
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Scalable Traffic Management for Data Centers and Logging Devices

Permalink
https://escholarship.org/uc/item/2hp6b5sm

Author
Lam, Vinh The

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hp6b5sm
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Scalable Traffic Management for Data Centers and Logging Devices

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Vinh The Lam

Committee in charge:

Professor George Varghese, Chair
Professor Tara Javidi
Professor Bill Lin
Professor Amin Vahdat
Professor Geoffrey Voelker

2013



Copyright

Vinh The Lam, 2013

All rights reserved.



The Dissertation of Vinh The Lam is approved, and it is acceptable in quality and form

for publication on microfilm and electronically:

Chair

University of California, San Diego

2013

iii



DEDICATION

To my parents

iv



EPIGRAPH

Science is what we understand well enough
to explain to a computer.

Art is everything else we do.

Donald Knuth

Simplicity is prerequisite for reliability.

Edsger Dijkstra

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Carousel: Scalable Logging for Intrusion Prevention Systems . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Analysis of a Naı̈ve Logger . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 The Naı̈ve Logger Alone . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 10
2.3.2 The Naı̈ve Logger with a Bloom Filter . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 14

2.4 Scalable logging using Carousel . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Partitioning and logging . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Collection Times for Carousel . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Carousel Implementations . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Snort Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 23

2.6 Simulation Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.1 Baseline Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Logger Performance with Logistic Model . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 25
2.6.3 Non-uniform source arrivals . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.4 Effect of Changing Hash Functions . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 28
2.6.5 Adaptively Adjusting Sampling Bits . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Snort Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 Flame: Efficient and Robust Hardware Load Balancing for Data Center Routers . . . . . 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Discounting Rate Estimator (DRE) . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Choosing the least loaded link . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 State table design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 49

vi



3.3.4 Handling heavy-hitters . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.5 Profile-based rebalancing . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.1 DRE analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 58
3.5.2 Analysis of Flame state table design . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.1 Load balancing goodness metrics . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 64
3.6.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 65
3.6.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.4 Impact of packet reordering on TCP . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 68

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 4 NetShare and Stochastic NetShare: Predictable Bandwidth Allocation for Data Centers 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 NetShare Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 NetShare Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Group Allocation Leveraging TCP . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Stochastic NetShare . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Rate Throttling for UDP . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 82
4.3.4 Centralized Bandwidth Allocator . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.1 Stochastic NetShare Model . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 86
4.4.2 Stability of Centralized Allocation . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6.1 Single Path Experiments . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 89
4.6.2 Multipath Experiments . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 92
4.6.3 How Effective is Rate Throttling? . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 93
4.6.4 Scaling to Larger Topologies . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 96
4.6.5 Scalability of Stochastic NetShare . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Automatic Weight Assignment . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vii



LIST OF FIGURES

Figure 1.1. Logging problem in Chapter 2 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2. Load balancing problem in Chapter 3 . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3. Group QoS problem in Chapter 4 . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1. IPS logical model with logging component that isoften implemented naı̈vely . . . . . 6

Figure 2.2. IPS hardware model with Carousel scalable logger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.3. Abstract logging model . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.4. Model of naı̈ve logging using an optimistic random model . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.5. Portion of timeline for random model shown in Figure 2.4 . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.6. Flowchart of Carousel within Snort packet flow . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.7. Schematic of the Carousel Logger logic as part ofan IPS Chip. . . . . . . . . . . . . . . . . . 23

Figure 2.8. Performance of Carousel with different loggingpopulations . . . . . . . . . . . . . . . . . . . 25

Figure 2.9. Performance of the Carousel scalable logger. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.10. High scan rate (60 scans/s) . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.11. Reduced monitoring space (50%) . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.12. Logistic model of propagation - fast worm. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.13. Logistic model of propagation - slow worm . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.14. Scaling up the vulnerable population . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.15. Logger performance under non-uniform source arrivals . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.16. Dynamic source sampling in Carousel . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.17. Comparison of fixed vs. changing hash functionsin Carousel . . . . . . . . . . . . . . . . . . . 31

Figure 2.18. Logging performance of Snort instrumented with Carousel under a random traffic
pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 33

Figure 2.19. Logging performance of Snort instrumented with Carousel under a periodic traffic
pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 34

Figure 2.20. Snort under non-uniform source arrivals . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.1. Network topology for Example 2 showing the need to rebalance flows. . . . . . . . . . . . 40

viii



Figure 3.2. Overview of Flame state table design . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.3. Overview of Flame scheme with an exact-matchingheavy-hitter table . . . . . . . . . . . 53

Figure 3.4. Flame hardware schematic . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.5. Convergence of DRE counter . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.6. Load balancing performance on CAIDA trace across all measurement time scales. . 66

Figure 3.7. Load balancing performance with synthetic datacenter-like traffic across all mea-
surement time scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 67

Figure 3.8. Testbed for TCP packet reordering . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 3.9. TCP throughput experiments at 1 Gbps . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 3.10. Throughput experiments with one TCP flow at 10 Gbps with interleaving reordering
burst by load balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 72

Figure 4.1. Example of a data center network shared between three services A1, A2, and A3. . 77

Figure 4.2. Simple fair queuing at switches together with TCP implements max-min fair sharing
of TCP flows [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 78

Figure 4.3. Simple fair queuing at switches at theservicelevel together with TCP achieves
hierarchicalmax-min fair sharing of services. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 79

Figure 4.4. Simple fair queuing at switches at theservicelevel together with rate measurement
and rate throttling implements hierarchical max-min fair even with UDP. . . . . . . . . 83

Figure 4.5. Allocation mechanisms that divide excess bandwidth using different weights. . . . . 85

Figure 4.6. Feedback control model for the Centralized Bandwidth Allocator . . . . . . . . . . . . . . . 88

Figure 4.7. NetShare testbed topologies . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.8. Competition for bandwidth between a short latency sensitive (1GB file transfer) job
and a long running Hadoop job on a core link . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 91

Figure 4.9. NetShare with Group Allocation (DRR) + Rate Throttling . . . . . . . . . . . . . . . . . . . . . 93

Figure 4.10. No NetShare mechanisms . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.11. NetShare with Group Allocation Alone . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.12. NetShare with Rate Throttling Alone . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.13. Three-tiered data center topology used for scalability experiments . . . . . . . . . . . . . . . 96

Figure 4.14. Topologies for Stochastic DRR experiments . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



LIST OF TABLES

Table 4.1. Comparison of different NetShare mechanisms. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 4.2. Completion time of the latency-sensitive FTP jobfor different file sizes . . . . . . . . . . . 90

Table 4.3. Traffic pattern that indicates times during whichdifferent flows are active. . . . . . . . . . 95

Table 4.4. Application bisection bandwidth under several traffic parameters and with and with-
out NetShare (DRR only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 97

Table 4.5. Scalability of Stochastic DRR . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

x



ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my PhD advisor, Professor

George Varghese, for his inspirations and support during myPhD years at UCSD. George has been always

generous in giving me help and guidance every time I need him.I have learned a great deal from him, not

only his technical expertise, but more importantly, the thought process to approach research problems. He

made the last six years a truly life-changing experience forme. I am also grateful to my other committee

members: Tara Javidi, Bill Lin, Amin Vahdat, and Geoff Voelker for being in my doctoral committee and

giving me invaluable feedbacks during my thesis proposal and preparation of this dissertation.

During my graduate studies at UCSD, I have had the fortune to collaborate with many smart

and wonderful people, especially my co-authors: Tom Edsall, Andy Fingerhut, Erran Li, Michael Mitzen-

macher, Rong Pan, Sivasankar Radhakrishnan, Yousuk Seung,Amin Vahdat, and Thomas Woo. Without

them, my research would have taken much longer. I would neverforget the long nights that they worked

with me to complete multiple drafts of my papers.

My research internship opportunities at Bell Labs and Google were supplementary to my PhD

research and prepared me well to work in the software industry. Especially I would like to thank Thomas

Woo at Bell Labs, Jerry Chu, Nandita Dukkipati, and Abdul Kabbani at Google. My interactions with

them during my internships have been truly eye-opening and helped me make up my career choice.

I would like to acknowledge Kostas Anagnostakis, my tech lead at the Institute for Infocomm

Research, Singapore, where I had my first full-time job as a research engineer. It was during my time

working with Kostas that I first picked up research skills andpublished my very first major research

papers. Kostas was also a strong source of encouragement when I prepared my application package to

PhD programs.

I have been extremely fortunate to have my fantastic friends: Christos Kozanitis for being a

greatly helpful friend; Son Ngoc Duong for many times givingme valuable insights into modern mathe-

matics; Son Kim Pham for being a source of academic musings; San Nguyen for constantly reminding

me of mindfulness; Alan Pham for being an “extraordinary” landlord.

Finally, there are not enough words to describe how much I oweto my parents, my sister, and my

brother. They have been always with me and always believed inme. All my achievements would never

have been possible without their unconditional sacrifice and unbounded patience with me during my time

in graduate school in the United States.

Chapter 2, in full, is a reprint of the material as it appears in “Carousel: Scalable Logging for

xi



Intrusion Prevention Systems” inProceedings of USENIX Symposium on Networked Systems Design and

Implementation (NSDI). Lam, Vinh The; Mitzenmacher, Michael; Varghese, George. USENIX, 2010.

The dissertation author was the primary investigator and author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in “Flame: Efficient and Robust Hard-

ware Load Balancing for Data Center Routers” inUCSD CSE Technical Report (CS2012-0980). Edsall,

Tom; Fingerhut, Andy; Lam, Vinh The; Pan, Rong; Varghese, George. UCSD, 2012 The dissertation

author was the primary investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in “NetShare and Stochastic Net-

Share: Predictable Bandwidth Allocation for Data Centers”in Proceedings of ACM SIGCOMM Computer

Communication Review (CCR). Lam, Vinh The; Radhakrishnan, Sivasankar; Pan, Rong; Vahdat, Amin;

Varghese, George. ACM, 2012. The dissertation author was the primary investigator and author of this

paper.

xii



VITA

2004 B. E. in Electrical and Electronic Engineering, Nanyang Technological University, Singa-
pore

2005 M. S. in Computer Science, National University of Singapore, Singapore

2006–2013 Graduate Student Researcher, University of California, San Diego, California, United States

2013 Ph. D. in Computer Science, University of California, San Diego, California, United States

PUBLICATIONS

Edsall, Tom; Fingerhut, Andy; Lam, Vinh The; Pan, Rong; Varghese, George. “Flame: Efficient and Ro-
bust Hardware Load Balancing for Data Center Routers”, inUCSD CSE Technical Report (CS2012-0980)
2012

Lam,Vinh The; Radhakrishnan,Sivasankar; Pan,Rong; Vahdat,Amin; Varghese,George. “NetShare and
Stochastic NetShare: Predictable Bandwidth Allocation for Data Centers”, inACM SIGCOMM Com-
puter Communication Review (CCR)2012.

Seung, Yousuk; Lam, Vinh The; Li, Li E.; Woo, Thomas. “CloudFlex: Seamless Scaling of Enterprise
Applications into the Cloud”, inIEEE International Conference on Computer Communications(INFO-
COM) 2011.

Lam, Vinh The; Mitzenmacher, Michael; Varghese, George. “Carousel: Scalable Logging for Intrusion
Prevention Systems”, inUSENIX Symposium on Networked Systems Design and Implementation (NSDI)
2010.

Akritidis, Periklis; Chin, Wee Yung; Lam, Vinh The; Sidiroglou, Stelios; Anagnostakis, Kostas. “Proxim-
ity Breeds Danger: Emerging Threats in Metro-area WirelessNetworks”, inUSENIX Security2007.

Lam, Vinh The; Antonatos, Spiros; Akritidis, Periklis; Anagnostakis, Kostas. “Puppetnets: Misusing Web
Browsers as a Distributed Attack Infrastructure”, inACM Conference on Computer and Communications
Security (CCS)2006.

xiii



ABSTRACT OF THE DISSERTATION

Scalable Traffic Management for Data Centers and Logging Devices

by

Vinh The Lam

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor George Varghese, Chair

Traditional network resource allocation is not scalable because it requires per-flow state, large

amount of memory in switches and routers, and control overhead. In this dissertation, we propose innova-

tive and scalable mechanisms for network traffic managementin three emerging contexts: network event

loggers, network load balancing, and cloud services in datacenters. First, we describe a probabilistic

event logger calledCarouselto collect unique items in a large stream of online events. Bytheoretical

analysis, we prove that Carousel can collect almost all items with high probability. Our simulation and

implementation prototype show an improvement factor of tenin event collection time. Second, we design

a new load balancing algorithm calledFlame that is implementable in high speed switches with small

memory usage. Flame achieves fine granularity of load balancing at sub-flow level and binds flows to

hash functions. Through trace simulation, we show that Flame can improve our load balancing perfor-

mance metrics by an order of magnitude. Furthermore, Flame allows graceful degradation to the standard

xiv



ECMP in the worst case. Lastly, we propose a mechanism calledNetShareto provide predictable network

resource allocation for cloud services based on simple administrative weights. We describe mechanisms

to implement and scale NetShare to a large number of servicesusing a generalization of Stochastic Fair

Queueing. We validate our NetShare design on a hardware testbed with MapReduce workloads.

xv



Chapter 1

Introduction

Traffic management is a critical problem in high speed computer and communication networks.

The ultimate goal of traffic management is to ensure that users achieve a desired quality of service. This

problem is difficult due to several practical challenges. First, data traffic demands are highly unpre-

dictable [31, 76]. Second, recent hardware developments have made high speed links common at the

network edges (e.g., network adapters at 40 Gbps and 100 Gbps[2]), which creates high amounts of over-

subscription to core network links [31] and exacerbates traffic management especially during periods of

heavy loads. This is why traffic rate control, despite being only a part of traffic management, is a central

aspect of traffic management [37].

Conceptually, the goal of rate control problems is to createrelationsamong the rates of various

data packet streams in a network subject to certain objectives. The objectives include fairness among

traffic flows1 (e.g., max-min fairness [35]), simplicity for implementation in networking devices (e.g., no

maintenance of per-flow state, which led to the preference ofrate-based congestion control over credit-

based congestion control in ATM networks [37]), and good performance (e.g., high throughput, low

latency, balanced resource utilization to reduce network infrastructure cost [31]).

Much research has been devoted to rate control since the early history of networks; despite this,

rate control is still an open topic. For example, the classicrate control problem is congestion control.

On end hosts, Transmission Control Protocol (TCP) [57] is designed to control the rate of the sender to

fairly share the rate of the bottleneck link in the network path from the sender to the receiver. It was the

design and deployment of TCP that saved the early Internet from congestion collapse [13]. As a second

example, there are router mechanisms to aid congestion control such as queue management algorithms

1Depending on the context, a flow could mean a connection (e.g., TCP flow identified by TCP 5-tuple)
or aggregated connections from a single source address.

1



2

m < N 

memory 
Minimize time to log N 

IDs subject to rate limit 

Logging Rate r Arrival Rate R N 

sources 

Figure 1.1. Logging problem in Chapter 2: logging of infected sources inan Intrusion Detection device.
This is necessarily an open-loop control as sources are non-cooperative.Thesis solution:Carousel ex-
ploits source repetition and hashing to partition ID space into smaller chunks followed by iteration over
the chunk space.

(e.g., Random Early Detection (RED) [26], CHOKe [55]) and traffic scheduling (e.g., Fair Queueing

(FQ) [20], Stochastic Fair Queueing (SFQ) [46], Deficit Round Robin (DRR) [66]). More recent efforts

attempt to find new ways to optimize for performance, especially for improving latency (e.g, TCP Fast

Open (TFO) [59]) and bufferbloat resistance [30] (e.g., Controlled Delay (CoDel) [51]).

In this dissertation, we extend rate control problems to three emerging contexts: logging (tech-

niques to log information at the rate of logger are describedin Chapter 2), load balancing (techniques to

spread load among available links are described in Chapter 3), and group Quality-of-Service (techniques

to ensure bandwidth fairness for groups are described in Chapter 4).

Note that many rate control problems can be achieved with per-flow state (e.g., Resource Reser-

vation Protocol (RSVP) [14] to reserve resources across a network by signalling for connection setup in

advance). The goal of this thesis is to design simple, efficient, and scalable solutions to the rate control

problemswithoutusing per-flow state to avoid the need for large amounts of high speed memory in net-

working devices such as switches and routers. Our solutionsutilize novel mechanisms (e.g., hashing into

chunks) and/or leverage assumptions (e.g., repeated sources) inherent to the specific problems. We now

briefly describe the context of each problem and the thesis contributions.

Chapter 2 addresses the problem of collecting unique items in a large stream of information in

the context of Intrusion Prevention Systems (IPSs) as shownin Figure 1.1. IPSs detect attacks at gigabit

speeds and must log infected source IP addresses for remediation or forensics. An attack with millions

of infected sources can result in hundreds of millions of logrecords when counting duplicates. If logging

speeds are much slower than packet arrival rates and memory in the IPS is limited,scalable logging

is a technical challenge. After showing that naı̈ve approaches will not suffice, we solve the problem

with a new algorithm we call Carousel. Carousel randomly partitions the set of sources into groups that



3

m < N 

memory 

Minimize max difference 

among rates allocated to 

output links 

Output rate R/c 
Arrival Rate R 

N 

flows 

some large flows 

many small flows 

Output rate R/c 

Figure 1.2.Load balancing problem in Chapter 3: going beyond ECMP for data centers because random
assignment works badly when there are a few large flows. This is an online problem because the weight
or size of a flow is only apparent over time and can change.Thesis solution:Flame uses a new online
estimator, power of choice to reduce hardware complexity, and heavy-hitters & timeouts to reduce state.

can be logged without duplicates, and then cycles through the set of possible groups. We prove that

Carousel collects almost all infected sources with high probability in close to optimal time as long as

infected sources keep transmitting. We describe details ofa Snort implementation and a hardware design.

