been devoted to rate control since thehastidry of networks; despite this,
rate control is still an open topic. For example, the clasate control problem is congestion control.
On end hosts, Transmission Control Protocol (TCP) [57] Egleed to control the rate of the sender to
fairly share the rate of the bottleneck link in the networkhpfaiom the sender to the receiver. It was the
design and deployment of TCP that saved the early Interosat frongestion collapse [13]. As a second

example, there are router mechanisms to aid congestionot@uich as queue management algorithms

Depending on the context, a flow could mean a connection (EGR flow identified by TCP 5-tuple)
or aggregated connections from a single source address.

° .
N . Arrival Rate R m<N Logging Rate r

sources —
/ memory

° Minimize time to log N
R IDs subject to rate limit

Figure 1.1. Logging problem in Chapter 2: logging of infected sourcearirintrusion Detection device.
This is necessarily an open-loop control as sources arecaoperative.Thesis solution:Carousel ex-
ploits source repetition and hashing to partition ID spate smaller chunks followed by iteration over
the chunk space.

(e.g., Random Early Detection (RED) [26], CHOKe [55]) andffic scheduling (e.g., Fair Queueing
(FQ) [20], Stochastic Fair Queueing (SFQ) [46], Deficit Rdiobin (DRR) [66]). More recent efforts
attempt to find new ways to optimize for performance, esfigdiar improving latency (e.g, TCP Fast
Open (TFO) [59]) and bufferbloat resistance [30] (e.g., tBaled Delay (CoDel) [51]).

In this dissertation, we extend rate control problems tedtemerging contexts: logging (tech-
nigues to log information at the rate of logger are describe@hapter 2), load balancing (techniques to
spread load among available links are described in Chajptand group Quality-of-Service (techniques
to ensure bandwidth fairness for groups are described ipt€h4).

Note that many rate control problems can be achieved witllperstate (e.g., Resource Reser-
vation Protocol (RSVP) [14] to reserve resources acrosdvaanke by signalling for connection setup in
advance). The goal of this thesis is to design simple, efficend scalable solutions to the rate control
problemswithoutusing per-flow state to avoid the need for large amounts df Bgged memory in net-
working devices such as switches and routers. Our solutiblize novel mechanisms (e.g., hashing into
chunks) and/or leverage assumptions (e.g., repeatedesjuntierent to the specific problems. We now
briefly describe the context of each problem and the thesigibations.

Chapter 2 addresses the problem of collecting unique itearadarge stream of information in
the context of Intrusion Prevention Systems (IPSs) as showigure 1.1. IPSs detect attacks at gigabit
speeds and must log infected source IP addresses for reinadia forensics. An attack with millions
of infected sources can result in hundreds of millions ofriegprds when counting duplicates. If logging
speeds are much slower than packet arrival rates and memaheilPS is limited scalable logging
is a technical challenge. After showing that naive appmneaawill not suffice, we solve the problem

with a new algorithm we call Carousel. Carousel randomlyifians the set of sources into groups that

some large flows

Output rate R/c
o\ Arrival Rate R .
N °® E— <N ’
flows / m
- / memory 0 Output rate R/c
-
many small flows Minimize max difference
among rates allocated to
output links

Figure 1.2. Load balancing problem in Chapter 3: going beyond ECMP fta danters because random
assignment works badly when there are a few large flows. $has ionline problem because the weight
or size of a flow is only apparent over time and can chafigesis solutionFlame uses a new online
estimator, power of choice to reduce hardware complexity,teeavy-hitters & timeouts to reduce state.

can be logged without duplicates, and then cycles throughsét of possible groups. We prove that
Carousel collects almost all infected sources with highbphility in close to optimal time as long as
infected sources keep transmitting. We describe detadsSsfort implementation and a hardware design.
Simulations with worm propagation models show up to a fastdiO improvementin collection times for
practical scenarios. Our technique appliesnylogging problem with non-cooperative sources as long
as the information to be logged appears repeatedly.

Chapter 3 describes a new load balancing design, Flamastingplementable at 480 Gbps with
small memory and uses two novel mechanisms as shown in Flg2rd-irst, Flame uses a Discounting
Rate Estimator (DRE); unlike exponential averaging, DREEkjy measures bursts and yet retains mem-
ory of recent bursts. Second, Flame binds flowsash functiongnd not topaths We show Flame is
more resilient and efficient than the earlier Flare scheme paovides better load balancing and is more
deployable than Hedera. Flame also allows rebalancing wkfla hardware at rapid rates. This is in-
teresting because we show TCP experiments at 1 and 10 Ghpkethanstrate that recent Linux stacks
after 2.6.14 can tolerate rebalancing once every 10 pagkigisnegligible loss of throughput. On the
other hand, Windows 2008 stacks have degraded TCP througphalancing is done more often than
1in 32,000 packets.

Chapter 4 studies the network isolation and virtualizaiiocloud data centers as shown in Fig-
ure 1.3. Service level agreements for cloud computing tegagify network SLAs in terms of dollars per
Gigabyte transferred and not in terms of network bandwiBtit.application performance often depends
crucially on network performance; a slow network can resultnderutilized VMs. Chapter 4 describes
a mechanism for Data Center networks calNtSharehat requires no hardware changes to routers but

allows bandwidth to be allocated predictably across sesfitsers based on simple weights. Weights can

Bottleneck

Bandwidth r
m<N 5
memory

Arrival Rate R

N sources, °
G<Ngroups e

—

Rates allocated to each
Group is Max-Min fair

Figure 1.3. Group QoS problem in Chapter 4: sharing a data center amaulgatons that can gain
bandwidth by opening more TCP connectiofkesis solutionNetShare provides fairness on groups but
relies on per-flow state and control at hosts (TCP) to achiese-min fair rates.

be specified by a manager, or can be automatically assigmeathaiswitch port based on virtual machines
upstream and downstream of the port. Bandwidth unused bsvaceés shared proportionately by other
services, providing weighted hierarchical max-min faiaishg. We present three mechanisms to imple-
ment NetShare including one that leverages TCP and requilggouter configuration. We show how
NetShare can scale to large numbers of users/servicesaigiageralization of Stochastic Fair Queuing.
On a testbed of Fulcrum switches, we show thwahout NetShare, performance of latency critical jobs
can degrade by one order of magnitude in the presence oftladeop jobs. We also demonstrate that
NetShare divides bandwidth proportional to weights degi¢ use of multipathing.

Chapter 1, in part, is a reprint of the material as it appeat€arousel: Scalable Logging for
Intrusion Prevention Systems” Proceedings of USENIX Symposium on Networked SystemaRexslg
Implementation (NSDI2010. Lam, V. T., Mitzenmacher, M., and Varghese, G., USENAIZ10. The
dissertation author was the primary investigator and aughthis paper.

Chapter 1, in part, is a reprint of the material as it appeatElame: Efficient and Robust Hard-
ware Load Balancing for Data Center RoutersU@SD CSE Technical Report (CS2012-0988)sall,
Tom; Fingerhut, Andy; Lam, Vinh The; Pan, Rong; Varghesepi@e. UCSD, 2012 The dissertation
author was the primary investigator and author of this paper

Chapter 1, in part, is a reprint of the material as it appeariNetShare and Stochastic Net-
Share: Predictable Bandwidth Allocation for Data Center$?’roceedings of ACM SIGCOMM Computer
Communication Review (CCR)am, Vinh The; Radhakrishnan, Sivasankar; Pan, Rong; aahkmin;

Varghese, George. ACM, 2012. The dissertation author wagtimary investigator and author of this

paper.

Chapter 2

Carousel: Scalable Logging for Intrusion Pre-
vention Systems

2.1 Introduction

With a variety of networking devices reporting events at@asingly higher speeds, how can a
network manager obtain a coherent and succinct view of #lisgé of data? The classical approach uses
a sampleof traffic to make behavioral inferences. However, in mangterts the goal icomplete or
near-complete collectioof information — MAC addresses on a LAN, infected computersnembers
of a botnet. While our paper presents a solution to this abslingging problem, we ground and motivate
our approach in the context of Intrusion Prevention Systems

Originally, Intrusion Detection Systems (IDSs) implenmazhin software worked at low speeds,
but modern Intrusion Prevention Systems (IPSs) such asifimng Point Core Controller and the Ju-
niper IDP 8200 [36] are implemented in hardware at 10 Gbpsamadstandard in many organizations.
IPSs have also moved from being located only at the peripbktlye organizational network to being
placed throughout the organization. This allows IPSs teni@éfigainst internal attacks and provides finer
granularity containment of infections. Widespread, afftctive deployment of IPSs, however, requires
using streamlined hardware, especially if the hardware Itintegrated into routers (as done by Cisco
and Juniper) to further reduce packaging costs. By streaalhardware, we mean ideally a single chip
implementation (or a single board with few chips) and smadbants of high-speed memory (less than
10 Mbit).

Figure 2.1 depicts a logical model of an IPS for the purpo$ési® paper. A bad packet arrives
carrying some key. Typically the key is simply the sourcerads, but other fields such as the destination

address may also be used. For the rest of the paper we asserkeytis the IP source address. (We

Intrusion Prevention Device

(- iati Signature/Behavior i
LR mbly Normalization Detection Logging

Bad Eacket
with

ey K

Large Disk Storage |- Key, Report

Management Station

Figure 2.1. IPS logical model with logging component that is often inmpénted naively

assume the source information is not forged. Any attack ithamires the victim to reply cannot use
a forged source address.) The packet is coalesced with p#oiets for the same flow if it is a TCP
packet, normalized [75] to guard against evasions, anddheoked for whether the packet is indicative
of an attack. The most common checlsignature-basee.g., Snort [69]) which determines whether the
packet content matches a regular expression in a datab&sewh attacks. However, the check could
also bebehavior-basedrFor example, a denial of service attack to a destination lmeayetected by some
state accumulated across a set of past packets.

In either case, the bad packet is typically dropped, but B ik required tdog the relevant
information on disk at a remote management console for &talysis and reporting. The information
sent is typically the ke plus a report indicating the detected attack. Earlier wak $hown techniques
for high speed implementations of reassembly [22], norzadithn [74, 75], and fast regular expression
matching (e.g., [68]). However, to the best of our knowledbere is no prior work in scalable logging
for IPS systems or networking.

To see why logging may be a bottleneck, consider Figure Zhi;iwdepicts a physical model of
a streamlined hardware IPS implementation, either stémkear packaged in a router line card. Packets
arrive at high speed (say 10 Gbps) and are passed from a MALCtatone or more IDS chips that
implement detection by for example signature matching afddard logging facility, such as in Snort, logs
a report each time the source sends a packet that matchemek fagnature and writes it to a memory
buffer, from which it is written out later either to locallytached disk in software implementations or to a
remote disk at a management station in hardware implenensatA problem arises because the logging
speed is often much slower than the bandwidth of the netvinkk Logging speeds less than 100 Mbps
are not uncommon, especially in 10 Gbps IDS line cards atthtb routers. Logging speeds are limited

by physical considerations such as control processor smetidisk bandwidths. While logging speeds

can theoretically be increased by striping across multiks or using a network service, the increased
costs may not be justified in practice.

In hardware implementations where the memory buffer is seamily small for cost considera-
tions, the memory can fill during a large attack and newlwarg logged records may be dropped. A
typical current configuration might include only 20 Mbits arfi-chip high speed SRAM of which the
normalizer itself can take 18 Mbits [75]. Thus, we assumetthelogger may be allocated only a small
amount of high speed memory, say 1 Mbit. Note that the memoffgbmay include duplicate records
already in the buffer or previously sent to the remote device

Under a standard naive implementation, unless the loggiegmatches the arrival rate of pack-
ets, there is no guarantee that all infected sources wilbggdd. It is easy to construct worst-case timing
patterns where some set of souréeare never logged because another set of solB@ways reaches
the IDS before sources in the getand fills the memory. Even in a random arrival model, inteiyvas
more and more sources are logged, it gets less and less prababa new unique source will be logged.
In Section 2.3 we show that, even with a fairly optimisticdam model, a standard analysis based on
the coupon collector’s problem (e.g., [48]) shows that tkigeeted time to collect al sources is anul-
tiplicative factor of InN worse than the optimal time. For example, whkiis in the millions, which is
not unusual for a large worm, the expected time to collec@lrces can be 15 times larger than optimal.
We also show similar poor behavior of the naive implemématboth through analysis and simulation,
in more complex settings.

The main contribution of this paper, as shown in Figure 23 scalable logger module that
interposes between the detection logic and the memoryhifierefer to this module and the underlying
algorithm asCarouse] for reasons that will become apparent. Our logger is stalalihat it can collect
almost allN sources with high probability with very small memory buffén close to optimal time, where
here the optimal time il /b with b being the logging speed. Further, Carousel is simple toempht
in hardware even at very high speeds, adding only a few dpagto the main processing path. We
have implemented Carousel in software both in Snort as veelh asimulation in order to evaluate its
performance.

While we focus on the scalable logging problem for IPSs is ffaper, we emphasize that the
problem is a general one that can arise in a number of measutesattings. For example, suppose
a network monitor placed in the core of an organizationaloet wishes to log all the IP sources

that are using TCP Selective Acknowledgment option (SAGK)general, our mechanism applies to

slow logging rate

(e.g., 100 Mbps)
Memory
e.g., 1 Ghit)
) ' Carousel Scalable Logger r-------- This paper
fast arrival rate hi Tttt T
(e.g., 10 Gbps) MAC Chips Normalization, Detection
IDS
Chips

Figure 2.2. IPS hardware model in which we propose adding a scalablestdiggility called Carousel.
Carousel focuses on a small random subset of the set of keyedime, thereby matching the available
logging speed.

any monitoring setting where a source is identified by a magdion a packet (e.g., the packet contains
the SACKPERMITTED option, or the packet matches the Slammer sigagtmemory is limited, and
sources do not cooperate with the logging process. It daggever, require sources to keep transmit-
ting packets with the predicate in order to be logged. Thus@sel does not guarantee the logging of
one-time events.

The rest of the paper is organized as follows. In Section Z2describe a simple abstract
model of the scalable logging problem that applies to mattings. In Section 2.3 we describe a simple
analytical model that shows that even with an optimisticican model of packet arrivals, naive logging
can incur a multiplicative penalty of M in collection times. Indeed, we show this is the case even if
naive logging is enhanced with a Bloom filter in the straigtward way. In Section 2.4 we describe our
new scalable logging algorithm Carousel, and in Sectiom& Slescribe our Snort implementation. We
evaluate Carousel using a simulator in Section 2.6 and wsBigort implementation in Section 2.7. Our
evaluation tests both the setting of our basic analyticalehavhich assumes that all sources are sending
at time 0, and a more realistic logistic worm propagation eipith which sources are infected gradually.

Section 2.8 describes related work while Section 2.9 caleduihe paper.

2.2 Model

The model shown in Figure 2.3 abstracts the scalable loggivigiem. First, there ang distinct
keys that arrive repeatedly and with arbitrary timing freqoy at a cumulative speedBkeys per second
at the logger. There amsvo resources that are in scarce supply at the logger. Firste fkea limited
logging speed (keys per second) that is much smaller than the bandviddthwhich keys arrive. Even

this might not be problematic if the logger had a membtyarge enough to hold all the distinct keys

ITEMS LOGGER SINK
!
I ¥MemoryM<<N . :
2 / Log%lng bandwidth
[J B <<B
I Enough memory
N to store all N items

Figure 2.3. Abstract logging modelN keys to be logged enter the logging device repeatedly atedspe
that is much greater then the logging speexhd in a potentially adversarial timing pattern. At the same
time, the amount of memonyl is much less than thH, number of distinct keys to be logged. Source
cooperation imotassumed.

N that needed to be logged (using methods we discuss belolwasuBloom filters [10, 15], to handle
duplicates), but in our setting of large infections and kanak with limited memory, we must also assume
thatN >> M.

Eliminating all duplicates before transmitting to the sielnota goal of a scalable logger. We
assume that the sink has a hash table large enough to stbremiljue sources (by contrast to the logger)
and eliminate duplicates.

Instead, the ultimate goal of the scalable loggerdar-complete collectiarthe logging of allN
sources. We now adopt some of the terminology of competitinadysis [11] to describe the performance
of practical logger systems. The best possible logging figggma for an omniscient algorithm is clearly

N/b. We compare our algorithms against this omniscient algarias follows.

Definition 2.1. We say that a logging algorithm i€, c)-scalable if the time to collect at lea&t — €)N
of the sources is at most glimal. In the case of a randomized algorithm, we say that an alporits

(€,c)-scalable if in time cJptimal the expected number of sources collected is at Iglaste)N.

Note that in the case = 0 all sources are collected. While obviously collectingsallirces is a
desirable feature, some relaxation of this requirementedmrally lead to much simpler algorithms.

These definitions have some room for play. We could instethd candomized algorithrie, c)-
scalable if the expected time to collect at le@st- €)N is at mostcT,primal, and we may be concerned
only with asymptotic algorithmic performance as eitherathtnfN /M andB/b grow large. As our focus
here is on practically efficient algorithms rather than Bubifferences in the definitions we avoid such
concerns where the meaning is clear.

The main goal of this paper is to provide an effective and tprak(e, c)-scalable randomized
algorithm. To emphasize the value of this result, we firststimt simple naive approaches are (&t)-

scalable for any constangsc > 0. Our positive results will require the following addit@rassumption

10

for our model:

Persistent Source Assumption:We assume that any distinct ke§ to be logged will keep
arriving at the logger.

For sources infected by worms this assumption is often redse until the source is “disin-
fected” because the source continues to attempt to inféetr aomputers. The time for remediation
(days) is also larger than the period in which the attackhreaits maximum intensity (hours). Further, if
a source is no longer infected, then perhaps it mattersHas$ite source is not logged. In fact, we conjec-
ture that no algorithm can solve the scalable logging prabgthout the Persistent Source assumption.

The abstract logger model is a general one and applies to sgttengs. In the introduction, we
mentioned one other possibility, logging sources using BKA&s another example, imagine a monitor
that wishes to log all the sources in a network. The monitsuds a broadcast request to all sources
asking them to send a reply with their ID. Such messages du, égir example the SYSID message in
802.1. Unfortunately, if all sources reply at the same tismane set of sources can consistently be lost.

Of course, if the sources could randomize their replies) tietter guarantees can be made. The
problem can be viewed as one of congestion control: matdhimgpeed of arrival of logged keys to the
logging speed. Congestion control can be solved by standattods like TCP slow start or Ethernet
backoffif sources can be assumed to cooperate. However, in a seattihgsave cannot assume that

sources will cooperate, and other approaches, such as ¢heeprovide, are needed.

2.3 Analysis of a Nave Logger
2.3.1 The Nave Logger Alone

Before we describe our scalable logger and Snort implertientave present a straw man naive
logger, and a theoretical analysis of the expected and wasst times. The theoretical analysis makes
some simplifications that only benefit the naive loggerghilltits performance is poor. The naive logger
motivates our approach.

We start with a model of the naive logger shown in Figure /é.assume that the naive logger
only has a memory buffer in the form of a queue. Keys, whictiragee usually source addresses, arrive
at a rate oB per second. When the naive logger receives a key, it is gpplatcthe tail of the queue. If the
queue is full, the key is dropped. The size of the qued.i®eriodically, at a smaller rate bfkeys per
second, the naive logger sends the key (and any assootqed)rat the head of the queue to a disk log.

LetLp denote the set of keys logged to disk, dpgthe set of keys that are in the memory.

11

Set of items logged in memory L M
randomly choose

i] logging rate
N items e tO fill empty slof oy, opy ‘ " L ‘ ‘ HEAD}_—> DISK LOG
arrival rate = B =b Lp

Memory Buffer
Size=M

Figure 2.4. Model of naive logging using an optimistic random model.aivlspace opens up in the mem-
ory log, a source is picked uniformly and randomly from thiecdeall possibleN sources. Unfortunately,
that source may already be in the memory lag) or in the disk log [p). Thus as more sources are
logged it gets increasing less probable that a new uniquesauill be logged, leading to a logarithmic
increase in collection time over optimal

The naive logger works very poorly in an adversarial sgttin an adversarial model, after the
qgueue is full ofM keys, and when an empty slot opens up at the tail, the adyepsaks a duplicate
key that is part of theM keys already logged. When the queue is full, the adversariesythrough
the remaining unique sources to pick them to arrive and bppia, thus fulfilling the persistent source

assumption in which every source must arrive periodicélig then easy to see the following result.

Theorem 2.2. Worst-case time for naive loggerThe worst-case time to collect all N keys is infinity. In

fact, the worst-case time to collect more than M keys is ifini

We believe the adversarial models can occur in real sitnat@specially in a security setting.
Sources can be synchronized by design or accident so thaircepurces always transmit at certain
times when the logger buffers are full. While we believe tresiilience to adversarial models is one
of the strengths of Carousel, we will show that even in thetrepsimistic random models, Carousel
significantly outperforms a naive logger.

The simplest random model for key arrival is one in which tlegtrkey to arrive is randomly
chosen from thé\ possible keys, and we can find the expected collection tintlesohaive logger in this
setting.

Let us assume théfl < B/b, so that initially the queue fills entirely before the firspdeture.
(The analysis is easily modified if this is not the case.) Fegu5 is a timeline which shows that the
dynamics of the system evolve in cycles of lendtrseconds, wher& = 1/b. EveryT seconds the
current head of the memory queue leaves for the disk log, athdnvihe smaller time = 1/B, a new
randomly selected key arrives to the tail of the queue. leiotfords, the queue will always be full except
when a key leaves from the head, leaving a single empty stbeatil as shown in Figure 2.4. The very
next key to be selected will then be chosen to fill that empiya$ shown in Figure 2.5.

The analysis of this naive setting now follows from a staddaalysis of the coupon collector’s

12

t=1B<<T
| \ \
Last head Random source Next head
leaves for disk arrives leaves for disk

T = 1/b, b = logging rate

Figure 2.5. Portion of timeline for random model shown in Figure 2.4. Wedk time into cycles of time
T whereT is the time to send one piece of logged information at theilugcateb. The time for a new
randomly chosen source to first arrive is much smalterl/B, whereB is the faster packet arrival rate.

problem [48]. LetL = Ly ULp denote the set of unique keys logged in either memory or disk.T;
denote the time fok to grow from size — 1 toi (in other words, the time for thieth new key to be logged).
If we optimistically assume that the first keys that arrive are distinct, we hatie=T for 1 <i <M, as
the queue initially fills. Subsequently, since the newlyamg key is chosen randomly from the setéf
keys, it will get increasingly probable (agets larger) that the chosen key already belongs to the tbgge
setL.

The probability that a new key will not be a duplicateiof 1 previously logged keys is is
R =(N—i+1)/N. If a key is a duplicate the naive logger simply wastes aecg€timeT. (Technically,
it might beT —t wheret = 1/B, but this distinction is not meaningful and we ignore it.)eTéxpected
number of cycles before theth key is not a duplicate is the reciprocal of the probapiit 1/R. Hence

fori > M,i < N the expected value & is

N L B E Ni
& BN-T71) b &
using the well-known result for the sum of the harmonic seriélence if we Iet'l'cr(‘;';‘lig‘gt be the time

to collect allN keys for the naive collector theﬁ%?fg‘gt > %In(N — M), and so the naive logger is a
multiplicative factor of IfN — M) worse than the optimal algorithm.
It might be objected that it is not clear tHdf'b is in fact the optimal time in this random model,

and that this IN factor is due entirely to the embedded coupon collectorsblgm arising from the

13

random model. For example,B = b = 1, then you cannot collect thé keys in timeN, since they will
not all appear until after approximatelyinN keys have passed [48]. However, as londggb > InN
(andM > 1), for anyy > 0, with high probability an omniscient algorithm will be alib collect all keys
after at mos{1+ y)NB/b keys have passed in this random model, so the optimal ciolfetine can be
made arbitrarily close tdl/b. Hence, this algorithm is indeed not truly scalable in thessewe desire,
namely in a comparison with the optimal omniscient algonith

Even if we seek only to obtaifl —)N keys, by the same argument we have the collection time

o| Z

(In((1— &N —M)+O(1)).

Hence whemM = o(N), the logger is still note, c)-scalable for any constantsandc. We can summarize

the result as follows:

Theorem 2.3. Expected time for naive loggerThe expected time to collett — £)N keys is at least
a multiplicative factor oin((1— &)N — M) worse than the optimal time for sufficiently largeM|, and

ratios B/b.

As stated in the introduction, for large worm outbreaks, iaése logger can be prohibitively
slow. For example, as In@00,000 is almost 14, if the optimal time to log 1 million sourcedihour, the
naive logger will take almost 14 hours.

The results for the random model can be extended to situsatiat naturally occur in practice
and appear somewhere between the random model and an adensalel. For example, suppose that
we have two sets of sources, of sizdésandN,, but the first source sends at a speed thgttimes the
second. This captures, at a high level, the issue that sourag be sending at different rates. We assume
each source individually behaves according to the randoneind.etT; be the expected time to collect
all the keys in the fast set, arid the expected time for the slow set. Then clear the expeatesl th
collect all sources is at least m@x, T,), and indeed this lower bound will be quite tight whgnand T,

are not close. As an example, suppbge= N, = N/2, andj > 1. ThenT; is approximately

NU+1MH<N M)_

2b 2 j+1

The time to collect in this case is dominated by the slow sesirand is still a logarithmic factor from

optimal.

14

2.3.2 The Nave Logger with a Bloom Filter

A possible objection is that our naive logger is far tooseait may be apparent to many readers
that additional data structures, such as a Bloom filter,ccbalused to prevent logging duplicate sources
and improve performance. This is true, and we shall use sudisares in our scalable approaches.
However, we point out that as the Bloom filter of limited si#esannot by itself prevent the problems of
the naive logger, as we now explain.

To frame the discussion, consider 1 million infected sositbat keep sending to an IPS. The
solution to the problem may appear simple. First, sincehallsources may arrive at a very fast rate of
B before even a few are logged, the scheme must have a memdey thit can hold keys waiting to
be logged. Second, we need a method of avoiding sendingcditgydi to the logger, specifically one that
takes small space, in order to make efficient use of the spedid of the logger.

To avoid sending duplicates, one naturally would think obluson based on Bloom filters or
hashed fingerprints. (We assume familiarity with Bloom f#tea simple small-space randomized data
structure for answering queries of the form “Is this an itensétX” for a given setX. See [15] for
details.) For example, we could employ a Bloom filter as f@loFor concreteness, assume that a source
address is 32 bits, the report associated with a source ig6&hbd that we use a Bloom filter [10] of 10
bits per sourcé.Thus we need a total of 100 bits of memory for each sourcenggit be logged, and 10
bits for each source that has been logged. (Instead of a Biittemwe could keep a table of hash-based
fingerprints of the sources, with different tradeoffs batitar results, as we discuss in Section 2.4.2.)

Unfortunately, the memory buffer and Bloom filter have to r@pe at Gigabit speeds. Assume
that the amount of IDS high speed memory is limited to stosiag 1 Mbit. Then, assuming 100 bits per
source, the IPS can only store information about a burst @gfQdDsources pending their transmission to
a remote disk. This does not include the size of the Bloonr fitdaich can only store around 100,000
sources if scaled to 1 Mbit of size; after this point, thedgiositive rate starts increasing significantly. In
practice one has to share the memory between the sourcelseaBtbom filter.