Simulations with worm propagation models show up to a factorof 10 improvement in collection times for

practical scenarios. Our technique applies toany logging problem with non-cooperative sources as long

as the information to be logged appears repeatedly.

Chapter 3 describes a new load balancing design, Flame, thatis implementable at 480 Gbps with

small memory and uses two novel mechanisms as shown in Figure1.2. First, Flame uses a Discounting

Rate Estimator (DRE); unlike exponential averaging, DRE quickly measures bursts and yet retains mem-

ory of recent bursts. Second, Flame binds flows tohash functionsand not topaths. We show Flame is

more resilient and efficient than the earlier Flare scheme, and provides better load balancing and is more

deployable than Hedera. Flame also allows rebalancing of flows in hardware at rapid rates. This is in-

teresting because we show TCP experiments at 1 and 10 Gbps that demonstrate that recent Linux stacks

after 2.6.14 can tolerate rebalancing once every 10 packetswith negligible loss of throughput. On the

other hand, Windows 2008 stacks have degraded TCP throughput if rebalancing is done more often than

1 in 32,000 packets.

Chapter 4 studies the network isolation and virtualizationin cloud data centers as shown in Fig-

ure 1.3. Service level agreements for cloud computing todayspecify network SLAs in terms of dollars per

Gigabyte transferred and not in terms of network bandwidth.But application performance often depends

crucially on network performance; a slow network can resultin underutilized VMs. Chapter 4 describes

a mechanism for Data Center networks calledNetSharethat requires no hardware changes to routers but

allows bandwidth to be allocated predictably across services/users based on simple weights. Weights can



4

m < N 

memory 
Rates allocated to each  

Group is Max-Min fair 

Bottleneck  

Bandwidth  r 
Arrival Rate R 

N sources, 

G < N groups 

Figure 1.3. Group QoS problem in Chapter 4: sharing a data center among applications that can gain
bandwidth by opening more TCP connections.Thesis solution:NetShare provides fairness on groups but
relies on per-flow state and control at hosts (TCP) to achievemax-min fair rates.

be specified by a manager, or can be automatically assigned ateach switch port based on virtual machines

upstream and downstream of the port. Bandwidth unused by a service is shared proportionately by other

services, providing weighted hierarchical max-min fair sharing. We present three mechanisms to imple-

ment NetShare including one that leverages TCP and requiresonly router configuration. We show how

NetShare can scale to large numbers of users/services usinga generalization of Stochastic Fair Queuing.

On a testbed of Fulcrum switches, we show thatwithoutNetShare, performance of latency critical jobs

can degrade by one order of magnitude in the presence of largeHadoop jobs. We also demonstrate that

NetShare divides bandwidth proportional to weights despite the use of multipathing.

Chapter 1, in part, is a reprint of the material as it appears in “Carousel: Scalable Logging for

Intrusion Prevention Systems” inProceedings of USENIX Symposium on Networked Systems Design and

Implementation (NSDI)2010. Lam, V. T., Mitzenmacher, M., and Varghese, G., USENIX, 2010. The

dissertation author was the primary investigator and author of this paper.

Chapter 1, in part, is a reprint of the material as it appears in “Flame: Efficient and Robust Hard-

ware Load Balancing for Data Center Routers” inUCSD CSE Technical Report (CS2012-0980). Edsall,

Tom; Fingerhut, Andy; Lam, Vinh The; Pan, Rong; Varghese, George. UCSD, 2012 The dissertation

author was the primary investigator and author of this paper.

Chapter 1, in part, is a reprint of the material as it appears in “NetShare and Stochastic Net-

Share: Predictable Bandwidth Allocation for Data Centers”in Proceedings of ACM SIGCOMM Computer

Communication Review (CCR). Lam, Vinh The; Radhakrishnan, Sivasankar; Pan, Rong; Vahdat, Amin;

Varghese, George. ACM, 2012. The dissertation author was the primary investigator and author of this

paper.



Chapter 2

Carousel: Scalable Logging for Intrusion Pre-
vention Systems

2.1 Introduction

With a variety of networking devices reporting events at increasingly higher speeds, how can a

network manager obtain a coherent and succinct view of this deluge of data? The classical approach uses

a sampleof traffic to make behavioral inferences. However, in many contexts the goal iscomplete or

near-complete collectionof information — MAC addresses on a LAN, infected computers,or members

of a botnet. While our paper presents a solution to this abstract logging problem, we ground and motivate

our approach in the context of Intrusion Prevention Systems.

Originally, Intrusion Detection Systems (IDSs) implemented in software worked at low speeds,

but modern Intrusion Prevention Systems (IPSs) such as the Tipping Point Core Controller and the Ju-

niper IDP 8200 [36] are implemented in hardware at 10 Gbps andare standard in many organizations.

IPSs have also moved from being located only at the peripheryof the organizational network to being

placed throughout the organization. This allows IPSs to defend against internal attacks and provides finer

granularity containment of infections. Widespread, cost-effective deployment of IPSs, however, requires

using streamlined hardware, especially if the hardware is to be integrated into routers (as done by Cisco

and Juniper) to further reduce packaging costs. By streamlined hardware, we mean ideally a single chip

implementation (or a single board with few chips) and small amounts of high-speed memory (less than

10 Mbit).

Figure 2.1 depicts a logical model of an IPS for the purposes of this paper. A bad packet arrives

carrying some key. Typically the key is simply the source address, but other fields such as the destination

address may also be used. For the rest of the paper we assume the key is the IP source address. (We

5



6

Reassembly Signature/BehaviorNormalization 
Detection

Logging

Management Station 

K

Bad packet
with key K

Large Disk Storage

Intrusion Prevention Device

Key, Report

Figure 2.1. IPS logical model with logging component that is often implemented naı̈vely

assume the source information is not forged. Any attack thatrequires the victim to reply cannot use

a forged source address.) The packet is coalesced with otherpackets for the same flow if it is a TCP

packet, normalized [75] to guard against evasions, and thenchecked for whether the packet is indicative

of an attack. The most common check issignature-based(e.g., Snort [69]) which determines whether the

packet content matches a regular expression in a database ofknown attacks. However, the check could

also bebehavior-based. For example, a denial of service attack to a destination maybe detected by some

state accumulated across a set of past packets.

In either case, the bad packet is typically dropped, but the IPS is required tolog the relevant

information on disk at a remote management console for lateranalysis and reporting. The information

sent is typically the keyK plus a report indicating the detected attack. Earlier work has shown techniques

for high speed implementations of reassembly [22], normalization [74, 75], and fast regular expression

matching (e.g., [68]). However, to the best of our knowledge, there is no prior work in scalable logging

for IPS systems or networking.

To see why logging may be a bottleneck, consider Figure 2.2, which depicts a physical model of

a streamlined hardware IPS implementation, either stand-alone or packaged in a router line card. Packets

arrive at high speed (say 10 Gbps) and are passed from a MAC chip to one or more IDS chips that

implement detection by for example signature matching. A standard logging facility, such as in Snort, logs

a report each time the source sends a packet that matches an attack signature and writes it to a memory

buffer, from which it is written out later either to locally attached disk in software implementations or to a

remote disk at a management station in hardware implementations. A problem arises because the logging

speed is often much slower than the bandwidth of the network link. Logging speeds less than 100 Mbps

are not uncommon, especially in 10 Gbps IDS line cards attached to routers. Logging speeds are limited

by physical considerations such as control processor speeds and disk bandwidths. While logging speeds



7

can theoretically be increased by striping across multipledisks or using a network service, the increased

costs may not be justified in practice.

In hardware implementations where the memory buffer is necessarily small for cost considera-

tions, the memory can fill during a large attack and newly arriving logged records may be dropped. A

typical current configuration might include only 20 Mbits ofon-chip high speed SRAM of which the

normalizer itself can take 18 Mbits [75]. Thus, we assume that the logger may be allocated only a small

amount of high speed memory, say 1 Mbit. Note that the memory buffer may include duplicate records

already in the buffer or previously sent to the remote device.

Under a standard naı̈ve implementation, unless the loggingrate matches the arrival rate of pack-

ets, there is no guarantee that all infected sources will be logged. It is easy to construct worst-case timing

patterns where some set of sourcesA are never logged because another set of sourcesB always reaches

the IDS before sources in the setA and fills the memory. Even in a random arrival model, intuitively as

more and more sources are logged, it gets less and less probable that a new unique source will be logged.

In Section 2.3 we show that, even with a fairly optimistic random model, a standard analysis based on

the coupon collector’s problem (e.g., [48]) shows that the expected time to collect allN sources is amul-

tiplicative factor of lnN worse than the optimal time. For example, whenN is in the millions, which is

not unusual for a large worm, the expected time to collect allsources can be 15 times larger than optimal.

We also show similar poor behavior of the naı̈ve implementation, both through analysis and simulation,

in more complex settings.

The main contribution of this paper, as shown in Figure 2.2, is a scalable logger module that

interposes between the detection logic and the memory buffer. We refer to this module and the underlying

algorithm asCarousel, for reasons that will become apparent. Our logger is scalable in that it can collect

almost allN sources with high probability with very small memory buffers in close to optimal time, where

here the optimal time isN/b with b being the logging speed. Further, Carousel is simple to implement

in hardware even at very high speeds, adding only a few operations to the main processing path. We

have implemented Carousel in software both in Snort as well as in simulation in order to evaluate its

performance.

While we focus on the scalable logging problem for IPSs in this paper, we emphasize that the

problem is a general one that can arise in a number of measurement settings. For example, suppose

a network monitor placed in the core of an organizational network wishes to log all the IP sources

that are using TCP Selective Acknowledgment option (SACK).In general, our mechanism applies to



8

MAC Chips Normalization, Detection

Memory
(e.g., 1 Gbit)

fast arrival rate
(e.g., 10 Gbps)

slow logging rate
(e.g., 100 Mbps)

Chips
IDS

This paperCarousel Scalable Logger

Figure 2.2. IPS hardware model in which we propose adding a scalable logger facility called Carousel.
Carousel focuses on a small random subset of the set of keys atone time, thereby matching the available
logging speed.

any monitoring setting where a source is identified by a predicate on a packet (e.g., the packet contains

the SACKPERMITTED option, or the packet matches the Slammer signature), memory is limited, and

sources do not cooperate with the logging process. It does, however, require sources to keep transmit-

ting packets with the predicate in order to be logged. Thus Carousel does not guarantee the logging of

one-time events.

The rest of the paper is organized as follows. In Section 2.2 we describe a simple abstract

model of the scalable logging problem that applies to many settings. In Section 2.3 we describe a simple

analytical model that shows that even with an optimistic random model of packet arrivals, naı̈ve logging

can incur a multiplicative penalty of lnN in collection times. Indeed, we show this is the case even if

naı̈ve logging is enhanced with a Bloom filter in the straightforward way. In Section 2.4 we describe our

new scalable logging algorithm Carousel, and in Section 2.5we describe our Snort implementation. We

evaluate Carousel using a simulator in Section 2.6 and usinga Snort implementation in Section 2.7. Our

evaluation tests both the setting of our basic analytical model, which assumes that all sources are sending

at time 0, and a more realistic logistic worm propagation model, in which sources are infected gradually.

Section 2.8 describes related work while Section 2.9 concludes the paper.

2.2 Model

The model shown in Figure 2.3 abstracts the scalable loggingproblem. First, there areN distinct

keys that arrive repeatedly and with arbitrary timing frequency at a cumulative speed ofB keys per second

at the logger. There aretwo resources that are in scarce supply at the logger. First, there is a limited

logging speedb (keys per second) that is much smaller than the bandwidthB at which keys arrive. Even

this might not be problematic if the logger had a memoryM large enough to hold all the distinct keys



9

 to store all N items

B

I

I Memory M < < N
Logging bandwidth

b < < B
2

1

I
N

ITEMS LOGGER SINK

Enough memory

Figure 2.3.Abstract logging model:N keys to be logged enter the logging device repeatedly at a speedB
that is much greater then the logging speedb and in a potentially adversarial timing pattern. At the same
time, the amount of memoryM is much less than theN, number of distinct keys to be logged. Source
cooperation isnotassumed.

N that needed to be logged (using methods we discuss below, such as Bloom filters [10, 15], to handle

duplicates), but in our setting of large infections and hardware with limited memory, we must also assume

thatN >> M.

Eliminating all duplicates before transmitting to the sinkis not a goal of a scalable logger. We

assume that the sink has a hash table large enough to store allN unique sources (by contrast to the logger)

and eliminate duplicates.

Instead, the ultimate goal of the scalable logger isnear-complete collection: the logging of allN

sources. We now adopt some of the terminology of competitiveanalysis [11] to describe the performance

of practical logger systems. The best possible logging timeToptimal for an omniscient algorithm is clearly

N/b. We compare our algorithms against this omniscient algorithm as follows.

Definition 2.1. We say that a logging algorithm is(ε,c)-scalable if the time to collect at least(1− ε)N

of the sources is at most cToptimal. In the case of a randomized algorithm, we say that an algorithm is

(ε,c)-scalable if in time cToptimal the expected number of sources collected is at least(1− ε)N.

Note that in the caseε = 0 all sources are collected. While obviously collecting allsources is a

desirable feature, some relaxation of this requirement cannaturally lead to much simpler algorithms.

These definitions have some room for play. We could instead call a randomized algorithm(ε,c)-

scalable if the expected time to collect at least(1− ε)N is at mostcToptimal, and we may be concerned

only with asymptotic algorithmic performance as either or both ofN/M andB/b grow large. As our focus

here is on practically efficient algorithms rather than subtle differences in the definitions we avoid such

concerns where the meaning is clear.

The main goal of this paper is to provide an effective and practical (ε,c)-scalable randomized

algorithm. To emphasize the value of this result, we first show that simple naı̈ve approaches are not(ε,c)-

scalable for any constantsε,c> 0. Our positive results will require the following additional assumption



10

for our model:

Persistent Source Assumption:We assume that any distinct keyX to be logged will keep

arriving at the logger.

For sources infected by worms this assumption is often reasonable until the source is “disin-

fected” because the source continues to attempt to infect other computers. The time for remediation

(days) is also larger than the period in which the attack reaches its maximum intensity (hours). Further, if

a source is no longer infected, then perhaps it matters less that the source is not logged. In fact, we conjec-

ture that no algorithm can solve the scalable logging problem without the Persistent Source assumption.

The abstract logger model is a general one and applies to other settings. In the introduction, we

mentioned one other possibility, logging sources using SACK. As another example, imagine a monitor

that wishes to log all the sources in a network. The monitor issues a broadcast request to all sources

asking them to send a reply with their ID. Such messages do exist, for example the SYSID message in

802.1. Unfortunately, if all sources reply at the same time,some set of sources can consistently be lost.

Of course, if the sources could randomize their replies, then better guarantees can be made. The

problem can be viewed as one of congestion control: matchingthe speed of arrival of logged keys to the

logging speed. Congestion control can be solved by standardmethods like TCP slow start or Ethernet

backoff if sources can be assumed to cooperate. However, in a security setting we cannot assume that

sources will cooperate, and other approaches, such as the one we provide, are needed.

2.3 Analysis of a Näıve Logger

2.3.1 The Näıve Logger Alone

Before we describe our scalable logger and Snort implementation, we present a straw man naı̈ve

logger, and a theoretical analysis of the expected and worst-case times. The theoretical analysis makes

some simplifications that only benefit the naı̈ve logger, butstill its performance is poor. The naı̈ve logger

motivates our approach.

We start with a model of the naı̈ve logger shown in Figure 2.4.We assume that the naı̈ve logger

only has a memory buffer in the form of a queue. Keys, which again are usually source addresses, arrive

at a rate ofB per second. When the naı̈ve logger receives a key, it is placed at the tail of the queue. If the

queue is full, the key is dropped. The size of the queue isM. Periodically, at a smaller rate ofb keys per

second, the naı̈ve logger sends the key (and any associated report) at the head of the queue to a disk log.

Let LD denote the set of keys logged to disk, andLM the set of keys that are in the memory.



11

 = b
EMPTY HEAD

Memory Buffer
Size = M

Set of items logged in memory L
 M

logging rate
DISK LOG

LD

randomly choose a
item to fill empty slot

arrival rate = B
N items

Figure 2.4.Model of naı̈ve logging using an optimistic random model. When space opens up in the mem-
ory log, a source is picked uniformly and randomly from the set of all possibleN sources. Unfortunately,
that source may already be in the memory log (LM) or in the disk log (LD). Thus as more sources are
logged it gets increasing less probable that a new unique source will be logged, leading to a logarithmic
increase in collection time over optimal

The naı̈ve logger works very poorly in an adversarial setting. In an adversarial model, after the

queue is full ofM keys, and when an empty slot opens up at the tail, the adversary picks a duplicate

key that is part of theM keys already logged. When the queue is full, the adversary cycles through

the remaining unique sources to pick them to arrive and be dropped, thus fulfilling the persistent source

assumption in which every source must arrive periodically.It is then easy to see the following result.

Theorem 2.2. Worst-case time for naı̈ve logger:The worst-case time to collect all N keys is infinity. In

fact, the worst-case time to collect more than M keys is infinite.

We believe the adversarial models can occur in real situations especially in a security setting.

Sources can be synchronized by design or accident so that certain sources always transmit at certain

times when the logger buffers are full. While we believe thatresilience to adversarial models is one

of the strengths of Carousel, we will show that even in the most optimistic random models, Carousel

significantly outperforms a naı̈ve logger.

The simplest random model for key arrival is one in which the next key to arrive is randomly

chosen from theN possible keys, and we can find the expected collection time ofthe naı̈ve logger in this

setting.

Let us assume thatM < B/b, so that initially the queue fills entirely before the first departure.

(The analysis is easily modified if this is not the case.) Figure 2.5 is a timeline which shows that the

dynamics of the system evolve in cycles of lengthT seconds, whereT = 1/b. Every T seconds the

current head of the memory queue leaves for the disk log, and within the smaller timet = 1/B, a new

randomly selected key arrives to the tail of the queue. In other words, the queue will always be full except

when a key leaves from the head, leaving a single empty slot atthe tail as shown in Figure 2.4. The very

next key to be selected will then be chosen to fill that empty slot as shown in Figure 2.5.

The analysis of this naı̈ve setting now follows from a standard analysis of the coupon collector’s



12

Last head
leaves for disk

Next head
leaves for diskarrives

Random source

t = 1/B < < T

T = 1/b, b = logging rate

Figure 2.5.Portion of timeline for random model shown in Figure 2.4. We divide time into cycles of time
T whereT is the time to send one piece of logged information at the logging rateb. The time for a new
randomly chosen source to first arrive is much smallert = 1/B, whereB is the faster packet arrival rate.

problem [48]. LetL = LM ∪LD denote the set of unique keys logged in either memory or disk.Let Ti

denote the time forL to grow from sizei−1 to i (in other words, the time for thei-th new key to be logged).

If we optimistically assume that the firstM keys that arrive are distinct, we haveTi = T for 1≤ i ≤M, as

the queue initially fills. Subsequently, since the newly arriving key is chosen randomly from the set ofN

keys, it will get increasingly probable (asi gets larger) that the chosen key already belongs to the logged

setL.

The probability that a new key will not be a duplicate ofi − 1 previously logged keys is is

Pi = (N− i+1)/N. If a key is a duplicate the naı̈ve logger simply wastes a cycle of timeT. (Technically,

it might beT− t wheret = 1/B, but this distinction is not meaningful and we ignore it.) The expected

number of cycles before thei-th key is not a duplicate is the reciprocal of the probability or 1/Pi. Hence

for i > M, i ≤ N the expected value ofTi is

E(Ti) =
N

b(N− i +1)
.

Using the linearity of expectation, the collection time forthe lastN−M keys is

N

∑
i=M+1

N
b(N− i +1)

=
N
b

N−M

∑
j=1

1
j
=

N
b
(ln(N−M)+O(1)) ,

using the well-known result for the sum of the harmonic series. Hence if we letTnaive
collect be the time

to collect all N keys for the naı̈ve collector thenTnaive
collect >

N
b ln(N−M), and so the naı̈ve logger is a

multiplicative factor of ln(N−M) worse than the optimal algorithm.

It might be objected that it is not clear thatN/b is in fact the optimal time in this random model,

and that this lnN factor is due entirely to the embedded coupon collector’s problem arising from the



13

random model. For example, ifB= b= 1, then you cannot collect theN keys in timeN, since they will

not all appear until after approximatelyN lnN keys have passed [48]. However, as long asB/b > lnN

(andM > 1), for anyγ > 0, with high probability an omniscient algorithm will be able to collect all keys

after at most(1+ γ)NB/b keys have passed in this random model, so the optimal collection time can be

made arbitrarily close toN/b. Hence, this algorithm is indeed not truly scalable in the sense we desire,

namely in a comparison with the optimal omniscient algorithm.

Even if we seek only to obtain(1− ε)N keys, by the same argument we have the collection time

is
N
b
(ln((1− ε)N−M)+O(1)) .

Hence whenM = o(N), the logger is still not(ε,c)-scalable for any constantsε andc. We can summarize

the result as follows:

Theorem 2.3. Expected time for naı̈ve logger:The expected time to collect(1− ε)N keys is at least

a multiplicative factor ofln((1− ε)N−M) worse than the optimal time for sufficiently large N,M, and

ratios B/b.

As stated in the introduction, for large worm outbreaks, thenaı̈ve logger can be prohibitively

slow. For example, as ln1,000,000 is almost 14, if the optimal time to log 1 million sources is 1 hour, the

naı̈ve logger will take almost 14 hours.

The results for the random model can be extended to situations that naturally occur in practice

and appear somewhere between the random model and an adversarial model. For example, suppose that

we have two sets of sources, of sizesN1 andN2, but the first source sends at a speed that isj times the

second. This captures, at a high level, the issue that sources may be sending at different rates. We assume

each source individually behaves according to the random model. LetT1 be the expected time to collect

all the keys in the fast set, andT2 the expected time for the slow set. Then clear the expected time to

collect all sources is at least max(T1,T2), and indeed this lower bound will be quite tight whenT1 andT2

are not close. As an example, supposeN1 = N2 = N/2, and j > 1. ThenT2 is approximately

N( j +1)
2b

ln

(

N
2
− M

j +1

)

.

The time to collect in this case is dominated by the slow sources, and is still a logarithmic factor from

optimal.



14

2.3.2 The Näıve Logger with a Bloom Filter

A possible objection is that our naı̈ve logger is far too naı̈ve. It may be apparent to many readers

that additional data structures, such as a Bloom filter, could be used to prevent logging duplicate sources

and improve performance. This is true, and we shall use such measures in our scalable approaches.

However, we point out that as the Bloom filter of limited size,it cannot by itself prevent the problems of

the naı̈ve logger, as we now explain.

To frame the discussion, consider 1 million infected sources that keep sending to an IPS. The

solution to the problem may appear simple. First, since all the sources may arrive at a very fast rate of

B before even a few are logged, the scheme must have a memory buffer that can hold keys waiting to

be logged. Second, we need a method of avoiding sending duplicates to the logger, specifically one that

takes small space, in order to make efficient use of the small speed of the logger.

To avoid sending duplicates, one naturally would think of a solution based on Bloom filters or

hashed fingerprints. (We assume familiarity with Bloom filters, a simple small-space randomized data

structure for answering queries of the form “Is this an item in setX” for a given setX. See [15] for

details.) For example, we could employ a Bloom filter as follows. For concreteness, assume that a source

address is 32 bits, the report associated with a source is 68 bits, and that we use a Bloom filter [10] of 10

bits per source.1 Thus we need a total of 100 bits of memory for each source waiting to be logged, and 10

bits for each source that has been logged. (Instead of a Bloomfilter, we could keep a table of hash-based

fingerprints of the sources, with different tradeoffs but similar results, as we discuss in Section 2.4.2.)

Unfortunately, the memory buffer and Bloom filter have to operate at Gigabit speeds. Assume

that the amount of IDS high speed memory is limited to storingsay 1 Mbit. Then, assuming 100 bits per

source, the IPS can only store information about a burst of 10,000 sources pending their transmission to

a remote disk. This does not include the size of the Bloom filter, which can only store around 100,000

sources if scaled to 1 Mbit of size; after this point, the false positive rate starts increasing significantly. In

practice one has to share the memory between the sources and the Bloom filter.

The inclination would be to clear the Bloom filter after it became full and start a second phase

of logging. One concern is that timing synchronization could result in the same sources that were logged

in phase 1 being logged and filling up the Bloom filter again, and this could happen repeatedly, leading to

missing several sources. Even without this potential problem, there is danger in using a Bloom filter, as

1This is optimistic because many algorithms would require not just a Bloom filter but instead a count-
ing Bloom filter [25] to support deletions, which would require more than 10 bits per entry.



15

we can see by again considering the random model.

Consider enhancing the naı̈ve logger with a Bloom filter to prevent the sending of duplicates.

We assume the Bloom filter has a counter to track the number of items placed in the filter, and the filter is

cleared when the counter reaches a thresholdF to prevent too many false positives. Between each clearing,

we obtain a group ofF distinct random keys, but keys may be appear in multiple groups. Effectively, this

generalizes the naı̈ve logger, which simply used groups of size F = 1.

Not surprisingly, this variation of the coupon collector’sproblem has been studied; it is know as

the coupon subset collection problem, and exact results forthe problem are known [61, 70]. Details can

be examined by the interested reader. A simple analysis, however, shows that for reasonable filter sizesF ,

there will be little or no gain over the naı̈ve logger. Specifically, supposeF = o(
√

N). Then in the random

model, the well-known birthday paradox implies that with high probability the firstF keys to be placed

in the Bloom filter will be distinct. While there may still be false positives from the Bloom filter, for such

F the filter fills without detecting any true duplicates with high probability. Hence, in the random case,

the expected collection time even using a Bloom filter of thissize is still N
b ln(N−M)+O(1). With larger

filters, some true duplicates will be suppressed, but one needs very large filters to obtain a noticeable gain.

The essential point of this argument remains true even in thesetting considered above where different sets

of sources arrive at different speeds.

The key problem here is that we cannot supply the IDS with the list of all the sources that have

been logged, even using a Bloom filter or a hashed set of fingerprints. Indeed, whenM ≪ N no data

structure can track a meaningful fraction of the keys that have already been stored to disk. Our solution to

this problem is to partition the population of keys to be recorded into subsets of the right size, so that the

logger can handle each subset without problem. The logger then iterates through all subsets inphases, as

we now describe. This repeated cycling through the keys is reminiscent of a Carousel, yielding our name

for our algorithm.

2.4 Scalable logging using Carousel

2.4.1 Partitioning and logging

Our goal is to partition the keys into subsets of the right size, so that during each phase we can

concentrate on a single subset. The question is how to perform the partitioning. We want the size of each

partition to be the right size for our logger memory, that is approximately sizeM. We suggest using a

randomized partition of the sources into subsets using a hash function that uses very little memory and



16

processing. This randomized partitioning would be simple if we initially knew the population sizeN, but

that generally will not be the case; our system must find the current population sizeN, and indeed should

react as the population size changes.

We choose a hash-based partition scheme that is particularly memory and time-efficient. Let

H(X) be a hash function that maps a source keyX to anr-bit integer. LetHk(X) be the lower orderk bits

of H(X). The size of the partition can be controlled by adjustingk.

For example, ifk = 1, we divide the sources into two subsets, one subset whose low order bit

(after hashing) is 1, and one whose lower order bit is a 0. If the hash function is well-behaved, these two

sets will be approximately half the original sizeN. Similarly, k = 2 partitions the sources approximately

into four equally sized subsets whose hash values have low order bits 00, 01, 10, and 11 respectively.

This allows only very coarse-grained partitioning, but that is generally suitable for our purposes, and

the simplicity of using the lower orderk bits of H(X) is particularly compelling for implementation and

analysis. To begin we will assume the population size is stable but unknown, in which case the basic

Carousel algorithm can be outlined as follows:

• Partition: Partition the population into groups of size 2k by placing all sources which have the same

value ofHk(X) in the same partition.

• Iterate: A phase is assigned timeTphase= M/b which is the time to logM sources, whereM

is the available memory in keys andb is the logging time. Thei-th phase is defined by logging

only sources such thatHk(s) = i. Other sources are automatically dropped during this phase. The

algorithm must also utilize some means of preventing the same source from being logged multiple

times in the phase, such as a Bloom filter or hash fingerprints.

• Monitor: If during phasei, the number of keys that matchHk() = i exceeds a high threshold, then

we return to the Partition step and increasek. While our algorithms typically usek = k+1, higher

jumps can allow faster response. If the number of number of keys that matchHk() = i falls below a

low threshold, then we return to the Partition step and decreasek.

In other words, Carousel initially tries to log all sources without hash partitioning. If that fails

because of memory overflow, the algorithm then works on half the possible sources in a phase. If that

fails, it works on a quarter of the possible sources, and so on. Once it determines the appropriate partition

size, the algorithm iterates through all subsets to log all sources.



17

As described, we could in the monitoring stage changek by more than 1 if our estimate of the

number of keys seen during that phase suggests that would be an appropriate choice. Also, of course,

we can choose to decreasek if our estimate of the keys in that phase is quite small, as would happen if

we are logging suspected virus sources and these sources arestopped. There are many variations and

optimizations we could make, and some will be explored in ourexperiments. The important idea of

Carousel, however, is to partition the set of keys to match the logger memory size, updating the partition

as needed.

2.4.2 Collection Times for Carousel

We assume that the memory includes, for each key to be recorded, the space for the key itself,

the corresponding report, and some number of bits for a Bloomfilter. This requires slightly more memory

space that we assumed when analyzing the random model, wherewe did not use the Bloom filter. The

discrepancy is small, as we expect the Bloom filter to be less than 10% of the total memory space (on

the order of 10 bits or less per item, against 100 or more bits for the key and report). This would not

effectively change the lower bounds on performance of the naı̈ve logger. We generally ignore the issue

henceforth; it should be understood that the Bloom filter takes a small amount of additional space.

Recall that Carousel has 3 components: partition, iterate,and monitor. Faced with an unknown

populationN, the scalable logger will keep increasing the number of bitschosenk until each subset is less

than sizeM, the memory size available for buffering logged keys.

We sketch an optimistic analysis, and then correct for the optimistic assumptions. Let us assume

that allN keys are present at the start of time, that our hash function splits the keys perfectly equally, and

that there is no failed recording of keys due to false positives from the Bloom filter (or whatever structure

suppresses duplicates). In that case it will take at most⌈log2
N
M ⌉ partition steps for Carousel to get the

right number of subsets. Each such step required time for a single logging phase,Tphase= M/b. The

logger then reaches the right subset size, so thatk is the smallest value such thatN/2k≤M. The collector

then goes through 2k phases to collect allN sources. Note that 2k ≤ 2N/M, or elsek would not be the

smallest value withN/2k ≤M. Hence, after the initial phases to find the right value ofk, the additional

collection time required is just 2N/b, or a factor of two more than optimal. The total time is thus atmost

M⌈log2(N/M)⌉
b

+
2N
b
,

and the generally the second term will dominate the first. Asymptotically, whenN≫M, we are roughly



18

within a factor of 2 of the optimal collection time.

Note that the factor of 2 in the 2N/b term could in fact be replaced in theory by any constant

a> 1, by increasing the number of sets in the partition by a factor of a rather than 2 at each partition step.

This would increase the number of partition steps to⌈loga
N
M ⌉. In practice we would not want to choose

a value ofa too close to 1, because keys will not be partitioned equally into sets, as we describe in the

next subsection. Also, as we have described a factor of 2 is convenient in terms of partitioning via the low

order bits of a hash. In what follows we continue to use the factor 2 in describing our algorithm, although

it should be understood smaller constants (with other tradeoffs) are possible.

In some ways our analysis is actually pessimistic. Early phases that fail can still log some items,

and we have assumed that we could partition to require 2N/M phases, when generally the number of

phases required will be smaller. However, we have also made some optimistic assumptions that we now

revisit more carefully.

Unequal Partitioning: Maximum Subset Analysis

If the logger usesk bits to partition keys, then there areK = 2k subsets. While the expected

number of sources in a subset isN
K , even assuming a perfectly random hash function, there may be

deviations in the set sizes. Our algorithm will actually choose the value ofk such that the biggest partition

is fit in our memory budgetM, not the average partition, and we need to take this into account. That is,

we need to analyze themaximumnumber of keys being assigned to a subset at each phase interval.

In general, this can be handled using standard Chernoff bound analysis [48]. In this specific case,

for example, [58] proves that with very high probability, the maximum number of sources in any subset

is less thanN
K +

√

2N lnK
K . Therefore we can assume that the smallest integerk satisfying

N
K
+

√

2N lnK
K

≤M, (2.1)

whereK = 2k, is greater than or equal to thek eventually found by the algorithm.

Note that the difference between our optimistic analysis, where we required the smallestk such

that N/K ≤ M, and this analysis is generally very small, as
√

2N lnK
K is generally much less thanN/K.

That is, suppose thatN/K ≤M, but N
K +

√

2N lnK
K > M, so that at some point we might increase the value

k to more than the smallest value such thatN/K ≤M, because we unluckily have a subset in our partition



19

that is bigger than the memory size. The key here is that in this caseN/K ≈M, or more specifically

M ≥ N
K

> M−
√

2N lnK
K

,

so that our collection time is now
2KM

b
<

2N
b

+
2
b

√

2N lnK
K

.

That is, the collection time is still, at most, very close to 2N/b, with the addition of a smaller order term

that contributes negligibly compared to 2N/b for largeN. Hence, asymptotically, we are still with a factor

of c of the optimal collection time, for anyc> 2.

Effects of False Positives

So far, our analysis has not taken into account our method of suppressing duplicates. One natural

approach is to use a Bloom filter, in which case false positives can lead to a source not being logged in

a particular phase. This explains our definition of an(ε,c)-scalable logger. We have already seen thatc

can be upper bounded by any number larger than 2 asymptotically. Hereε can be bounded by the false

positive rate of the corresponding Bloom filter. As long as the number of elements per phase is no more

thanM′ = N
K +

√

2N lnK
K with high probability, then given the number of bits used forour Bloom filter, we

can bound the false positive rate. For example, using 10M′ bits in the Bloom filter, the false positive rate

is less than 1%, so our logger asymptotically converges to a(0.01,2)-scalable logger.

We make note of some additions one can make to improve the analysis. First, this analysis

assumes only a singlemajor cyclethat logs each subset in the partition once. If one rerandomized the

chosen hash functions each major cycle, then the probability a persistent source is missed each major

cycle is independently at mostε each time. Hence, after two such cycles, the probability of asource

being missed is at mostε2, and so on.