The inclination would be to clear the Bloom filter after it lbate full and start a second phase
of logging. One concern is that timing synchronization dasult in the same sources that were logged
in phase 1 being logged and filling up the Bloom filter agaim thiis could happen repeatedly, leading to

missing several sources. Even without this potential gobithere is danger in using a Bloom filter, as

1This is optimistic because many algorithms would requirgust a Bloom filter but instead a count-
ing Bloom filter [25] to support deletions, which would regruimore than 10 bits per entry.

15

we can see by again considering the random model.

Consider enhancing the naive logger with a Bloom filter tevpnt the sending of duplicates.
We assume the Bloom filter has a counter to track the numbégrasiplaced in the filter, and the filter is
cleared when the counter reaches a threshdtdprevent too many false positives. Between each clearing,
we obtain a group of distinct random keys, but keys may be appear in multiple ggo&ffectively, this
generalizes the naive logger, which simply used groupefs= 1.

Not surprisingly, this variation of the coupon collectgui®blem has been studied; it is know as
the coupon subset collection problem, and exact resulthé&problem are known [61, 70]. Details can
be examined by the interested reader. A simple analysissbernshows that for reasonable filter siges
there will be little or no gain over the naive logger. Speailly, suppos& = o(v/N). Then in the random
model, the well-known birthday paradox implies that witlythiprobability the firsF keys to be placed
in the Bloom filter will be distinct. While there may still balée positives from the Bloom filter, for such
F the filter fills without detecting any true duplicates wittghiprobability. Hence, in the random case,
the expected collection time even using a Bloom filter of fliue is still% IN(N — M)+ O(1). With larger
filters, some true duplicates will be suppressed, but ondsweery large filters to obtain a noticeable gain.
The essential point of this argument remains true even iggtteng considered above where different sets
of sources arrive at different speeds.

The key problem here is that we cannot supply the IDS withigief all the sources that have
been logged, even using a Bloom filter or a hashed set of fingé&sp Indeed, wheiM < N no data
structure can track a meaningful fraction of the keys thatlaready been stored to disk. Our solution to
this problem is to partition the population of keys to be releal into subsets of the right size, so that the
logger can handle each subset without problem. The loggeritarates through all subsetsghasesas
we now describe. This repeated cycling through the keysminiscent of a Carousel, yielding our name

for our algorithm.
2.4 Scalable logging using Carousel

2.4.1 Partitioning and logging

Our goal is to partition the keys into subsets of the right sgo that during each phase we can
concentrate on a single subset. The question is how to petfar partitioning. We want the size of each
partition to be the right size for our logger memory, thatppr@oximately sizeM. We suggest using a

randomized partition of the sources into subsets using la fhection that uses very little memory and

16

processing. This randomized partitioning would be simptled initially knew the population sizhil, but
that generally will not be the case; our system must find tleeatipopulation siz&l, and indeed should
react as the population size changes.

We choose a hash-based partition scheme that is particuhenory and time-efficient. Let
H (X) be a hash function that maps a source Xep anr-bit integer. LetHx(X) be the lower ordek bits
of H(X). The size of the partition can be controlled by adjusting

For example, ik = 1, we divide the sources into two subsets, one subset whaserlter bit
(after hashing) is 1, and one whose lower order bit is a 0.dfrthsh function is well-behaved, these two
sets will be approximately half the original sike Similarly, k = 2 partitions the sources approximately
into four equally sized subsets whose hash values have Ider dits 00, 01, 10, and 11 respectively.
This allows only very coarse-grained partitioning, butttlsagenerally suitable for our purposes, and
the simplicity of using the lower ordérbits of H (X) is particularly compelling for implementation and
analysis. To begin we will assume the population size islsthbt unknown, in which case the basic

Carousel algorithm can be outlined as follows:

e Partition: Partition the population into groups of siz&t®/ placing all sources which have the same

value ofHy(X) in the same partition.

o lterate: A phase is assigned timBnase= M/b which is the time to logM sources, wheri
is the available memory in keys atdis the logging time. Thé-th phase is defined by logging
only sources such that(s) = i. Other sources are automatically dropped during this phHse
algorithm must also utilize some means of preventing theessoarce from being logged multiple

times in the phase, such as a Bloom filter or hash fingerprints.

e Monitor: If during phase, the number of keys that matt() = i exceeds a high threshold, then
we return to the Partition step and incre&s&Vhile our algorithms typically uske = k+ 1, higher
jumps can allow faster response. If the number of numberysd Keat matctHy() =i falls below a

low threshold, then we return to the Partition step and desgle

In other words, Carousel initially tries to log all sourceshout hash partitioning. If that fails
because of memory overflow, the algorithm then works on t&fftossible sources in a phase. If that
fails, it works on a quarter of the possible sources, and s®oice it determines the appropriate partition

size, the algorithm iterates through all subsets to logmitees.

17

As described, we could in the monitoring stage chakfg more than 1 if our estimate of the
number of keys seen during that phase suggests that would bppopriate choice. Also, of course,
we can choose to decredsé our estimate of the keys in that phase is quite small, aslavbappen if
we are logging suspected virus sources and these sourcempped. There are many variations and
optimizations we could make, and some will be explored in experiments. The important idea of
Carousel, however, is to partition the set of keys to mateHdljger memory size, updating the partition

as needed.

2.4.2 Collection Times for Carousel

We assume that the memory includes, for each key to be retottte space for the key itself,
the corresponding report, and some number of bits for a Bltiten This requires slightly more memory
space that we assumed when analyzing the random model, wieedél not use the Bloom filter. The
discrepancy is small, as we expect the Bloom filter to be leas 1.0% of the total memory space (on
the order of 10 bits or less per item, against 100 or more bitshie key and report). This would not
effectively change the lower bounds on performance of theenagger. We generally ignore the issue
henceforth; it should be understood that the Bloom filteesak small amount of additional space.

Recall that Carousel has 3 components: partition, itegaté,monitor. Faced with an unknown
populationN, the scalable logger will keep increasing the number ofdfitsserk until each subset is less
than sizeM, the memory size available for buffering logged keys.

We sketch an optimistic analysis, and then correct for thiamagtic assumptions. Let us assume
that allN keys are present at the start of time, that our hash funcgitits she keys perfectly equally, and
that there is no failed recording of keys due to false paesitivom the Bloom filter (or whatever structure
suppresses duplicates). In that case it will take at mios, %1 partition steps for Carousel to get the
right number of subsets. Each such step required time fongleslogging phas€lpnhase= M/b. The
logger then reaches the right subset size, soktisathe smallest value such tHdf 2k < M. The collector
then goes throughZhases to collect aM sources. Note that2< 2N/M, or elsek would not be the
smallest value wittN/2X < M. Hence, after the initial phases to find the right valud,ahe additional

collection time required is just\g/b, or a factor of two more than optimal. The total time is thumatt

MTlogy(N/M)] | 2N

b b’

and the generally the second term will dominate the first.ndstptically, whenN > M, we are roughly

18

within a factor of 2 of the optimal collection time.

Note that the factor of 2 in theN?/b term could in fact be replaced in theory by any constant
a> 1, by increasing the number of sets in the partition by a faafta rather than 2 at each partition step.
This would increase the number of partition step$lt1ga%]. In practice we would not want to choose
a value ofa too close to 1, because keys will not be partitioned equally sets, as we describe in the
next subsection. Also, as we have described a factor of Znigerdent in terms of partitioning via the low
order bits of a hash. In what follows we continue to use th&ofaZ in describing our algorithm, although
it should be understood smaller constants (with other tifigleare possible.

In some ways our analysis is actually pessimistic. Earlysphahat fail can still log some items,
and we have assumed that we could partition to requitg\2 phases, when generally the number of
phases required will be smaller. However, we have also magie ®ptimistic assumptions that we now

revisit more carefully.
Unequal Partitioning: Maximum Subset Analysis

If the logger usek bits to partition keys, then there ake= 2K subsets. While the expected
number of sources in a subset{{% even assuming a perfectly random hash function, there reay b
deviations in the set sizes. Our algorithm will actually cke the value df such that the biggest partition
is fit in our memory budge¥, not the average partition, and we need to take this intowadcd hat is,
we need to analyze thmaximummumber of keys being assigned to a subset at each phasainterv

In general, this can be handled using standard Chernoffdanalysis [48]. In this specific case,
for example, [58] proves that with very high probabilityetaximum number of sources in any subset
is less thar{}‘ + M Therefore we can assume that the smallest integatisfying

N+ 2NInK
K

<M, 2.1)

x|

whereK = 2K, is greater than or equal to theeventually found by the algorithm.
Note that the difference between our optimistic analystsene we required the smalldssuch

thatN/K < M, and this analysis is generally very small, M is generally much less thaw/K.

That is, suppose that/K < M, but® + ,/2NK ~ M so that at some point we might increase the value

k to more than the smallest value such tNgK < M, because we unluckily have a subset in our partition

19

that is bigger than the memory size. The key here is that ;xdhseN /K ~ M, or more specifically

2NInK
K)

2KM < 2N+2 [2NInK
b b b K

That is, the collection time is still, at most, very close /b, with the addition of a smaller order term

N
M>—>M-—
> >

so that our collection time is now

that contributes negligibly compared tbl 2b for largeN. Hence, asymptotically, we are still with a factor

of ¢ of the optimal collection time, for any> 2.
Effects of False Positives

So far, our analysis has not taken into account our methodgpgdressing duplicates. One natural
approach is to use a Bloom filter, in which case false positean lead to a source not being logged in
a particular phase. This explains our definition of(arc)-scalable logger. We have already seen that
can be upper bounded by any number larger than 2 asymptptietdre € can be bounded by the false

positive rate of the corresponding Bloom filter. As long as tlumber of elements per phase is no more

thanM’ = %Jr ZN,L“K with high probability, then given the number of bits useddar Bloom filter, we
can bound the false positive rate. For example, usirid’ 1its in the Bloom filter, the false positive rate
is less than 1%, so our logger asymptotically converges @, 2)-scalable logger.

We make note of some additions one can make to improve thgsasalFirst, this analysis
assumes only a singlmajor cyclethat logs each subset in the partition once. If one rerangednihe
chosen hash functions each major cycle, then the probahilitersistent source is missed each major
cycle is independently at mosteach time. Hence, after two such cycles, the probability ebarce
being missed is at most, and so on.

Second, this analysis is pessimistic, in that in this sgttilems are gradually added to an empty
Bloom filter each phase; the Bloom filter is not in its full gtat all times, so the false positive probability
bound for the full filter is a large overestimate. For comgihetss we offer the following more refined anal-
ysis (which is standard) to obtain the expected false pesitite. (As usual, the actual rate is concentrated
around its expectation with high probability.)

Assume the Bloom filter ham bits and use# hash functions. Consider whether thetr 1)st

item added to the filter causes a false positive. First censidparticular bit in the Bloom filter. The

20

probability that it is not set to 1 by one of the hash functions thus far i€l —). Therefore the
probability of a false positive at this stage(ls— (1— 1)) ~ (1—e m)".

SupposeM’ items are added into the Bloom filter within a phase interVhke expected fraction
of false positives is then (approximatefy}'s (1 — e m), compared to thél — e*hT“f/)h given by the
standard analysis for the false positive rate altérelements have been added. As an example, with
M’ = 312,h =5, andm = 5000, the standard analysis gives a false positive ratedoflD 3, while our
improved analysis gives a false positive rate &-20 4.

Third, if collecting all or nearly all sources is truly paraomt, instead of using a Bloom filter,
one can use hash-based fingerprints of the sources insthedrefuires more space than a Bloom filter
(©(logM’) bits per source if there atd’ per phase) but can reduce the probability of a false poditive
inverse polynomial itM’; that is, with high probability, all sources can be collecté/e omit the standard

analysis.
Carousel and Dynamic Adaptation

Under our persistent source assumption, any distinct kegkarriving at the logger. In fact, for
our algorithm as described, we need an even stronger assumgach key must appear during the phase
in which it is recorded, which means each key should arriveryeM /b steps. Keys that do not appear
this frequently may miss their phase and not be recorded.olst settings, we do not expect this to be a
problem; any key that does not persist and appear this frétyuoes not likely represent a problematic
source in terms of, for example, virus outbreaks. Our atgoricould be modified for this situation in
various ways, which we leave as future work. One approachgXample, would be to sample keys in
order to estimate the 95% percentile for average interdtiimes between keys, and set the time interval
for the phase time to gather a subset of keys accordingly.

A more pressing issue is that the persistent source assumpiiy not hold because external
actions may shut down infected sources, effectively chantiie size of the set of keys to record dynami-
cally. For example, during a worm outbreak, the number afdtéd sources rises rapidly at first but then
they can go down due to external actions (for example, nétwongestion, users shutting down slow
machines due to infection, and firewalling traffic or bloakia part of the network). In that case, the
scalable logger may pick a large number of samplinglo#sfirst due to large outbreak traffic. However,
the logger should correspondingly increase the valdesobsequently as the number of sources to record

declines, to avoid inefficient logging based on too large mlmer of phases.

21

Initialization:
V=0
k=0
Clear Bloom Filter
Set Timer to Tphase
Snort

Carousel

Is H, (packet.key)

=low order k bits
of sampling value V?

Bloom Filter B
underflow?

packet.key
in Bloom filter?

Drop
Packet

Add packet.key to V=V +1mod 2
Bloom filter Reset Timer to Tphase
Clear Bloom Filter B

k=k + 1
V=V +1mod 2
Reset Timerto T

phase

Clear Bloom Filter

loom Filter
overflow?

N

Snort's output module g |
Log & Alert

Figure 2.6. Flowchart of Carousel within Snort packet flow

2.5 Carousel Implementations

We describe our Snort evaluation in Section 2.5.1 and alskdta hardware implementation in

Section 2.5.2.
2.5.1 Snort Implementation

In this section, we describe our implementation of Caroirgebrated into the Snort [69] IDS.
We need to first understand the packet processing flow withortSo see where we can interpose the
Carousel scalable logger scheme. As in Figure 2.6, incopéingets are captured tippcap queued in

a kernel buffer, and then processed by the callback fun€&tronessPacket

22

ProcessPackdirst passes the packet to preprocessors, which are comgsargrug-ins serving
to filter out suspicious activity and prepare the packet téulther analyzed. The detection engine then
matches the packet against the rules loaded during Snbaliiration. Finally, the Snort output module
performs appropriate actions such as logging to files orging alerts. Note that Snort is designed to
be strictly single-threaded for multiplatform portahjilit

The logical choice is to place Carousel module between ttectien engine and output module
so that the traffic can either go directly to the output plugriget diverted through the Carousel module.
We cannot place the logger module before the detection erizgnause we need to log only after a rule
(e.g., adetected worm) is matched. Similarly, we cannatgpthe logger after the output module because
by then it is too late to affect which information is loggedurOmplementation also allows a rule to
bypass Carousel if needed and go directly to the output neodul

Figure 2.6 is a flowchart of Carousel module for Snort intsgebbetween the detection engine
and the output model. The module uses the variablgge= M/b (time for each phase) and(number
of sampling bits) described in Section 2.4M is the number of keys that can be logged in a partition and
b is the logging rate; in our experiments we WMe= 500. The module also uses a 32-bit integethat
represents the hash value corresponding to the curreitigrarinitially, k = 0,V = 0, the Bloom filter
is empty, and a timeT is set to fire aftelyhase The Bloom filter uses 5000 bits, or 10 bits per key that
can fit inM, and employs 5 hash functions (SDBM, DJP, DEK, JS, PJW) t&loem [56].

The Carousel scalable logger first compares the low-dedeis of the hash of the packet key
(we use the IP source address in all our experiments) to thetderk bits of V. If they do not match,
the packet is not in the current partition and is not passele@utput logging. If the value matches but
the key yields a positive from the Bloom filter (so it is eitt@ready logged, or a false positive), again
the packet is not passed to the output module. If the valuehreatand the key does not yield a positive
from the Bloom filter, then the module adds the key to the Blditter. If the Bloom filter overflows (the
number of insertions exceelil), thenk is incremented by 1, to create smaller size partitions.

When the timefT expires, a phase ends. We first check for underflow by testimgtiver the
number of insertions is less tham/x. We found empirically that a factor= 2.3 worked well without
causing oscillations. (A value slightly larger than 2 is sble, to prevent oscillating because of the
variance in partition sizes.) If there is no underflow, thea $ampling valu¥ is increased by 1 mod2

to move to the next partition.

23

Scalable Logging Hardware

Key, record | Hash ke Compare: Low order _
from detector Y bits of Hash = v?

—— To remote logger

Figure 2.7. Schematic of the Carousel Logger logic as part of an IPS Chip.

2.5.2 Hardware Implementation

Figure 2.7 shows a schematic of the base logic that can beeéddeetween the detector and the
memory buffer used to store log records in an IPS ASIC. Usiipit for the Bloom filter, we estimate
that the logic takes less than 5% of a low-end 10mm by 10 mmar&ing ASIC. All results are reported
for a standard 400 Mhz 65 nm process currently being used twoniking vendors. The logic is flow-
through: in other words, it can inserted between the detactd logging logic without changing any other
logic. This allows the hardware to be incrementally deptbyithin an IPS without changing existing
chip sets.

We assume the detector passes a key (e.g., a source |IP addréss detection record (e.g.,
signature that matched) to the first block. The hash blockspeoes a 64-bit hash of the key. Our
estimates use a Rabin hash whose loop is unrolled to run abg® Gsing 20K gates.

The hash output supplies a 64-bit number which is passedet@tmpare block. This block
masks out the low-orddebits of the hash (a simple XOR) and then compares it (compditata register
valueV that denotes the current hash value for this phase. If thepadson fails, the log attempt is
dropped. If it succeeds, the key and record are passed tdabenBilter logic. This is the most expensive
part of the logic. Using 1 Mbit of SRAM to store the Bloom filtend 3 parallel hash functions (these can
be found by taking bits 1-20, 21-40, 41-60 etc of the first @4xash computed without any further hash
computations), the Bloom filter logic takes less than a fere@et of a standard ASIC.

As in the Snort implementation, a periodic timer module fiegsry Tyhase= M/b time and
causes the valu¥ to be incremented. Thus the remaining logic other than tleel filter (and to a
smaller extent the hash computation) is very small. We usectwpies of the Bloom filter and clear one
copy while the other copy is used in a phase. The Bloom filteukhbe able to store a number of keys

equal to the number of keys that can be stored in the memofgrbukssuming 10 bits per entry, a 1

24

Mbit Bloom filter allows approximately 100,000 keys to be el in each phase with the targeted false
positive probability. Other details (underflow, overflow.g¢tare similar to the Snort implementation and

are not described here.

2.6 Simulation Evaluation

To evaluate Carousel under more realistic settings in wtiiehpopulation grows, we simulate
the logger behavior when faced with a typical worm outbresaknadeled by a logistic equation. We used
a discrete event simulation engine that is a stripped doandfficiency) version of the engine found
in ns-2. We implement the Carousel scalable logger as destin Section 2.4. The simulated logger
maintains the sampling bit couktand only increasek when the Bloom filter overflowsk stabilizes
when all sources sampled durifighasefit the into memory budge¥l with logging speed. Simulation
allows us to investigate the effect of various input parargesuch as varying worm speed and whether
the worm uses a hit list. Again, in all the simulations beltve Bloom filter uses 5000 bits and 5 hash
functions (SDBM, DJP, DEK, JS, PJW) taken from [56]. For eexperiment, we plot the average of 50
runs of simulation.

We start by confirming the theory with a baseline experimer8eéction 2.6.1 when all sources
are present at time 0. We examine the performance of our faggfethe logistic model in Section 2.6.2.
We evaluate the impact of non-uniform source arrivals inti6a.6.3. In Section 2.6.4, we examine a
tradeoff between using a smaller number of bits per Bloorarfilement and taking more more major
cycles to collect all sources. Finally, in Section 2.6.5, deenonstrate the benefit of reducikgn the

presence of worm remediation.

2.6.1 Baseline Experiment

In Figure 2.8, we verify the underlying theory of CarouseBiaction 2.4 assuming all sources
are present at time 0. We consider various starting pojpunishi = 10000 to 80000 sources, a memory
budget ofM = 500 items, and a logging spebd- 100 items per second.

Figure 2.8 shows that the Carousel scalable logger colédetest all(at least 99%) items by
t =189 354,679 and 1324 seconds filr= 10000 2000040000 and 80000 respectively. This is no more
than% in all cases, matching the predictions of our optimisticlgsia in Section 2.4.

With these settings, the 1000 sources will be partitioned into 32 subsets, each ofegipeoxi-

mately 312 (in expectation). In fact, our experiment trawevss that the number of sources per phase is

25

100k

=== 10,000 sources
==r===| 20,000 sources

S 80k
§ == 40,000 sources s
§ ===/ 80,000 sources/
©
Q
(@)}
(@]
o /
S 40k
@
o)
£
Z 20k

10k

0

0 200360 680 . 1000 1350 2000
time (sec)

Figure 2.8. Performance of Carousel with different logging populasion

in the range of 280 to 340. Since the Bloom filter uses 5000 d&stsentially we have more than 10 bits per
item once the right number of partitions is found. As we cltad previously (in Section 2.4.2), the ac-
cumulated false positive rate of 312 sources in a 5000-bib8l filter with 5 hash functions is2- 104,
We also verified that most phases have no false positives.etawthe Carousel algorithm may need
additional major cycles to collect these remaining sourSirsce a major cycle is“dterations, the theory
predicts that Carousel requires more time to collect mifasled positives for largdcand hence for larger
N. We observe that the length of horizontal segment of eacheduarFigure 2.8, which represents the

collection time of all sources missed in the first major cyiddonger for larger populatiors.

2.6.2 Logger Performance with Logistic Model

In the logistic model, a worm is characterized Hy the size of the initial hit list, the scanning
rate, and a probabilitp of a scan infecting a vulnerable node. In our simulation®welwe use a
population ofN = 10,000, a memory siz& = 500 with Bloom filter andvl = 550 without Bloom filter,
and logging speeld = 100 packets/sec; the best possible logging time to collesbarces isN/b =100
seconds.

For our first 3 experiments, shown in Figures 2.9, 2.10 and,2xk use an initial hit list of

26

H = 10,000. Since the hit list is the entire population, as in theebas, all sources are infected at
timet = 0. We use these simulations to see the effect of increassgadhn rate and monitoring ability
assuming all sources are infected. Our subsequent expaamél assume a much smaller hit list, more
closely aligned with a real worm outbreak.

For the first experiment, shown in Figure 2.9 we use 6 scans@sond (to model a worm
outbreak that matches the Code Red scan rate [78]paa@.01. Figure 2.9 shows that Carousel needs
200 seconds to collect thé = 10,000 sources whereas the naive logger tak@9@ seconds. Further,
the difference between Carousel and the naive loggerasesewith the fraction of sources logged. For
example, Carousel is 6 times faster at logging 90% levellafalrces but 20 times faster to log 100% of
all sources. This is consistent with the analysis in Se@i8nl.

In Figure 2.10 we keep all the same parameters but incre@ssctdn rate ten times to 60
scans/sec. The higher scan rate allows naive logging tegi@@ance to randomly sample packets and so
the difference between scalable and naive logging is lessopinced. Figure 2.11 uses the same param-
eters as Figure 2.9 but assumes that only 50% of the scanagkg{s are seen by the IPS. This models
the fact that a given IPS may not see all worm traffic. Noticagilmthat the difference between naive and
Carousel logging decreases when the amount of traffic sedreld?S decreases.

The remaining simulations assume a logistic model of worowgin starting with a hit list of
H = 10 infected sources when the logging process starts. Thesrimost curve illustrates the infected
population versus time, which obeys the well-known logistirve. Even under this propagation model,
Carousel still outperforms naive logging by a factor of adin5. Carousel takes around 400 seconds to
collect all sources while naive logger takes 2000 seconds.

Figure 2.13 shows a slower worm. A slower worm can be modeledany ways, such using
a lower initial hit list, a lower scan rate, or a lower victintting probability. In Figure 2.13, we used
a smaller hitting probability of @01. Intuitively, the faster the propagation dynamics, lile¢ter the
performance of the Carousel scalable logger when compartgtnaive logger. Thus the difference is
less pronounced.

Figure 2.14 demonstrates the scalability of Carousel, ascake upN from 10,000 to 100000
with all other parameters staying the same (i.e., 6 scansgoend angh = 0.01). Carousel takes around
9,000 seconds to collect all sources, while the naive Iotades 40,000 seconds. Note also that in all
simulations with the logistic model (and indeed in all oupesiments) the performance of the naive

logger with a Bloom filter is indistinguishable from that difet naive logger by itself — as the theory

27

10000

e
g |
88000 f
3 £
© 6000 #
5 ¢
2 —— |Carouse|
Y= 4000 =
| B Naive logger
(O] .
£ 20 —— |Naive logger
3 with Bloom filter
0
0 1000 2000 3000 4000

time (sec)

Figure 2.9. Performance of the Carousel scalable logger. Scan rate, vi6fan hit=1%, M = 500,
N =10,000,b =100

10000

- d
S LI/
gsooo
k<]
0
(O]
8 6000
>
2 —— |Carouse|
Y= 4000 =
| P Naive logger
(O] .
£ 20 —— |Naive logger
3 with Bloom filter
0
0 1000 2000 3000 4000
time (sec)

Figure 2.10.High scan rate (60 scans/s)

10000

-

k5
gaooo /
-l
(]
<) ¥
8 6000
>
? — |Carousel|
| I Naive logger
(O] .
£ 0 —— Naive logger
3 with Bloom filter
0
0 1000 2000 3000 4000
time (sec)

Figure 2.11.Reduced monitoring space (50%)

28

predicts.
2.6.3 Non-uniform source arrivals

In this section, we study logging performance when the ssuegrive at different rates as de-
scribed in Section 2.3.1. In particular, we experiment witio equal sets of sources in which one set
sends at ten times as fast as the other set. Figure 2.15b #hewesult for the naive logger. We observe
that the naive logger has a significant problem in loggiegsibw sources, which are responsible for drag-
ging down the overall performance. As predicted by our matiel times taken to log all slow sources is
ten times slower than the time taken to log all fast sourchs.times to log all and almost all sources are
8,000 and 4000 seconds respectively.

Simply adding a Bloom filter only slightly increases the penfiance of the naive logger as
predicted by the theory . On the other hand, Carousel is aldersistently log all sources as shown in
Figure 2.15a. Carousel is not susceptible to source amtes: sources from both the fast and slow sets

are logged equally in each minor cycle once the appropriatgxer of sampling bits has been determined.
2.6.4 Effect of Changing Hash Functions

In this section, we study the effect of randomly changingtthsh functions for the Bloom filter
on each major cycle (that is, each pass through all of theafalee partition). Recall that this prevents
similar arrival patterns between major cycles from causiirigsame source to be missed repeatedly.

Figure 2.17abc compares the performance in Carousel of figied hash functions throughout
and changing the hash functions each major cycle with 15Hiit and 10-bit Bloom filters respectively.
We changed the hash functions randomly by simply XORing &éash value with a new random number
after each major cycle. In these experiments, a major cgc@proximately 160 seconds. For the 1-bit
results, one can clearly see knees in the curves-dt60, 320, and 480 corresponding to each major cycle
in which the logger collects sources missed in previousssycl

Carousel instrumented with changing hash functions is niaster in collectingall sources
across several major cycles. For example, for the 1-bit,aak changing hash functions each major
cycle, it takes 1500 seconds to log all sources while usiregifbash functions takes 2500 seconds to log
all sources.