Second, this analysis is pessimistic, in that in this setting, items are gradually added to an empty

Bloom filter each phase; the Bloom filter is not in its full state at all times, so the false positive probability

bound for the full filter is a large overestimate. For completeness we offer the following more refined anal-

ysis (which is standard) to obtain the expected false positive rate. (As usual, the actual rate is concentrated

around its expectation with high probability.)

Assume the Bloom filter hasm bits and usesh hash functions. Consider whether the(i + 1)st

item added to the filter causes a false positive. First consider a particular bit in the Bloom filter. The



20

probability that it is not set to 1 by one of thehi hash functions thus far is(1− 1
m)

hi. Therefore the

probability of a false positive at this stage is(1− (1− 1
m)

hi)h≈ (1−e−
hi
m )h.

SupposeM′ items are added into the Bloom filter within a phase interval.The expected fraction

of false positives is then (approximately)∑M′−1
i=0 (1−e−

hi
m )h, compared to the(1−e−

hM′
m )h given by the

standard analysis for the false positive rate afterM′ elements have been added. As an example, with

M′ = 312,h= 5, andm= 5000, the standard analysis gives a false positive rate of 1.4 ·10−3, while our

improved analysis gives a false positive rate of 2.5 ·10−4.

Third, if collecting all or nearly all sources is truly paramount, instead of using a Bloom filter,

one can use hash-based fingerprints of the sources instead. This requires more space than a Bloom filter

(Θ(logM′) bits per source if there areM′ per phase) but can reduce the probability of a false positiveto

inverse polynomial inM′; that is, with high probability, all sources can be collected. We omit the standard

analysis.

Carousel and Dynamic Adaptation

Under our persistent source assumption, any distinct key keeps arriving at the logger. In fact, for

our algorithm as described, we need an even stronger assumption: each key must appear during the phase

in which it is recorded, which means each key should arrive every N/b steps. Keys that do not appear

this frequently may miss their phase and not be recorded. In most settings, we do not expect this to be a

problem; any key that does not persist and appear this frequently does not likely represent a problematic

source in terms of, for example, virus outbreaks. Our algorithm could be modified for this situation in

various ways, which we leave as future work. One approach, for example, would be to sample keys in

order to estimate the 95% percentile for average interarrival times between keys, and set the time interval

for the phase time to gather a subset of keys accordingly.

A more pressing issue is that the persistent source assumption may not hold because external

actions may shut down infected sources, effectively changing the size of the set of keys to record dynami-

cally. For example, during a worm outbreak, the number of infected sources rises rapidly at first but then

they can go down due to external actions (for example, network congestion, users shutting down slow

machines due to infection, and firewalling traffic or blocking a part of the network). In that case, the

scalable logger may pick a large number of sampling bitsk at first due to large outbreak traffic. However,

the logger should correspondingly increase the value ofk subsequently as the number of sources to record

declines, to avoid inefficient logging based on too large a number of phases.



21

Figure 2.6.Flowchart of Carousel within Snort packet flow

2.5 Carousel Implementations

We describe our Snort evaluation in Section 2.5.1 and a sketch of a hardware implementation in

Section 2.5.2.

2.5.1 Snort Implementation

In this section, we describe our implementation of Carouselintegrated into the Snort [69] IDS.

We need to first understand the packet processing flow within Snort to see where we can interpose the

Carousel scalable logger scheme. As in Figure 2.6, incomingpackets are captured bylibpcap, queued in

a kernel buffer, and then processed by the callback functionProcessPacket.



22

ProcessPacketfirst passes the packet to preprocessors, which are components or plug-ins serving

to filter out suspicious activity and prepare the packet to befurther analyzed. The detection engine then

matches the packet against the rules loaded during Snort initialization. Finally, the Snort output module

performs appropriate actions such as logging to files or generating alerts. Note that Snort is designed to

be strictly single-threaded for multiplatform portability.

The logical choice is to place Carousel module between the detection engine and output module

so that the traffic can either go directly to the output pluginor get diverted through the Carousel module.

We cannot place the logger module before the detection engine because we need to log only after a rule

(e.g., a detected worm) is matched. Similarly, we cannot place the logger after the output module because

by then it is too late to affect which information is logged. Our implementation also allows a rule to

bypass Carousel if needed and go directly to the output module.

Figure 2.6 is a flowchart of Carousel module for Snort interposed between the detection engine

and the output model. The module uses the variablesTphase= M/b (time for each phase) andk (number

of sampling bits) described in Section 2.4.1.M is the number of keys that can be logged in a partition and

b is the logging rate; in our experiments we useM = 500. The module also uses a 32-bit integerV that

represents the hash value corresponding to the current partition. Initially, k = 0, V = 0, the Bloom filter

is empty, and a timerT is set to fire afterTphase. The Bloom filter uses 5000 bits, or 10 bits per key that

can fit inM, and employs 5 hash functions (SDBM, DJP, DEK, JS, PJW) takenfrom [56].

The Carousel scalable logger first compares the low-orderk bits of the hash of the packet key

(we use the IP source address in all our experiments) to the low orderk bits ofV. If they do not match,

the packet is not in the current partition and is not passed tothe output logging. If the value matches but

the key yields a positive from the Bloom filter (so it is eitheralready logged, or a false positive), again

the packet is not passed to the output module. If the value matches and the key does not yield a positive

from the Bloom filter, then the module adds the key to the Bloomfilter. If the Bloom filter overflows (the

number of insertions exceedsM), thenk is incremented by 1, to create smaller size partitions.

When the timerT expires, a phase ends. We first check for underflow by testing whether the

number of insertions is less thanM/x. We found empirically that a factorx = 2.3 worked well without

causing oscillations. (A value slightly larger than 2 is sensible, to prevent oscillating because of the

variance in partition sizes.) If there is no underflow, then the sampling valueV is increased by 1 mod 2k

to move to the next partition.



23

Hash key BloomFilterfrom detector

Timer T

V = V + 1

Scalable Logging Hardware

clear

Compare: Low order 
bits of Hash = V?

Timer T

To remote logger
Key, record

Figure 2.7.Schematic of the Carousel Logger logic as part of an IPS Chip.

2.5.2 Hardware Implementation

Figure 2.7 shows a schematic of the base logic that can be inserted between the detector and the

memory buffer used to store log records in an IPS ASIC. Using 1Mbit for the Bloom filter, we estimate

that the logic takes less than 5% of a low-end 10mm by 10 mm networking ASIC. All results are reported

for a standard 400 Mhz 65 nm process currently being used by networking vendors. The logic is flow-

through: in other words, it can inserted between the detector and logging logic without changing any other

logic. This allows the hardware to be incrementally deployed within an IPS without changing existing

chip sets.

We assume the detector passes a key (e.g., a source IP address) and a detection record (e.g.,

signature that matched) to the first block. The hash blocks computes a 64-bit hash of the key. Our

estimates use a Rabin hash whose loop is unrolled to run at 40 Gbps using 20K gates.

The hash output supplies a 64-bit number which is passed to the Compare block. This block

masks out the low-orderk bits of the hash (a simple XOR) and then compares it (comparator) to a register

valueV that denotes the current hash value for this phase. If the comparison fails, the log attempt is

dropped. If it succeeds, the key and record are passed to the Bloom filter logic. This is the most expensive

part of the logic. Using 1 Mbit of SRAM to store the Bloom filterand 3 parallel hash functions (these can

be found by taking bits 1-20, 21-40, 41-60 etc of the first 64-bit hash computed without any further hash

computations), the Bloom filter logic takes less than a few percent of a standard ASIC.

As in the Snort implementation, a periodic timer module firesevery Tphase= M/b time and

causes the valueV to be incremented. Thus the remaining logic other than the Bloom filter (and to a

smaller extent the hash computation) is very small. We use two copies of the Bloom filter and clear one

copy while the other copy is used in a phase. The Bloom filter should be able to store a number of keys

equal to the number of keys that can be stored in the memory buffer. Assuming 10 bits per entry, a 1



24

Mbit Bloom filter allows approximately 100,000 keys to be handled in each phase with the targeted false

positive probability. Other details (underflow, overflow etc.) are similar to the Snort implementation and

are not described here.

2.6 Simulation Evaluation

To evaluate Carousel under more realistic settings in whichthe population grows, we simulate

the logger behavior when faced with a typical worm outbreak as modeled by a logistic equation. We used

a discrete event simulation engine that is a stripped down (for efficiency) version of the engine found

in ns-2. We implement the Carousel scalable logger as described in Section 2.4. The simulated logger

maintains the sampling bit countk and only increasesk when the Bloom filter overflows;k stabilizes

when all sources sampled duringTphasefit the into memory budgetM with logging speedb. Simulation

allows us to investigate the effect of various input parameters such as varying worm speed and whether

the worm uses a hit list. Again, in all the simulations below,the Bloom filter uses 5000 bits and 5 hash

functions (SDBM, DJP, DEK, JS, PJW) taken from [56]. For eachexperiment, we plot the average of 50

runs of simulation.

We start by confirming the theory with a baseline experiment in Section 2.6.1 when all sources

are present at time 0. We examine the performance of our logger with the logistic model in Section 2.6.2.

We evaluate the impact of non-uniform source arrivals in Section 2.6.3. In Section 2.6.4, we examine a

tradeoff between using a smaller number of bits per Bloom filter element and taking more more major

cycles to collect all sources. Finally, in Section 2.6.5, wedemonstrate the benefit of reducingk in the

presence of worm remediation.

2.6.1 Baseline Experiment

In Figure 2.8, we verify the underlying theory of Carousel inSection 2.4 assuming all sources

are present at time 0. We consider various starting populationsN = 10000 to 80000 sources, a memory

budget ofM = 500 items, and a logging speedb= 100 items per second.

Figure 2.8 shows that the Carousel scalable logger collectsalmost all(at least 99.9%) items by

t = 189,354,679 and 1324 seconds forN = 10000,20000,40000 and 80000 respectively. This is no more

than 2N
b in all cases, matching the predictions of our optimistic analysis in Section 2.4.

With these settings, the 10,000 sources will be partitioned into 32 subsets, each of sizeapproxi-

mately 312 (in expectation). In fact, our experiment trace shows that the number of sources per phase is



25

time (sec) 
0 200 360 680 1000 1350 2000

N
um

be
r 

of
 lo

gg
ed

 s
ou

rc
es

0

10k

20k

40k

80k

100k

10,000 sources

20,000 sources

40,000 sources

80,000 sources

Figure 2.8.Performance of Carousel with different logging populations

in the range of 280 to 340. Since the Bloom filter uses 5000 bits, essentially we have more than 10 bits per

item once the right number of partitions is found. As we calculated previously (in Section 2.4.2), the ac-

cumulated false positive rate of 312 sources in a 5000-bit Bloom filter with 5 hash functions is 2.5 ·10−4.

We also verified that most phases have no false positives. However, the Carousel algorithm may need

additional major cycles to collect these remaining sources. Since a major cycle is 2k iterations, the theory

predicts that Carousel requires more time to collect missedfalse positives for largerk and hence for larger

N. We observe that the length of horizontal segment of each curve in Figure 2.8, which represents the

collection time of all sources missed in the first major cycle, is longer for larger populationsN.

2.6.2 Logger Performance with Logistic Model

In the logistic model, a worm is characterized byH, the size of the initial hit list, the scanning

rate, and a probabilityp of a scan infecting a vulnerable node. In our simulations below, we use a

population ofN = 10,000, a memory sizeM = 500 with Bloom filter andM = 550 without Bloom filter,

and logging speedb= 100 packets/sec; the best possible logging time to collect all sources isN/b= 100

seconds.

For our first 3 experiments, shown in Figures 2.9, 2.10 and 2.11, we use an initial hit list of



26

H = 10,000. Since the hit list is the entire population, as in the baseline, all sources are infected at

time t = 0. We use these simulations to see the effect of increasing the scan rate and monitoring ability

assuming all sources are infected. Our subsequent experiments will assume a much smaller hit list, more

closely aligned with a real worm outbreak.

For the first experiment, shown in Figure 2.9 we use 6 scans persecond (to model a worm

outbreak that matches the Code Red scan rate [78]) andp= 0.01. Figure 2.9 shows that Carousel needs

200 seconds to collect theN = 10,000 sources whereas the naı̈ve logger takes 4,000 seconds. Further,

the difference between Carousel and the naı̈ve logger increases with the fraction of sources logged. For

example, Carousel is 6 times faster at logging 90% level of all sources but 20 times faster to log 100% of

all sources. This is consistent with the analysis in Section2.3.1.

In Figure 2.10 we keep all the same parameters but increase the scan rate ten times to 60

scans/sec. The higher scan rate allows naı̈ve logging a greater chance to randomly sample packets and so

the difference between scalable and naı̈ve logging is less pronounced. Figure 2.11 uses the same param-

eters as Figure 2.9 but assumes that only 50% of the scanning packets are seen by the IPS. This models

the fact that a given IPS may not see all worm traffic. Notice again that the difference between naı̈ve and

Carousel logging decreases when the amount of traffic seen bythe IPS decreases.

The remaining simulations assume a logistic model of worm growth starting with a hit list of

H = 10 infected sources when the logging process starts. The innermost curve illustrates the infected

population versus time, which obeys the well-known logistic curve. Even under this propagation model,

Carousel still outperforms naı̈ve logging by a factor of almost 5. Carousel takes around 400 seconds to

collect all sources while naı̈ve logger takes 2000 seconds.

Figure 2.13 shows a slower worm. A slower worm can be modeled in many ways, such using

a lower initial hit list, a lower scan rate, or a lower victim hitting probability. In Figure 2.13, we used

a smaller hitting probability of 0.001. Intuitively, the faster the propagation dynamics, thebetter the

performance of the Carousel scalable logger when compared to the naı̈ve logger. Thus the difference is

less pronounced.

Figure 2.14 demonstrates the scalability of Carousel, as wescale upN from 10,000 to 100,000

with all other parameters staying the same (i.e., 6 scans persecond andp= 0.01). Carousel takes around

9,000 seconds to collect all sources, while the naı̈ve logger takes 40,000 seconds. Note also that in all

simulations with the logistic model (and indeed in all our experiments) the performance of the naı̈ve

logger with a Bloom filter is indistinguishable from that of the naı̈ve logger by itself — as the theory



27

time (sec) 
0 1000 2000 3000 4000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2000

4000

6000

8000

10000

Carousel
Naive logger
Naive logger 
 with Bloom filter 

Figure 2.9. Performance of the Carousel scalable logger. Scan rate = 6/s, victim hit=1%, M = 500,
N = 10,000,b= 100

time (sec) 
0 1000 2000 3000 4000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2000

4000

6000

8000

10000

Carousel
Naive logger
Naive logger 
 with Bloom filter 

Figure 2.10.High scan rate (60 scans/s)

time (sec) 
0 1000 2000 3000 4000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2000

4000

6000

8000

10000

Carousel
Naive logger
Naive logger 
 with Bloom filter 

Figure 2.11.Reduced monitoring space (50%)



28

predicts.

2.6.3 Non-uniform source arrivals

In this section, we study logging performance when the sources arrive at different rates as de-

scribed in Section 2.3.1. In particular, we experiment withtwo equal sets of sources in which one set

sends at ten times as fast as the other set. Figure 2.15b showsthe result for the naı̈ve logger. We observe

that the naı̈ve logger has a significant problem in logging the slow sources, which are responsible for drag-

ging down the overall performance. As predicted by our model, the times taken to log all slow sources is

ten times slower than the time taken to log all fast sources. The times to log all and almost all sources are

8,000 and 4,000 seconds respectively.

Simply adding a Bloom filter only slightly increases the performance of the naı̈ve logger as

predicted by the theory . On the other hand, Carousel is able to consistently log all sources as shown in

Figure 2.15a. Carousel is not susceptible to source arrivalrates: sources from both the fast and slow sets

are logged equally in each minor cycle once the appropriate number of sampling bits has been determined.

2.6.4 Effect of Changing Hash Functions

In this section, we study the effect of randomly changing thehash functions for the Bloom filter

on each major cycle (that is, each pass through all of the setsof the partition). Recall that this prevents

similar arrival patterns between major cycles from causingthe same source to be missed repeatedly.

Figure 2.17abc compares the performance in Carousel of using fixed hash functions throughout

and changing the hash functions each major cycle with 1-bit,5-bit and 10-bit Bloom filters respectively.

We changed the hash functions randomly by simply XORing eachhash value with a new random number

after each major cycle. In these experiments, a major cycle is approximately 160 seconds. For the 1-bit

results, one can clearly see knees in the curves att = 160, 320, and 480 corresponding to each major cycle

in which the logger collects sources missed in previous cycles.

Carousel instrumented with changing hash functions is muchfaster in collectingall sources

across several major cycles. For example, for the 1-bit case, with changing hash functions each major

cycle, it takes 1500 seconds to log all sources while using fixed hash functions takes 2500 seconds to log

all sources.