Should one prefer using a smaller number of bits per Blooerfdtement and a greater number
of major cycles or using a larger number of Bloom filter elets@rThis depends on the exact goals; for a

fixed amount of memory, using a smaller number of Bloom filies per element allows the logger to log

10000

®
o
=]
o

6000

2000

Number of sources logged

4000 —

’T @t“““ﬁm“m
._&’

fi

= Source dynamics

i — Carousel
=== Naive logger
——| Naive logger

with Bloom filter
0 1000 2000 3000 4000

time (sec)

Figure 2.12.Logistic model of propagation - fast worm

10000

®
o
=]
o

6000

4000

2000

Number of sources logged

P
f"
/7

i
l}- ----------- Source d

ynamics

— Carousel
==t Naive Iog

ger

——| Naive log
with Blo

ger
om filter

1000

2000 30
time (sec)

Figure 2.13.Logistic model of propagation - slow worm

100000

ko]
0]
%oooo
o

%]

Bsoooo
2

>
o
0

y—,
040000

—
()
Q0

E20000
S
Pz

00 4000

[/] d
/ s Source dynamics
!- — Carousel
f ======= Naive logger
i —-— Naive logger
with Bloom filter
!
0 10000 20000 30000 40000 50000

time (sec)

Figure 2.14.Scaling up the vulnerable population

29

10000
©
()
(@]
(@]
O 7500
%) /
[}
5] /
S
8 5000 ~
(%]
"'6 o
o o -— All sources
2 2500 £ Hareee Clawlcaureas
E ‘-'!.:;t TUVWISUUTCCS
5 i —— Fast sources
z 5

e A
0 100 200 300 400
time (sec)

(a) Carousel

All sources — naive logger with Bloom filter

/'fAllisouces - naive logger
[Fast spurces '/Slow sources

p .
/ — Naive lggger
— T Naive logger
with Bloom filter
= Carousel

10000

~
al
=]
o

Number of sources logged

0 2000 4000 6000 8000
time (sec)

(b) Naive logger

Figure 2.15.Logger performance under non-uniform source arrivals

10000
v 8000
[}
e
3
mGOOO /
“—
o
54000
Qo
£ ;_{/"i i
E b — Sourice dynamics
2000 - [
wl -~ NOn+decreasing
e —-— Fully adaptive
0
0 100 200 300
time (sec)

Figure 2.16.Dynamic source sampling in Carousel

30

10000 =
g

— Static hashing

3 Dynamic hashing

1000 2000 3000
time (sec)

(a) 1-bit Bloom filter

— Static hashing

3 Dynamic hashing

1000 2000 3000
time (sec)

(b) 5-bit Bloom filter

— Static hashing
=r Dynamic hashing

ke
Q
()]
o))
© 7500
: /
(]
o
S
=]
© 5000
7]
—
o
S
(<)
O 2500
S
=]
Z
0
0
10000
o
Q
()]
o))
© 7500
]
(]
o
S
=]
© 5000
7]
—
o
I
()
O 2500
£
=]
zZ
0
0
10000
o
()
o))
o))
© 7500
n
)
o
—
8 5000
n
—
o
F o
]
0 2500
E
=]
2
0
0

Figure 2.17.Comparison of fixed vs.

1000 2000 3000
time (sec)

(c) 10-bit Bloom filter

changing hash functions in Carousel

31

32

slightly more keys in every phase at the cost of a somewheg#@sed false positive probability. Based on
our experiments, we believe using 5 bits per element prevédeellent performance, although our Snort

implementation (built before this experiment) currentbes 10 bits per element.
2.6.5 Adaptively Adjusting Sampling Bits

As described in Section 2.4.2, an optimization for Caroisst#® dynamically adapt the number
of sampling bitsk to match the currently active source population. In a worrtbmak, the value ok
needs to be large as the when the population of infected esigdarge, but it should be decreased when
the scope of the outbreak declines.

To study this effect, we use theo-factor worm mode]78] to model the dynamic process of
worm propagation coexisting with worm remediation. The-faoctor worm model augments the standard
worm model with two realistic factors: dynamic countermgas by network administrators/users (such
as node immunization and traffic firewalls) and additionaigestion due to worm traffic that makes scan
rates reduce when the worm grows. The model was validated) useasurements of actual Internet
worms (see [78]).

In Figure 2.16, we apply the two-factor worm model. The cuialeled “Source dynamics”
records the number of infected sources as time progresbser the exponential increase in the number
of infected sources prior o= 100. However, the infected population then starts to declin

If we let the two-factor model run to completion, the numbginéected sources will eventually
drop to zero, which makes logging sources less meaningfubrdctice, however, it is the logging that
makes remediation possible. Thus to illustrate the efficdaysing fully adaptive sampling within the
logger, we only apply the two-factor model until the infects population drops to half of the initial vul-
nerable tally. We then look at the time to collect the finaétted population. Note that a non-decreasing
logger will choose a sampling factor based on the peak ptipaland thus may take unnecessarily long
to collect the final population of infected sources.

Figure 2.16 shows that the fully adaptive scheme (increrkeamt overflow, decrement on un-
derflow) enhances performance in terms of logging time asal thle capability to collect more sources
before they are immunized. In particular, the fully adaptscheme collects almost all sources at 220
seconds while the non-decreasing scheme (only increnkemtsoverflow, no decrements) takes more
than 300 seconds to collect all sources. Examining the sitioml results more closely, we found the

non-decreasing scheme adaptell t05 (32 partitions) and stayed there, while the fully adapsisleeme

33

10000

0

8 = Snort instrumented
37500 - with Carousel ~ —|
- == Standard Snort

s == Standard Snort

s with Bloom filter —

o

o

o
S

Number of |
B
3

0 500 1000 1500
Time (sec)

Figure 2.18.Logging performance of Snort instrumented with Carouseleura random traffic pattern

eventually reduced th= 4 (16 partitions) at timé = 130.

2.7 Snort Evaluation

We evaluate our implementation of Carousel in Snort usingstbed of two fast servers (Intel
Xeon 2.8 GHz, 8 cores, 8 GB RAM) connected by a 10 Gbps link. fiise server sends simulated
packets to be logged according to a specified model whilegbersl server runs Snort, with and without
Carousel, to log packets.

We set the timer perio@iphase= 5 seconds. The vulnerable populatiorNis= 10,000 sources
and the memory buffer hagd = 500 entries. In the first experiment, the pattern of traffiecvatis random:
each incoming packet is assigned a source that is uniforndyandomly picked from the population of
N sources.

Figure 2.18 shows the logging performance of Snort instntetewith Carousel. Traffic arrives
at the rate B) of 100 Mbps. All packets have a fixed size of 1000 bytes. Tlygileg rate isb = 100
events per second, i.dea~ 1 Mbps and% = 100. Figure 2.18 shows the improvements in logging from
our modifications. Specifically, our scalable implemewtats able to log all sources within 300 seconds
while standard Snort needs 1500 seconds. Also, adding arBiitter does not significantly improve the
performance of Snort, matching our previous theory.

Figure 2.19 shows the logging performance when the soureepapetually dispatched in a

periodic pattern 1, 2, ..N, 1, 2...,N, ... Such highly regular traffic patterns are common in a nemalf

34

10000 i
AT aanen?

%) ‘O o .

R ,o '..‘,‘

o L

37500 i a

7] {4
o [

) !5

()} i .

5000 |5 = Snort instrumented-|

¥ .

5 I with Carousel

5 E' === Standard Snort
gzsoo == Standard Snort |
S with Bloom filter

Z

0
0 10000 20000 30000 40000

Time (sec)

Figure 2.19.Logging performance of Snort instrumented with Carouseleum periodic traffic pattern

practical scenarios, such as synchronized attacks ordeticoadcasts of messages in the communication
fabric of large distributed systems. We observe that théopaance of standard Snort degrades by one
order of magnitude as compared to the random pattern shofigume 2.18. Further examination shows
that the naive logger keeps missing certain sources die te@gular timing of the source arrivals. On the
other hand, Carousel performance remains consistentsséfiing.

We also performed an experiment with two equally sized sksoorces arriving at different
rates, with fast sources arriving at 1 Gbps and slow sourc#8&Mbps, as shown in Figure 2.20. Our
observations are consistent with the simulation resul®eiction 2.6.3. Note that in this setting standard
Snort takes about 20 times longer to collect all sources Braort with Carousel (300 seconds versus

6000 seconds); in contrast, Snort took only about 5 timegdom our experiment with random arrivals.

2.8 Related Work

A number of recent papers have focused on high speed imptatr@rs of IPS devices. These
include papers on fast reassembly [22], fast normalizgfidn75], and fast regular expression matching
(e.g., [68]). To the best of our knowledge, we have not se@r prork in network security that focuses
on the problem of scalable logging. However, network maregee not just interested in detecting
whether an attack has occurred but also in determining wdiicheir computers is already infected for

the purposes of remediation and forensics.

The use of random partitions, where the size is adjustedrdigadly, is probably used in other

10000

o ~
=] al
] o
] o

Number of sources logged
N
a
o

10000

~
al
=]
o

5000

Number of sources logged
N
a
o

10000

~
al
=]
o

5000

Number of sources logged
N
a
o

A
£
}f' — All sources
rd ===+ Slow sources |
/ —+— Fast sources
|
0 100 200 300 400
time (sec)
(a) Carousel
fum———
& — All sources
& s Slow sources.|
H —— Fast sources
e Carousel
| |
T T
0 2000 4000 6000
time (sec)

(b) Standard Snort

e
._r ‘___,...--.....--
— All sources
.,."' === Slow sources._ |
¢ —-— Fast sources
e Carousel
| |
T T
0 2000 4000 6000
time (sec)

(c) Standard Snort with Bloom filter

Figure 2.20.Snort under non-uniform source arrivals

35

36

contexts. We have found a reference to the Alto file systerf {di2ere if the file system is too large to
fit into memory (but is on disk), then the system resorts tonaloan partition strategy to rebuild the file
index after a crash. Files are partitioned randomly intestdbuntil the subsets are small enough to fit in
main memory. While the basic algorithm is similar, there differences: we haviwo scarce resources
(logging speed and memory) while the Alto algorithm only bas (memory). We have duplicates while

the Alto algorithm has no duplicate files; we have an analylsesAlto algorithm has none.

2.9 Summary

In the face of internal attacks and the need to isolate p&gdsa organization, IPS devices must
be implementable cheaply in high speed hardware. IPS dehiaee successfully tackled hardware re-
assembly, normalization, and even Reg-Ex and behaviormimgicHowever, when an attack is detected
it is also crucial to also detect who the attacker was forpiiseremediation. While standard IPS devices
can log source information, the slow speed of logging canltr@slost information. We showed a naive
logger can take a multiplicative factor offhmore time than needed, whexes the infected population
size, for small values of memoi required for affordable hardware.

We then described the Carousel scalable logger that is e@sptement in software or hardware.
Carousel collects nearly all sources, assuming they sersisfEntly, in nearly optimal time. While large
attacks such as worms and DoS attacks may be infrequentyilitg to collect a list of infected sources
and bots without duplicates and loss seems like a usefutiaddo the repertoire of functions available
to security managers.

While we have described Carousel in a security setting,dbas applies to other monitoring
tasks where the sources of all packets that match a prediatebe logged in the face of high incoming
speeds, low memory, and small logging speeds. The situgtiakin to congestion control in networks;
the classical solution, as found in say TCP or Ethernet,iséoirces to reduce their rate. However, a
passive logger cannot expect the sources to cooperatesigperhen the sources are attackers. Thus,
the Carousel scalable logger can be viewed as a form of ramédradmission control where a random
group of sources is admitted and logged in each phase. Anosgeéul interpretation of our work is that
while a Bloom filter of sizeM cannot usefully remove duplicates in a populatioia$ > M, the Carousel
algorithm provides a way of recycling a small Bloom filter ip@ncipled fashion to weed out duplicates
in a very large population.

Chapter 2, in full, is a reprint of the material as it appear&Garousel: Scalable Logging for

37

Intrusion Prevention Systems” Proceedings of USENIX Symposium on Networked SystemaRexslg
Implementation (NSDI2010. Lam, V. T., Mitzenmacher, M., and Varghese, G., USENAIZ10. The

dissertation author was the primary investigator and aughthis paper.

Chapter 3

Flame: Efficient and Robust Hardware Load
Balancing for Data Center Routers

3.1 Introduction

To support growth in cloud applications, data centers difgher aggregate bandwidth by uti-
lizing multiple paths in the network [31, 4, 33]. For examptee standard data center network topology
is a fat-tree where edge switches load balance across a pathsfto core switches. To fully exploit the
aggregate bandwidth of these abundant multipaths, efeenitwork load balancing is crucial in order to
allow core network bandwidth beyond that allowable by liekhnology. For example, today 10 Gbps
core links are reasonably priced and 40 Gbps links are ekmererefore, as the size of network grows
with a growing number of edge links, the only way to econofiycscale large data centers is to load
balance traffic across multiple 10 Gbps core links.

While this is a classic trend in networks, what makes the lprabmore difficult today is the
presence of potentially high bandwidth edge flows. 10 Gbpsrbached the edge; with fast CPUs and
adaptors, it is not unreasonable for a single TCP flow to gmbeéyb Gbps. As the number of high-
bandwidth edge flows increases, customers are increadinging that load balancing performance at
core links is unsatisfactory for reasons we explain belawlekd, this problem is far from an academic
curiosity, router vendors are actively looking to improkie state-of-the-art.

In this paper, we investigate this load balancing problemparticular, our goal is to spread

network load across all available pathsn order to realize bandwidth equal to the sum of the paths.

While port aggregation and multi-pathing are distinct shifeatures, the forwarding hardware is
nearly the same. In this paper, we will refer to them botmadti-pathing A pathrefers to a physical
port in port aggregation and a physical path in true multhjra.

38

39

However, it is traditionally required that packets withifl@v 2 be delivered to the TCP stack in order.
If they are not, performance of that connection can suffee t the additional processing required to
handle the re-ordered packets or due to TCP sender cong@stidow reduction, re-transmissions and
timeouts that are triggered by the re-ordering as we queintiection 3.6.4.

There are two general methods the above requirements aresadd and they both use hashing.
The first method is a common load balancing algorithm usedirters, callecequal-cost multi-path
routing (ECMP), using atatichash. ECMP implies that load balancing is done only over lespsd paths,
while static hash assigns a flow to a path by hashing®e/IP 5-tuplewith a singlehash functior?. In
particular, ECMP hashes the 5-tuple of each packet and ale®dperation is then applied to the result
to get a path number and the packet is sent out the correspgppaih. The modulus applied is the number
of possible paths. Note that static hashing is computaltiofzest and requires no state. It also guarantees
no reordering of TCP flows as long as paths do not change. Hawghas a drawback that is specific
to this approach in addition to the drawbacks that both comapproaches have. If the number of paths
changes, either up or down, the modulus changes. This mieatrthé result of the hash and modulus for
any given flow is likely to change which results in packet dewing. This potentially can happen to all
active flows.

The second method creates the same hash, but, rather tHgimggpmodulus, it uses the hash
result to index into a relatively small table. Each tablergtiien has the path number to use and the
packet is sent out that path. For example, a 256-entry talgbtrhe used and the maximum number of
potential paths might be 16. In this case, each path ID woelibaded into the table 16 times. However,
if the number of paths is 15, then 14 of the paths will be in #ide 17 times and one will be in the
table 18 times which leads to an inherent imbalance. Onefaatere of this approach is that when the
number of available paths changes, only the traffic thatsiete moved is affected unlike the previous
approach.

While the above approaches are universally implementeg,iiave poor load balancing perfor-
mance when there are large edge flows, as the following exandgimonstrate.

Example 1:Assume we wish to balance 4 flows each with 6 Gbps of bandwiitisa 4 equal
cost paths of 10 Ghps. The offered load (24 Gbps) is smalkm the network capacity (40 Gbps).

Assuming a static hash that distributes uniformly, the plolity that all 4 flows will pick distinct paths is

2A flowrefers to all the packets of a single TCP connection and i#tifiied by a unique 5-tuple.
35-tupleis IP source and destination addresses, TCP source andad®mstiport numbers, and the

protocol field.

40

Core Router Core Router
C1 C2

I —— _>H
/ congestion upstream

invisible at edge router

F4 (6 Gbps)
01 02
H Edge Router H H
El
gueues
11 | 12
F1 (5 Gbps) F3 (8 Gbps)
F2 (4 Gbps)

Figure 3.1. Network topology for Example 2 showing the need to rebaldioves.

only 24/256, less than 10%. Thus with 90% probability, asieao 6 Gbps flows will be assigned to the
same 10 Gbps link and thus will be throttled to 5 Gbps each thargh there is a completely unassigned
10 Gbps link. There is also significant probability that thflows pick the same link. It is difficult to
explain to customers why expensive 10 Gbps links remaineotius

One can quantify the problem with static hash by computiegthndard deviation of the number
of flows per path compared to the meann flows are uniformly randomly assigned paaths, then the
number of flows follows a Bernoulli distribution (each flowassigned a path with probabili%/). The
mean number of flows per path %iand the standard deviation m. As n grows large, the
deviation grows as the square root while the mean growsrliyighus the deviation becomes insignificant
as the number of flows increases. But the deviaisasignificantwhen there are a small number of large
flows. For example, consider two TCP flows being hashed on agptaths. The mean number of flows
per path is%3 =1 but the standard deviation is also very close to 1. Inteliivif there are two flows,
there is a probability of 50% that they choose the same paths With 50% probability we get no load
balancing; with 50% probability we get perfect balancirgguiting in a large average deviation.

Note that the second approach described above does natitx@lddress this problem. Indeed,
the tables today are statically configured so a 4 path solutith have 1/4 of the table entries statically
assigned to each path. This becomes equivalent to using alusptut allows a more graceful changing
of the number of paths the traffic is balanced across.

Example 2:Beside random assignment, a second culprit is fixing a flowgassent indefinitely.

41

Assume an edge router (Figure 3.1) with two input lihksandl 2 of 10 Gbps, and paths to two different
core router€1 andC2 via output linksO1 andO2 of 10 Gbps each. Consider three flowd,, F2, and
F3 whereF 1 arrives first o1 and sends at 5 Ghps. A short time |2 arrives onl 1 and sends at 4
Gbps. Some time lateF 3 arrives onl2 and sends at 8 Gbps. This is a feasible traffic pattern becaus
there is no more than 10 Gbps arriving on any input link. Asstmat static hash ECMP gets “lucky” and
assigng-1 to O1 andF2 to O2. At this pointin time, traffic is well balanced. However, e 3 arrives,
static hash can only assigiB to eitherO1 or O2. In either case, we have at most 5 Gbps on one output
link and at least 13 Gbps on the other output link. For ingtaifd=3 is assigned t®1, then 13 Gbps
cannot be sustained on a 10 Gbps output and so queues willdn®2 or downstream in core routéd.
The “right packing” would be to movE 2 back toO1 along withF2 and then to assigh3 to O2. This
would assign 9 Gbps to one link and 8 Gbps to another link.

We propose Flame, an efficient dynamic load balancer to addhese challenges. In particular,
we turn away from static flow-to-path assignment but insegtempt to do the assignment dynamically in
an intelligent manner to avoid the imbalance as describedeatOur contribution includes the following

key ideas.

a. New bandwidth estimatokVe propose a new Discounting Rate Estimator (DRE) to acelyratea-
sure path loads without relying on queues (which may be emtyityis router) (Section 3.3.1). DRE
responds much faster to new bursts than an exponential tegigmoving average (EWMA) while
retaining memory of past bursts. By relying on such insta@tais load information of each path
to make decision on path assignment of the next new flow, wachieve significant improvement

over static assignment such as ECMP.

b. Remembering hash functions not pathge devise a robust and implementable path choice tech-
nigque by using standard power of choice hashing to pick tast laded link which reduces hard-
ware comparisons in real-time (Section 3.3.2). Unlike &ldwowever, we remember thashcor-
responding to the least loaded link and not plagh Remembering hash functions is more robust
when there is limited memory and two flows collide in the sameklet because it is no worse than
ECMP. This allows a simpler hardware implementationKhyay comparison). Further, it takes a
few bits to remember a hash function as opposed to nearlyit2®lremember a flow. We present
both mathematical analysis and experimental results te gat our scheme never degrades below

static hashing regardless of the memory capacity.

42

. Hardware for 48-port 10 Gbps switchiVe introduce a number of simple techniques to make the
implementation feasible (Section 3.4). In particular, wepmse a hash table instead of a per-
flow state table to deal with memory overflow gracefully; weegrate heavy-hitter detection to
maximize the efficiency of the hash table; and we show howdorimorate periodic load balancing

at any parameterized value (from say 1 in 10 packets to 1 if0D0) inhardware(Figure 3.4).

. Periodic rebalancing:We show how periodic rebalancing can be implemented in améwork
(Section 3.3.2). Note that heavy hitter detection is everenmaportant with regard to rebalancing
because the heavy-hitters send more packets and can hémcketafhave periodic load balancing

for the global good without greatly impact their own TCP tingbput.

. Load balancing metricsWe present a framework and analytical measures for chaiznotgthe
goodness of load balancing schemes (Section 3.5.2 and).3\WAile this is implicit in earlier

works, we make this explicit. We also discuss guidance ftiingethe parameters in our scheme.

Updated experiments on the effect of rebalancing on Tl@Bection 3.6.4, we describe new exper-
iments with various combinations of Windows and Linux statikshow the effect of rebalancing
on TCP. As expected, Windows stacks degrade consideratilyanghput when rebalancing more
frequently than 1 in 100,000 (because out of order packatbtie DupAcks that cause the conges-
tion window to fall). More surprisingly we show that the latd.inux stacks (after 2.6.14) allow

load balancing as often as 1 in 10 packets with at most 10%rdksoughput.

3.2 Related Work

The classic way to load balancing has been to do random Idaddyag via hashing as in ECMP.

Such a hashing scheme comes with many advantages. Fissinéxipensive because it requires no state

per TCP flow and a small amount of logic to do the hash. Secarnsl compatible with TCP because

it does not reorder packets. It is well known that becausd@fast retransmit option, more than three

packets out of order can be interpreted as loss which canllmsvéml by unnecessary retransmission,

reduction of the congestion window, and overall loss of tigtgput. For example, [43] shows experiments

where reordering in the order of more than 0.1% affects T@®uthput and reordering of more than 10%

drastically reduces throughput. Third, ECMP does a redsernab of balancing flows when the number

of TCP flows being balanced is large.

43

While ECMP has been a standard for every router, there aggalaecent alternative proposals
in the academic literature. Flare [39] goes beyond stasb luging two ideas. First, long flows are broken
into multiple flowlets based on a packet gap timeout. Secthredfirst packet of each flowlet is allocated
to the least loaded link and the result is stored in a flowldetand used to route all subsequent packets in
the flowlet. If the flowlet timeout is larger than network laty then no reordering should occur despite
reassigning the flow across flowlet boundaries. The Flarempages wide area traces to claim that the
flowlet table is small because the number of concurrent fimitemuch smaller. In Example 2, K1
andF 2 are sufficiently spaced apaR? is guaranteedo be assigned to a different link by Flare unlike
static hash. Flare does no repacking and will not addressth@lance in Example 2 whdn3 arrives —
unless=1 or F2 have a sufficiently long gap which allows their respectige/féts to be reassigned.

Hedera [5], on the other hand, does not attempt to optimédigepflows when they first arrive
but instead waits until flows are measured as “heavy-hitterd then reassigns flows based on a heuristic
packing algorithm implemented in software on a centraleich controller. Doing this assumes Open
Flow [47] environment or MPLS to control flow routes via sofing. Hedera allows entire paths to be
rebalanced which goes beyond link-by-link balancing aslare: for example, in Figure 3.1 it allows
flow F1 to be assigned to tHel,C1, E3 path and flowr 3 to be assigned to thel,C2, E4 path. However,
it not immediately deployable in today’s networks by change single routers. Further, Hedera only
allows flows to be repacked every few seconds (a good choieeahow later); but this implies a few
seconds worth of imbalance when a new flow suck asrrives in Figure 3.1.

Finally, note that if one could invent a reordering-resiti@ CP or simply reorder packets in
the destination network adaptor, then one could simplyyspeekets of a flow across links to get near-
optimal load balancing. A more approximate alternativ@issalize that the problem is caused by a few
large TCP flows and could be mitigated by splitting large T@®$ into multiple TCP subflows at the
source as in Multipath TCP [60]. However, both Hedera andtiidath TCP are clean slate approaches
while Flare only requires implementation changes withimgle switch. We choose to work in the same

setting but we point out the following problems with thoseypous works.

a. Memory: Flare indicates that the memory can be small limiisthor one trace and for one particular
flowlet timeout parameter. We show real traces where the euoftflowlets can be quite high. We
also show that when the memory is smaller than the numberwlgls, hashing must be used and

hash collisions can cause Flare to perform worse than ECMP.

44

b. Implementation: previous works assume that one carnyeamihpute the least loaded link in hard-
ware. In reality, doing this computation at high speedssxsay 32 links is prohibitive at 20 Gbps
and higher. With 48 ports of 10Gbps Ethernet and a lookup ahtgproximately 750 million
lookups per second and a clock rate of 750MHz gives us 1.3meclock cycle. This makes it
hard to minimize (across up to 32 registers) in a clock cyEle computation can also not be done
in the background because different destinations may dsaatit subsets of the links for equal

paths and the number of possible subset$) (8 too large to precompute.

c. Load balancing effectiveness: the current norm is thabva # rebalanced just once when it is
created. However, as we have seen in Example 2, a heavy flomevay be timed-out and yet the
path loads may change leading to more optimal load balarifcihg flow is reassigned. Hedera [5]
suggests periodic load balancing across routes but it ieanbow often this can be done without
harming TCP throughput and does so in software without natégg into the hardware. Further-
more, it appears that one can do better if periodic reassghia done (at a rate less than say the
0.1% threshold that reduces TCP throughput [43]) even inléiblike hop-by-hop load balancing

schemes.

3.3 Mechanisms

In this section, we describe the essential ingredients nflgnamic load balancing scheme. We
first describe the concept ofZiscounting Rate Estimatao accurately measure link loads. We then show
our design of flow state table to enforce packet order in theesgow. Finally, we discuss our handling
of heavy-hitter flows to reduce memory in hardware impleraton of the state table and also to perform

periodic rebalancing. These mechanisms are combined iné-gj4.
3.3.1 Discounting Rate Estimator (DRE)

In this section, we design a bandwidth estimator for linkdwidths to assign new flows to the
least loaded link. Two requirements for a bandwidth estimtat do:

Quick reaction to new burstdn Example 2, ifF2 arrives a short time aftérl andF 1 has been
assigned to output linkd1, we would like the link estimator fab1 to quickly ramp up so thadl looks
“more loaded” tharD2 andF2 is (correctly) assigned 102.

Remembering old burstdn Example 2 again, suppose thia2 arrives 100 usec aftétrl has

finished sending at 5 Gbps for a few seconds. At this momenthasshatOl’s queue is empty and so is

45

Algorithm 1. Discounting Rate Estimator (DRE)

Parameters:
Tp: DRE timer period
Rp: DRE discount ratio
for each path do
initialize shallow counte®[i] =0
end for
loop
if packetD sent to path then
Q[i] = Q[i] + D.size
end if
if proxy queue timeflp expiresthen
for each path do
Qlil = Qli] - Qli] ‘Re
end for
end if
if fis new flowthen
assignf to path of smalles
end if
end loop

that of O2. However, the effect df 1's burst may still remain downstream at core ro@&fin Figure 3.1.
Thus, we would like the path estimator at the edge routeramé&mber” the fact tha& 1 has sent a burst
for a small period equal to the network latency (say 300 usex data center). Otherwisg2 could
wrongly be assigned tB1 causing unnecessary congestion at core rdtiter

Let us see how four standard estimators do with respect se tfeguirements:

1. Epoch estimatorBandwidth is traditionally measured in epochs such as 1s,dmius. We
count how many bytes are sent in one epoch interval and obteanrmeasurement point. Then we reset
the counter value, count the bytes in the next epoch intéovgét another measurement point. We send
a packet to the link with the smallest current epoch countdnapdate that links epoch counter. In other
words, this is a time-averaged and memoryless approachprbiiem with the epoch estimator is that it
keeps no memory after a burst which ends close to the end gfarheFor example, in Example 2 ffL
ends just before the end of an epoch, &&darrives soon after the epoch ends, there will be no memory
of F1’s burst and-2 could be wrongly be assigned®@®. One could also modify the least loaded choice
to use the epoch estimator of the last epoch; but that wilMea &orse, because it will not react fast if
F1 andF2 start in the same epoch.

2. Token estimatorThe Flare paper [39] uses a token counting approach of suintgethe ideal
bytes to be sent on each link from the actual bytes and thetsgeatkets to the link with the least tokens.

Finally, to avoid keeping memory forever, periodicallyettoken counters are reset to zero. While this

46

generalization is useful when doing fractional load bailag@cross links, it is identical to the epoch
estimator in the case of whole flow load balancing. Thus,raig&ieeps no memory of past bursts across
measurement intervals.

3. Exponentially weighted moving average (EWMHR)e simplest way to keep memory of past
bursts is to use an EWMA estimator on the epoch bandwidth unea®nts using small epoch periods.
If the EWMA estimator uses a small weight for new informat@rd a large weight for past information,
past information will die down gradually but not instantaasly. But in this case, the EWMA will react
quite slowly to new arrivals such &1 and this may not be fast enoughF#® follows close onF1s
heels. On the other hand, if we make the weight for recentin&bion to be high and the weight for past
information to be low, then the past is forgotten very quyckl

4. Physical queue sizén Figure 3.1, can we use the physical queue size of outpkiOihand
output link O2 to determine the least loaded link? Unfortunately, thissioot work. After flowF1 has
been assigned to output likl, the physical queue at the edge router is likely to be zecaulmeF2 is
5 Gbps and the link is 10 Gbps. BER can cause congestion at the upper core rditebecause of a
fourth flow F4 that wishes to go on the same path. This congestion is Inkiat the edge router but can
be avoided by the estimator by measuring that a large nuniliites have been assigned to output link
01 which suggests that flow2 be assigned to output lifR2. Fundamentally, physical queue size does
not work because it does not reflect past traffic sent at a nedlesr than the link bandwidth.

It is to reconcile the simultaneous demands of fast rea¢tiarew bursts with memory of old
bursts that we were led to design a new rate estimator caliecbDnting Rate Estimator (DRE). Pseu-
docode for DRE is shown in Algorithm 1. DRE keeps a cou@gefor each switch port output link
which is incremented by the packet size when a packet isrtrigtesl on that output link. However, the
counter for pathiis not periodically reset to zero. Instead, every periodigayhe counter is decreased by
an amounproportionalto the current counter value. We call the proportionalittda thediscount factor
Rp. If Rp is chosen to be a power of 2, discounting can be implementedrishware using a shifter and a
subtractor. For example, in Section 3.6 we use very smallegabf DRE parameters such&s= 100us
andRp =1/512.

Intuitively, we expect that the proxy queue gives good iatian of traffic bursts, but also accu-
mulate some data irrespective of the link utilization (Wwitsome limit). It drains slower as it gets near
empty so when the real utilization is low, we still get a rewyi

As we will show in our analysis in Section 3.5.1, DRE quickbacts to new bursts because it

a7

Aging State Table

1. Reset aging flag = false
2. Route D by h(D)

true

valid flag
index
. alse
W aging flag 1. Find best hamong
packet hash function h h,, h,, ..., h

2. Set valid flag = true
3. Reset aging flag = false
4. Route D by h(D)

Periodic aging timer T,
1. If aging flag = false
T Set aging flag = true
a
2. Else
Reset valid flag = false

Figure 3.2. Overview of Flame state table design. Padkés indexed into a fixed-size table by hashing
(Section 3.3.3) or exact-matching (Section 3.3.4). A nevletzntry is set up by comparirgpaths as
specified byk independent hash functiohg, hy, ..., hg. The period aging timer is triggered every time
interval T, to age out inactive table entries.

simply adds the packet bytes. DRE also remember old burstause every period, the DRE counter is
merely discounted bR and not reset. Note that a small discount r&ctranslates to a large weight to
older events and vice versa. For example, With= 1, we reduce back to the epoch-based approach. The
DRE counter will also not diverge to infinity because the leigthe counter, the greater the discounting
effect. We prove formally in Section 3.5.1 that the DRE ceustays bounded, is a scaled rate estimator,
and balances rise and fall times for new and old bursts. DRm®st identical to EWMA except that
while EWMA weights both old and new information, DRE only whts past information. While this is a

simple change, it makes a great difference to rate estimatio

3.3.2 Choosing the least loaded link

In Section 3.1, we discussed several examples showing gBagisfactory performance of a static
hash-based approaches such as ECMP to do link assignmesw#o fhstead, we opt for using instanta-
neous traffic utilization (DRE in Section 3.3.1) on each linknake decision on path assignment of the
next new flow. To do this, we wish to examine traffic utilization all links to pick the least-loaded one
to assign to the new path and then save that choice for subsepackets of the same flow in order to
prevent reordering. In this section, we describe how to shdbe least loaded link. At first glance, this
seems straightforward. When a new flBvarrives, the forwarding table yields the set of equal colipa
P for F. Next, simply read the DRE counters of all linksPrand assigr to the path with the smallest

DRE counter. Unfortunately, this is non-trivial for thremasons:

48

1. Large number of potential pathén data centers today, 8 and 16-way multipathing are com-
mon but there is growing interest in multi-pathing as higl32sr even 64. More concretely, consider a
fat-tree topology that is maximal in diameter and the togaak switch that has 96 ports. With 40 servers
in the rack, there will be 40 uplinks which results in 40 ECM&hs (or 64 by rounding up to the next
power of 2).

2. Rising traffic rates leading to small time budgét: the market today there are already 48
ports of 10 Ghps Ethernet each. These require a lookup rapprbximately 750 million lookups per
second. This means a clock rate of 750MHz. This gives us &c3mar clock cycle which is near the limit
of ASIC technology (doubling the clock frequency to get miimee is a non-starter). This allows for only
a small number of register reads, not 40.

3. Exponential numbers of potential ECMP path séfishere were 64 ECMP paths used aly
flows, one could do incremental computation by keeping atpoto the least loaded link; when a DRE
counter is updated, if it is lower than the current lowestpbater is updated. Unfortunately, each flow
can use a different subset of the 40 output links, leading?passible subsets, too many to keep state
for, let alone update. Consider the case when an edge féutas 32 outlinks to 32 core routers. One of
the core routers, say, has a failed downlink to an edge router Then, flows fromE to E’ cannot be
routed by the output link t€ but the remaining flows can. Similar patterns of failure oasuit in every
possible subset of paths being chosen by some flow.

We cope with the small time budget and the small number oétegieads possible using power-
of-choice hashing [49] as an intermediate approach betat@aths minimization and pure static hash-
based computation as follows. When a flow first starts, we hagith k independent hash functiohs,
hy, ..., hg function to getk paths, say;, P, ..., R. If B is the least loaded path, we assign the new
flow to B. So far this is standard power of choice for load balancinigeessbeen proposed for server load
balancing [49].

What is new in our setting is the need to maintain flow ordenvmdaTCP throughput degrada-
tion. Instead of remembering tipath R in a hash table, we remember thash h that generated the least
loaded path index. This is a good idea for two reasons. Fwestan remember more flows if the state is
smaller: the state needed to remember a hash jkif®@bits for 4 hash functions!) is much smaller than
the 128 bits required to remember a TCP flow. Second, sinceowefstore the flow ID, then we have to
deal with hash collisions. Remembering a hash functiondge robust than remembering a pdtbcause

if two flows collide, the second flow will not use the path of #arlier flow but the hash of the earlier

49

flow. Thus the collided flow has a significant chance of beirgigaed to a different link, no worse than
static hash ECMP; on the other hand, we show examples laterewemembering paths is much worse
than ECMP. Thus remembering hashes is more economical ironyeand more robust.

Another advantage is the ability to handle the followinghgemn that occurs frequently in prac-
tice. When many heavy flows start at about the same time, thsiaering all-paths approach would
assign all of them to the same least loaded path. On the odimer, kince our hybrid approach uses only a
small number of hash functionk)(there is a high probability that this problem will not happ We have
a formal analysis for this problem in Section 3.5.2.

Note that in the special cage= 2, we further enhance the computation of two-hash choices so
as to guarantee no hash collision as follows. (Otherwiseedodependently, there is &4 probability
that the two will pick the same link to sample which is wastgfiDespite this coupling, the two hash
functions are “sufficiently independent” to guarantee gsachpling, based on some recent unpublished
work by Mitzenmacher.

Let p be the number of equal cost paths. Then given a flpowe compute its two path choices

by the following formulas.

Pr=hy(f) modp (3.1)

P, = (hy(f) mod(p—1)+1+hy(f)) modp

3.3.3 State table design

Section 3.3.2 discussed a practical technique to dynaipidatermine an optimal path for the
next new flow that can improve significantly over static assignt such as ECMP. However, since TCP
congestion control requires that packets in the same flowldrarrive in the same order, we want to
preserve the packet order by dispatching all packets in dngesflow to the same path. We need a
mechanism to store flow states so as to preserve the pacletinrthe same TCP flow. In this section,
we describe our design of this state table, which is a coreuteanf our Flame load balancing scheme.

Figure 3.2 demonstrates our approach to keeping flow statslamws how state is updated on
packet arrival. In particular, when a packet arrives, if plagket’s flow is not in the state table, we use
the power-of-choice method in Section 3.3.2 to assign iheodptimal path and insert the chosen hash
into the table. The packet is also sent to the path just sgle€n the other hand, if the packet’s flow is

already in the table, then we just send the packet to the pdtbated by the stored hash applied to the

50

packet’s flow ID.

Intuitively, this dynamic path assignment approach isdvetthan a static assignment such as
ECMP because of the highly dynamic nature of flow arrival aegadture in real networks. In practice,
even large flows come and go and assigning that flow to a path wieeflow starts will give the best
possible assignment at that instant. The choice may turtodag poor based on the behavior of the new
flow in the future and the other, already assigned flows. bhehavthe future, but subsequent flows will
continually correct any such mistakes. This is especiallg ff the behavior of a flow is fairly constant,
i.e. high bandwidth flows tend to remain high bandwidth anvdbandwidth flows remain low.

While [39] indicates that the number of concurrent flowlstsmall, their traces were wide-area
traces. For large data center traces, we see no reason whuitiiger of concurrent flowlets cannot be
much larger. One challenge is that a forwarding ASIC canfiotéto keep memory equal to the number
of flows/flowlets. In order to reduce the amount of state to aenadfordable level, we use a hash of the
flow (instead of exact-matching on the flow ID) to index inte 8iate table. If the flows are hashed into a
state table of, say, 1024 buckets, then each bucket can lzenigally assigned a path just as a flow was
assigned a path dynamically.

When a flow dies out, we need to reclaim state. We will do thiban aging algorithm in this
section. Alternatively, we will discuss a technique to kéeyw state for a much smaller subset comprising
of only significant flows in Section 3.3.4. To age out and frpestate entries as soon as possible, we use
a simple and efficient aging mechanism akin to LRU page @vrictiVe associate an aging field (typically
a one-hit flag, but could be larger for finer granularity) witach state table entry and update it when
a packet arrives. A complete design of the Flame state talifethhe aging mechanism is shown in
Figure 3.2. Each table entry is a record with three fieldsialid flag indicates whether the table entry is
valid and contains the state of an active fl@&vaging flag marks inactive or idle flows3. hash function
points to one of thé& hash function#, hy, ..., hg.

When a packet arrives, its flowID is indexed into the statéetalthich maps the packet to one
entry in the state table. The valid flag is inspected to chbekvalidity of table entry. If the table entry
is valid, the packet is dispatched according tohihsh function Istored in the state entry. The aging flag
is also cleared to indicate that the flow entry is active. Gndther hand, if the state entry is invalid, we
set up a new valid table entry by comparigaths as specified byindependent hash functiohs, hy,

..., hgas in Section 3.3.2. The hash function resulting in the ogitjpath is saved in the table entry h. So

subsequent packets of the same flow are guaranteed to usambenhash function and be dispatched to

51

the same path to prevent packet reordering.

Further, a timer process visits every table entry exgingtimeoutT,. When it visits a table
entry, it either turns on the aging flag or invalidates theyeifithe aging flag is already on. In other words,
T, is the timeout threshold to age out inactive flows. Note thith whis aging timer process, the aging
interval is in the range betwedg and 2I,.

Note that as shown in a previous study [39], network traffimferently bursty. This timing
mechanism allows us to leverage the burtiness by essgnsiglitting a long flow into several much
smaller flowlets (i.e. burst of nearby packets). The flowdgtsdetermined by a flowlet timeout, the idle
interval between two successive flowlets. Note that if theetbetween two successive packets is larger
than the path latency difference, the two packets can bedoort two different paths without changing
their arrival order at the receiver. By settinfh20 be larger than the maximum latency difference between
two paths in the network, flowlets belonging to the same flommmindependently switched into different
paths without causing packet reordering. While [39] sutgyadlowlet timeout of 60 ms based on wide
area traces, we suggest that this be a parameter and everrrsuike 100 usec may be reasonable in a
modern data center.

Therefore, the aging timeod, is an important design turning knob.Tf is too large, the table
entries may never be idle long enough to be aged out and thassigned. Or, more likely, they do get
aged out, but too infrequently to be effective. Furthermdris likely that those entries that have high-
bandwidth flows would not be aged out since they, by definjti@ve smaller gaps between packets. On
the other hand, i, is too small, we increase the likelihood of packet reordgiimthe same flow. So in
practice,T, should be related to the round-trip-time of the network. &mmple, that could be tens or
hundreds of microseconds in a data center environmente@in@ntry in the state table is flagged idle
after the first aging timeout and eventually deleted aftersbcond aging timeout, the effective flowlet
timeout is between one to two timesBf

As we discussed earlier, designing the state table as adualstailows two or more flows to hash
to the same bucket with a subsequent fle@/using the same state that was established by the previous
flow that hashed into the bucket skil. This is essentially the same problem encountered in thrermiu
implementations, however possibly to a lesser degree #ioeumber of hash buckets can be larger than
what is typically in use today. Note that a collision is uricasle for two reasons. First, it reuses the state
of the first collided flow that has not timed out in that entrync® the entry was previously optimized

to that different flow, reusing its state is suboptimal. SekLat virtually bridges the flow/flowlet gap

52

by holding on the aging flag, and hence reduces the numbeneg/flowlets that could have been split
and routed independently. However, in our example, whikedbllision results irF2 not using optimal
information (the state of the links seen Byt may be outdated whdr2 arrives), sincé-2 only applies
the hash stored biy1, F2 will quite likely be assigned to a different link froril. Storing the path would
not have this property. While this may not be as optimal aigasg) F 2 to the least loaded link wher2
arrives, it is no worse than ECMP. This propertygoaceful degradationo static hash ECMP when the

number of flows is too large seems an essential property dfdatancers that keep state.
3.3.4 Handling heavy-hitters

In Section 3.3.3, we discussed the aging algorithm with fisied hash table. When a packet
arrives, it is hashed into the table and routed accordingewalid table entry. If the table entry is invalid,
a new path is determined according to a greedy heuristic agdeast loaded path of DRE counters
(Section 3.3.1). Each table entry is aged out if it is idle drey a certain threshold. We noted that
collisions of distinct flows into the same table entry (e.g. éxistence of spoilers as we will discuss
in Section 3.5.2) can have significant adverse impact on énfpnance of the algorithm. Concretely,
since a flowF2 can reuse the state set up by an earlier fidw if F1 is a low rate flow, whild=2 sends
at 5 Gbps, ther-2 will be routed by a static hash but this is not optimal.FIf or F2 keep sending,
F1’s entry will never be timed out and2 will keep using essentially ECMP instead of a more optimal
assignment. In this section, we seek to combat this problermpplying the load-balancing algorithm
only to heavy-hittergi.e. elephantflows) since only a small number of heavy-hitters are resiptanfor
a large fraction of traffic in the network [31, 6]. Non-heahiters (i.e. mice flows) can be treated with
the standard ECMP. However, since the hardware logic foh#sh table is inexpensive, we can opt for
a hybrid approach by having both an exact-matching state fabheavy-hitters and a hash-based state
table in Section 3.3.3 for non-heavy-hitters.

As illustrated in Figure 3.3, every flow is treated with ECMiRtlee hash table approach until it
is established as a heavy-hitter. Upon being classified aaaykhitter, it is assigned to a new path and
its state is stored in the Flame heavy-hitter table. Thesegient packets of the same flow are routed by
exact matching to the respective entry in the heavy-hittielet Each entry in the heavy-hitter table also
has an aging flag so that it is periodically aged out at evewldipexpiry timeout.

Next, we describe our heavy-hitter filter module so that anlie heavy-hitters are assigned

to the heavy-hitter table with high probability. We alsoaliss the process to reclaim unused state by

In Flame heavy- R:Iute PC;CkEt by
hitter table? a.me eavy-
hitter table

1

Insert new entry in Flame
heavy-hitter table
with optimal path

Heavy-hitter
multi-stage filter

Is Flame
heavy-hitter

Is new
heavy-hitter?

‘l' N
Route packet

by ECMP
or hash table

Figure 3.3. Overview of Flame scheme with an exact-matching heavethitible. A flow is routed
according to the Flame heavy-hitter table once it is clas$ifis heavy-hitter. Each entry in the Flame
heavy-hitter table is also periodically aged out with amgdiag and aging timeout. Non heavy-hitters
can use hash state table in Section 3.3.3.

evicting flows out of the heavy-hitter table when they becomee or terminate. Due to hardware memory
constraints, this is necessary to make room for new heatgrfii

Since heavy-hitter admission and eviction can introducdteer form of TCP packet reordering,
we need a parametEr(reordering parameter) to decide how often a flow can be ezedtwithout causing
undue harm to TCP. For example, a prior experimental stuglyddggests that TCP performance will not
be adversely effected if the number of reorderings is leas %, i.e. F = 1000. Our updated study
reported in Section 3.6.4 suggests thatan be much worse (3200) for Windows Server destinations
and much better (eveh = 10) for recent Linux versions. Thus we ledves a parameter.

Thus we retain a heavy-hitter f&r packets before applying any change in load balancing policy
We keep a packet counter for each heavy-hitter in the hedtar-table. Every time the packet counter
reaches multiple df, we set up a rebalancing flag. The aging algorithm would be itheked to assign
the heavy-hitter to another path, which is likely to be lette

With this preliminary, we now describe our heavy-hitterefilimodule so that only true heavy-

54

hitters are assigned to the heavy-hitter table with higtbability. We also discuss the process to reclaim
unused state by evicting heavy-hitters.

We employ a heavy-hitter multistage filter algorithm withnservative update of counters as
in [24]. There are four heavy-hitter detection tables. Etite consists of 1024 counters. A packet is
indexed into these tables by four different hash functidri®e counters are updated with the packet size
according to the conservative update rule. If the countealf four tables exceed a threshddd, the flow
is classified as a heavy-hitter. TypicaBy = 3 KBytes in our experiments. The counters are reset to zero
everyTy interval. TypicallyTy = 30 msec in our experiments.

If a flow passes the heavy-hitter filter, it will be admittedoinhe heavy-hitter table and switch
the load balancing policy from ECMP/hash-table to heatehbased Flame. One approach is to allow
graceful switching from ECMP/hashtable to heavy-hittdiqyo That is, at the beginning we set the valid
flag to true and the path selection to the same as ECMP/hbkh(iz. skipping computing least-loaded
path). This guarantees that the switching from ECMP/hé&dhta heavy-hitter based Flame occurs when
either (immediately whichever happens first) the curreawgehitter flowlet aging out and beginning a
new flowlet, or after the first F packets.

However in our experiments, we opt for doing the first readrdgearly and then subsequent
ones being paced &t packets. In other words, once a flow is classified as heatgrhite do an abrupt
admission into the heavy-hitter table, and so the flow is iiately switched from ECMP/hashtable to
the heavy-hitter scheme. Suabrupt insertioncan cause a reordering when the the heavy-hitter is first
detected while graceful insertion will not.

We now turn to eviction. If the bandwidth of a heavy-hittelifebelow some threshold, the
flow should be removed from the heavy-hitter table. Our ge#hat with memory cleanup, the memory-
constrained Flame scheme is better than ECMP and almosbasagdhe case with infinite memory. For
example, we suppose the heavy-hitter table contains orlg 2@tries in our experiments.

As a first principle, we let the eviction policy be less stengthan the insertion policy. We
propose the following eviction policy: evict a flow if it semtbss thamlBy bytes inks consecutive periods
of Ty. In our experiments, typicalll, = 3.

When a heavy-hitter is evicted, its state can be immediatelgted from the heavy-hitter table
(calledabrupt eviction, and then subsequent packets of that flow are routed unddiPEClearly abrupt
eviction can resultin packet reordering. Instead, we pseodifferent approach, callgdaceful eviction

which exploits both the flowlet aging expiry timeout and thedrder no frequently than evelrypackets”

55

rule. In particular, when the heavy-hitter traffic is belotheeshold, we turn on agviction-readyflag and
start counting the remaining packets. Then we only phylsicilete it from the heavy-hitter table upon
eitheri) next flowlet aging expiry oii) packet count- F. The two conditions make graceful eviction
effective against both inactive and slow heavy-hittersis Tacilitates our goal of evicting heavy-hitters
very soon after they become idle to minimize the heavy-httble size and accommodate new heavy-
hitters.

In practice, we have a predetermined budget on the size dig¢hey-hitter table and want to
tune the heavy-hitter admission and eviction parametetisegdhe heavy-hitter table is always near full.
However, network traffic can vary widely from time to time aexteed the heavy-hitter table capacity.
With our design for heavy-hitter admission and eviction, sa® tune to accept fewer heavy-hitters by

increasingBy and/or decreasin@y. Note that by reducingy, we evict more frequently.

3.3.5 Profile-based rebalancing

Rebalancing a heavy-hitter by greedily selecting the latized path is vulnerable to the fol-
lowing synchronizedjreedy flash croweffect: when many flows are rebalanced almost simultangousl
all of them most likely make the same path choice. Such simgbccur in our experiments of bandwidth-
intensive synthetic flows in Section 3.6.3, which are reteda frequently by the one b packet rule. We
observe that the synchronized greedy flash crowd effectemahtb severe oscillation in path assignment
and poor load balancing performance.

As an example, consider ten heavy-hitter flows and threesgath™, andP;. The best path
assignment is by having three flows to p&handP, each and four flows to pat®. Let's denote this
path assignment by a tripl@®,3,4), i.e. each number in the triple denotes the number of he#tgrh
being assigned to the respective path. Since our greedynhetisection 3.3.2 is not perfect, typically we
only get a near-optimal assignment sucH2a4,4). Now if the heavy-hitters are rebalanced frequently,
with the initial path assignmeti®, 4,4), they all will be reassigned to paB, leading to the subsequent
path assignmen(tl0,0,0). Next, they all will move away from patR;, leading to the path assignment
(0,10,0), and so on. Clearly, such oscillation is undesirable.

We propose the following traffic profiling approach to mitigahis problem. First, we profile
heavy-hitter traffic by having a counter per heavy-hitteattbounts heavy-hitter bytes in thpgevious
epoch. Second, we also maintain a path profile, which isalidgd to the path traffic in thprevious

epoch. Third, if we need to rebalance a heavy-hitter, wereiil on both the heavy-hitter profile and the

56

path profile. We ensure that the heavy-hitter reassignmenimproveshe path profile. Finally, we also
adjust the path profile by the amount of the flow profile at thHmtancing moment. This avoids moving
multiple heavy-hitters to the same new path.

As an example, suppose we have three paths with path p{efile,, P;) = (8 KBytes, 9 KBytes,

11 KBytes). If the heavy-hitter were from pafhwith heavy-hitter profile 2 KBytes, we would rebalance
it to pathP; and update the path profile to (10 KBytes, 9 KBytes, 9 KBytelewever, if the heavy-hitter
were from pathP, with heavy-hitter profile 2 KBytes, we would still keep it adth P, since moving to
pathP; would lead to an even worse state.

More concretely, we definprofile deviationto be the difference between max path profile and
min path profile. Then rebalancing is aborted if new profileiaon is larger than a factdd, of the old
profile deviation. Intuitively it is natural to pick, = 1. However, our experimental results showed that a
larger and hence more relaxed value (&g-= 2) is sufficient to prevent the greedy flash crowd effect, but
at the same time does not hurt the performance by being les&ctiwe and allowing more rebalancing
opportunity. Note that in theory, settifkg > 1 is always prone to oscillation under certain network teaffi
behavior since that condition allows path profile to get waed continually with time. One way to bound
the profile deviation is by instituting a tiered value fg. For example, we can use the following simple

scheme:
e kp = 2 if path profile deviatior< Ly
e kp=1.5if path profile deviation> L1 and< L,
e kp=1if path profile deviation> L,

wherel; andL, (L, > L) are two thresholds depending on the profile epoch and nktaardwidth.

3.4 Hardware implementation

Figure 3.4 describes a hardware block diagram for a chip webailding that puts together
all the mechanisms we described in the last section inctutlia DRE estimation, the Flame table, and
hardware rebalancing parameterized by the parankethat can do rebalancing as often as once every
10 packets (feasible with Linux receivers) or as infreqlyea$ once every 100,000 packets (needed for
Windows receivers, see Section 3.6.4).