Should one prefer using a smaller number of bits per Bloom filter element and a greater number

of major cycles or using a larger number of Bloom filter elements? This depends on the exact goals; for a

fixed amount of memory, using a smaller number of Bloom filter bits per element allows the logger to log



29

time (sec) 
0 1000 2000 3000 4000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2000

4000

6000

8000

10000

Source dynamics
Carousel
Naive logger
Naive logger 
 with Bloom filter 

Figure 2.12.Logistic model of propagation - fast worm

time (sec) 
0 1000 2000 3000 4000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2000

4000

6000

8000

10000

Source dynamics
Carousel
Naive logger
Naive logger 
 with Bloom filter 

Figure 2.13.Logistic model of propagation - slow worm

time (sec) 
0 10000 20000 30000 40000 50000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

20000

40000

60000

80000

100000

Source dynamics
Carousel
Naive logger
Naive logger 
 with Bloom filter 

Figure 2.14.Scaling up the vulnerable population



30

time (sec) 
0 100 200 300 400

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2500

5000

7500

10000

All sources
Slow sources
Fast sources

(a) Carousel

time (sec) 
0 2000 4000 6000 8000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2500

5000

7500

10000

All sources − naive logger

All sources − naive logger with Bloom filter

Fast sources Slow sources

Naive logger
Naive logger 
 with Bloom filter
Carousel

(b) Naive logger

Figure 2.15.Logger performance under non-uniform source arrivals

time (sec) 
0 100 200 300

N
um

be
r 

of
 s

ou
rc

es

0

2000

4000

6000

8000

10000

Source dynamics
Non−decreasing
Fully adaptive

Figure 2.16.Dynamic source sampling in Carousel



31

time (sec) 
0 1000 2000 3000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2500

5000

7500

10000

Static hashing
Dynamic hashing

(a) 1-bit Bloom filter

time (sec) 
0 1000 2000 3000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2500

5000

7500

10000

Static hashing
Dynamic hashing

(b) 5-bit Bloom filter

time (sec) 
0 1000 2000 3000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2500

5000

7500

10000

Static hashing
Dynamic hashing

(c) 10-bit Bloom filter

Figure 2.17.Comparison of fixed vs. changing hash functions in Carousel



32

slightly more keys in every phase at the cost of a somewhat increased false positive probability. Based on

our experiments, we believe using 5 bits per element provides excellent performance, although our Snort

implementation (built before this experiment) currently uses 10 bits per element.

2.6.5 Adaptively Adjusting Sampling Bits

As described in Section 2.4.2, an optimization for Carouselis to dynamically adapt the number

of sampling bitsk to match the currently active source population. In a worm outbreak, the value ofk

needs to be large as the when the population of infected sources is large, but it should be decreased when

the scope of the outbreak declines.

To study this effect, we use thetwo-factor worm model[78] to model the dynamic process of

worm propagation coexisting with worm remediation. The two-factor worm model augments the standard

worm model with two realistic factors: dynamic countermeasures by network administrators/users (such

as node immunization and traffic firewalls) and additional congestion due to worm traffic that makes scan

rates reduce when the worm grows. The model was validated using measurements of actual Internet

worms (see [78]).

In Figure 2.16, we apply the two-factor worm model. The curvelabeled “Source dynamics”

records the number of infected sources as time progresses. Observe the exponential increase in the number

of infected sources prior tot = 100. However, the infected population then starts to decline.

If we let the two-factor model run to completion, the number of infected sources will eventually

drop to zero, which makes logging sources less meaningful. In practice, however, it is the logging that

makes remediation possible. Thus to illustrate the efficacyof using fully adaptive sampling within the

logger, we only apply the two-factor model until the infectious population drops to half of the initial vul-

nerable tally. We then look at the time to collect the final infected population. Note that a non-decreasing

logger will choose a sampling factor based on the peak population and thus may take unnecessarily long

to collect the final population of infected sources.

Figure 2.16 shows that the fully adaptive scheme (incrementk on overflow, decrement on un-

derflow) enhances performance in terms of logging time and also the capability to collect more sources

before they are immunized. In particular, the fully adaptive scheme collects almost all sources at 220

seconds while the non-decreasing scheme (only incrementsk on overflow, no decrements) takes more

than 300 seconds to collect all sources. Examining the simulation results more closely, we found the

non-decreasing scheme adapted tok= 5 (32 partitions) and stayed there, while the fully adaptivescheme



33

Time (sec) 
0 500 1000 1500

N
um

be
r 

of
 lo

gg
ed

 s
ou

rc
es

0

2500

5000

7500

10000

Snort instrumented 
 with Carousel
Standard Snort
Standard Snort 
 with Bloom filter

Figure 2.18.Logging performance of Snort instrumented with Carousel under a random traffic pattern

eventually reduced tok= 4 (16 partitions) at timet = 130.

2.7 Snort Evaluation

We evaluate our implementation of Carousel in Snort using a testbed of two fast servers (Intel

Xeon 2.8 GHz, 8 cores, 8 GB RAM) connected by a 10 Gbps link. Thefirst server sends simulated

packets to be logged according to a specified model while the second server runs Snort, with and without

Carousel, to log packets.

We set the timer periodTphase= 5 seconds. The vulnerable population isN = 10,000 sources

and the memory buffer hasM = 500 entries. In the first experiment, the pattern of traffic arrival is random:

each incoming packet is assigned a source that is uniformly and randomly picked from the population of

N sources.

Figure 2.18 shows the logging performance of Snort instrumented with Carousel. Traffic arrives

at the rate (B) of 100 Mbps. All packets have a fixed size of 1000 bytes. The logging rate isb = 100

events per second, i.e.,b≈ 1 Mbps andB
b = 100. Figure 2.18 shows the improvements in logging from

our modifications. Specifically, our scalable implementation is able to log all sources within 300 seconds

while standard Snort needs 1500 seconds. Also, adding a Bloom filter does not significantly improve the

performance of Snort, matching our previous theory.

Figure 2.19 shows the logging performance when the sources are perpetually dispatched in a

periodic pattern 1, 2, ...,N, 1, 2...,N, ... Such highly regular traffic patterns are common in a number of



34

Time (sec) 
0 10000 20000 30000 40000

N
um

be
r 

of
 lo

gg
ed

 s
ou

rc
es

0

2500

5000

7500

10000

Snort instrumented 
 with Carousel
Standard Snort
Standard Snort 
 with Bloom filter

Figure 2.19.Logging performance of Snort instrumented with Carousel under a periodic traffic pattern

practical scenarios, such as synchronized attacks or periodic broadcasts of messages in the communication

fabric of large distributed systems. We observe that the performance of standard Snort degrades by one

order of magnitude as compared to the random pattern shown inFigure 2.18. Further examination shows

that the naı̈ve logger keeps missing certain sources due to the regular timing of the source arrivals. On the

other hand, Carousel performance remains consistent in this setting.

We also performed an experiment with two equally sized sets of sources arriving at different

rates, with fast sources arriving at 1 Gbps and slow sources at 100 Mbps, as shown in Figure 2.20. Our

observations are consistent with the simulation results inSection 2.6.3. Note that in this setting standard

Snort takes about 20 times longer to collect all sources thanSnort with Carousel (300 seconds versus

6000 seconds); in contrast, Snort took only about 5 times longer in our experiment with random arrivals.

2.8 Related Work

A number of recent papers have focused on high speed implementations of IPS devices. These

include papers on fast reassembly [22], fast normalization[74, 75], and fast regular expression matching

(e.g., [68]). To the best of our knowledge, we have not seen prior work in network security that focuses

on the problem of scalable logging. However, network managers are not just interested in detecting

whether an attack has occurred but also in determining whichof their computers is already infected for

the purposes of remediation and forensics.

The use of random partitions, where the size is adjusted dynamically, is probably used in other



35

time (sec) 
0 100 200 300 400 500

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2500

5000

7500

10000

All sources
Slow sources
Fast sources

(a) Carousel

time (sec) 
0 2000 4000 6000 8000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2500

5000

7500

10000

All sources
Slow sources
Fast sources
Carousel

(b) Standard Snort

time (sec) 
0 2000 4000 6000 8000

N
um

be
r 

of
 s

ou
rc

es
 lo

gg
ed

0

2500

5000

7500

10000

All sources
Slow sources
Fast sources
Carousel

(c) Standard Snort with Bloom filter

Figure 2.20.Snort under non-uniform source arrivals



36

contexts. We have found a reference to the Alto file system [42], where if the file system is too large to

fit into memory (but is on disk), then the system resorts to a random partition strategy to rebuild the file

index after a crash. Files are partitioned randomly into subsets until the subsets are small enough to fit in

main memory. While the basic algorithm is similar, there aredifferences: we havetwo scarce resources

(logging speed and memory) while the Alto algorithm only hasone (memory). We have duplicates while

the Alto algorithm has no duplicate files; we have an analysis, the Alto algorithm has none.

2.9 Summary

In the face of internal attacks and the need to isolate parts of an organization, IPS devices must

be implementable cheaply in high speed hardware. IPS devices have successfully tackled hardware re-

assembly, normalization, and even Reg-Ex and behavior matching. However, when an attack is detected

it is also crucial to also detect who the attacker was for potential remediation. While standard IPS devices

can log source information, the slow speed of logging can result in lost information. We showed a naı̈ve

logger can take a multiplicative factor of lnN more time than needed, whereN is the infected population

size, for small values of memoryM required for affordable hardware.

We then described the Carousel scalable logger that is easy to implement in software or hardware.

Carousel collects nearly all sources, assuming they send persistently, in nearly optimal time. While large

attacks such as worms and DoS attacks may be infrequent, the ability to collect a list of infected sources

and bots without duplicates and loss seems like a useful addition to the repertoire of functions available

to security managers.

While we have described Carousel in a security setting, the ideas applies to other monitoring

tasks where the sources of all packets that match a predicatemust be logged in the face of high incoming

speeds, low memory, and small logging speeds. The situationis akin to congestion control in networks;

the classical solution, as found in say TCP or Ethernet, is for sources to reduce their rate. However, a

passive logger cannot expect the sources to cooperate, especially when the sources are attackers. Thus,

the Carousel scalable logger can be viewed as a form of randomized admission control where a random

group of sources is admitted and logged in each phase. Another useful interpretation of our work is that

while a Bloom filter of sizeM cannot usefully remove duplicates in a population ofN>>M, the Carousel

algorithm provides a way of recycling a small Bloom filter in aprincipled fashion to weed out duplicates

in a very large population.

Chapter 2, in full, is a reprint of the material as it appears in “Carousel: Scalable Logging for



37

Intrusion Prevention Systems” inProceedings of USENIX Symposium on Networked Systems Design and

Implementation (NSDI)2010. Lam, V. T., Mitzenmacher, M., and Varghese, G., USENIX, 2010. The

dissertation author was the primary investigator and author of this paper.



Chapter 3

Flame: Efficient and Robust Hardware Load
Balancing for Data Center Routers

3.1 Introduction

To support growth in cloud applications, data centers offerhigher aggregate bandwidth by uti-

lizing multiple paths in the network [31, 4, 33]. For example, the standard data center network topology

is a fat-tree where edge switches load balance across a set ofpaths to core switches. To fully exploit the

aggregate bandwidth of these abundant multipaths, effective network load balancing is crucial in order to

allow core network bandwidth beyond that allowable by link technology. For example, today 10 Gbps

core links are reasonably priced and 40 Gbps links are expensive. Therefore, as the size of network grows

with a growing number of edge links, the only way to economically scale large data centers is to load

balance traffic across multiple 10 Gbps core links.

While this is a classic trend in networks, what makes the problem more difficult today is the

presence of potentially high bandwidth edge flows. 10 Gbps has reached the edge; with fast CPUs and

adaptors, it is not unreasonable for a single TCP flow to go beyond 5 Gbps. As the number of high-

bandwidth edge flows increases, customers are increasinglyfinding that load balancing performance at

core links is unsatisfactory for reasons we explain below. Indeed, this problem is far from an academic

curiosity, router vendors are actively looking to improve the state-of-the-art.

In this paper, we investigate this load balancing problem. In particular, our goal is to spread

network load across all available paths1 in order to realize bandwidth equal to the sum of the paths.

1While port aggregation and multi-pathing are distinct switch features, the forwarding hardware is
nearly the same. In this paper, we will refer to them both asmulti-pathing. A path refers to a physical
port in port aggregation and a physical path in true multi-pathing.

38



39

However, it is traditionally required that packets within aflow 2 be delivered to the TCP stack in order.

If they are not, performance of that connection can suffer, due to the additional processing required to

handle the re-ordered packets or due to TCP sender congestion window reduction, re-transmissions and

timeouts that are triggered by the re-ordering as we quantify in Section 3.6.4.

There are two general methods the above requirements are addressed and they both use hashing.

The first method is a common load balancing algorithm used in routers, calledequal-cost multi-path

routing (ECMP), using astatichash. ECMP implies that load balancing is done only over equal cost paths,

while static hash assigns a flow to a path by hashing theTCP/IP 5-tuplewith a singlehash function3. In

particular, ECMP hashes the 5-tuple of each packet and a modulus operation is then applied to the result

to get a path number and the packet is sent out the corresponding path. The modulus applied is the number

of possible paths. Note that static hashing is computationally fast and requires no state. It also guarantees

no reordering of TCP flows as long as paths do not change. However, it has a drawback that is specific

to this approach in addition to the drawbacks that both common approaches have. If the number of paths

changes, either up or down, the modulus changes. This means that the result of the hash and modulus for

any given flow is likely to change which results in packet reordering. This potentially can happen to all

active flows.

The second method creates the same hash, but, rather than applying a modulus, it uses the hash

result to index into a relatively small table. Each table entry then has the path number to use and the

packet is sent out that path. For example, a 256-entry table might be used and the maximum number of

potential paths might be 16. In this case, each path ID would be loaded into the table 16 times. However,

if the number of paths is 15, then 14 of the paths will be in the table 17 times and one will be in the

table 18 times which leads to an inherent imbalance. One nicefeature of this approach is that when the

number of available paths changes, only the traffic that needs to be moved is affected unlike the previous

approach.

While the above approaches are universally implemented, they have poor load balancing perfor-

mance when there are large edge flows, as the following examples demonstrate.

Example 1:Assume we wish to balance 4 flows each with 6 Gbps of bandwidth across 4 equal

cost paths of 10 Gbps. The offered load (24 Gbps) is smaller than the network capacity (40 Gbps).

Assuming a static hash that distributes uniformly, the probability that all 4 flows will pick distinct paths is

2A flow refers to all the packets of a single TCP connection and is identified by a unique 5-tuple.
35-tuple is IP source and destination addresses, TCP source and destination port numbers, and the

protocol field.



40

queues 

Core Router 

C1 

O1 O2 

congestion upstream 

invisible at edge router 

Edge Router 

E1 

I1 I2 

F1 (5 Gbps) 

F2 (4 Gbps) 
F3 (8 Gbps) 

Core Router 

C2 

F4 (6 Gbps) 

Figure 3.1.Network topology for Example 2 showing the need to rebalanceflows.

only 24/256, less than 10%. Thus with 90% probability, at least two 6 Gbps flows will be assigned to the

same 10 Gbps link and thus will be throttled to 5 Gbps each eventhough there is a completely unassigned

10 Gbps link. There is also significant probability that three flows pick the same link. It is difficult to

explain to customers why expensive 10 Gbps links remain unused!

One can quantify the problem with static hash by computing the standard deviation of the number

of flows per path compared to the mean. Ifn flows are uniformly randomly assigned top paths, then the

number of flows follows a Bernoulli distribution (each flow isassigned a path with probability1p). The

mean number of flows per path isnp and the standard deviation is
√

n
p(1− 1

p). As n grows large, the

deviation grows as the square root while the mean grows linearly; thus the deviation becomes insignificant

as the number of flows increases. But the deviationis significantwhen there are a small number of large

flows. For example, consider two TCP flows being hashed on to two paths. The mean number of flows

per path is1
p = 1 but the standard deviation is also very close to 1. Intuitively, if there are two flows,

there is a probability of 50% that they choose the same path. Thus with 50% probability we get no load

balancing; with 50% probability we get perfect balancing, resulting in a large average deviation.

Note that the second approach described above does not explicitly address this problem. Indeed,

the tables today are statically configured so a 4 path solution will have 1/4 of the table entries statically

assigned to each path. This becomes equivalent to using a modulus, but allows a more graceful changing

of the number of paths the traffic is balanced across.

Example 2:Beside random assignment, a second culprit is fixing a flow assignment indefinitely.



41

Assume an edge router (Figure 3.1) with two input linksI1 andI2 of 10 Gbps, and paths to two different

core routersC1 andC2 via output linksO1 andO2 of 10 Gbps each. Consider three flows,F1, F2, and

F3 whereF1 arrives first onI1 and sends at 5 Gbps. A short time laterF2 arrives onI1 and sends at 4

Gbps. Some time later,F3 arrives onI2 and sends at 8 Gbps. This is a feasible traffic pattern because

there is no more than 10 Gbps arriving on any input link. Assume that static hash ECMP gets “lucky” and

assignsF1 to O1 andF2 to O2. At this point in time, traffic is well balanced. However, whenF3 arrives,

static hash can only assignF3 to eitherO1 or O2. In either case, we have at most 5 Gbps on one output

link and at least 13 Gbps on the other output link. For instance, if F3 is assigned toO1, then 13 Gbps

cannot be sustained on a 10 Gbps output and so queues will build onO2 or downstream in core routerC1.

The “right packing” would be to moveF2 back toO1 along withF2 and then to assignF3 to O2. This

would assign 9 Gbps to one link and 8 Gbps to another link.

We propose Flame, an efficient dynamic load balancer to address these challenges. In particular,

we turn away from static flow-to-path assignment but insteadattempt to do the assignment dynamically in

an intelligent manner to avoid the imbalance as described above. Our contribution includes the following

key ideas.

a. New bandwidth estimator:We propose a new Discounting Rate Estimator (DRE) to accurately mea-

sure path loads without relying on queues (which may be emptyat this router) (Section 3.3.1). DRE

responds much faster to new bursts than an exponential weighted moving average (EWMA) while

retaining memory of past bursts. By relying on such instantaneous load information of each path

to make decision on path assignment of the next new flow, we canachieve significant improvement

over static assignment such as ECMP.

b. Remembering hash functions not paths:We devise a robust and implementable path choice tech-

nique by using standard power of choice hashing to pick the least loaded link which reduces hard-

ware comparisons in real-time (Section 3.3.2). Unlike Flare, however, we remember thehashcor-

responding to the least loaded link and not thepath. Remembering hash functions is more robust

when there is limited memory and two flows collide in the same bucket because it is no worse than

ECMP. This allows a simpler hardware implementation (byk-way comparison). Further, it takes a

few bits to remember a hash function as opposed to nearly 128 bits to remember a flow. We present

both mathematical analysis and experimental results to show that our scheme never degrades below

static hashing regardless of the memory capacity.