Start at the top of Figure 3.4. The forwarding logic providdsase address into the path table

and the number of paths The flow ID f is hashed using a hash functiéi but that is modified (see

57

Forwarding
Logic
b Base Address
\ 4 pl
O @ | o
f————— v Table
2
[FT_ 25 (3)—> |2 RAM w1
D1 D2
0]Final Path
A v v :/1“
" P1 P2
f—r Detector | Flame HH DRE
¢ Table Registers
> h

| | Ql Q| ‘T V3
M2 L
hash ! B
ash_sel 0 I
valid

Figure 3.4. Flame hardware schematic

Equation 3.1) in the lower path to essentially compute ars@t@sh function. This produces two offsets
pl andp2 that are added to the base address and used to index irepiatala dual-ported memory using
addresseél andA2. Note that a dual-ported memory has two read ports and isstlas expensive in
gates as two independent memories. Thus using more thanas¥ofanctions could be expensive. The
path table stores the DRE counters. The two addreskasidA2 yield two link IDsD1 andD2 from the
path table. (This level of indirection allows graceful hling of path failures). The two link IDs are used
to index into the DRE registers to produce two DRE val@dsandQ2. Comparato€C picks the least
loaded link of the two and outputs the result to multiplexoug) M2.

Now move to the bottom of the figure. Concurrently, the flowfl® also fed to the Flame table
whose output is four values: a valid flaga hash select flaly (since we use only two hashes for power
of choice, 1-bit suffices), and age bitand a count (an integer of at least 17 bits capable of counting to
32,000). If the valid flag is “false” (the flow has no valid entryhe muxM3 will select the input 1 and
pass it as the selection value for MM, (note that when the selection bit shown at the bottom of a mu
is 1, the output corresponds to the input labeled 1, and \@cgay. In this case, mu¥1 picks the output
link D1 and the forwarding is exactly as in static hash ECMP. Theoisect because when there is no
state forf we should use ECMP.

If the valid flag is “true” (the flow entry is valid), the muM3 will select the input 0 which is the

58

output of muxM2. This value fromM2 is then fed taMi1 to select the proper output link, eithBd or
D2.

When the “re-balance” signal is 0, tid2 mux will select as its output the hash select signal
coming from the Flame table. On the other hand, if the redzaaignal is a 1, the muM2 selects as
output the least loaded link from the output of compar&as we described above. This is fed via mux
M3 to set the select signal fdfl which now actually selects the least loaded path as thaubafpmux
M1, The rebalance signal is computed by the (simple) Flamie.ltieither the age is 0 or theount> F,
the rebalance signal is asserted. At the same time, thelteaitd link output of comparat@1l is fed
back via the Flame logic to be stored in the Flame Table.

Note that unlike Hedera in which software periodically ities heavy-hitters and moves flows
to paths, the entire rebalancing process is done in hardWhigis essential if one wishes to do fine-grain
rebalancing say once every 10 or 100 packets which is pessilthout significant TCP degradation for

Linux servers as we show in Section 3.6.4.

3.5 Analysis

In this section, we analyze the components of our Flame ladahbing scheme to investigate its
performance guarantee. We first develop an analytical nfod&@RE design in Section 3.5.1. Then we

present theorems about the robustness of Flame in Secki¢h 3.

3.5.1 DRE analysis

We analyze the DRE proposal in Section 3.3.1 to show thaittsequickly to new bursts, is
robust and is independent of arrival rates. In particular sivow that the stabilized of the DRE counter
value scales inverse proportionally to the DRE decay ratéchwcan be easily converted back to the
arrival rate.

Let Tp andRp be the timer period and discount ratio parameters for DREg[t¢ denote the
value of the DRE counter at timie Our DRE model is described by the following differentiabiatjons:

do(t)

g =a—Kab (3.2)

wherea is the instantaneous traffic arrival rate and the instantaneous DRE decay rate.

Note that with very small value ofp, we compute the instantaneous decay rate asRp/Tp.

59

a/k ﬂ, ‘

)
c—jﬁ / — DRE counter building—up
> — DRE counter draining
2
% 0.50/k
o
o
L
x
o
. \\
0 T 1/ 2K . 3/k 4/k 5/K
time

Figure 3.5. Convergence of DRE counter under constant traffic arrialasgfollowed by an abrupt stop
to traffic. k denotes the instantaneous DRE decay rate the intersection point of the two scenarios.

Supposear is a constant for all timé, we can solve equation (3.2) as follows.

da—xat) __

a—kq(t)
In(ar —kq(t)) = —kt+y
p—
qt) = T (3.3)

wherey andy are constants determined by initial conditions

Equation (3.3) indicates that when a flow has been sendirageat for a while and stops sending,
its DRE counter starts from the stabilized valmgx and then decays exponentially to 0. On the other
hand, when a fresh flow starts sending at matés DRE counter starts from 0 and increases exponentially
to the stabilized value /k. The exact equations for these two scenarios are as follows.

DRE counter building-upSuppose a flow has not been sending before timard then starts
sending at time 0 with a ratea. Then the boundary conditions agé0) = 0 andy = a. Hence, its DRE

counter value can be described by:
_a—age ™
N K

qu(t) (3.4)

DRE counter draining:Suppose a flow has been sending at matep to time 0 and then it
stops at time 0. The boundary conditions atg0) = a/k andy = —a. Hence, its DRE counter can be

described by:

— kKt
Qa(t) = = (35)

60

Stabilizing point of DRE counteEigure 3.5 illustrates the DRE counter building up and dregn

scenarios. Let denote the intersection time. By solvigg(t) = g2(T), we get

1=1In(2)/k (3.6)

Since network traffic is not continuous but consists of diszdatagram packets, we also verified
our model using Matlab simulations with practical data eesettings (e.g. bandwidth 10 Gbps and 20
Gbps). In particular, we validated two important propertié the DRE design: the cross pointis
independent of the arrival rate and 7 = In(2)/k. From Figure 3.5, we observe that DRE counters
are bounded and eventually converge as long as the arrieaisshounded. Further, the DRE counters
converge quickly as measured by the metrend so the DRE timer period should be larger than

Note the important property that the parametatself defines where the cross point is, and is
independent of the arrival rate. In the context of load balancing flows, we believe thahould be in
the order of the queuing delay in the network. In particukaz,can set the DRE parameters according to

the formulaTp x Rp = d whered is the network delay.

3.5.2 Analysis of Flame state table design

In this section, we analyze Flame, particularly the hasttethased approach of Section 3.3.3.
We argue that Flame is robust and outperforms Flare in geamdayet there are certain circumstances in
which Flame degenerates to ECMP but in which Flare doesyoorl

Our notation is as follows. Lét be the number of hash functions in Flame (Section 3.3.2). Let
p be an upper bound on the number of equal paths individualipie asPy, P, ..., Pp. Letn be the
number of heavy-hitters, individually denotedtdsg Ho, ..., Hy. Let m be the number of entries in the
state table. LeT, be the aging timeout. We assume the finite memory versionsofé-and Flare. Recall
that Flame remembers onelohash functions, while Flare one pfpaths. Any state table entry is timed
out after at most P, because of the LRU approximation. When Flare or Flame isi#otv into a hitherto
invalid entry, the algorithm measures the current statdl gfaghs and places the flow in the least loaded
path: we sometimes refer to this as “sensing” in what follows

First, observe trivially that ik = 1, Flame behaves exactly like ECMP. Next, our first theorem
shows that while sensing and assigning to the least loadb@ppears to be a good idea it can sometimes

backfire when there are bursts. That means least loadedgremes do not always outperform ECMP.

61

Theorem 1. (Burst vulnerability) Under bursty arrivals of heavy-hitters, any scheme thaicltes a
new flow to the least loaded path and preserves flow packet oaheperform much worse than ECMP

for arbitrary time periods.

Proof. Consider the following traffic scenario for Flare. Suppdseamount of memomnis much larger
than the number of heavy-hittemsso that all heavy-hitters hash to distinct entries in thenhiable, with
no hash collisions. Without loss of generality, supposefitilse heavy-hitterH; is assigned to patR;.
Then bring on the second heavy-hittér after enough time for our load measuring algorithm to “sénse
Hi. Without loss of generality, suppo$® is assigned to patR,. Repeat untiH; throughH,_; have
been assigned to patRs to P,_; respectively. Now bring on simultaneoustl, , Hp1, ..., Hn. Since
at the start the new heavy-hitters have not sent any trafiic|dst burst of heavy-hitters will be assigned
to pathP,. Now suppose each of the heavy-hitters continue to serifittfaf arbitrary time. Then none
of the entries assigned to the heavy-hitters will time odtug all will have valid entries, and the system
will never sense the links for the least loaded link and rigassecause no new flows arrive. However,
that means for an unbounded period of timf@— p+ 1) heavy-hitters are assigned to pd&hand one
heavy-hitter apiece d?, throughP,_1, leading to an unbounded load discrepancy over any time scal
|[n— p| can be made arbitrarily large by increasimg

Flame is susceptible to the same "flash crowd” scenario birmniperfect sensing actually makes
it somewhat more likely to spread flows out better. For exayipk = 2 andp is large, when a later heavy-
hitter comes, the probability that neither of the two hastictions picks patt, is (1 — %)(1— p%l) =
1- %, i.e.=75% withp= 8. So Flame places 25% of the heavy-hitter$pnOn the other hand, ECMP
would put roughly ¥8 = 12.5%. O

The flash crowd scenario of this theorem has two implicatiéirst, it shows all sensing schemes
are vulnerable to flash crowds where flows arrive simultaslycand can do worse than ECMP though
Flame is better than Flare. This and Example 2 in the intrbdocuggests that periodic rebalancing is
not merely a desirable but a requirement. Second, it showsh&hvy-hitter detection can help even in
the case of flash crowds if there is sufficient memory to keaie $or each heavy-hitter. Note that if there
are more than 1000 flows, static hash ECMP should work webse the standard deviation falls with
the square root of the number of flows. Thus keeping stateréama 1000 heavy-hitters should alleviate
this scenario for either Flare or Flame.

Next, we show that remembering paths in Flare can causetr@sssproblems for Flare but not

62

for Flame. The problem can arise duesfmilers small flows that capture hash table entries early.

Theorem 2. (Spoiler resilience}-lame is resilient to the presence of spoilers and is no wiiraa ECMP.

However, Flare can be arbitrarily worse than ECMP.

Proof. Flame resorts to one more level of hashing within a tableyestr degrades gracefully to ECMP
in the presence of spoilers. Now consider Flare in the fdhgvecenario. We first bring on the firpt— 1
heavy-hitters, well-spaced out in time so as to get assighingpathsP; throughP,_1. Then, we bring
on O(m) spoilers that capture all remaining entries that are |efilid. Since the spoilers are small, they
are all assigned to pat®,. Thus, all state table entries are marked as valid, in whiehl entries are
assigned to path®; throughP,_1 and the remainingh— p+ 1 cells are assigned to pagh. In fact, the
system is reasonably load balanced at this time.

Next, we bring on the remaining heavy-hittédg, Hp1, ..., Hn nicely spaced in time so that
none is bursty. Ifnis large, the majority of the state table is filled with p&jand valid bit set. Thus, the
later heavy-hitter will likely pick such a “spoiler entryhd be then assigned to paeh. Thus with high
probability, all later heavy-hitters will be assigned tdipB,. If all heavy-hitters continue sending for an
arbitrary period of time, the situation will persist and nwther sensing will take place because no entry
times out. In other words, we now haye— p+ 1) heavy-hitters to patR, and only one each assigned
to pathsP; throughP,_1. So by increasing without bound, we have arbitrarily bad average and worst
case load discrepancy. Even if the spoilers stop sendiffictcampletely after a heavy-hitter arrives in
their cell, the heavy-hitter will keep the cell from timingteeven though the recorded path information is

prehistoric. O

If mis small, Flare gets into the following memory starvatioalgems. First, ifn < p, Flare can
only usem out of p paths. Such starvation seems unlikely as the paths aregiffesmall p < 128 in
large data centers) and if state memory is static RAM or eggisters, it is possible to gat>> 100, e.g.
in 1000s. A second starvation regime occurs when the memery andn > p. By pigeonhole principle,
two heavy-hitters will fall in the same bucket and be willynbe treated as one bigger heavy-hitter and

Flare cannot distinguish them.

Theorem 3. (Small memory)lf m < p, then Flare does not ug@ — m) paths while Flame still uses all

paths. If m< n, then the load discrepancy in Flare can bd@&yn).

Proof. The first part is obvious. The second part is equivalent towhrg n balls inm bins and determin-

ing the worst case discrepancy in balls between the leagétband heaviest loaded. From balls and bins

63

theory we hav®(logn/loglogn) discrepancy in the load ih=n. O

Theorem 4. (Greedy bin packing)If there are no heavy-hitter bursts and no spoilers, ang>m, then

Flare will behave like a greedy bin packing algorithm thahaautperform ECMP.

Proof. Without bursts, the heavy-hitters come in spaced widelytapaen with sufficient memory, each
heavy-hitter can get its own entry with high probability.rGaler a heavy-hittéfl with its own table entry.
Without spoilers, the last regular flo entered the same entry would be quite recent (at Mostd).
SinceF is not a heavy-hitter, it senses the paths at a time afteragtehkavy-hitteH’ that precededt

has “settled” (the measurement algorithm has reliablyesgits rate). Thus this is equivalent to a greedy
algorithm that simply places the heavy-hitters in sequémtiee least loaded path at each iteration. As a
simple example, suppose we have three heavy-hitters aee paths. ECMP will not use one path with
probability (1 — 1/3)% = 8/27, i.e. 30% chance of discrepancy at leaBt&hereB is the bandwidth of
each path, while the greedy algorithm will place them on smeaath. O

Theorem 5. (Squatter susceptibility)If the total number of flows is much larger than the state table

capacity m, even if ny> n, then Flame will do no better than ECMP.

Proof. If the next heavy-hitteH comes in sufficiently spaced apart and there are other flowsedo
between, then it is very likely that the entdyhashes to is already occupied not by a spoiler but a squatter.
The squatter has indeed picked its own hash but this hashshthge dame chance of assigning a future

heavy-hitter to the least loaded link as ECMP. O

Doing no worse than ECMP is a good robustness guaranteediore-IHowever, since we aspire
todo bettetthan ECMP, it is better to avoid collisions for large flowsf@sas possible) using heavy-hitter
filters. One way to make Flame behave like the greedy algurithto change the hash when a heavy-
hitter arrives but that can cause reordering for the squattd the heavy-hitter. However, this could be
mitigated in practice as follows. If a heavy-hitter sendstanhore packets than other flows that are not
heavy-hitters, it is perhaps much more likely to be best fiegtket than squats in an entry after an entry

times out or is invalid.

3.6 Evaluation

In this section, we experimentally study how Flame does wapect to ECMP and Flare. We

begin with a discussion on the appropriate metrics to gfydiothd balancing goodness. Then we describe

64

our implementation to simulate several load balancing meseon a realistic network trace. Due to the
lack of public data center traces, we enhance realisticrietdraces with data center-like heavy-hitters,
the number, duration, and intensity of which we can contal Finally, we present the experimental re-
sults showing the efficacy of the Flame scheme. We also shewitseof benchmarking TCP performance

under packet reordering at 1 and 10 Gbps which inform thecehafithe hardware rebalancing parameter

F in Figure 3.4.

3.6.1 Load balancing goodness metrics

In this section, we describe a diverse set of metrics for tifyémg load balancing effectiveness
that are abstract and independent of particular algorithBanote byTs the measurement time scale
parameter. First, fix a value @ and divide the traffic trace into disjoint and contiguousdimtervals
of lengthTs. Then for each interval, measure thath traffic vectormccumulated during the interval and
compute théalancing qualitywithin the interval using a load balanciggodness metrias shown below.

Let p be the number of paths am, ..., P, be paths. For patR (1 <i < p), denoteP,.load
as the network traffic on path during the current time interval. We denote average loadlquaths as
P.load = %zipzlP..load. We consideP.load to be the ideal balance in the current time interval. Then
we propose three goodness metrics:

1. Absolute deviatianworst case bandwidth difference of one path from the idaeklrixe

|Pload —P.load|
Pe{PL,....Pp} Ts

2. Normalized deviatiarpercent of bandwidth difference from the ideall

|Pload — P.load|
Pe{Py,...,Py} P.load

3. Jain’s fairness indexstandard fairness metric for a setmfoad values

G, o (3P, P.load)?
S p-sP,(R.load)?

Note that load balancing quality is better with smaller déein value and higher Jain’s fairness
index. Next, the goodness values in all intervals of Sizform a time series for which we can calculate

statistics such as max, average, anth9®rcentile. One final complication remains: what is a good

65

choice ofTs?

Flare [39] picksTs = 300ms since that is about the amount of data that a router afier.b
However, in recent data center routers at 10G, even 10 m&wbhuffering is large and the amount of
buffering per link may actually decrease further at 40 Gbpsrther, load balancing goodness metrics
appear better with largefs. As an example, suppose will = 1 ms andp = 3 paths, we have the
following path traffic vectors fofPy, P>, Ps) in three successive measurement intervals (100, 0, 0) KByte
(0, 100, 0) KBytes, and (0, 0, 100) KBytes. Clearly, load hailag performance is poor with absolute
deviation= 67 MBytes/s. However, by enlargiigto 3ms, we have a single path traffic vector (100, 100,
100) KBytes, which apparently has perfect performance —elakes deviation= 0, normalized deviation
= 0, and Jains fairness index1.

Therefore, we visualize the load balancing quality acrssneasurement time scales recog-
nizing that only values ofs above some implementation-dependent floor (which dependsifiering)
are interesting. We do so by plotting a graph with the goosis&istic on the-axis versus time scale
choice on thex-axis. Since computing goodness for all choicegdgif infeasible computationally, we
limit Ts to powers of 2 beyond one packet transmission. In particiiasur experiments we only use

Ts=1,2,4,8,10,20,40,80 msec.
3.6.2 Simulation setup

We use an Internet backbone trace provided by CAIDA [62]. frhee is collected at a San
Jose monitor point in 2008 with bandwidttB1Gbps and length one minute. We simulate load balancing
schemes (ECMP, Flare, and Flame). in Perl using the Coratieégvare suite [17]. To impose synthetic
traffic on top of any reapcaptrace, we augment the software to support synthetic eventh(as en-
gueuing and dequeuing synthetic packets at synthetic tammgss) The synthetic events are managed by
an efficient implementation of a heap-based discrete-eigmitlation engine.

The number of heavy-hitters is an input parameter. EachyHaitter comprises of start time, end
time, and traffic pattern. We simulate a heavy-hitter asgelabnstant-bit-rate FTP file transfer of 50-128
MB. based on the default Hadoop block size [6, 31]. The stak bf each parameter is a parameter that
can be controlled. For example, we can simulate simultasmaaival of flows to or have the start time
be sampled from a specified distribution.. The end time iseeitletermined by fixing the duration of
heavy-hitter (say, 10 seconds) or by randomizing eithedthration (e.g. as a Gaussian distribution with

mean 10 seconds) or the rate of a heavy-hitter.

66

250 600 -
r&)\ ’UT ECMP
® Flare (2048 entries)
_8— 200 _g- 450 A Flame((HH))
® Flame (HH + TCP 0.1%)
é 150 N é \\\\ < Flame (HH + TCP 0.1% + profiling)
= S 300
N0 NS
2 50 SN g 150 N ~—]
o \""‘:EN‘. & \-aq;\."_'
0 T 0 ———
0.001 0.01 0.1 1 0.001 0.01 0.1 1
Measurement time scale (sec, logscale) Measurement time scale (sec, logscale)
(a) Mean absolute deviation (b) 99th absolute deviation
c 04 1
RS
L o3 x
kS \ o 0.98
8 0.2 \\\)
N =
‘_Eu oL 9 g 0.96
S e e |
z 0 ? 0.94 4
0.001 0.01 0.1 1 0.001 0.01 0.1 1
Measurement time scale (sec, logscale) Measurement time scale (sec, logscale)
(c) Mean normalized deviation (d) Mean Jain’s fairness ind&

Figure 3.6. Load balancing performance on CAIDA trace across all measant time scalesHH
denotes inclusion of a heavy-hitter table

Each heavy-hitter is represented by a random TCP 5-tupd¢ic$tash ECMP does badly when
the heavy-hitters have the same source and destinationdfessd Finally, our framework allows the
simulation of sophisticated heavy-hitter traffic patteimexhibit several burstiness and flowlet behaviors
including ON-OFF heavy-hitters with a Pareto distributfon the OFF period. Such patterns exercise
the load balancing algorithms ability to continually adiemitd evict flows. The flowlet behavior can be
controlled; even when a heavy-hitter is OFF, it can sendagtlene packet every flowlet timeout so that
eviction only occurs under the “once evdrypackets rule”. We also allow the introduction of spoilers

that capture a hash table bucket and send at a slow rate.

3.6.3 Simulation results

In the following set of experiments, we impose 8 synthetiwfiamn the CAIDA Internet trace.
The full CAIDA trace lasts for 52 seconds. Each synthetic ff@nds at 100 Mbps by dispatching packets
of size 1250 bytes at 100 us intervals. The starting timestaggered at 1 second apart, but added random
noise up to+100 ms. We let the synthetic flows run until experiment cortipieso that we can observe
their full impact. We limit the Flame table to 2048 and ovesflio ECMP if the table is full. Our Flame
scheme use the heavy-hitedsrupt admissiomndgraceful evictiorpolicies as discussed in Section 3.3.4.

Unless otherwise stated, the default parameters are asvfolhumber of pathp = 3, heavy-hitter filter

67

250 - 600 -
g 200 ‘ . ‘] ’g L] Elzxp(zoas entries)
§ \ g 450 L] E:::z:::)-*TCPO.l%)]
= 150 = < FIame(HH+T(‘:F’Dl%+prcm|ng)
5 100 \ \\“'\o\. 5 300 *\
kS| 5]
S 'S 150 e
g = —— g
0 0
0.001 0.01 0.1 1 0.001 0.01 0.1 1
Measurement time scale (sec, logscale) Measurement time scale (sec, logscale)
(a) Mean absolute deviation (b) 99th absolute deviation
g 0.4 ‘ 1
T e S
'S 034+ x
> L o098 el
© c
§ o s
N <
= ‘= 0.96
g 01 \ . — Y g
S
Z o 0.94 §
0.001 0.01 0.1 1 0.001 0.01 0.1 1
Measurement time scale (sec, logscale) Measurement time scale (sec, logscale)
(c) Mean normalized deviation (d) Mean Jain’s fairness ind&

Figure 3.7. Load balancing performance with synthetic data centerdiikffic across all measurement
time scalesHH denotes inclusion of a heavy-hitter table

thresholdBy = 3 KBytes, heavy-hitter filter timeotfy; = 30 msec, flowlet aging timeodt, = 30 msec.

Figure 3.6 and 3.7 compare the load balancing performan&CdP, Flare, and Flame load
balancing schemes. Note that higher Jain’s fairness ind@nmbetter fairness quality, which is opposite
to other deviation metrics. We also tease apart the effeetaoh individual Flame mechanisms. For
example, we illustrate how the performance changes withatitition of each Flame mechanisms, i.e.
a heavy-hitter filter to track heavy-hitters, periodic rieisging with "1 every 1000 packets rule” and
profiling to prevent greedily rebalancing.

We observe that the synthetic heavy-hitters have a signtfeféect on ECMP and Flare but much
less on Flame with a heavy-hitter filter. To be sure, Flareldialso improve with a heavy-hitter filter:
the real reason for Flame over Flare is the robustness andmesfiiciency caused by remembering the
hash and not the path. In the figures, we call the "1 in 1000ketcrule the TCP A% rule. Note that
Flame with the “HH + TCP %" curves can be worse than the“HH" only curves becauselalamcing
oscillation which is removed by the “HH + TCP1® + profiling” rule.

In Figure 3.6, there is little difference between staticthasd Flare while the results of Flame
algorithm are better at all time scales. The relatively gmoformance of the Flare algorithmis likely due
to its state table becoming saturated. Note that while oaliyéinal results went further and suggested that

Flare can davorsethan ECMP, the experimental scenario seems more plaugigien, the difference is

68

Middle-box M

Figure 3.8. Testbed for TCP packet reordering

the heavy-hitter filter which, to be fair, would improve Fdaas well. However, the experiments do point
to the crucial need for robustness and graceful degradatiem the memory does not suffice.

Figure 3.7 shows performance when synthetic traffic is addete real trace. Here we see a
large difference at all time scales between static hashe Rlad Flame with static hash much worse than
shown in Figure 3.6. The Flare results are somewhat worsewfithout the synthetic traffic although
noticeably better than static hash.

While Flare (without heavy-hitters) performs better théatis hash because it is breaking the
synthetic flows into flowlets and balancing each one, by sapay heavy-hitters Flame does not suffer
from table saturation the way Flare does. This allows Flanietelligently balance a much larger fraction
of traffic. These results clearly show that Flame outperfobmth static hash and Flare with the amount
of state being about the same as Flare. We also evaluated sythhetic heavy-hitter pattern (larger
number of heavy-hitters, simultaneous heavy-hitter layaod rate-varying heavy-hitters) which showed

that Flame is resilient to all such combinations. We do ndide these graphs due to space constraints.

3.6.4 Impact of packet reordering on TCP

Recall that Figure 3.4 has a paramdtahat controls the frequency of reordering. While earlier
studies have suggest&d= 1000 we felt it was essential to update these studies to seefiiacts of
operating system changes, higher link speeds, and theeddifférence in reordering patterns caused
by load balancing compared to arbitrary reordering. To & the impact of packet reordering on
TCP performance at 1 Gbps and 10 Gbps, we set up two hardwsibeds, each consisting of three
nodes connected serially as shown in Figure 3.8. The miblakeM controls the forwarding of all traffic
between the clier® and the serves.

Results from the 1 Gbps testbed:

In the 1 Gbps experiments, the middle-ddxwas a 2-processor Intel Xeon 2.4 GHz machine
running Ubuntu 10.10 32-bit server with Linux kernel 2.6.3%he kernel was recompiled after applying
the Trace Control for Netem patch [50, 72] which enables taeilfle addition of latency to packets

needed for our experiments. The client and server used the sdel of machines as the middle-box.

69

For Linux client and server experiments, they were runnibghiu 8.10 32-bit server with Linux kernel
2.6.27. For Windows experiments, they were running WindBewsver Standard 2008, 32-bit, SP2. All
machines had two Intel PRO/1000 MT Desktop Ethernet inteabut only one was enabled on the
client and server machines.

In the 1 Gbps experiments, the middle-box was configured dodex packets by selecting a
number of packets. The firstF /2 packets sent out of a network interface had 0.9 msec of ktenacy
added to the normal time required to forward the packet. Ex¢f/2 packets sent had 1.1 msec of extra
latency added. This pattern repeats evengackets, so when the latency changes from 1.1 msec to 0.9
msec, one or more packets can be transmitted out of ordes erhulates the situation where a flow’s
packets are switched from a low to high latency path, thetcked from a high to low latency path, every
F packets.

The exact pattern in which the packets are reordered by tbikad varies with the timing that
packets arrive at, and are processed by, the middle-box'ekeFrom examination of the netem code,
the packets are time stamped when they begin their processithe kernel. These time stamps are
maintained with a resolution of 64 nanoseconds. The latef®/9 msec or 1.1 msec is added to the
packet’s arrival time to get its scheduled departure time packet is then placed in an output queue for
the target network interface, inserted at the approprieepso that the queue is maintained in order of
scheduled departure time.

The typical pattern of reordering seen during experimemis achieve high throughput is the
same as ifN consecutive in-order packets arrive at the middle-box aedbaffered, then the nex!
packets are allowed through, passing théuffered packets on their way to the receiver. ThenNhe
buffered packets are forwarded. For example, With 9 andM = 7, if the sender sent packdds through
D1gin that order, the packets would arrive in the orBgrD11,D12,...D17,D2,D3,...D10,D18,D19, ... at
the receiver, and would then be in order until the next tingel#ttency went from high to low. Examples
of pairs of value(N,M) observed in actual packet traces recorded at the receigéfi@rl2), (4,18),
(6,20), and(17,3).