42

c. Hardware for 48-port 10 Gbps switch:We introduce a number of simple techniques to make the

implementation feasible (Section 3.4). In particular, we propose a hash table instead of a per-

flow state table to deal with memory overflow gracefully; we integrate heavy-hitter detection to

maximize the efficiency of the hash table; and we show how to incorporate periodic load balancing

at any parameterized value (from say 1 in 10 packets to 1 in 100,000) inhardware(Figure 3.4).

d. Periodic rebalancing:We show how periodic rebalancing can be implemented in our framework

(Section 3.3.2). Note that heavy hitter detection is even more important with regard to rebalancing

because the heavy-hitters send more packets and can hence afford to have periodic load balancing

for the global good without greatly impact their own TCP throughput.

e. Load balancing metrics:We present a framework and analytical measures for characterizing the

goodness of load balancing schemes (Section 3.5.2 and 3.6.1). While this is implicit in earlier

works, we make this explicit. We also discuss guidance for setting the parameters in our scheme.

f. Updated experiments on the effect of rebalancing on TCP:In Section 3.6.4, we describe new exper-

iments with various combinations of Windows and Linux stacks to show the effect of rebalancing

on TCP. As expected, Windows stacks degrade considerably inthroughput when rebalancing more

frequently than 1 in 100,000 (because out of order packets lead to DupAcks that cause the conges-

tion window to fall). More surprisingly we show that the latest Linux stacks (after 2.6.14) allow

load balancing as often as 1 in 10 packets with at most 10% lossin throughput.

3.2 Related Work

The classic way to load balancing has been to do random load balancing via hashing as in ECMP.

Such a hashing scheme comes with many advantages. First, it is inexpensive because it requires no state

per TCP flow and a small amount of logic to do the hash. Second, it is compatible with TCP because

it does not reorder packets. It is well known that because of the fast retransmit option, more than three

packets out of order can be interpreted as loss which can be followed by unnecessary retransmission,

reduction of the congestion window, and overall loss of throughput. For example, [43] shows experiments

where reordering in the order of more than 0.1% affects TCP throughput and reordering of more than 10%

drastically reduces throughput. Third, ECMP does a reasonable job of balancing flows when the number

of TCP flows being balanced is large.



43

While ECMP has been a standard for every router, there are several recent alternative proposals

in the academic literature. Flare [39] goes beyond static hash using two ideas. First, long flows are broken

into multiple flowlets based on a packet gap timeout. Second,the first packet of each flowlet is allocated

to the least loaded link and the result is stored in a flowlet table and used to route all subsequent packets in

the flowlet. If the flowlet timeout is larger than network latency then no reordering should occur despite

reassigning the flow across flowlet boundaries. The Flare paper uses wide area traces to claim that the

flowlet table is small because the number of concurrent flowlets is much smaller. In Example 2, ifF1

andF2 are sufficiently spaced apart,F2 is guaranteedto be assigned to a different link by Flare unlike

static hash. Flare does no repacking and will not address theimbalance in Example 2 whenF3 arrives —

unlessF1 orF2 have a sufficiently long gap which allows their respective flowlets to be reassigned.

Hedera [5], on the other hand, does not attempt to optimally place flows when they first arrive

but instead waits until flows are measured as “heavy-hitters” and then reassigns flows based on a heuristic

packing algorithm implemented in software on a centralizedswitch controller. Doing this assumes Open

Flow [47] environment or MPLS to control flow routes via software. Hedera allows entire paths to be

rebalanced which goes beyond link-by-link balancing as in Flare; for example, in Figure 3.1 it allows

flow F1 to be assigned to theE1,C1,E3 path and flowF3 to be assigned to theE1,C2,E4 path. However,

it not immediately deployable in today’s networks by changes to single routers. Further, Hedera only

allows flows to be repacked every few seconds (a good choice aswe show later); but this implies a few

seconds worth of imbalance when a new flow such asF3 arrives in Figure 3.1.

Finally, note that if one could invent a reordering-resilient TCP or simply reorder packets in

the destination network adaptor, then one could simply spray packets of a flow across links to get near-

optimal load balancing. A more approximate alternative is to realize that the problem is caused by a few

large TCP flows and could be mitigated by splitting large TCP flows into multiple TCP subflows at the

source as in Multipath TCP [60]. However, both Hedera and Multipath TCP are clean slate approaches

while Flare only requires implementation changes within a single switch. We choose to work in the same

setting but we point out the following problems with those previous works.

a. Memory: Flare indicates that the memory can be small but this is for one trace and for one particular

flowlet timeout parameter. We show real traces where the number of flowlets can be quite high. We

also show that when the memory is smaller than the number of flowlets, hashing must be used and

hash collisions can cause Flare to perform worse than ECMP.



44

b. Implementation: previous works assume that one can easily compute the least loaded link in hard-

ware. In reality, doing this computation at high speeds across say 32 links is prohibitive at 20 Gbps

and higher. With 48 ports of 10Gbps Ethernet and a lookup rateof approximately 750 million

lookups per second and a clock rate of 750MHz gives us 1.3nsecper clock cycle. This makes it

hard to minimize (across up to 32 registers) in a clock cycle.The computation can also not be done

in the background because different destinations may use different subsets of the links for equal

paths and the number of possible subsets (232) is too large to precompute.

c. Load balancing effectiveness: the current norm is that a flow is rebalanced just once when it is

created. However, as we have seen in Example 2, a heavy flow maynever be timed-out and yet the

path loads may change leading to more optimal load balancingif the flow is reassigned. Hedera [5]

suggests periodic load balancing across routes but it is unclear how often this can be done without

harming TCP throughput and does so in software without integrating into the hardware. Further-

more, it appears that one can do better if periodic reassignment is done (at a rate less than say the

0.1% threshold that reduces TCP throughput [43]) even in flowlet like hop-by-hop load balancing

schemes.

3.3 Mechanisms

In this section, we describe the essential ingredients of our dynamic load balancing scheme. We

first describe the concept of aDiscounting Rate Estimatorto accurately measure link loads. We then show

our design of flow state table to enforce packet order in the same flow. Finally, we discuss our handling

of heavy-hitter flows to reduce memory in hardware implementation of the state table and also to perform

periodic rebalancing. These mechanisms are combined in Figure 3.4.

3.3.1 Discounting Rate Estimator (DRE)

In this section, we design a bandwidth estimator for link bandwidths to assign new flows to the

least loaded link. Two requirements for a bandwidth estimator to do:

Quick reaction to new bursts:In Example 2, ifF2 arrives a short time afterF1 andF1 has been

assigned to output linkO1, we would like the link estimator forO1 to quickly ramp up so thatO1 looks

“more loaded” thanO2 andF2 is (correctly) assigned toO2.

Remembering old bursts:In Example 2 again, suppose thatF2 arrives 100 usec afterF1 has

finished sending at 5 Gbps for a few seconds. At this moment assume thatO1’s queue is empty and so is



45

Algorithm 1. Discounting Rate Estimator (DRE)

Parameters:
TP: DRE timer period
RP: DRE discount ratio

for each pathi do
initialize shallow counterQ[i] = 0

end for
loop

if packetD sent to pathi then
Q[i] = Q[i]+D.size

end if
if proxy queue timerTP expiresthen

for each pathi do
Q[i] = Q[i]−Q[i] ·RP

end for
end if
if f is new flowthen

assignf to path of smallestQ
end if

end loop

that ofO2. However, the effect ofF1’s burst may still remain downstream at core routerC1 in Figure 3.1.

Thus, we would like the path estimator at the edge router to “remember” the fact thatF1 has sent a burst

for a small period equal to the network latency (say 300 usec in a data center). Otherwise,F2 could

wrongly be assigned toO1 causing unnecessary congestion at core routerC1.

Let us see how four standard estimators do with respect to these requirements:

1. Epoch estimator:Bandwidth is traditionally measured in epochs such as 1s, 1ms or 1us. We

count how many bytes are sent in one epoch interval and obtainone measurement point. Then we reset

the counter value, count the bytes in the next epoch intervalto get another measurement point. We send

a packet to the link with the smallest current epoch counter and update that links epoch counter. In other

words, this is a time-averaged and memoryless approach. Theproblem with the epoch estimator is that it

keeps no memory after a burst which ends close to the end of an epoch. For example, in Example 2, ifF1

ends just before the end of an epoch, andF2 arrives soon after the epoch ends, there will be no memory

of F1’s burst andF2 could be wrongly be assigned toO2. One could also modify the least loaded choice

to use the epoch estimator of the last epoch; but that will be even worse, because it will not react fast if

F1 andF2 start in the same epoch.

2. Token estimator:The Flare paper [39] uses a token counting approach of subtracting the ideal

bytes to be sent on each link from the actual bytes and then sends packets to the link with the least tokens.

Finally, to avoid keeping memory forever, periodically, the token counters are reset to zero. While this



46

generalization is useful when doing fractional load balancing across links, it is identical to the epoch

estimator in the case of whole flow load balancing. Thus, again it keeps no memory of past bursts across

measurement intervals.

3. Exponentially weighted moving average (EWMA):The simplest way to keep memory of past

bursts is to use an EWMA estimator on the epoch bandwidth measurements using small epoch periods.

If the EWMA estimator uses a small weight for new informationand a large weight for past information,

past information will die down gradually but not instantaneously. But in this case, the EWMA will react

quite slowly to new arrivals such asF1 and this may not be fast enough ifF2 follows close onF1s

heels. On the other hand, if we make the weight for recent information to be high and the weight for past

information to be low, then the past is forgotten very quickly.

4. Physical queue size:In Figure 3.1, can we use the physical queue size of output link O1 and

output linkO2 to determine the least loaded link? Unfortunately, this does not work. After flowF1 has

been assigned to output linkO1, the physical queue at the edge router is likely to be zero becauseF2 is

5 Gbps and the link is 10 Gbps. ButF2 can cause congestion at the upper core routerC1 because of a

fourth flow F4 that wishes to go on the same path. This congestion is invisible at the edge router but can

be avoided by the estimator by measuring that a large number of bytes have been assigned to output link

O1 which suggests that flowF2 be assigned to output linkO2. Fundamentally, physical queue size does

not work because it does not reflect past traffic sent at a rate smaller than the link bandwidth.

It is to reconcile the simultaneous demands of fast reactionto new bursts with memory of old

bursts that we were led to design a new rate estimator called Discounting Rate Estimator (DRE). Pseu-

docode for DRE is shown in Algorithm 1. DRE keeps a counterQi for each switch port output linki

which is incremented by the packet size when a packet is transmitted on that output link. However, the

counter for pathi is not periodically reset to zero. Instead, every period sayTP, the counter is decreased by

an amountproportionalto the current counter value. We call the proportionality factor thediscount factor

RP. If RP is chosen to be a power of 2, discounting can be implemented inhardware using a shifter and a

subtractor. For example, in Section 3.6 we use very small values of DRE parameters such asTP = 100us

andRP = 1/512.

Intuitively, we expect that the proxy queue gives good indication of traffic bursts, but also accu-

mulate some data irrespective of the link utilization (within some limit). It drains slower as it gets near

empty so when the real utilization is low, we still get a reading.

As we will show in our analysis in Section 3.5.1, DRE quickly reacts to new bursts because it



47

valid flag 

aging flag 

hash function h 

D 

true 1. Reset aging flag = false 

2. Route D by h(D) 

false 

packet 

1. Find best h among  

h1, h2, …, hk 

2. Set valid flag = true 

3. Reset aging flag = false 

4. Route D by h(D) 

index 

Aging State Table 

Periodic aging timer Ta 

1. If aging flag = false 

    Set aging flag = true 

2. Else  

    Reset valid flag = false 

Ta 

Figure 3.2. Overview of Flame state table design. PacketD is indexed into a fixed-size table by hashing
(Section 3.3.3) or exact-matching (Section 3.3.4). A new table entry is set up by comparingk paths as
specified byk independent hash functionsh1, h2, . . . , hk. The period aging timer is triggered every time
intervalTa to age out inactive table entries.

simply adds the packet bytes. DRE also remember old bursts because every period, the DRE counter is

merely discounted byRP and not reset. Note that a small discount ratioRP translates to a large weight to

older events and vice versa. For example, withRP = 1, we reduce back to the epoch-based approach. The

DRE counter will also not diverge to infinity because the higher the counter, the greater the discounting

effect. We prove formally in Section 3.5.1 that the DRE counter stays bounded, is a scaled rate estimator,

and balances rise and fall times for new and old bursts. DRE isalmost identical to EWMA except that

while EWMA weights both old and new information, DRE only weights past information. While this is a

simple change, it makes a great difference to rate estimation.

3.3.2 Choosing the least loaded link

In Section 3.1, we discussed several examples showing the unsatisfactory performance of a static

hash-based approaches such as ECMP to do link assignment to flows. Instead, we opt for using instanta-

neous traffic utilization (DRE in Section 3.3.1) on each linkto make decision on path assignment of the

next new flow. To do this, we wish to examine traffic utilization on all links to pick the least-loaded one

to assign to the new path and then save that choice for subsequent packets of the same flow in order to

prevent reordering. In this section, we describe how to choose the least loaded link. At first glance, this

seems straightforward. When a new flowF arrives, the forwarding table yields the set of equal cost paths

P for F . Next, simply read the DRE counters of all links inP and assignF to the path with the smallest

DRE counter. Unfortunately, this is non-trivial for three reasons:



48

1. Large number of potential paths:In data centers today, 8 and 16-way multipathing are com-

mon but there is growing interest in multi-pathing as high as32 or even 64. More concretely, consider a

fat-tree topology that is maximal in diameter and the top-of-rack switch that has 96 ports. With 40 servers

in the rack, there will be 40 uplinks which results in 40 ECMP paths (or 64 by rounding up to the next

power of 2).

2. Rising traffic rates leading to small time budget:In the market today there are already 48

ports of 10 Gbps Ethernet each. These require a lookup rate ofapproximately 750 million lookups per

second. This means a clock rate of 750MHz. This gives us 1.3nsec per clock cycle which is near the limit

of ASIC technology (doubling the clock frequency to get moretime is a non-starter). This allows for only

a small number of register reads, not 40.

3. Exponential numbers of potential ECMP path sets:If there were 64 ECMP paths used byall

flows, one could do incremental computation by keeping a pointer to the least loaded link; when a DRE

counter is updated, if it is lower than the current lowest thepointer is updated. Unfortunately, each flow

can use a different subset of the 40 output links, leading to 240 possible subsets, too many to keep state

for, let alone update. Consider the case when an edge routerE has 32 outlinks to 32 core routers. One of

the core routers, sayC, has a failed downlink to an edge routerE′. Then, flows fromE to E′ cannot be

routed by the output link toC but the remaining flows can. Similar patterns of failure can result in every

possible subset of paths being chosen by some flow.

We cope with the small time budget and the small number of register reads possible using power-

of-choice hashing [49] as an intermediate approach betweenall paths minimization and pure static hash-

based computation as follows. When a flow first starts, we hashit with k independent hash functionsh1,

h2, . . . , hk function to getk paths, sayP1, P2, . . . , Pk. If Pi is the least loaded path, we assign the new

flow to Pi . So far this is standard power of choice for load balancing ashas been proposed for server load

balancing [49].

What is new in our setting is the need to maintain flow order to avoid TCP throughput degrada-

tion. Instead of remembering thepath Pi in a hash table, we remember thehash hi that generated the least

loaded path index. This is a good idea for two reasons. First,we can remember more flows if the state is

smaller: the state needed to remember a hash is log2k (2 bits for 4 hash functions!) is much smaller than

the 128 bits required to remember a TCP flow. Second, since we do not store the flow ID, then we have to

deal with hash collisions. Remembering a hash function ismore robust than remembering a pathbecause

if two flows collide, the second flow will not use the path of theearlier flow but the hash of the earlier



49

flow. Thus the collided flow has a significant chance of being assigned to a different link, no worse than

static hash ECMP; on the other hand, we show examples later where remembering paths is much worse

than ECMP. Thus remembering hashes is more economical in memory and more robust.

Another advantage is the ability to handle the following problem that occurs frequently in prac-

tice. When many heavy flows start at about the same time, the considering all-paths approach would

assign all of them to the same least loaded path. On the other hand, since our hybrid approach uses only a

small number of hash functions (k), there is a high probability that this problem will not happen. We have

a formal analysis for this problem in Section 3.5.2.

Note that in the special casek = 2, we further enhance the computation of two-hash choices so

as to guarantee no hash collision as follows. (Otherwise, done independently, there is a 1/4 probability

that the two will pick the same link to sample which is wasteful.) Despite this coupling, the two hash

functions are “sufficiently independent” to guarantee goodsampling, based on some recent unpublished

work by Mitzenmacher.

Let p be the number of equal cost paths. Then given a flowf , we compute its two path choices

by the following formulas.