This pattern of adding latency was done for packets in thevdad (i.e. client-to-server) and
backward directions, with an independent state machinetewupackets in each direction.

Figure 3.9 shows the throughput achieved by a single TCPeaziam for a Linux client and
server, and for a Windows Server 2008 client and server. fAteaighput measurement was made using

iperf with data transmission only in the client-to-server dii@tt and is the average rate over 10 seconds.

70

1000
o 800
o
=
< 600 + =
=3 ® Linux[0.9,1.1]
f_—" @ Linux[0.5, 1.5]
2 400 7 @ Linux[0.25, 1.75]
o ® Windows [0.9, 1.1]
£ 200 & A Fomula N

, M

N
I

32 256 2K 16K 128K
Number of packets F
between reordering events (logscale)

Figure 3.9. TCP throughput experiments at 1 Gbps. Latency differantiah msec.

Each data point plotted is the median throughput of 11 rutis the same conditions. We also repeat the
Linux experiments with two other pairs of latency valugs5, 1.5] msec (i.e. latency drops by 1.0 msec
when it decreases) anjd.25,1.75] msec (i.e. latency drops by 1.5 msec). With wider latencietéhce
range, we expect worse throughput because there is mormeratg that can be introduced when the
drop from high latency to low latency is by a larger quantityadency. Figure 3.9 shows that the Linux
throughput is still high in all cases, especially whers no less than about 128.

The “Formula” curve is the TCP throughput predicted by thg/P model of TCP perfor-
mance [45]. It is the value qfMSS C)/(RTT,/p) for p=1/F, MSS= 1460 bytesRT T = 2.2 msec,
andC = 1.22.

Linux achieves remarkably good throughput even with veegfient reordering. Wu et al [77]
ran similar experiments with a middle-box that added nolyrdiktributed random latencies to each for-
warded packet. They found similarly good throughput, ag las the standard deviation of the normal
distribution was small compared to the mean. They attrithiseresilience against reordering to: “an adap-
tive TCP reordering threshold mechanism. Under Lirdugthreshis adaptively adjusted in the sender to
reduce unnecessary retransmissions and spurious cangestidow reductions. Some network stacks [
... | stillimplement a static TCP reordering threshold meeubm with a defaultlupthreshvalue of 3.”

Our experiments confirm this. We ran additional experimertisre the middle-box dropped a
single packet everf packets, and added 1 msec of latency to all packets (thusondenréng). Under
these conditions the throughput graphs for both Windowd amak were nearly identical to the Windows
throughput graph of Figure 3.9, where reordering but noilgsgroduced.

We also recorded packet traces on the sender in a few expesifmot used to create the graphs)

71

and usedcptrace[73] to estimate the sender’s congestion window. This extinis called “outstanding
data” in tcptrace. Itis calculated as the largest data sempieumber transmitted by the sender, minus the
largest cumulative ACK sequence number it has receivedrsdli@se graphs showed the Linux sender’s
congestion window increasing steadily despite packetderamg events, whereas the Windows sender’s
congestion window dropped every time it received 3 or mogdidate ACKs in a row. Thus the Windows
sender is misinterpreting the kinds of reordering we inicas packet loss, as was also the case with
older versions of Linux (circa kernel version 2.6.14 andiegr

We also ran Linux client to Windows server experiments, and versa. Although not identical,
they are substantially similar to the Windows throughpapirpresented here. It is not enough that Linux
is the sender in order to achieve high throughput duringdeamg. The receiver TCP implementation is
also important.

The results here make a strong case that for Linux-to-LinQR Traffic, per-packet load balanc-
ing such as DRR may be acceptable to increase overall appticaroughput, if the gain in throughput
from the more even load balancing is greater than the smrallgfhput reduction caused by packet reorder-
ing. For the common case where multiple TCP connectiongghametwork capacity, their competition
for bandwidth is likely to be the limiting factor before patkeordering effects are noticeable. For TCP
traffic that is not Linux-to-Linux, reordering that caushe sender to react as if there were a packet loss
(i.e. 3 or more duplicate ACKs in a row) as often as once evBBadlpackets cuts throughput by a factor
of 4, according to the results in Figure 3.9.

Results from the 10 Ghps testbed:

NetBump [3] allows modification to packets betwé&2andSat 10 Gbps by software (e.g. chang-
ing packet headers, adding delay, dropping packets, aftthgrpacket reordering). We set up a NetBump
testbed with fast machines equipped with Myricom 10 GigEhsd packet processing can be done in real
time at full 10 Gbps by NetBump techniques to offload work onltipie CPU cores [3]. Since our
NetBump testbed is only Linux-based , we show only the rdsultinux TCP in this part.

We consider a common pattern of packet reordering causedauybalancing in data center
networks. As an example, assume pack&tghroughDs go on pathP; and then packetBg onward
switch to pathP, with lower latency. Thus althougB; throughDs have left the switch, pack&g may
overtake some of them. A possible scenario at the receivéeiins of received packets, assume no loss)
is D1,D2,Dg,D3,D7,D4,Dg,D5,Dg,D19,D11,... back to normal. In other words, it is not a complete

burst of packets that are delayed but the delayed Imtesieaveswith the burst switched onto the lower

72

710 P ﬂ W W
&g AN , " 8 ' '
= | I 1 6
g |
52 ?
8 0 0
0 20 40 60 0 20, 40 60
time (sec) time (sec)
(a) No reorder (avg 9.51 Gbps) (B)= 1000 b= 10 (avg 9.00 Gbps)
10 10
8 ﬂ ﬂ ﬂ 8 /A' r\‘ v !"WW
6 | 6 I 1 T
4 4
2 2
0 0
0 20 40 60 0 20 40 60
time (sec) time (sec)

(c) F =100Qb =50 (avg 8.82 Ghps) (& =100Qb =100 (avg 8.81 Gbps)

Figure 3.10. Throughput experiments with one TCP flow at 10 Gbps with laafing reordering burst
by load balancingF is reordering frequency arlis length of interleaving burst.

latency path.

We emulate this reordering situation according to the foihy two parameters.
e Reordering frequendy: we do packet reordering once evéryispatched packets.
¢ Interleaving bursb: the amount of interleaved packebs= 3 in our example)

Our method to craft the interleaving burst is by bufferingaup packets and alternating them
with the subsequent packets accordingly. To avoid infirétekpt delay (especially for SYN packets), we
hold each packet in the interleaving buffer for at most 1 ms.

Figure 3.10 plots our TCP throughput benchmark withigeef tool for one minute. Note that
we use the default TCP implementation of the Linux operasipstem installed on the servers (64-bit
Debian on Linux kernel 2.6.32). The bandwidth measuremgarigarity is 05 sec. In our testbed, the
round-trip-time (RTT) between the client and server variethe range @ — 0.5 ms. From Figure 3.10,
we conclude that the TCP stack on our Linux kernel is highlgremt to packet reordering. Indeed, we

also get consistent results with Figure 3.10 for severamplatterns such as interleaving of short bursts

73

(instead of packets) and per-packet delay differentigad shown due to space limit).

3.7 Summary

Our testbed results surprised us a great deal. They sudgesather than deploy new transport
protocols such as Multipath TCP [60], the simple TCP modiitces to recent Linux stacks may allow
packet-by-packet rebalancing with only small loss in perfance. The essential idea is to not to blindly
reduce the congestion window on getting a duplicate ack,t ¢east to increase rapidly again if the
situation is reordering and not loss.

In the interim, at least for Windows machines that are verpmmn in data centers, the situation
is neatly reversed. We cannot afford to rebalance ofterowitincurring severe throughput degradation: a
value of once every 3D00 packets seems to work well. Given the uncertainty, l@daizing chips today
would be wise to have a controllable paramé&telVe assert that hardware load balancing such as shown
in Figure 3.4 will be crucial. Software load balancing sush& (where the optimal flow assignments for
heavy flows is computed by software) will be too slow to allasues ofF below 1000 and hence miss
balancing opportunities in the future. The Flame hardwasedbed in Figure 3.4 can also be deployed
one router at a time compared to the deploymentissues fogiddd]. While Flame does not provide path
optimality, DRE estimation goes beyond local optimalitgéd on local physical queues and attempts to
reduce downstream congestion.

Unlike Hedera, Flame also attempts to initially do a good famsignment by stealing the basic
"place new flow on least loaded link” paradigm from Flare. Hwer, Flame goes beyond Flare by having
a more robust link bandwidth estimator (DRE), a more rasiland memory-efficient method to remem-
ber flow state by memorizing one of multiple hash functiomsl By integrating periodic rebalancing in
hardware. In conclusion, while Flame is deeply influencedHbgera and Flare, we believe it adds sig-
nificant new mechanisms (summarized in Figure 3.4) thatheikssential fodeployableandrobustdata
center routers at 10 Gbps and beyond. While our paper apfzebesnarrowly about "load balancing”,
the broader issue at stake is cheaply providing bandwidthléster computation in data centers, which
in turn underlies the promise and effectiveness of cloudputing.

Chapter 3, in part, is a reprint of the material as it appeatElame: Efficient and Robust Hard-
ware Load Balancing for Data Center RoutersU@SD CSE Technical Report (CS2012-0988)sall,
Tom; Fingerhut, Andy; Lam, Vinh The; Pan, Rong; Varghesepr@e. UCSD, 2012 The dissertation

author was the primary investigator and author of this paper

Chapter 4

NetShare and Stochastic NetShare: Predictable
Bandwidth Allocation for Data Centers

4.1 Introduction

Cloud services and enterprise networks are hosted by datiars¢hat concurrently support many
distinct services — e.g., search and email for cloud sesyiaed say accounting and engineering for an
enterprise data center. The services use a shared datalvecaese the physical equipment is expensive,
costing over 100 M a year to maintain [31] and because statishultiplexing using Virtual Machines
(VMs) is effective. However, the economics also require ttloer characteristics of theetwork both
of which are imperfectly provided today. First, to be prdfleg the networks must have higltlization.
Second, many services have stringent performance SLAsthst be met to keep customers satisfied:
thus the network should also ideally provid@ndwidth guarantee® each service. Any new mechanism
to provide these should not require hardware changes ttrexswitches so that providers do not have
to retrofit their networks.

Service level agreements today specify network SLAs in seofndollars per Gigabyte trans-
ferred and not in terms of network bandwidth. But the perfamge of frameworks such as Map Reduce
depends greatly on network performance. With current SleAsser may pay for 10 hours for a number
of VMs only to find that the VMs are mostly idle waiting for slawetwork transfers. The user job may
complete in one hour with a faster network rate and the usgrbeawilling to pay more for the higher
bandwidth. In addition, as cloud computing and shared datéecs gain momentum, there is a growing
demand to provide performance isolation between diffesentices and tenants. While isolation can be
achieved by strict rate limits, this leads to inefficient w§¢he expensive data center network because

traffic is often bursty.

74

75

We propose a new mechanism for data center networks dddieshardghat provides predictable
bandwidth allocation, bandwidth isolation, and high atilion — and can be implemented without any
changes to existing switches. NetShare does so usemarchical weighted max-min fair sharing
which the bisection bandwidth of the network)idirst allocated to services according to weights and
the bandwidth of each service is then allocated equally griteiT CP connections. Hierarchical max-min
fair sharing generalizes hierarchical fair sharindiioks [27] to networks We also generalize stochastic
fair queuing [46] to stochastic weighted max-min fair queniWhile the ideas in NetShare are extremely
simple and can be viewed as a repackaging of existing ideagatt remains that no such mechanism
exists in the market today.

We view “fairness” only as a mechanism for providing prealidé and tunable application per-
formance. Section 4.6.1 for instance, shows that withouSNare, an FTP transfer of a 1 GB file slows
down by a factor of 10 if it happens to be concurrent with thet gbase of a Hadoop application. While
better latencies for the FTP transfer could be provided bs-limiting the Hadoop application, in that
case the throughput of the Hadoop application halves. Itrasty NetShare allows both low latency for
FTP and high throughput for Hadoop.

If Internet QoS did not succeed, why hope for data center GaiS¥®, Internet QoS issues are
often solved by overprovisioning, but overprovisioningestinks in data centers from say 10 Gbps to 40
Ghps is very expensive. Current core links are indeed olbscsibed [31]. Second, users have begun to
notice latency degradation when VM traffic from differenpéigations interfere [32]. Third, a reason for
the failure of QoS was that there was no simple policy foirsgoS parameters. NetShare uses a simple
set of per-service weights which can be set automaticakbgth@n VM placement, or set manually by a
manager based on the revenue or cost of each service anslimgéMware’s ESX server shares [32].

We present three simple mechanisms to implement NetSheltaling one that relies on TCP
and fair queuing, only requires configuration changes, asgands to changes in a few round trip de-
lays. We also show how this mechanism can scale to a largebeuah applications using what we call
Stochastic NetShareOur second mechanism handles UDP, and our third mechargsmaentralized
allocation to provide more general bandwidth allocations.

NetShare can also be viewed as a way to virtualize (i.eisstally multiplex) a data center
network among multiple services. Together with virtualiZzPUs and disks, it allows managers to create

"virtual data centers” with performance isolation. Whileeocan argue whether our definition of network

We use the termapplicationandserviceinterchangeably.

76

virtualization is right, NetShare is perhaps the simplestisig point. Our contributions are:

¢ A specification of what it means to share data center bantveicitoss services using hierarchical

weighted max-min fair sharing (Section 4.2).

e Three mechanisms to implement NetShare (Section 4.3) véatteoffs (Table 4.1). They require
no hardware changes to existing routers and work with mulipgt— earlier multipath Max-Min

allocations used complex and hard to implement mechaniéijs [
e Animplementation using Fulcrum switches and using ns-2t{8e 4.5).

e Analysis (Section 4.4) and implementations (Section 46} show the benefits and scalability of

NetShare.

e A scheme for automatic weight assignment (Section 4.7).

4.2 NetShare Specification

The generalization of fair sharing to multiple resourceshsas a network is called Pareto Opti-
mality (in economics) or max-min fair sharing (in networkéjhile max-min fair sharing at the TCP level
is an old goal, we argue this is insufficient. A large corpioratnay wish to split bandwidth between a
parallel CAD application, SAP, and Microsoft Exchange. Mai fair sharing at the TCP level is not the
appropriate model for two reasons. First, services thah agpemultiple connections get an unfair share
of bandwidth. Second, the manager cannot allocate morewidtidto certain services based on their
importance.

Thus we are led toweighted hierarchical max-min fair sharing-irst, the manager specifies
services with weights manually or automatically assigrsee Section 4.7 for a simple technique to assign
weights automatically). Next, there is a mechanism thaftcalies network bandwidth in weighted max-
min fair fashion among these services. The bandwidth asditmeach service is then recursively divided
(again in max-min fair fashion) among the individual flows fieat service. In addition, each application
can be limited to some maximum bandwidth if needed usingrtdkecket limiters though we do not
consider this further in the paper. We reiterate that faisne not a primary goal; our foremost concern is
controlled allocation of network resources to maintaieteaty guarantees and high utilization.

Example:Figure 4.1 shows a simple data center topology consistirigwofedge switchegk1,

E2, E3, andE4 and 1 core switclCl. Each edge switch is connected by a 10 Gbps link to the core.

77

Cc1l
10
/0/ 10 10
E1 E2 E3 E4
A1,A2 Al, A2 A2, A3 A3

Figure 4.1. Example of a data center network shared between three ssiAiL, A2, and A3.

Assume that there are three servieds A2, andA3. Further, assumaAl’s traffic needs to be sent from
switchE1 to E2. ServiceA2 needs to send traffic froil toE2, and fromE1 to E3. ServiceA3 needs to
send traffic fromE4 to E3. For this simple example, assume the managentzamiallyset global weights
with only ServiceAl having weight 4, while th&2, andA3 have weight 1.

The link fromE1 toC1 is shared by applicatiodsl andA2. Assuming weights of 4:1A1 should
be assigned 8 Gbps whil should be assigned 2 Gbps. Howe¥é has traffic fronE1 to E2 and from
E1 to E3. Assuming equal sharing of each edge-to-edge traffic fl@hin a given service, servic&? is
allocated a bandwidth of 1 Gbps for traffic frdei to E2, and 1 Gbps for traffic frork1 to E3.

But this allows serviceA3 to be assigned 9 Gbps for its traffic from switEd to E3 even
though it has only the same weight as serd@with which it shares a link. This happens because
A2 is bottlenecked because of another link (the link frefnto C1). This kind of calculation where a
bottleneck limits the bandwidth of a flow, which then affeitts bandwidth available to another flow, and
so on iteratively, is formalized in the so-called Weighteabamin fair share calculation.

Now assume that servid&l reduces its bandwidth need to 6 Gbps. After some amournnef ti
(measured by the responsiveness of the algorithm) Net$harallocate 2 Gbps #2’s traffic on the link
fromC1 to E3. This in turn reduceA3’s share to 8 Gbps. We can formalize this allocation as¥allo

Definitions: A feasible bandwidth allocation of a set of flowsnsax-min fairif and only if a
rate increase of one flow must come at the cost of a rate decoéasother flow with a smaller or equal
rate. A feasible bandwidth allocation of a set of flowsvisighted max-min faiif and only if a weighted
rate increase of one flow must be at the cost of a weighted estieedse of another flow with a smaller or
equal weighted rate.

We extend to hierarchical weighted max-min sharing: A feladbandwidth allocation to a set of

78

A2 (weight 1)

H1 | 10 El 10 c1 10 E2
TCP at H1
limits at 2 A3 (weight 1) l ‘ Al (weight 4)
TCP at H3
grows to 8

Figure 4.2. Simple fair queuing at switches together with TCP impleraemax-min fair sharing of TCP
flows [35].

applications idierarchical max-min faiif and only if a rate increase of a flow within one applicationst
be at the cost of a rate decrease of some other flow eithertfijnithe same application with a smaller
or equal flow rate or (ii) within some other application wittsmaller or equal weighted application
bandwidth.

For this paper, we assume that in hierarchical sharing, m®igan be specified at the service

level, but all TCP connections within the same service haumbweights.

4.3 NetShare Algorithms

In this section, we describe how NetShare can be implemeStattion 4.3.1 describgsoup al-
locationwhich relies on TCP. Section 4.3.2 descriBéschastic NetShasgpproach to address the scalabil-
ity of weighted fair queuing. Section 4.3.3 describ&te throttlingfor UDP hosts. Finally, Section 4.3.4

describes a centralized bandwidth allocator that can imetd more general allocation policies.

4.3.1 Group Allocation Leveraging TCP

Our starting point is a classic result by Hahne [35] whichasgphrased as follows in [12].

Proposition 1: [35] A large sliding window at sender plus fair queuing achiexes<-min
allocation.

The intuition is illustrated in Figure 4.2. Assume 3 competirCP flows: a first from service
Al that traverses bottlenecked link frd@d to E2; a second from servich2 starts at hosti1l and goes
from E1 toC1 and fromC1 to E2; finally, a third flow from servicé3 that traverses the link frof1 to
C1. Assume thafl's flow is configured to have a fair queuing weight of 4 at cavéch C1 while other
flows are assigned weight 1.

Thus fair queuing a€1 will assign ¥/5-th of the bandwidth of th€1,E2 link to the A2 flow

79

TCP at H2

[HZ] limits to 1

A2 (weight 1)

H1 | 10 El 10 c1 10 E2
TCP at H1
limits to 1 A3 (weight 1) l ‘ Al (weight 4)
TP atH3
grows to 9

Figure 4.3. Simple fair queuing at switches at teervicelevel together with TCP achievéserarchical
max-min fair sharing of services.

because thél flow has 4 times the weight. In a few round trip delays, TCH atwill adjust its rate to
2 Gbps. But this allows TCP at H3 to grow to 8 Gbps because o@¥2s is used on the link fro1

to C1. Hahne's result formalizes this intuition but has a nundferaveats. For example, the proof [35]
applies to only some arrival distributions such as Bernautlvals and to single path topologies.

However, in NetShare we wish to allocate in hierarchical fmaw fashion first at the service
level and only then at the TCP connection level. So considgirE 4.3 which adds one more ha$2
that also belongs to servié@ with weight 1 and shares the link fro@1 to E2 with A2's other TCP flow
from H1 andAl’s flow. Fair queuing at th& CP connection level does nathieve hierarchical max-min
fair sharing. The TCP connection froAL is allocated 46th of the bandwidth and thus gets only 6.6
Gbps instead of 8 Gbps.

However, if we do fair queuing at thserviceevel, then both connections belonging to senA2e
are treated identically at core routét (i.e., mapped to the same queue). Assuming the fair mesinani
gives both the TCP connections frdtl andH 2 equal bandwidth, both limit themselves to 1 Ghps, which
then allows TCP alti3 to grow to 9 Gbps. Thus we state the following proposition:

Proposition 2:Window flow control plus fair queuing at service level acldsWhierarchical max-
min allocation.

An informal argument is as follows. It follows the standarater-filling algorithm described in
[9] when modified to do hierarchical allocation. It startsfimding theweighted bottleneckNetShare
will emulate this by DRR at the bottleneck link to give eactplagation its weighted share. Next, we
assume that the TCP flows of each application share the hetttdink equally. While this is not strictly

true if the TCPs have very different RTTs, we assume thisuis in the data center. We assume each of

80

these TCP flows cannot increase any further. Just as in thdasthwater-filling algorithm, we remove
these TCP flows and their bandwidths, and recurse to find tivdo#leneck.

ECMP multipathing can also be handled as follows. We asswauk path used by each appli-
cation flow is independent in the following sense. For exanwk assume there are no cases where one
application uses two flows1 andF2 on disjoint paths and a second application uses a third Fidw
which overlaps partly with the path &1 and with the path oF2. Such dependencies will cause the
dynamics of the two flows to be coupled. However, the use ofipathing in common data center topolo-
gies typically results in flows being independent due to swtnim structure. If the flow dynamics are
independent, then the above argument applies indepegderhch flow sent between the same pair of
hosts on multiple paths. By contrast, max-min allocatiotmyith splitting in general topologies requires
complex optimization algorithms [41, 19].

Our argument above makes a number of simplifications. Degpis, we have found in our
experiments with real switches and ns-2 experiments onaatter topologies that Proposition 2 holds
even with multipath topologies. Proposition 2 suggestsxaremely simple mechanism that requires no
software or hardware changes to endnodes or switches.

Group Allocation Mechanisntfor every switch and every outbound link configure sepasite f
gueuing queues for each service/application class witlglgispecified by the manager.

For example, in Fulcrum switches [1] we have used DRR [66]dofigure fair queuing and
TOS bits to distinguish services. The queue weights aresbefon all outbound links) to the NetShare
weights specified by the manager. Note that this is not thesmmeservation. If a service is inactive or
is routed on a different path it will not consume bandwidthtlais link.

Current switches typically support a small number of DRRuggesuch as 16. While this often
suffices for the enterprise, we wish to handle a large numhbsgrices, especially in cloud data centers.
First, note that Approximate Fair Dropping (AFD)[54] is gplecement for DRR. Cisco routers will
appear within the next year with a few thousand AFD queue38dDRR queues. Note that AFD scales
better because it uses a counter for each class as opposgdéoe We describe a temporary measure,

however, to deal with existing routers with small queues.

4.3.2 Stochastic NetShare

Large enterprises or web service providers like Amazon EG2amgle App Engine could have

several customers or classes that they wish to isolate. €xmigue to scale NetShare to several appli-

81

cation classes is what we c&tochastic Weighted Max Min Fair Sharing\pplications are randomly
hashed to specific DRR queues at each switch port. Each DRR gg@assigned weight equal to the sum
of weights of the individual applications that are hashedootihe DRR queue. The DRR grouping of ap-
plications in each switch can be different and can also beréifit at each switch port. Also, the grouping
of applications on DRR queues is changed periodically tadeany intermittent hashing imbalances.

Stochastic Max-Min Fair sharing is a generalization of Sastic Fair Queuing [46]. We, how-
ever, have to deal with three more issues. First, currenérsgo not support hashing to queues based on
packet headers. However, they do support mapping from héiattés to queues via ACLs. Thus, a way
to simulate hashing is to have a central allocator provitelkto services; these labels can be random
labels and can be changed periodically. Second, note thEeNey described his scheme at a single
router. When we do this across the data center, deviaticmsiagle hop can cascade across the network
(think of errors at each stage of the water-filling algori}hnThird, McKenney’s scheme assumed all
weights were equal.

Clearly, pure random assignment regardless of weightswilivork well because a high weight
service may be assigned to the same queue as a low weighteseBince allocation within a queue is
done by TCP which allocates bandwidth regardless of wejghtnall weight service can steal more
bandwidth than its share. We propose a mixture of random aight+based allocation as follows.

First, group services based on weight classes (say allcesraif weight 1, all of weight 2, all of
weight 4, etc.). Then map each weight class into a set of cesugrandomly assign services to a specific
gueue within each set. In practice, given the small numbekisting queues, we suggest grouping large
weight services and low weight services into 2 classes,amdlamly assigning within each set of 8 queues.
Clearly, this introduces errors due to weight aggregatiuth these errors can cascade but it provides a
solution to the difficult problem of combining scalabilitygether with tunability. In a theoretical sense,
if there areS servicesM misbehaving applications, aMil possible weights, our mechanism requires
O(Mlog,W) queues instead @(S) queues.

The mixture of deterministic (weight-classes) and rand@sigmment to queues can also be
achieved on existing routers by a centralized label altocdtor example, using 16 values of the IP TOS
Bits (as supported by many routers including Fulcrum anad@isthe allocator could assign values 0
through 7 to low priority applications, and values 8 throdgto high priority applications. In all routers
and switches, valukis mapped to queueusing say ACLSs.

Next, the allocator assigns each high priority service doamvalue between 8 and 15, and each

82

low priority service a random value between 0 and 7. The labbetator periodically changes these at
intervals of a few seconds to avoid cases where one senvisistgmtly gets assigned to the same queue as

a misbehaving service. Note that the sources are using matadbe®ls directly instead of router rehashing.

4.3.3 Rate Throttling for UDP

Group allocation relies on TCP. However, many importantiappons including Tibco’s multi-
cast protocols, Veritas, and Oracle [8] do not use TCP. Bug@yroneous settings can cause such traffic
to flood the network. While we could use existing TCP-frigndDP congestion control protocols, this
would require modifying all UDP applications (not easy talfimnd change them to send packets via the
TCP friendly code, which requires finding the calls in the &obhstead, we show a very simple scheme
that can be implemented as a kernel patch (some effort bigrdhan modifying applications) that is
layeredbelowUDP and is thus transparent to existing applications.

Further, most TCP-friendly congestion protocols measumopsiand use the TCP equation [52]
unlike our simple scheme. In particular, the simplicity of scheme also allows it to be implemented in
switches which can be useful in cloud environments and rteinted data centers where host software
cannot be trusted.

First, what goes wrong in Figure 4.3Hf1 andH2 use UDP? In that cask,1 could continue to
send at 10 Gbps on the link 1 and the fair queuing mechanismit will assign it 5 Gbps on the link
to C1 (dropping the remaining traffic) providing only 5 GbpsA®'s traffic fromH3. This is unfortunate
because the fair queuing mechanisnCatwill only allocate 1 Gbps to the traffic frotd1. Thus ifH1
sends at 10 Gbps, 5 Gbps of traffic is droppeBhiand 4 Gbps is dropped@il. There is no congestion
collapse but the allocation is far from optimal. Insteadng®ur UDP rate throttler, the hosktl will send
at 1 Gbps and the extra traffic will be buffered at the host.

We propose a simple idea as follows. Assume that each hostragesthrottling shim layejust
below UDP. For example, in Figure 4.3 suppose Hhatsends at 10 Gbps to some other hd4tas shown
in Figure 4.4. The shim layer &4 measures received traffic of 1 Gbps fréth. This is sent back to the
corresponding rate throttling layerdtl which rate limits the traffic at close to 1 Gbps.

UnfortunatelyH1 cannot rate limit exactly to 1 Gbps. This is because if sayflthw fromH?2
disappearsiH1 could grow to 2 Gbps. But the rate limit BitL will preventH1 from ever finding that
it can grow. Thus we need to set the throttled rate to somemloat (sayx%) than the measured rate

to allow ramp up. Higher values aofallow faster ramp-up but increase the amount by which a flaw ca

83

rate throttler

limits to 1
A2 (weight 1)

H1 | 10 El 10 c1 10 E2 H4

rate throttler - i rate measurement
limits to 1 A3 (weight 1) l ‘ Al (weight 4) l measures 1 Gbps
A TCP at H3 !
| grows to 8 !

feedback received rate via control message \
|

Figure 4.4. Simple fair queuing at switches at thervicelevel together with rate measurement and rate
throttling implements hierarchical max-min fair even widbbP.

overshoot its allocation. We chose a valuexef 20% as a compromise.

The throttling code we use is slightly more complicated anddscribed in Algorithm 2. Note
that Rate Throttling requires weighted fair queuing at eacher as well. We assume the receiver mea-
sures received throughput in some peffofve use 50 msec in our experiments) and sends a control (e.g.,
ICMP) message to the sender with the current measure€rateryT msec. The sender then executes
Algorithm 2 to set the throttled raf

First, the code adds some hysteresis to prevent changestivelifference between the last
measured rate (stored k) and the current rate is too small (say, less than 5%). Nétheicurrent
measured rate is greater than the last measured rate, theemeling rate is set to an additional factor
r, of the measured rat8. If the current measured rate is smaller than the last medsate, the new
sending rate is set to an additional faatgrof the measured raté. The values| andrp are performance
tuning knobs, indicating how much network bandwidth can lsted.

For example, if we usep = 10%, we could have upto 10% of the bandwidth wasted since we
set the rate to 10% more than current measured rate. So thigates us to reduce this value. On the
other hand, if the valuess or rp are larger, then any newly freed up bandwidth can be acqtastdy
the UDP traffic class. So this is an essential tradeoff. We tiwdt very large differences betwegrand
rp would also cause instability and would make it harder forrtite to stabilize. In our experiments, we
achieved good performance with= 20% andrp = 10%.

There are two final subtleties. First, even if the differeisdeo small, if the sender had increased
on the last iteration (this is kept track of by fl& the sending rate is set to a facter(say, 10%) higher
than the measured ra@ This limits the final overshoot to 10%. For example, suppbsdarget max-

min rate is 100 and the last measured rate is 94 and the cumesured rate is 100. The sender goes

84

Algorithm 2. Compute NetShare Rates at Rate Throttler

Performance tuning knobs:
d: threshold of rate difference
r: factor for increasing flows
rp: factor for decreasing flows
ro: factor for overshooting flows
Measurement parameters:
L: last measured rate
C: current measured rate at receiver
f: flag indicating that the flow increased on last iteration.
R: current rate limit
if (J(L—C)/L| > d) then {is rate change substanti&l?
if C—L > Othen {increasing, allow overshoot by}
R+ Cx(1+4r)
f < true
end if
if C—L < 0then {decreasing, allow overshoot by}
R+ Cx(1+4rp)
end if
else
if f =truethen {limit overshootbyro}
R+ Cx(1+ I’o)
f «+ false
end if
end if
if R < Ththen {do not lower below thresho}d
R+ Th
end if
L+<C

20% higher in the next iteration to roughly 120. Howeverhi next measured rate is also 100, the next
iteration will set the sending rate to 110. Thus after a lwiefrshoot of at most 20% the final overshoot
will be 10%. Finally, we do not let the rate to fall below a thheld, because if a flow’s rate becomes too
small it will take too long to ramp up.

Implementation ChoicesRate throttling can be implemented entirely in the hostsugh a
kernel patch which is gradually deployed. It can also be anm@nted in the network at switches with open
APIs or OpenFlow [47] switches. For our experiments, we ubed~ulcrum switch API to implement

rate throttling with just under 100 lines of code.

4.3.4 Centralized Bandwidth Allocator

While NetShare based on fair queuing is efficient, it can aallgulate a hierarchical max-min
allocation. A more general policy would allow some conrmtsi between important servers to be allo-

cated higher bandwidth. As a more complex example of a usdifadation policy, consider the single

85

Al, min weight = 1, excess weight = 2

A2, min weight = 1, excess weight = 1

El C1

A3, min weight = 1, excess weight = 1

Figure 4.5. Allocation mechanisms that divide excess bandwidth usifigrént weights.

link example shown in Figure 4.5 with 3 servicds A2, A3 sharing a congested link from an edge to a
core switch.

With 10 Gbps link bandwidth and equal weights, each sergigaaranteed 3.33 Gbps. However,
if A3idles, themAl andA2 get 5 Gbps each. Suppose, however, we wish to limit the ‘&Xdsndwidth
thatA2 gets. Then we can define a second set of weights for shaerexttess bandwidth. For example,
if the excess bandwidth weight &l is twice that ofA2, then ifA3 idles, the excess is allocated among
Al andA2 in the ratio 2:1, so thahl gets 2.22 Gbps of the excess aftigets 1.1 Gbps. Thus, in sum
Al gets 5.55 Ghps aniR gets 4.4 Gbps. By setting the excess weight to zero we caemira service
from getting any excess bandwidth. While such an allocatialy seem contrived, the ability to do such
general allocations for a single storage resource (we dw ttie entire network) is a key motivation for
MCLOCK [32] implemented in VMWare’s ESX server.

However, such an allocation is impossible using fair qug@ihswitches. Instead, inspired by
centralized routing schemes like RCP [16] or [18] we propibsaise of a centralized bandwidth allocator
based on four simple mechanisms.

1. Rate Measurement:The rate of each flow (TCP or UDP) for each service is measured a
either the switches (using ACLS) or at the hosts (using a #uyer) in intervals oflf seconds and used to
predict a demand for the next interval.

2. Rate Reporting: The predicted rates are sent to a centralized bandwidtheaado (imple-
mented on a PC in the network) that is also supplied with théceweights and the topology via routing
updates.

3. Centralized Calculation: The centralized allocator calculates rates for each floweswih
service and sends back rate updates to the switches or hosts.

4. Rate Enforcement: Token bucket rate limiters are used at the hosts or ingresshsports

to limit the rates to the calculated rates. As in rate-thirajf each flow (especially TCP flows) must be

86

Table 4.1.Comparison of different NetShare mechanisms

Deployment Responsiveness Generality
Group Configuration at routers < 1msec Only TCP flows
Allocation Only Hierarchical max-min
Rate Configuration at routers
Throttling Added endnoder 10-50 msec Only Hierarchical max-min

router software
Centralized Centralized allocation software 10 - 100 msec oreMyeneral allocation policies
Allocation Added router software

allocated say 10% higher than its optimal centralized alion to allow it to grow.

We have designed and implemented such a centralized afocBe predictor in Step 1 is a
standard least squares predictor using the last 5 measniteofeoffered traffic. The algorithm in Step
3 is a variant of the standard water-filling algorithm [9] wfhistarts by finding theveighted bottleneck
We implemented the centralized algorithm on several laigelated 2-tier data center topologies. On a
simulated topology with 16 cores, 128 edge switches and 1Ri®mflows, the algorithm took less than
100 msec on a standard Intel Core2Duo 3GHz desktop. Smaliemare common topologies took less
than 10 msec.

Table 4.1 shows the tradeoffs between the three NetShaoeitalgs: group allocation, rate
throttling, and centralized allocation. Note that incierggenerality must be paid for by smaller respon-

siveness and more software deployment.

4.4 Analysis

Section 4.4.1 gives a bandwidth model for NetShare witht&tstic DRR. Section 4.4.2 proves

the stability of the central bandwidth allocator in a cohtheoretic framework.
4.4.1 Stochastic NetShare Model

Assume we havhl applications (as large as several thousands)Me¢ number of misbehaving
applications. Initially, assumil = 1. LetQ be number of queues per switch pd@<£ 16 in a standard
commercial switch). For scaling analysis, assupne: N.

Since one misbehaving application is hashed to on® qtieues, with probability AQ a well-
behaved application will hash onto the same queue and geamdwidth (in the worst case). On the

other hand, with probabilityQ — 1) /Q it gets the normal bandwidth of a queue, whicBjsQ (the queue

87

bandwidth assuming perfect weighted fair queuing with DRRi)ded by average number of applications
in the queuel/Q). Thus the average bandwidth for a good application-i/@+ B/N- (Q—1)/Q=
(B/N)-(Q—1)/Q.

In other words, if there is one bad application, the averagaividth is slightly degraded by
a factor(Q—1)/Q. So if Q > M, the degradation is small (1/16-th for 16 queues). The upishbat
it is feasible toscale the queues with the number of bad applications, idstéahe number of active

applications

4.4.2 Stability of Centralized Allocation

While the stability and equilibrium behaviors of TCP andiaeigueue management schemes
(Schemes 1 and 2) have been studied before [44], our ceetadilgorithm (Scheme 3) also involves a
feedback loop for which we need to guarantee its stability@nvergence. We analyze its properties in
this section.

Following the general structure in [53], our design can belehed as the feedback control system
shown in Figure 4.6aR(s) represents the transfer function of rate measurement witinterval of T
seconds. It is shown in [29] that a time averaging system aiitintervalT can be approximated with a
transfer functiorR(s) = ;/T;T

We model the other steps of our algorithm (rate reportingirdd rate calculation and enforce-
ment) as adding an aggregated system delaggether with a general proportional gain factoiHence,

jfz//TT e S, This equation indicates two key factors that would

our overall loop transfer function I5(s) =
determine the system'’s response tiMieandt. As T < T would mean more rate reporting traffic is intro-
duced into the system, which is not desirable, we study the wherr < T. Whent < the measurement
window T, it means that the delay caused by rate reporting, calouland enforcing is much smaller
than the rate measurement window. The system is reducedrtgla pole system that is guaranteed to be
stable. This implies that if we measure rates in an interi/alfew seconds, the centralized scheme with
a few milliseconds delay would certainly not be a concern.

Now let's look at the interesting case wh&randt are of similar order. Figure 4.6b shows the
Nyquist plot of the system: the system would be stable if thw& touches the negative real axis to the
right of the critical point—1. As the first order lag can be used to approxirrﬁtg?1 [29], the transfer
function can be rewritten ds(s) ~ ke~ (T+7/2)s,

Therefore, if we sek < 1, then our loop can reach stability. This indicates thahevken the

88

Nyquist Diagram

0.5r

.&%

>
(s): Rat S s

R(s): Rate -T =)

A _>Measurement_> Ke ‘ §
-0.5

-1 -08 -06 -04 -0.2 0 0.2 0.4
Real Axis

(a) Feedback diagram (b) Nyquist plot
Figure 4.6. Feedback control model for the Centralized Bandwidth Adtoc

system delay gets close to the rate measurement windgwve can still choose the system gain in such
a way that guarantees stability. Note that our stabilityysisonly gives guidance regarding the order of
magnitude of the time intervals involved; we leave detadrdlysis for future work. The result indicates

that with a properly designed measurement windbythe system is stable.

4.5 Implementation

In this section, we show the effectiveness of NetShare inistpaeal data center applications,
providing both bandwidth isolation and statistical muking. For simplicity, we model each application
as a Hadoop instance. We implemented NetShare on a smaldatial center testbed consisting of a 24-
port Fulcrum Monaco 10GigE switch[1], a commercial switclihvan extensive programming API for
advanced customization. Twelve switch ports are direailynected to servers. Each server has 2 quad
core Intel Xeon E5520 2.26GHz processors, 24 GB of RAM, antb&#l hard disks with 8 TB of total
capacity. The remaining twelve ports are all connected ttirar@erglass optical MEMS switch which is
used like a patch panel to setup loopbacks between theseestpeits on the Fulcrum switch. This gives
us the flexibility to partition the 24 port physical switchtanvirtual switches using VLANs and create
interesting multi-switch data center topologies throughlbopbacks.

We configured two data center topologies shown in Figure Multipathing on the edge
switches to utilize both core switches in Figure 4.7b is Hame Equal Cost Multipath (ECMP). End to

end RTT between any two nodes was less than 100us. Also, itopalogies, the term pod corresponds

89

(a) Single path (1 core) (b) Multipath (2 cores)

Figure 4.7. NetShare testbed topologies

to an edge switch and there are four servers connected tgedch

We implemented Group Allocation by configuring Deficit RouRabin (DRR) at a service level.
DRR already existed on the switch but we had to implement U@ throttling in the switches; we did
not modify servers. To classify application traffic, we medkthe application ID in the Type of Service

(ToS) field in the packet header.

4.6 Evaluation

We describe experiments using a single path topology ini®edt6.1, and using a multipath
topology in Section 4.6.2. We evaluate the effectivenessataf throttling in Section 4.6.3. We examine
NetShare scalability to a large network topology in Sectidh4, and show how Stochastic NetShare
scales to smaller number of queues and large number of afiphis in Section 4.6.5. All experiments

were conducted on the Fulcrum testbed except the scajadxiteriments which used ns-2.

4.6.1 Single Path Experiments

We evaluated the performance of one latency critical appiio (modeled with FTP) in the
presence of a large Hadoop Sort application with and with®iShare. We used a single-path topology
with a single core switch as shown in Figure 4.7a. HDFS wadigored with a default replication factor
of 3 and the HDFS block size was set to 256 MB. For Hadoop, onteenEervers was configured as a
master while all the servers were configured as slaves. Thedfeapplication was configured to use 8
disks (4 for HDFS and 4 for the task tracker) on each server.

Before the experiment began, we generated 56GB of data tissngladoop RandomWriter
application. To start the experiment, we ran a Hadoop Sbtrbjpthe 56 GB of random data using 36

maps (3 per slave) and 36 reducers (3 per slave). During tievem introduced an FTP job of various

90

Table 4.2.Completion time of the latency-sensitive FTP job for diffiet file sizes

File size NetShare (sec) Without NetShare (sec)

1 MB 0.02 0.3
10 MB 0.2 1.9
100 MB 1.7 31
1GB 18 240

file sizes ranging from 1 MB to 1 GB from Host 1 to Host 5 at diffiettimes.

In the map phase of the Hadoop application, there is minirealork utilization and the jobs
are mainly CPU/disk bottlenecked. During the reduce phtéme is considerable data shuffling and
the network is highly utilized. In particular, the Hadooppépation opens up a large number of TCP
connections between its reducers. Thus one would hypataésat during the reduce phase, the latency
an FTP job of a few Gbytes or less could greatly increase wittarotection” from NetShare because of
contention for bandwidth on the core links.

Figure 4.8a shows the bandwidth obtained by the FTP and Hejdbs on one of the core links
without NetShare where the FTP job was started after time@G2hen the map phase of the Sort job
finished. Note that the FTP job could only acquire less thaivib@s of the core bandwidth of 1 Gbps
and completed in 240 seconds. This is because the Hadoojgapl often has 20 concurrent TCP
connections competing with the single TCP connection ofRRE for bandwidth on the core link. By
contrast, using NetShare with equal weights for both apptias, the FTP job immediately acquired 500
Mbps, i.e. the fair share, and completed in 18 seconds (Eigj@b). With NetShare the 1 Gbyte FTP job
completed in 18 seconds (a speed of slightly less than 0.5 @bgsibly because the speed of writing to
disk is also a factor).

Note also that before t = 200 s, the map phase of the Hadoojatph uses very little core
bandwidth. Thus one would suspect that if the FTP applicatias started during the map phase, the FTP
would complete much faster. Figure 4.8c shows this is indeed:ase by showing the core bandwidth
usage when the FTP job was started in the map phase. In thlastb@sFTP job acquires the full link
capacity of 1 Gbps and completes in 9 seconds.

To show that these results scale down to small file sizesgT@l2l shows the completion time
for the FTP job using file sizes as small as 1 MB. Each FTP watedta the reduce phase as described
above and the completion times are described with and witNetShare. It is easy to see that with

NetShare, the FTP application gets a guaranteed bandwidtdughly 0.5 Gbps regardless of network

91

1000

i ”‘MW
800 ! W,
2 I
Qo L]
= 600 I
3 .
& I
2 400 - -
2 I === Large Hadoop job
= l . = Shoirt file transfer (1GB|
200 il i
F T e
0 200 400 600 800 1000
time (sec)
(a) Without NetShare
| B— .J .
1000 Ww g i o et "W
800 ! ii
2 I
é 600 I I'
3 .
£ |
g’ 400 "
2 I =—r== Large Hadoop job
= . Short file transfer (1GB
200 1
!
. I
0 200 400 600 800 1000
time (sec)
(b) With NetShare
1000 st =gty o — J.,=.=r-
800 i
& -
5 I
= 600
3 !
ey
S 400 I -
2 . === | arge Hadoop job
= I = Short file transfer (1GB
200 i
0 ——lll
0 200 400 600 800 1000
time (sec)

(c) No job overlapping

Figure 4.8. Competition for bandwidth between a short latency seresithGB file transfer) job and a
long running Hadoop job on a core link

92

activity. Without NetShare, FTP performance is 10 to 15 smerse, depending on the aggressiveness of
the other job. To see how these results are affected by theéewumfireducers, we repeated the experiment
with a file size of 100 MB and changed the Hadoop applicatiarstw14 instead of 36 reducers. The FTP
transfer time without Hadoop improved from 31 to 12 secordsrésponding to a factor of 2.5 reduction
in number of connections). The FTP time with NetShare reewimchanged.

The transfer of a small file is a representative of a latenitical application. Without NetShare,
the latency of such an application can vary from feast (dutire Map phase) to famine (during the
Reduce phase). With NetShare, on the other hand, a minimeehdéperformance for SLAs is possible
regardless of timing. While the sanfetencyguarantees can be obtained by rate-limiting the Hadoop
application to 0.5 Gbps, in that case the Sort phase for tluméfaapplication doubles from 800 sec to
1600 seconds. With NetShare, the Hadoop application getsifps during the 18 seconds itis concurrent
with the FTP but gets 1 Gbps during the remaining 780 secohtteedSort and finishes in around 810
seconds. It is precisely this ability to provide maxirttabughputfor big jobs together with predictable

latency guarantees for smaller jobs that makes mechanisthsas NetShare essential for data centers.

4.6.2 Multipath Experiments

We have seen NetShare’s ability to divide the network badtwfairly on demand for aingle
pathtopology. We now show that the isolation extends to a mutigapology where NetShare truly
divides the bisection bandwidth (both core links) on demafie configured the Fulcrum switch to use the
two-core switch topology shown in Figure 4.7b. Each edge4vatch performs ECMP to hash flows onto
the two paths for interpod flows. Again the core switches vtieeebottlenecks with an oversubscription
factor of 2:1 for interpod traffic. Instead of a single FTP kgadion and a single Hadoop application,
we usedwo Hadoop Sort application&1 with 96 maps and 96 reducers, af\@ with 96 maps and 48
reducers. Note that since ECMP only divides TCP flows acragspte paths, we need two applications,
each of which opens up multiple flows.

Concretely, we first generated 96GB of data for each instasirgy the Hadoop RandomWriter
application (8 maps per slave12 slaves). We subsequently ran two Hadoop Sort jobs in thétadoop
instanceAl andA2. Al used a total of 96 maps (8 per slave) and 96 reducers (8 pe) slhile A2 used
96 maps (8 per slave) and 48 reducers (4 per slave). All otaeoblp parameters were as described in
Section 4.6.1.

First we ran the sort jobs without NetShare in the network.this case Al used twice the

93

1000

-' et ——— L wen App l
== App 2
800 —— App 3
& = g
& i j
S 600 .l
= .
£ l
S 400 4
S I
= M H
L IO R —
S ! =1
| 3
o : L -
0 30 60 90 120 150
time (sec)

Figure 4.9. NetShare with Group Allocation (DRR) + Rate Throttling

bandwidth (summed over all core links, the “bisection baidthV) when compared t&\2 because it
opens up nearly twice the connections. Next, we set up Ne¢Slyaconfiguring DRR with equal weights
for the 2 applications. Note that the bandwidths on the waricore links are not shared as uniformly
because of hashing effects and because the sort does natsatililinks consistently.

Using NetShareAl completed sorting in 1633s whil2 completed sorting the data in 1810s.
To show that NetShare is sharing the bisection bandwidthramédl andA2 in exactly the same way
except using the single core topology. Using NetShare irsitngle core topology we found thafl and
A2 finished sorting in 3070s and 3212s. After factoring outib@s for the map phase (that is unaffected
by the extra bandwidth), the bisection bandwidth appeatsetoearly equally shared between the two
“services” and both have been sped up by nearly a factor obgheSlifference is not surprising because

Al has more connections, and thus its use of ECMP load bataitclikely more effective thad2.

4.6.3 How Effective is Rate Throttling?

We deploy three applications with the testbed in Figure:4Aagenerates a TCP flow from host
H1 to host H5;A2 generates a UDP flow from had2 to hostH9; andA3 generates a UDP flow from
hostH®6 to hostH10. The weights of the applications AA2, A3 were set to 1:3:9 respectively.

Table 4.3 shows the traffic pattern. During the time 5-2&is inactive and thus the TCP flow
Al (weight 1) contends with the UDP floA2 (weight 3) for the core linkE1,C. From time 35-65, the
two UDP application®2 andA3 (with weights 3 and 9) contend for the core lBKE3. From time 65-95,
the TCP applicatio®1 contends with the high weight UDP application but only oa lihk from edge

1000 I—.—.-\ sennndann App 1
l | —r= App2
800 . : App-3
2 |
S w0 | g
% 400 I -" N
= . 3 |
[| H
200 1 i !
| : E
0 30 60 90 120 150
time (sec)
Figure 4.10.No NetShare mechanisms
1000 forttors sl App 1
== App 2
800 : App-3
g T |
Ke) I H
S 600 : H
5 I : i
- :
S 400 4 : :
o | :
= I | : i
0 | E '; Eimmin
T N
0 30 60 90 120 150
time (sec)

Figure 4.11.NetShare with Group Allocation Alone

1000 I—.—.-\ T App 1
i i —t= App 2
800 v App-3
z |l]l
S oo | ;
Ey o s LR T
g 400 I | i
= | i |
200 ——» 0
| P
0 H . |
0 30 60 90 120 150
time (sec)

Figure 4.12.NetShare with Rate Throttling Alone

94

95

Table 4.3. Traffic pattern that indicates times during which differlotvs are active.

Time(s) Al A2 A3 Bottlenecks
5-35 v v X ElC
35-65 X v v C,E3
65-95 v X Y E2,C
95-125 v v v Allofthe above

routerE2 to core route€. Thus the UDP application can only interfere with T&€knowledgementsr
Al destined to Hodt 1.

We evaluate the following scenarios.

1. Group Allocation and Rate Throttling: As shown in Figure 4.9, each application receives
its weighted share of the network resources. For instanaéngithe period 5-35sA2 gets 750 Mbps
andAl gets 250 Mbps as they are sharing the bottle&ck in the ratio 3:1 of their weights. However,
from t=95-125%1’s TCP flow gets close to 725Mbps, which exceeds the sharesddid by its application
weight, but sinceA2’'s UDP flow has a downstream bottleneck on the IBE3 only 250 Mbps of the
UDP flow is “useful” (that is the throughput of the UDP flow thaadtually reaches the receivd®). So
in this caseA2 gets rate limited at the ingress switch to 275 Mbps (250 ¥ WHich results inAL getting
close to 725 Mbps. Without rate throttling we will see tidgt will send at much higher rates and get
dropped at.

2. No NetShare:As shown in Figure 4.10, whefil andA2 are both active in time 5-3581's
TCP flow is overwhelmed bg2’'s UDP flow and receives zero throughput. Note that from t965,A1’s
throughput does not reach 1 Gbps although its path frtiinto H5 is not affected byA3's UDP flow.
However, the ACKs frontH5 toH 1 share a link wittA3's UDP flow; some of the ACKs get dropped, this
results inAl’s throughput dropping to sometimes as low as 750 Mbps.

3. Group Allocation Only: Figure 4.11 shows the impact of omitting Rate Throttling. In
the period t=95-125%2 andA3 share the bandwidth of their shared bottleneck link in Himrof their
application weights (3:9). Thus2 only receives 250Mbps. UnfortunateM also receives only 250Mbps
becaus&\2 continues to send greedily at 750Mbps on EigC link of which 500Mbps gets dropped at
C.

4. Rate Throttling Only: In Figure 4.12, the behavior is similar Case 1 from t=5-95swklver
from t=95-125sA1 only achieves nearly 450-500Mbps. This is becaABegets rate limited aE1 to a
little over 500Mbps, s@\1 is able to use the remaining bandwidth on BieC link. Thus rate throttling

96

Figure 4.13.Three-tiered data center topology used for scalabilityeexpents

and fair queuing are orthogonal and complementary mecmanis

4.6.4 Scaling to Larger Topologies

Due to the constraints of our hardware testbed, we expl@sdhlability of NetShare to larger
topologies and more applications by ns-2 simulation. Aswshim Figure 4.13, each application has its
own dedicated node at each edge switch. Two different agimics such agl andA2 are assigned to
nodes alternately. All links between the switches are 10 $1bye vary number of applications and TCP
connections per application.

Within each application, the communication pattern ipalirs. Furthermore, each pair of nodes
open up toC connections in parallel, wher@ is a parameter. We explore the parameter space of the
number of applicationdN), application connection€j and policies with and without NetShare.

We vary the parameters of the first applicatlarand keep same configurations for the remaining
N — 1 applicationg, ...,An. We report only the maximum and minimum bandwidths for theliaptions
in setAy, ...,An. W denotes the DRR weights.

We observe that NetShare with Group Allocation via DRR coolese to achieving the desired
network sharing independent of the number of connectioaisghch individual application makes. For
example, as shown in Table 4.4, each of the four applicatidgtis two connections between any pair
of nodes get 36 Mbps. Without NetShare, one heavyweighicgin can acquire more bandwidth by
increasing its connections per node pair (e.g. upto 84 Mhbffs&connections and 106 Mbps with 16
connections). On the other hand, NetShare always preveat@pplication from getting more that 40
Mbps. Note that this is slightly above its fair share (36 Mbpst independent of the connections made

by other applications.

97

Table 4.4. Application bisection bandwidth under several traffic paeters and with and without Net-
Share (DRR only).