P1 = h1( f ) modp (3.1)

P2 = (h2( f ) mod(p−1)+1+h1( f )) modp

3.3.3 State table design

Section 3.3.2 discussed a practical technique to dynamically determine an optimal path for the

next new flow that can improve significantly over static assignment such as ECMP. However, since TCP

congestion control requires that packets in the same flow should arrive in the same order, we want to

preserve the packet order by dispatching all packets in the same flow to the same path. We need a

mechanism to store flow states so as to preserve the packet order in the same TCP flow. In this section,

we describe our design of this state table, which is a core module of our Flame load balancing scheme.

Figure 3.2 demonstrates our approach to keeping flow state and shows how state is updated on

packet arrival. In particular, when a packet arrives, if thepacket’s flow is not in the state table, we use

the power-of-choice method in Section 3.3.2 to assign it to the optimal path and insert the chosen hash

into the table. The packet is also sent to the path just selected. On the other hand, if the packet’s flow is

already in the table, then we just send the packet to the path indicated by the stored hash applied to the



50

packet’s flow ID.

Intuitively, this dynamic path assignment approach is better than a static assignment such as

ECMP because of the highly dynamic nature of flow arrival and departure in real networks. In practice,

even large flows come and go and assigning that flow to a path when the flow starts will give the best

possible assignment at that instant. The choice may turn outto be poor based on the behavior of the new

flow in the future and the other, already assigned flows. behavior in the future, but subsequent flows will

continually correct any such mistakes. This is especially true if the behavior of a flow is fairly constant,

i.e. high bandwidth flows tend to remain high bandwidth and low bandwidth flows remain low.

While [39] indicates that the number of concurrent flowlets is small, their traces were wide-area

traces. For large data center traces, we see no reason why thenumber of concurrent flowlets cannot be

much larger. One challenge is that a forwarding ASIC cannot afford to keep memory equal to the number

of flows/flowlets. In order to reduce the amount of state to a more affordable level, we use a hash of the

flow (instead of exact-matching on the flow ID) to index into the state table. If the flows are hashed into a

state table of, say, 1024 buckets, then each bucket can be dynamically assigned a path just as a flow was

assigned a path dynamically.

When a flow dies out, we need to reclaim state. We will do this with an aging algorithm in this

section. Alternatively, we will discuss a technique to keepflow state for a much smaller subset comprising

of only significant flows in Section 3.3.4. To age out and free up state entries as soon as possible, we use

a simple and efficient aging mechanism akin to LRU page eviction. We associate an aging field (typically

a one-bit flag, but could be larger for finer granularity) witheach state table entry and update it when

a packet arrives. A complete design of the Flame state table with the aging mechanism is shown in

Figure 3.2. Each table entry is a record with three fields:1. valid flag: indicates whether the table entry is

valid and contains the state of an active flow;2. aging flag: marks inactive or idle flows.3. hash function:

points to one of thek hash functionsh1, h2, . . . , hk.

When a packet arrives, its flowID is indexed into the state table, which maps the packet to one

entry in the state table. The valid flag is inspected to check the validity of table entry. If the table entry

is valid, the packet is dispatched according to thehash function hstored in the state entry. The aging flag

is also cleared to indicate that the flow entry is active. On the other hand, if the state entry is invalid, we

set up a new valid table entry by comparingk paths as specified byk independent hash functionsh1, h2,

. . . , hk as in Section 3.3.2. The hash function resulting in the optimal path is saved in the table entry h. So

subsequent packets of the same flow are guaranteed to use the same hash function and be dispatched to



51

the same path to prevent packet reordering.

Further, a timer process visits every table entry everyaging timeoutTa. When it visits a table

entry, it either turns on the aging flag or invalidates the entry if the aging flag is already on. In other words,

Ta is the timeout threshold to age out inactive flows. Note that with this aging timer process, the aging

interval is in the range betweenTa and 2Ta.

Note that as shown in a previous study [39], network traffic isinherently bursty. This timing

mechanism allows us to leverage the burtiness by essentially splitting a long flow into several much

smaller flowlets (i.e. burst of nearby packets). The flowletsare determined by a flowlet timeout, the idle

interval between two successive flowlets. Note that if the time between two successive packets is larger

than the path latency difference, the two packets can be routed on two different paths without changing

their arrival order at the receiver. By setting 2Ta to be larger than the maximum latency difference between

two paths in the network, flowlets belonging to the same flow can be independently switched into different

paths without causing packet reordering. While [39] suggests a flowlet timeout of 60 ms based on wide

area traces, we suggest that this be a parameter and even numbers like 100 usec may be reasonable in a

modern data center.

Therefore, the aging timeoutTa is an important design turning knob. IfTa is too large, the table

entries may never be idle long enough to be aged out and thus re-assigned. Or, more likely, they do get

aged out, but too infrequently to be effective. Furthermore, it is likely that those entries that have high-

bandwidth flows would not be aged out since they, by definition, have smaller gaps between packets. On

the other hand, ifTa is too small, we increase the likelihood of packet reordering in the same flow. So in

practice,Ta should be related to the round-trip-time of the network. Forexample, that could be tens or

hundreds of microseconds in a data center environment. Since an entry in the state table is flagged idle

after the first aging timeout and eventually deleted after the second aging timeout, the effective flowlet

timeout is between one to two times ofTa.

As we discussed earlier, designing the state table as a hash table allows two or more flows to hash

to the same bucket with a subsequent flowF2 using the same state that was established by the previous

flow that hashed into the bucket sayF1. This is essentially the same problem encountered in the current

implementations, however possibly to a lesser degree sincethe number of hash buckets can be larger than

what is typically in use today. Note that a collision is undesirable for two reasons. First, it reuses the state

of the first collided flow that has not timed out in that entry. Since the entry was previously optimized

to that different flow, reusing its state is suboptimal. Second, it virtually bridges the flow/flowlet gap



52

by holding on the aging flag, and hence reduces the number of flows/flowlets that could have been split

and routed independently. However, in our example, while this collision results inF2 not using optimal

information (the state of the links seen byF1 may be outdated whenF2 arrives), sinceF2 only applies

the hash stored byF1, F2 will quite likely be assigned to a different link fromF1. Storing the path would

not have this property. While this may not be as optimal as assigningF2 to the least loaded link whenF2

arrives, it is no worse than ECMP. This property ofgraceful degradationto static hash ECMP when the

number of flows is too large seems an essential property of load balancers that keep state.

3.3.4 Handling heavy-hitters

In Section 3.3.3, we discussed the aging algorithm with fixed-size hash table. When a packet

arrives, it is hashed into the table and routed according to the valid table entry. If the table entry is invalid,

a new path is determined according to a greedy heuristic suchas least loaded path of DRE counters

(Section 3.3.1). Each table entry is aged out if it is idle beyond a certain threshold. We noted that

collisions of distinct flows into the same table entry (e.g. by existence of spoilers as we will discuss

in Section 3.5.2) can have significant adverse impact on the performance of the algorithm. Concretely,

since a flowF2 can reuse the state set up by an earlier flowF1, if F1 is a low rate flow, whileF2 sends

at 5 Gbps, thenF2 will be routed by a static hash but this is not optimal. IfF1 or F2 keep sending,

F1’s entry will never be timed out andF2 will keep using essentially ECMP instead of a more optimal

assignment. In this section, we seek to combat this problem by applying the load-balancing algorithm

only to heavy-hitters(i.e. elephantflows) since only a small number of heavy-hitters are responsible for

a large fraction of traffic in the network [31, 6]. Non-heavy-hitters (i.e. mice flows) can be treated with

the standard ECMP. However, since the hardware logic for thehash table is inexpensive, we can opt for

a hybrid approach by having both an exact-matching state table for heavy-hitters and a hash-based state

table in Section 3.3.3 for non-heavy-hitters.

As illustrated in Figure 3.3, every flow is treated with ECMP or the hash table approach until it

is established as a heavy-hitter. Upon being classified as a heavy-hitter, it is assigned to a new path and

its state is stored in the Flame heavy-hitter table. Then subsequent packets of the same flow are routed by

exact matching to the respective entry in the heavy-hitter table. Each entry in the heavy-hitter table also

has an aging flag so that it is periodically aged out at every flowlet expiry timeout.

Next, we describe our heavy-hitter filter module so that onlytrue heavy-hitters are assigned

to the heavy-hitter table with high probability. We also discuss the process to reclaim unused state by



53

Heavy-hitter  

multi-stage filter  

In Flame heavy-

hitter table? 

Is new  

heavy-hitter? 

Insert new entry in Flame 

heavy-hitter table 

with optimal path 

Route packet by 

Flame heavy-

hitter table 

Route packet  

by ECMP 

or hash table 

Is Flame 

heavy-hitter 

table full? 

packet 

Y 

N 

N 

Y 

Y 

N 

Figure 3.3. Overview of Flame scheme with an exact-matching heavy-hitter table. A flow is routed
according to the Flame heavy-hitter table once it is classified as heavy-hitter. Each entry in the Flame
heavy-hitter table is also periodically aged out with an aging flag and aging timeout. Non heavy-hitters
can use hash state table in Section 3.3.3.

evicting flows out of the heavy-hitter table when they becomemice or terminate. Due to hardware memory

constraints, this is necessary to make room for new heavy-hitters.

Since heavy-hitter admission and eviction can introduce another form of TCP packet reordering,

we need a parameterF (reordering parameter) to decide how often a flow can be reordered without causing

undue harm to TCP. For example, a prior experimental study [43] suggests that TCP performance will not

be adversely effected if the number of reorderings is less than 0.1%, i.e. F = 1000. Our updated study

reported in Section 3.6.4 suggests thatF can be much worse (32,000) for Windows Server destinations

and much better (evenF = 10) for recent Linux versions. Thus we leaveF as a parameter.

Thus we retain a heavy-hitter forF packets before applying any change in load balancing policy.

We keep a packet counter for each heavy-hitter in the heavy-hitter table. Every time the packet counter

reaches multiple ofF , we set up a rebalancing flag. The aging algorithm would be then invoked to assign

the heavy-hitter to another path, which is likely to be better.

With this preliminary, we now describe our heavy-hitter filter module so that only true heavy-



54

hitters are assigned to the heavy-hitter table with high probability. We also discuss the process to reclaim

unused state by evicting heavy-hitters.

We employ a heavy-hitter multistage filter algorithm with conservative update of counters as

in [24]. There are four heavy-hitter detection tables. Eachtable consists of 1024 counters. A packet is

indexed into these tables by four different hash functions.The counters are updated with the packet size

according to the conservative update rule. If the counters at all four tables exceed a thresholdBH , the flow

is classified as a heavy-hitter. TypicallyBH = 3 KBytes in our experiments. The counters are reset to zero

everyTH interval. TypicallyTH = 30 msec in our experiments.

If a flow passes the heavy-hitter filter, it will be admitted into the heavy-hitter table and switch

the load balancing policy from ECMP/hash-table to heavy-hitter based Flame. One approach is to allow

graceful switching from ECMP/hashtable to heavy-hitter policy. That is, at the beginning we set the valid

flag to true and the path selection to the same as ECMP/hash-table (i.e. skipping computing least-loaded

path). This guarantees that the switching from ECMP/hashtable to heavy-hitter based Flame occurs when

either (immediately whichever happens first) the current heavy-hitter flowlet aging out and beginning a

new flowlet, or after the first F packets.

However in our experiments, we opt for doing the first reordering early and then subsequent

ones being paced atF packets. In other words, once a flow is classified as heavy-hitter, we do an abrupt

admission into the heavy-hitter table, and so the flow is immediately switched from ECMP/hashtable to

the heavy-hitter scheme. Suchabrupt insertioncan cause a reordering when the the heavy-hitter is first

detected while graceful insertion will not.

We now turn to eviction. If the bandwidth of a heavy-hitter falls below some threshold, the

flow should be removed from the heavy-hitter table. Our goal is that with memory cleanup, the memory-

constrained Flame scheme is better than ECMP and almost as good as the case with infinite memory. For

example, we suppose the heavy-hitter table contains only 2048 entries in our experiments.

As a first principle, we let the eviction policy be less stringent than the insertion policy. We

propose the following eviction policy: evict a flow if it sends less thanBH bytes inke consecutive periods

of TH . In our experiments, typicallyke = 3.

When a heavy-hitter is evicted, its state can be immediatelydeleted from the heavy-hitter table

(calledabrupt eviction), and then subsequent packets of that flow are routed under ECMP. Clearly abrupt

eviction can result in packet reordering. Instead, we propose a different approach, calledgraceful eviction,

which exploits both the flowlet aging expiry timeout and the “reorder no frequently than everyF packets”



55

rule. In particular, when the heavy-hitter traffic is below athreshold, we turn on aneviction-readyflag and

start counting the remaining packets. Then we only physically delete it from the heavy-hitter table upon

either i) next flowlet aging expiry orii) packet count> F . The two conditions make graceful eviction

effective against both inactive and slow heavy-hitters. This facilitates our goal of evicting heavy-hitters

very soon after they become idle to minimize the heavy-hitter table size and accommodate new heavy-

hitters.

In practice, we have a predetermined budget on the size of theheavy-hitter table and want to

tune the heavy-hitter admission and eviction parameters sothat the heavy-hitter table is always near full.

However, network traffic can vary widely from time to time andexceed the heavy-hitter table capacity.

With our design for heavy-hitter admission and eviction, wecan tune to accept fewer heavy-hitters by

increasingBH and/or decreasingTH . Note that by reducingTH , we evict more frequently.

3.3.5 Profile-based rebalancing

Rebalancing a heavy-hitter by greedily selecting the leastutilized path is vulnerable to the fol-

lowing synchronizedgreedy flash crowdeffect: when many flows are rebalanced almost simultaneously,

all of them most likely make the same path choice. Such situations occur in our experiments of bandwidth-

intensive synthetic flows in Section 3.6.3, which are rebalanced frequently by the one inF packet rule. We

observe that the synchronized greedy flash crowd effect can lead to severe oscillation in path assignment

and poor load balancing performance.

As an example, consider ten heavy-hitter flows and three paths P1, P2, andP3. The best path

assignment is by having three flows to pathP1 andP2 each and four flows to pathP3. Let’s denote this

path assignment by a triple(3,3,4), i.e. each number in the triple denotes the number of heavy-hitters

being assigned to the respective path. Since our greedy method in Section 3.3.2 is not perfect, typically we

only get a near-optimal assignment such as(2,4,4). Now if the heavy-hitters are rebalanced frequently,

with the initial path assignment(2,4,4), they all will be reassigned to pathP1, leading to the subsequent

path assignment(10,0,0). Next, they all will move away from pathP1, leading to the path assignment

(0,10,0), and so on. Clearly, such oscillation is undesirable.

We propose the following traffic profiling approach to mitigate this problem. First, we profile

heavy-hitter traffic by having a counter per heavy-hitter that counts heavy-hitter bytes in theprevious

epoch. Second, we also maintain a path profile, which is initialized to the path traffic in theprevious

epoch. Third, if we need to rebalance a heavy-hitter, we willrely on both the heavy-hitter profile and the



56

path profile. We ensure that the heavy-hitter reassignment only improvesthe path profile. Finally, we also

adjust the path profile by the amount of the flow profile at the rebalancing moment. This avoids moving

multiple heavy-hitters to the same new path.

As an example, suppose we have three paths with path profile(P1,P2,P3) = (8 KBytes, 9 KBytes,

11 KBytes). If the heavy-hitter were from pathP3 with heavy-hitter profile 2 KBytes, we would rebalance

it to pathP1 and update the path profile to (10 KBytes, 9 KBytes, 9 KBytes).However, if the heavy-hitter

were from pathP2 with heavy-hitter profile 2 KBytes, we would still keep it at pathP2 since moving to

pathP1 would lead to an even worse state.

More concretely, we defineprofile deviationto be the difference between max path profile and

min path profile. Then rebalancing is aborted if new profile deviation is larger than a factorkp of the old

profile deviation. Intuitively it is natural to pickkp = 1. However, our experimental results showed that a

larger and hence more relaxed value (e.g.kp = 2) is sufficient to prevent the greedy flash crowd effect, but

at the same time does not hurt the performance by being less restrictive and allowing more rebalancing

opportunity. Note that in theory, settingkp > 1 is always prone to oscillation under certain network traffic

behavior since that condition allows path profile to get worsened continually with time. One way to bound

the profile deviation is by instituting a tiered value forkp. For example, we can use the following simple

scheme:

• kp = 2 if path profile deviation≤ L1

• kp = 1.5 if path profile deviation> L1 and< L2

• kp = 1 if path profile deviation≥ L2

whereL1 andL2 (L2 > L1) are two thresholds depending on the profile epoch and network bandwidth.

3.4 Hardware implementation

Figure 3.4 describes a hardware block diagram for a chip we are building that puts together

all the mechanisms we described in the last section including the DRE estimation, the Flame table, and

hardware rebalancing parameterized by the parameterF that can do rebalancing as often as once every

10 packets (feasible with Linux receivers) or as infrequently as once every 100,000 packets (needed for

Windows receivers, see Section 3.6.4).

Start at the top of Figure 3.4. The forwarding logic providesa base address into the path table

and the number of pathsp. The flow ID f is hashed using a hash functionF1 but that is modified (see



57

+ 

Forwarding 

Logic 

F1 

+ 

p1 

p2 

Path 

Table 

RAM 

DRE 

Registers 

Flame 

Logic 

Flame HH 

Table 

HH 

Detector 

count 

age 

valid 

0 

1 1 

0 

    v   h  a  c 

re-balance 

‘1’ 

0 

1 

Final Path 

hash_sel 

f 

f 

f 

p 
Base Address 

A1 

 

 

A2 

D1            D2 

P1            P2 

Q1             Q2 

>? 