Bandwidth (Mbps)

N C DRR? W .
Aq max min
Ao N A N

1 2 - - 131.7

1 8 - - 141.7

4 2,2 Y 1,1 35.6 35.1 37.0
4 2,2 Y 1,2 22.6 40.0 41.5
4 8,2 Y 1,1 40.2 34.0 36.0
4 8,2 N - 83.8 19.4 20.6
4 8,2 Y 1,2 24.7 38.5 41.9
4 16,2 Y 1,1 40.1 35.1 35.8
4 16,2 N - 105.5 12.2 14.0
4 16,2 Y 1,2 25.2 39.4 40.7
8 2,2 Y 1,1 18.3 17.7 19.0
8 2,2 Y 1,2 10.4 18.9 20.0
8 8,2 Y 1,1 20.4 17.1 18.5
8 8,2 Y 1,2 11.6 18.3 19.8
8 8,2 N - 53.1 11.6 13.9
8 16,2 Y 1,1 20.2 17.1 18.4
8 16,2 Y 1,2 11.7 19.0 20.2
8 16,2 N - 77.9 9.1 10.4

98

(a) Single path (1 core) (b) Multipath (2 cores)

Figure 4.14.Topologies for Stochastic DRR experiments

Furthermore, bisection bandwidths also reflect NetShandir@strative weights. For example,
the bisection bandwidths for the four applications, one bfclk having weight 1 and the remaining
having weight 2, are 22 Mbps and 41 Mbps respectively. Albe, dpplication with smaller weight
cannot increase its share by increasing the number of ctionebetween its nodes. Finally, we scale

the experiments from 2 to 4 to 8 applications and observdaimifects.

4.6.5 Scalability of Stochastic NetShare

A concern with Group Allocation is that it requires a numbg&goeues equal to to the number
of applications. To scale beyond the 16 queues availabsytadd the 1000’s available shortly with AFD-
based routers[54], we proposed stochastic NetShare. Weevalwate this scheme and compare it with
the analysis in Section 4.4.1.

Figure 4.14a shows our experimental setup with one corel@id, four edge switcheg1 to
E4, and eight serverSl to S8 (two servers per edge switch). Note that all links have ecpyzacity with
an oversubscription factor of 2 at core links. There is ataimse of each application on all servers and
the traffic pattern is all-to-all. We evaluake= 32 applications, in which one application is “bad”, i.e.
with low priority weight and competing aggressively for banidth by opening ten times the number of
connections. Link capacity B = 100 Mbps. We evaluate the scalability of Stochastic DRR hying
the number of DRR queues per switch pQrt 4,8,16.

Stochastic DRR with equal weights Table 4.5 shows the application bandwidth at one typicaleser
All DRR queues are assigned the same weights and indepeafitve number of applications being
hashed into them. The rates fluctuate but the bandwidth medrvariance are consistent among all

applications. As captured by our model in Section 4.4.1jipact of the bad application declines with

99

Table 4.5. Scalability of Stochastic DRR: application bandwidth aedypical server in (mean, stddev)

over time. All queues have equal weighB= § - %5 is the expected bandwidth per application. Ideal

bandwidth is% = 3.1 Mbps.T is rehashing period (in seconds).

T=5 T=10 T=20
Q=4 Badapp (13.6,3.3) (14.3,2.6) (12.4,2.8)
B=23 Goodapp (2.2,1.5) (2.2,1.3) (2.4,1.4)
Q=8 Badapp (8.9,2.1) (89,19 (9.0,2.0)
B=27 Goodapp (2.8,2.2) (2.3,1.7) (2.5,1.8)
Q=16 Badapp (6.7,15) (6.6,1.6) (6.7,1.7)

B=29 Goodapp (28,19 (3.1,2.2) (3.3,2.5)

additional queues in the system. The mean is close to ouigtiad(the ideal bandwidth i8/N which
around 3.1 Mbps, together with a degradatiorggi, whereQ is the number of queues). Note that while
we have simulated only 32 applications because of ns-2dtmit, the model, which is validated here,
should scale to larger numbers of applications.

Note that periodic rehashing of applications onto DRR geaeduces variance. Clearly the
rehashing period should neither be too small (for good stability and minimgbut-of-order packets)

nor too large (for good bias correction). 10 seconds appedrs a good compromise.

Priorities and Stochastic NetShare In this experiment, we divided 32 applications into two befsk
16 of low priority (weight 1) and 16 of high priority (weight)2 All the low priority applications are
more bandwidth-aggressive. We omit the details but notettigae was isolation between low priority
and high priority applications. However, the final bandwiditios averaged across all 8 connections of
each service show a ratio of approximately 1:1.4 betweeneight and high weight services, which is
less than the ideal ratio of 1:2.

Note that if there is only one single hop, DRR guarantees Wwattd per application being di-
vided exactly according to weight assignment. However, geaeral topology with with multiple hops,
bandwidth per application is only approximately relatedt$onveight because, as we said earlier, errors
can cascade across hops. If no high priority traffic is alséglat a core router because it is queued at an
edge switch, the core router can send more of the low prigtigue traffic. We conclude that Stochastic
NetShare works well with equal weights; with unequal wesgittonly works approximately. It will work

best with routers that should be entering the market sodn1G00’s of AFD [54] classes.

100

4.7 Automatic Weight Assignment

We propose a simple scheme for automatic weight assignroemfplications or services. In
an enterprise or cloud data center, when resources aresfmoed for an application or customer, the
customer usually requests some number of servers or VM=(ioss) each with some number of CPUs,
RAM and disk. Besides this, each instance must also be &ldsmme units of network bandwidth. For
example, if each server has a 10Gbps NIC, we could place up¥Ms on the server each allocated
1Gbps of bandwidth.

We leverage two fundamental ideas. First, we use per switchweights, i.e. weights per
application can vary from switch to switch, and even from swéch port to another. Second, we assign
weights based on VM placement. In particular, we computh bdownstreanandupstreansums of
the bandwidths assigned to all VMs allocated to applicafiomith respect to switch pof. Then the
weight assigned té at P is the smaller of the two.

As an example, suppose there is an accounting applicatitn2xservers connected to an edge
switch and each server has 4 instances of an accountingappti. The uplink of the edge switch is
connected to a core switch and from there to other servehs8aiitstances of the accounting application.
Assume each VM instance is allocated 1 Gbps. Then we set theiating application’s weight at each
of the 2 downlink ports of the edge switch to be 4 (smaller ohd &2), while we set its weight at the
uplink port to be 8 (smaller of 8 and 8). Note that taking th@imum makes sense because even if there
are 8 VMs upstream that can transmit at 8 Gbps, there are ovilgldownstream that can receive only
at an aggregate capacity of 4 Gbps.

We make the following assumptions. First, VM bandwidthseavers are enforced using mech-
anisms like Linux HTB qdisc. Second, we have knowledge ofcithmplete topology and placement of
each VM instance. Third, in a multirooted tree network, farding is based on ECMP. We assume that
each egress port in a switch either forwards traffic upwama fa server towards the core layer (up facing
ports) and the rest of the fabric or forwards traffic down tmigaa server (down facing ports). This is a
technique that simplifies the routing while also avoidingthog loops. Finally, in this setup, each egress
port on the switch has a definite role in terms of the whicheeswraffic flows through it. For example
in a two level multirooted tree network, a down facing portocore switch can forward traffic to servers
in a particular edge switch from all other edge switches @hih upfacing port on an edge switch can

forward traffic from the servers on that edge switch to alees in other edge switches. Servers to which

101

the particular port forwards traffic are called downstreanvers and the servers from which this traffic
could be coming are called upstream servers of that port.

While we have used global weights for the bulk of this papersimplicity, we note that ex-
tending the definitions to per-port weights is straightfardk For example, the standard water-filling
algorithm [9] must be modified to use the weight of each apiim/service at the current bottleneck link

as opposed to a global weight.

4.8 Related Work

The need for QoS in data centers has become apparent in lseegat papers. Seawall[65]
performs isolation by enforcing VM-to-VM rates for VMs belg to one application/customer in the
hypervisor using congestion feedback. Seawall mecharaser®more complex but they are more granular
(VM to VM) and can handle large numbers of applications/ooetrs. AF-QCN [38] is an approximation
to the standard QCN Layer congestion control scheme thatsadifferent drop rates for each application.
However, the scheme requires router hardware changes eedttyprovides guarantees only for a single
link. mClock [32] proposes an algorithm specific to 1/0O resmuallocation in the hypervisor at end
hosts. SecondNet[34] proposes a heuristic to mdpal data centespecifications into the physical data
center infrastructure with constraints on resource dema@econdNet uses reservations and hence is
complementary to NetShare. Flowvisor [63] virtualizessthied network to allow multiple experiments
to run concurrently but does so using suboptimal hop-bydimzation. The HP QoS Framework [40]
allows network QoS to be implemented centrally but is onlyaarfework that can, in fact, be used to
implement NetShare. [7] discusses a VM placement policedas the network requirements for each
customer. Bandwidth is reserved for each customer’s VMstheadair share for each flow is computed
by a centralized controller for that customer. Multiplex@cross customers requires coordination among
controllers of different customers or a single central poltgr similar to NetShare.

Fair queuing [21] and Core-stateless fair queuing(CSFQ@) ¢ib not guarantee max-min allo-
cation. [67] and [64] extend CSFQ to obtain max-min allomasi but require header changes. DiffServ
allows statistical multiplexing by marking traffic excerdithe allocated share and dropping marked pack-
ets if needed. For lack of space, we omit experiments thav shat DiffServ dropping reduces efficiency
compared to NetShare. NetShare differs from DRL which atetsandwidthin and outof the cloud as
opposed tavithin the cloud.

Many papers (e.g., [41, 19]) show that max-min allocatioth@ presence of load balancing or

102

multipath is, in general, NP-complete. However, the hasdmesult does not apply to regular data center
topologies where routes are fixed. Duffield et al introducesehmodel [23] to specify aggregate demand
but requires complex algorithms which decrease respomssge NetShare assumes that routing is fixed by
a routing protocol such as OSPF. Thorup and Rexford shovitthed is considerable flexibility to change
routes by changing OSPF weights [28] without pinning evemyte using MPLS. Traffic engineering
such as OSPF-TE (RFC 3630) can be used to efficiently rouffectbait does not allocate bandwidth

across services. RFC 3630 (Traffic Engineering Extensm@3PF) only supports static reservation.

4.9 Summary

NetShare allows managers to use weights to tune the relzdivéwidth allocation for different
services, providing allocation, isolation and statidtimaltiplexing without changing routers. Managers
can use NetShare with Virtual Disks and Virtual Machinestate Virtual Data Centers. While NetShare
is based on a simple packaging of existing ideas (max-mirsfare, stochastic fair queuing, UDP rate
throttling) no such mechanism exists today.

Without NetShare, latency critical jobs can be slowed dowrHadoop jobs. With NetShare,
latency critical jobs can be protected without artificiallpwing down large jobs. Group allocation works
well with only configuration changes at routers; it can beepgled to scale to more applications than
the number of DRR queues available today either using AFIDdb4tochastic methods. Rate throttling
protects against UDP application misbehavior and may belsinihan deploying TCP-friendly UDP.
Finally, centralized allocation can implement arbitragnidwidth allocation policies, and can provide
stability. We suggest a simple automatic weight assignrakgarithm based on finding the number of
VMs upstream and downstream from a port.

Chapter 4, in part, is a reprint of the material as it appaatSletShare and Stochastic NetShare:
Predictable Bandwidth Allocation for Data Centers’Hroceedings of ACM SIGCOMM Computer Com-
munication Review (CCR012. Lam, Vinh The; Radhakrishnan, Sivasankar; Pan, Rdaftgat, Amin;

Varghese, George. ACM, 2012. The dissertation author waptimary investigator and author of this

paper.

Chapter 5

Conclusions

In this dissertation, we have discussed novel designs &alste bandwidth allocation on horizon
of emerging technologies: event loggers, load balancind,cdoud services. Our solutions are based on
probabilistic algorithms and designs because these agipesaare inexpensive to implement, require
constant memory and processing time, and are applicablevidearange of contexts. In Chapter 2, we
showed that our Carousel scalable logger can collect nathdgurces, assuming they send persistently, in
nearly optimal time while it is easy to implement in both gafte and hardware. Furthermore, Carousel is
applicable to other monitoring tasks where the events maikidged at high speed, but with low logging
memory and small logging speeds. In Chapter 3, we have @escFlame, a system to do dynamic
load balancing in data center networks. Our key technigquelade the proxy queue to measure traffic
load accurately, the power of choice to select the optim#i paa hardware-friendly manner, and the
aging mechanism and heavy-hitter filter to optimize memagge. We demonstrated the efficacy of
Flame through analytical studies as well as simulationseatistic network traces and synthetic data
center workloads as inspired by recent studies of productata centers. In Chapter 4, we showed
that the notion of a virtual data center requitesth computing and bandwidth guarantees. NetShare
allows managers to use weights to tune the relative banthaittication of different services. Without
NetShare, a service can be held hostage by other servidesittier open multiple connections or use
non-compliant congestion control protocols. We introdliteee simple techniques for implementing the
NetShare abstraction ranging from group allocation pérttircentralized allocation that trade decreasing

responsiveness for more general allocation policies.

103

Bibliography

[1] Fulcrum Monaco http://www.fulcrummicro.com/.

[2] . IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Fottg//tvww.ieee802.org/3/ba/.

[3] Mohammad Al-Fares, Rishi Kapoor, George Porter, Saib#t, Hakim Weatherspoon, Balaji Prab-
hakar, and Amin Vahdat. User-extensible Active Queue Marnamnt with Bumps on the Wire. In

ANCS 2012.

[4] Mohammad Al-Fares, Alex Loukissas, and Amin Vahdat. Alable, commodity data center net-
work architecture. '81IGCOMM 2010.

[5] Mohammad Al-Fares, Sivasankar Radhakrishnan, BaraghBvan, Nelson Huang, and Amin Vah-
dat. Hedera: Dynamic Flow Scheduling for Data Center Netaon NSDI, 2010.

[6] Mohammad Alizadeh, Albert Greenberg, David A. Maltzedidra Padhye, Parveen Patel, Balaji
Prabhakar, Sudipta Sengupta, and Murari Sridharan. DaieeC&CP (DCTCP). I'§IGCOMM
2010.

[7] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, antl Rowstron. Towards predictable data
center networks. IiPrc. SIGCOMM’11

[8] D. Bergamasco and Rong Pan. Backward Congestion NdiditéBCN) Version 2.0I/EEE 802.1
Meeting, 2005

[9] D. Bertsekas and R. Gallagddata Networks P. H., 1992.

[10] Burton Bloom. Space/time trade-offs in hash codinghveiiowable errors. l€ommunications of
the ACM 1970.

[11] A.Borodinand R. El-Yaniv. Online computation and cogtifive analysis. IrtCambridge University
Press 1998.

[12] J. L. Boudec. Rate adaptation, congestion control airdéss: A tutorial. 2008.

[13] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deeriflg,Estrin, S. Floyd, V. Jacobson, G. Min-
shall, C. Pamidge, L. Pererson, K. Ramakrisbnan, S. Shehkéfroclawski, and L. Zhang. Rec-
ommendations on queue management and congestion avoidatheelnternet. INETF RFC (In-

formational) 2309, April 1998

[14] R. Braden and L. Zhang et al. Resource reservation pob{osvp) — version 1, function specifica-

104

http://www.ieee802.org/3/ba/

105

tion, rfc 2205. Inhttp://www.rfc-editor.org/rfc/rfc2205.tx1997.

[15] A. Broder and M. Mitzenmacher. Network applicationdBdbom filters: A survey.Internet Math
1(4), 2003.

[16] Matthew Caesar, Donald Caldwell, Nick Feamster, JemRexford, Aman Shaikh, and Jacobus
van der Merwe. Design and implementation of a routing cdpiedform. InProceedings of the 2nd
conference on Symposium on Networked Systems Design &nhepiation pages 15—-28, 2005.

[17] CAIDA. CoralReef Software. http://www.caida.orgdle/measurement/coralreef/.

[18] Martin Casado, Michael J. Freedman, Justin Pettibydrey Luo, Nick McKeown, and Scott Shenker.
Ethane: taking control of the enterprise.Rroc. SIGCOMM '07

[19] J. Chou and B. Lin. Optimal multi-path routing and banmdhlv allocation under utility max-min
fairness. INWQoS '09

[20] A. Demers, S. Keshav, and S. Shenker. Analysis and sitionl of a fair queuing algorithm. IRroc.
SIGCOMM '89

[21] A. Demers, S. Keshav, and S. Shenker. Analysis and sitionl of a fair queuing algorithm. IRroc.
SIGCOMM '89

[22] S. Dharmapurikar and V. Paxson. Robust tcp stream eeady in the presence of adversaries. In
14th USENIX Security Symposiupages 5-5, 2005.

[23] N. G. Duffield, Pawan Goyal, Albert Greenberg, Parth@iMa, K. K. Ramakrishnan, and Jacobus
E. Van Der Merwe. Resource management with hoses: poiadlisted services for virtual private
networks.IEEE/ACM Trans. Netw. 2002

[24] Cristian Estan and George Varghese. New Directiong&ifit Measurement and Accounting. In
SIGCOMM 2002.

[25] Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Brod&aummary Cache: A Scalable Wide-
Area Web Cache Sharing ProtoctEEE/ACM Transactions on Networking(3), 2000.

[26] S. Floyd and V. Jacobson. Random Early Detechon Gated@yCongestion Avoidance. In
IEEE/ACM Transaction on Networking, 1993

[27] Sally Floyd and Van Jacobson. Link-sharing and researanagement models for packet networks.
IEEE/ACM Trans. Netw.95

[28] B. Fortz, J. Rexford, and M. Thorup. Traffic engineenmith traditional ip routing protocoldEEE
Comm, 2002.

[29] Gene F. Franklin, J. David Powell, and Abbas Emami-Nadreedback Control of Dynamic Sys-
tems. In3rd ed, Addison Wesley

[30] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark f&u$ in the Internet. II€ommunications of
the ACM, January 2012

http://www.caida.org/tools/measurement/coralreef/

106

[31] Albert G. Greenberg, James R. Hamilton, Navendu JaikaBth Kandula, Changhoon Kim, Paran-
tap Lahiri, David A. Maltz, Parveen Patel, and Sudipta S@tguVL2: a scalable and flexible data
center network. I'sIGCOMM 2009.

[32] Ajay Gulati, Arif Merchant, and Peter Varman. mClockahtling Throughput Variability for Hy-
pervisor IO Scheduling. IRroc. OSDI '10

[33] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhavignfeng Shi, Chen Tian, Yong-
guang Zhang, and Songwu Lu. Bcube: a high performance,rseentric network architecture for
modular data centers. BIGCOMM 2009.

[34] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yahgp®ong, Peng Sun, Wenfei Wu, and
Yongguang Zhang. SecondNet: A Data Center Network Virtadilbn Architecture with Bandwidth
Guarantees. IRroc. ACM CoNEXT '10

[35] Ellen L. Hahne. Round-robin scheduling for max-mirrfss in data networkdEEE J. Comms
1991.

[36] S. Hogg. Security at 10 Gbps:
http://www.networkworld.com/community/node/39071.Network World 2009.

[37] Raj Jain. Congestion Control and Traffic ManagementiiMANetworks: Recent Advances and A
Survey. InComputer Networks and ISDN Systems, 1996

[38] Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, RBag, and Balaji Prabhakar. AF-QCN:
Approximate Fairness with Quantized Congestion Notifarafor Multi-tenanted Data Centers. In
Proc. Hot Interconnects 10

[39] Srikanth Kandula, Dina Katabi, Shantanu Sinha, andhérBerger. Flare: Responsive Load Bal-
ancing Without Packet Reordering. ACM CCR 2007.

[40] Wonho Kim, Puneet Sharma, Jeongkeun Lee, Sujata Bamelgan Tourrilhes, Sung-Ju Lee, and
Praveen Yalagandula. Automated and scalable qos controletwork convergence. IWSENIX
INM/WREN 2010.

[41] J. Kleinberg, Y. Rabani, and E. Tardos. Fairness ininguand load balancing. 3. Comput. Syst.
Sci, pages 568-578, 1999.

[42] B Lampson. Alto: A personal computer. Gomputer Structures: Principles and Exampl&379.

[43] Michael Laor and Lior Gendel. The Effect of Packet Rewidg in a Backbone Link on Application
Throughput. INEEE Network 2002.

[44] Steven H. Low. A duality model of TCP and Queue Managemdgorithms. InIEEE/ACM Trans.
Net. Vol 11, 2003

[45] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macrpgcbehavior of the TCP congestion
avoidance algorithm. I8IGCOMM CCR1997.

[46] P. McKenney. Stochastic fairness queueinginkernetworking,1991

107

[47] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Rarulkar, Larry L. Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan S. Turner. OpenFloabli@g innovation in campus net-
works. SIGCOMM CCR’08

[48] M. Mitzenmacher and E. UpfalProbability and Computing: Randomized Algorithms and Rrob
bilistic Analysis Cambridge University Press, 2005.

[49] Michael Mitzenmacher. The Power of Two Choices in Rand®d Load Balancing. IRhD thesis
1996.

[50] netem. The Linux Foundation.
http://www.linuxfoundation.org/collaborate/workgnm/networking/netem.

[51] Kathleen Nichols and Van Jacobson. Controlling Quee&ip. INnACM Queue, 2012

[52] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jinr&ae. Modeling TCP Throughput: A simple
model and its empirical validation. IWxCM SIGCOMM’'98

[53] Fernando Paganini, Zhikui Wang, John C. Doyle, and &ted. Low. Congestion control for high
performance, stability and fairness in general netwonk$EEE/ACM Trans. Net. Vol 13, 2005

[54] R. Pan, B. Prabhakar, F. Bonomi, and B. Olsen. Approtérfrair Bandwidth Allocation: A Method
for Simple and Flexible Traffic Management. 46th Allerton Conf., 2008

[55] Rong Pan, Balaji Prabhakar, and Konstantinos Pso@tOKe: A stateless active queue manage-
ment scheme for approximating fair bandwidth allocationlHEE Infocom, 2000

[56] Arash Partow. General purpose hash functions: hiepai. partow.net/programming/hashfunctions/.

[57] J. B. Postel. Transmission control protocol. TechhiR@port Technical Report RFC 793, Informa-
tion Sciences Institute, September 1981.

[58] M. Raab and A. Steger. Balls into bins: a simple and tagtdlysis. InVorkshop on Randomization
and Approximation Techniques in Computer Sciedi&88.

[59] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry ChuindJain, and Barath Raghavan. Tcp fast
open. INACM CoNEXT, 2011

[60] Costin Raiciu, Sebastien Barre, Christopher Plunfidam Greenhalgh, Damon Wischik, and Mark
Handley. Improving Datacenter Performance and Robustaigissvultipath TCP. InSIGCOMM
2011.

[61] A. Ross. The coupon subset collection problemJdarnal of Applied Probability2001.

[62] Colleen Shannon, Emile Aben, kc claffy, and Dan Andersehe CAIDA Anonymized 2008 Inter-
net Traces. http://www.caida.org/data/passive/pasX)ds8 dataset.xml.

[63] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido AppeteelMartin Casado, Nick McKeown,
and Guru Parulkar. Flowvisor: A network virtualization éay2009. Technical report.

[64] Z. Shi. Token-based congestion control: Achieving fasource allocations in P2P networks. In

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.caida.org/data/passive/passive_2008_dataset.xml

108

K-INGN'08.

[65] Alan Shieh, Srikanth Kandula, Albert Greenberg, anda@hoon Kim. Seawall: Performance
Isolation in Cloud Datacenter Networks. Bmoc. HotCloud'10

[66] M. Shreedhar and G. Varghese. Efficient fair queueinggudeficit round robin. I'8IGCOMM’95

[67] Raghupathy Sivakumar, Tae-Eun Kim, Narayanan Verditean, Jia-Ru Li, and Vaduvur Bhargha-
van. Achieving per-flow weighted rate fairness in a coresttas network. IiProc. ICDCS’00

[68] Randy Smith, Cristian Estan, Somesh Jha, and Shijigkbeflating the big bang: fast and scalable
deep packet inspection with extended finite automat&COMM CCR’'08

[69] Snort. Snortids: http://www.snort.org.
[70] W. Stadje. The collector’s problem with group drawingsAdvances Applied Probabilityt 990.

[71] lon Stoica, Scott Shenker, and Hui Zhang. Core-stasdiair queueing: a scalable architecture to
approximate fair bandwidth allocations in high-speed oeks. IEEE/ACM Trans. Netw. '03

[72] tcn. Trace Control for Netem. http://tcn.hypert.net.
[73] tcptrace. . http://www.tcptrace.org.

[74] G. Varghese, J. Fingerhut, and F. Bonomi. Detectingieweattacks at high speeds without reassem-
bly. SIGCOMM 36(4), 2006.

[75] M. Vutukuru, H. Balakrishnan, and V. Paxson. Efficientiaobust tcp stream normalization. 3
'08: Proceedings of the 2008 IEEE Symposium on Security aiva@/, pages 96110, 2008.

[76] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, YirhZng, and Albert G. Greenberg. COPE:
Traffic Engineering in Dynamic Networks. Proc. SIGCOMM '06

[77] W. Wu, P. Demar, and M. Crawford. Sorting Reordered B&chkvith Interrupt Coalescing. In
Comput. Netw.2009.

[78] C. Zou, W. Gong, and D. Towsley. Code Red Worm Propagad#iodeling and Analysis. IiACM
CCs 02

http://tcn.hypert.net
http://www.tcptrace.org

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Carousel: Scalable Logging for Intrusion Prevention Systems
	Introduction
	Model
	Analysis of a Naïve Logger
	The Naïve Logger Alone
	The Naïve Logger with a Bloom Filter

	Scalable logging using Carousel
	Partitioning and logging
	Collection Times for Carousel

	Carousel Implementations
	Snort Implementation
	Hardware Implementation

	Simulation Evaluation
	Baseline Experiment
	Logger Performance with Logistic Model
	Non-uniform source arrivals
	Effect of Changing Hash Functions
	Adaptively Adjusting Sampling Bits

	Snort Evaluation
	Related Work
	Summary

	Flame: Efficient and Robust Hardware Load Balancing for Data Center Routers
	Introduction
	Related Work
	Mechanisms
	Discounting Rate Estimator (DRE)
	Choosing the least loaded link
	State table design
	Handling heavy-hitters
	Profile-based rebalancing

	Hardware implementation
	Analysis
	DRE analysis
	Analysis of Flame state table design

	Evaluation
	Load balancing goodness metrics
	Simulation setup
	Simulation results
	Impact of packet reordering on TCP

	Summary

	NetShare and Stochastic NetShare: Predictable Bandwidth Allocation for Data Centers
	Introduction
	NetShare Specification
	NetShare Algorithms
	Group Allocation Leveraging TCP
	Stochastic NetShare
	Rate Throttling for UDP
	Centralized Bandwidth Allocator

	Analysis
	Stochastic NetShare Model
	Stability of Centralized Allocation

	Implementation
	Evaluation
	Single Path Experiments
	Multipath Experiments
	How Effective is Rate Throttling?
	Scaling to Larger Topologies
	Scalability of Stochastic NetShare

	Automatic Weight Assignment
	Related Work
	Summary

	Conclusions
	Bibliography