F1 
M1 

M2 
M3 

C 

Figure 3.4.Flame hardware schematic

Equation 3.1) in the lower path to essentially compute a second hash function. This produces two offsets

p1 andp2 that are added to the base address and used to index in parallel into a dual-ported memory using

addressesA1 andA2. Note that a dual-ported memory has two read ports and is almost as expensive in

gates as two independent memories. Thus using more than two hash functions could be expensive. The

path table stores the DRE counters. The two addressesA1 andA2 yield two link IDsD1 andD2 from the

path table. (This level of indirection allows graceful handling of path failures). The two link IDs are used

to index into the DRE registers to produce two DRE valuesQ1 andQ2. ComparatorC picks the least

loaded link of the two and outputs the result to multiplexor (mux)M2.

Now move to the bottom of the figure. Concurrently, the flow IDf is also fed to the Flame table

whose output is four values: a valid flagv, a hash select flagh (since we use only two hashes for power

of choice, 1-bit suffices), and age bita, and a countc (an integer of at least 17 bits capable of counting to

32,000). If the valid flag is “false” (the flow has no valid entry),the muxM3 will select the input 1 and

pass it as the selection value for muxM1, (note that when the selection bit shown at the bottom of a mux

is 1, the output corresponds to the input labeled 1, and vice versa). In this case, muxM1 picks the output

link D1 and the forwarding is exactly as in static hash ECMP. This iscorrect because when there is no

state forf we should use ECMP.

If the valid flag is “true” (the flow entry is valid), the muxM3 will select the input 0 which is the



58

output of muxM2. This value fromM2 is then fed toM1 to select the proper output link, eitherD1 or

D2.

When the “re-balance” signal is 0, theM2 mux will select as its output the hash select signal

coming from the Flame table. On the other hand, if the re-balance signal is a 1, the muxM2 selects as

output the least loaded link from the output of comparatorC as we described above. This is fed via mux

M3 to set the select signal forM1 which now actually selects the least loaded path as the output of mux

M1, The rebalance signal is computed by the (simple) Flame logic. If either the age is 0 or thecount> F ,

the rebalance signal is asserted. At the same time, the leastloaded link output of comparatorC1 is fed

back via the Flame logic to be stored in the Flame Table.

Note that unlike Hedera in which software periodically identifies heavy-hitters and moves flows

to paths, the entire rebalancing process is done in hardware. This is essential if one wishes to do fine-grain

rebalancing say once every 10 or 100 packets which is possible without significant TCP degradation for

Linux servers as we show in Section 3.6.4.

3.5 Analysis

In this section, we analyze the components of our Flame load balancing scheme to investigate its

performance guarantee. We first develop an analytical modelfor DRE design in Section 3.5.1. Then we

present theorems about the robustness of Flame in Section 3.5.2.

3.5.1 DRE analysis

We analyze the DRE proposal in Section 3.3.1 to show that it reacts quickly to new bursts, is

robust and is independent of arrival rates. In particular, we show that the stabilized of the DRE counter

value scales inverse proportionally to the DRE decay rate, which can be easily converted back to the

arrival rate.

Let TP andRP be the timer period and discount ratio parameters for DRE. Let q(t) denote the

value of the DRE counter at timet. Our DRE model is described by the following differential equations:

dq(t)
dt

= α−κ ·q(t) (3.2)

whereα is the instantaneous traffic arrival rate andκ is the instantaneous DRE decay rate.

Note that with very small value ofTP, we compute the instantaneous decay rate asκ ≈ RP/TP.



59

0 τ 1/κ 2/κ 3/κ 4/κ 5/κ
time 

00

0.5α/κ

α/κ

D
R

E
 c

ou
nt

er
 v

al
ue DRE counter building−up

DRE counter draining

Figure 3.5.Convergence of DRE counter under constant traffic arrival rateα followed by an abrupt stop
to traffic. κ denotes the instantaneous DRE decay rate.τ is the intersection point of the two scenarios.

Supposeα is a constant for all timet, we can solve equation (3.2) as follows.

d(α−κq(t))
α−κq(t)

=−κdt

ln(α−κq(t)) =−κt+ γ ′

q(t) =
α− γe−κt

κ
(3.3)

whereγ andγ ′ are constants determined by initial conditions

Equation (3.3) indicates that when a flow has been sending at rateα for a while and stops sending,

its DRE counter starts from the stabilized valueα/κ and then decays exponentially to 0. On the other

hand, when a fresh flow starts sending at rateα, its DRE counter starts from 0 and increases exponentially

to the stabilized valueα/κ . The exact equations for these two scenarios are as follows.

DRE counter building-up:Suppose a flow has not been sending before time 0− and then starts

sending at time 0+ with a rateα. Then the boundary conditions areq(0) = 0 andγ = α. Hence, its DRE

counter value can be described by:

q1(t) =
α−αe−κt

κ
(3.4)

DRE counter draining:Suppose a flow has been sending at rateα up to time 0− and then it

stops at time 0+. The boundary conditions areq(0) = α/κ andγ =−α. Hence, its DRE counter can be

described by:

q2(t) =
αe−κt

κ
(3.5)



60

Stabilizing point of DRE counter:Figure 3.5 illustrates the DRE counter building up and draining

scenarios. Letτ denote the intersection time. By solvingq1(τ) = q2(τ), we get

τ = ln(2)/κ (3.6)

Since network traffic is not continuous but consists of discrete datagram packets, we also verified

our model using Matlab simulations with practical data center settings (e.g. bandwidth 10 Gbps and 20

Gbps). In particular, we validated two important properties of the DRE design: the cross pointτ is

independent of the arrival rateα and τ = ln(2)/κ . From Figure 3.5, we observe that DRE counters

are bounded and eventually converge as long as the arrival rate is bounded. Further, the DRE counters

converge quickly as measured by the metricτ and so the DRE timer period should be larger thanτ.

Note the important property that the parameterκ itself defines where the cross point is, and is

independent of the arrival rateα. In the context of load balancing flows, we believe thatτ should be in

the order of the queuing delay in the network. In particular,we can set the DRE parameters according to

the formulaTP×RP = d whered is the network delay.

3.5.2 Analysis of Flame state table design

In this section, we analyze Flame, particularly the hash-table based approach of Section 3.3.3.

We argue that Flame is robust and outperforms Flare in general and yet there are certain circumstances in

which Flame degenerates to ECMP but in which Flare does poorly.

Our notation is as follows. Letk be the number of hash functions in Flame (Section 3.3.2). Let

p be an upper bound on the number of equal paths individually denoted asP1, P2, . . . , Pp. Let n be the

number of heavy-hitters, individually denoted asH1, H2, . . . , Hn. Let m be the number of entries in the

state table. LetTa be the aging timeout. We assume the finite memory versions of Flame and Flare. Recall

that Flame remembers one ofk hash functions, while Flare one ofp paths. Any state table entry is timed

out after at most 2Ta because of the LRU approximation. When Flare or Flame inserta flow into a hitherto

invalid entry, the algorithm measures the current state of all paths and places the flow in the least loaded

path: we sometimes refer to this as “sensing” in what follows.

First, observe trivially that ifk = 1, Flame behaves exactly like ECMP. Next, our first theorem

shows that while sensing and assigning to the least loaded path appears to be a good idea it can sometimes

backfire when there are bursts. That means least loaded path schemes do not always outperform ECMP.



61

Theorem 1. (Burst vulnerability) Under bursty arrivals of heavy-hitters, any scheme that allocates a

new flow to the least loaded path and preserves flow packet order can perform much worse than ECMP

for arbitrary time periods.

Proof. Consider the following traffic scenario for Flare. Suppose the amount of memorym is much larger

than the number of heavy-hittersn so that all heavy-hitters hash to distinct entries in the hash table, with

no hash collisions. Without loss of generality, suppose thefirst heavy-hitterH1 is assigned to pathP1.

Then bring on the second heavy-hitterH2 after enough time for our load measuring algorithm to “sense”

H1. Without loss of generality, supposeH2 is assigned to pathP2. Repeat untilH1 throughHp−1 have

been assigned to pathsP1 to Pp−1 respectively. Now bring on simultaneouslyHp , Hp+1, . . . , Hn. Since

at the start the new heavy-hitters have not sent any traffic, this last burst of heavy-hitters will be assigned

to pathPp. Now suppose each of the heavy-hitters continue to send traffic for arbitrary time. Then none

of the entries assigned to the heavy-hitters will time out. Thus all will have valid entries, and the system

will never sense the links for the least loaded link and reassign because no new flows arrive. However,

that means for an unbounded period of time,(n− p+ 1) heavy-hitters are assigned to pathPp and one

heavy-hitter apiece ofP1 throughPp−1, leading to an unbounded load discrepancy over any time scale.

|n− p| can be made arbitrarily large by increasingn).

Flame is susceptible to the same ”flash crowd” scenario but its imperfect sensing actually makes

it somewhat more likely to spread flows out better. For example, if k= 2 andp is large, when a later heavy-

hitter comes, the probability that neither of the two hash functions picks pathPp is (1− 1
p)(1− 1

p−1) =

1− 2
p, i.e.= 75% withp= 8. So Flame places 25% of the heavy-hitters onPp. On the other hand, ECMP

would put roughly 1/8= 12.5%.

The flash crowd scenario of this theorem has two implications. First, it shows all sensing schemes

are vulnerable to flash crowds where flows arrive simultaneously and can do worse than ECMP though

Flame is better than Flare. This and Example 2 in the introduction suggests that periodic rebalancing is

not merely a desirable but a requirement. Second, it shows why heavy-hitter detection can help even in

the case of flash crowds if there is sufficient memory to keep state for each heavy-hitter. Note that if there

are more than 1000 flows, static hash ECMP should work well because the standard deviation falls with

the square root of the number of flows. Thus keeping state for around 1000 heavy-hitters should alleviate

this scenario for either Flare or Flame.

Next, we show that remembering paths in Flare can cause robustness problems for Flare but not



62

for Flame. The problem can arise due tospoilers, small flows that capture hash table entries early.

Theorem 2. (Spoiler resilience)Flame is resilient to the presence of spoilers and is no worsethan ECMP.

However, Flare can be arbitrarily worse than ECMP.

Proof. Flame resorts to one more level of hashing within a table entry, so degrades gracefully to ECMP

in the presence of spoilers. Now consider Flare in the following scenario. We first bring on the firstp−1

heavy-hitters, well-spaced out in time so as to get assignment in pathsP1 throughPp−1. Then, we bring

on O(m) spoilers that capture all remaining entries that are left invalid. Since the spoilers are small, they

are all assigned to pathPp. Thus, all state table entries are marked as valid, in whichp− 1 entries are

assigned to pathsP1 throughPp−1 and the remainingm− p+1 cells are assigned to pathPp. In fact, the

system is reasonably load balanced at this time.

Next, we bring on the remaining heavy-hittersHp, Hp+1, . . . , Hn nicely spaced in time so that

none is bursty. Ifm is large, the majority of the state table is filled with pathPp and valid bit set. Thus, the

later heavy-hitter will likely pick such a “spoiler entry” and be then assigned to pathPp. Thus with high

probability, all later heavy-hitters will be assigned to path Pp. If all heavy-hitters continue sending for an

arbitrary period of time, the situation will persist and no further sensing will take place because no entry

times out. In other words, we now have(n− p+1) heavy-hitters to pathPp and only one each assigned

to pathsP1 throughPp−1. So by increasingn without bound, we have arbitrarily bad average and worst

case load discrepancy. Even if the spoilers stop sending traffic completely after a heavy-hitter arrives in

their cell, the heavy-hitter will keep the cell from timing out even though the recorded path information is

prehistoric.

If m is small, Flare gets into the following memory starvation problems. First, ifm< p, Flare can

only usem out of p paths. Such starvation seems unlikely as the paths are oftenquite small (p≤ 128 in

large data centers) and if state memory is static RAM or even registers, it is possible to getm≫ 100, e.g.

in 1000s. A second starvation regime occurs when the memorym< n andn> p. By pigeonhole principle,

two heavy-hitters will fall in the same bucket and be willy-nilly be treated as one bigger heavy-hitter and

Flare cannot distinguish them.

Theorem 3. (Small memory)If m≤ p, then Flare does not use(p−m) paths while Flame still uses all

paths. If m≤ n, then the load discrepancy in Flare can be O(logn).

Proof. The first part is obvious. The second part is equivalent to throwingn balls inmbins and determin-

ing the worst case discrepancy in balls between the least loaded and heaviest loaded. From balls and bins



63

theory we haveO(logn/ loglogn) discrepancy in the load ifm= n.

Theorem 4. (Greedy bin packing)If there are no heavy-hitter bursts and no spoilers, and m≫ n, then

Flare will behave like a greedy bin packing algorithm that can outperform ECMP.

Proof. Without bursts, the heavy-hitters come in spaced widely apart. Then with sufficient memory, each

heavy-hitter can get its own entry with high probability. Consider a heavy-hitterH with its own table entry.

Without spoilers, the last regular flowF entered the same entry would be quite recent (at mostTa old).

SinceF is not a heavy-hitter, it senses the paths at a time after the last heavy-hitterH ′ that precededH

has “settled” (the measurement algorithm has reliably sensed its rate). Thus this is equivalent to a greedy

algorithm that simply places the heavy-hitters in sequencein the least loaded path at each iteration. As a

simple example, suppose we have three heavy-hitters and three paths. ECMP will not use one path with

probability(1−1/3)3 = 8/27, i.e. 30% chance of discrepancy at least 2B, whereB is the bandwidth of

each path, while the greedy algorithm will place them on separate path.

Theorem 5. (Squatter susceptibility)If the total number of flows is much larger than the state table

capacity m, even if m≫ n, then Flame will do no better than ECMP.

Proof. If the next heavy-hitterH comes in sufficiently spaced apart and there are other flows come in

between, then it is very likely that the entryH hashes to is already occupied not by a spoiler but a squatter.

The squatter has indeed picked its own hash but this hash has as the same chance of assigning a future

heavy-hitter to the least loaded link as ECMP.

Doing no worse than ECMP is a good robustness guarantee for Flame. However, since we aspire

to do betterthan ECMP, it is better to avoid collisions for large flows (asfar as possible) using heavy-hitter

filters. One way to make Flame behave like the greedy algorithm is to change the hash when a heavy-

hitter arrives but that can cause reordering for the squatter and the heavy-hitter. However, this could be

mitigated in practice as follows. If a heavy-hitter sends a lot more packets than other flows that are not

heavy-hitters, it is perhaps much more likely to be best firstpacket than squats in an entry after an entry

times out or is invalid.

3.6 Evaluation

In this section, we experimentally study how Flame does withrespect to ECMP and Flare. We

begin with a discussion on the appropriate metrics to quantify load balancing goodness. Then we describe



64

our implementation to simulate several load balancing schemes on a realistic network trace. Due to the

lack of public data center traces, we enhance realistic Internet traces with data center-like heavy-hitters,

the number, duration, and intensity of which we can control for. Finally, we present the experimental re-

sults showing the efficacy of the Flame scheme. We also show results of benchmarking TCP performance

under packet reordering at 1 and 10 Gbps which inform the choice of the hardware rebalancing parameter

F in Figure 3.4.

3.6.1 Load balancing goodness metrics

In this section, we describe a diverse set of metrics for quantifying load balancing effectiveness

that are abstract and independent of particular algorithms. Denote byTs the measurement time scale

parameter. First, fix a value ofTs and divide the traffic trace into disjoint and contiguous time intervals

of lengthTs. Then for each interval, measure thepath traffic vectoraccumulated during the interval and

compute thebalancing qualitywithin the interval using a load balancinggoodness metricas shown below.

Let p be the number of paths andP1, . . . , Pp be paths. For pathPi (1≤ i ≤ p), denotePi .load

as the network traffic on pathPi during the current time interval. We denote average load on all paths as

P.load= 1
p ∑p

i=1Pi.load. We considerP.load to be the ideal balance in the current time interval. Then

we propose three goodness metrics:

1. Absolute deviation: worst case bandwidth difference of one path from the ideal balance

Gd , max
P∈{P1,...,Pp}

|P.load−P.load|
Ts

2. Normalized deviation: percent of bandwidth difference from the ideal

Gn , max
P∈{P1,...,Pp}

|P.load−P.load|
P.load

3. Jain’s fairness index: standard fairness metric for a set ofp load values

GJ ,
(∑p

i=1Pi .load)2

p ·∑p
i=1(Pi .load)2

Note that load balancing quality is better with smaller deviation value and higher Jain’s fairness

index. Next, the goodness values in all intervals of sizeTs form a time series for which we can calculate

statistics such as max, average, and 99th percentile. One final complication remains: what is a good



65

choice ofTs?

Flare [39] picksTs = 300ms since that is about the amount of data that a router can buffer.

However, in recent data center routers at 10G, even 10 ms worth of buffering is large and the amount of

buffering per link may actually decrease further at 40 Gbps.Further, load balancing goodness metrics

appear better with largerTs. As an example, suppose withTs = 1 ms andp = 3 paths, we have the

following path traffic vectors for(P1,P2,P3) in three successive measurement intervals (100, 0, 0) KBytes,

(0, 100, 0) KBytes, and (0, 0, 100) KBytes. Clearly, load balancing performance is poor with absolute

deviation= 67 MBytes/s. However, by enlargingTs to 3ms, we have a single path traffic vector (100, 100,

100) KBytes, which apparently has perfect performance — absolute deviation= 0, normalized deviation

= 0, and Jains fairness index= 1.

Therefore, we visualize the load balancing quality acrossall measurement time scales recog-

nizing that only values ofTs above some implementation-dependent floor (which depends on buffering)

are interesting. We do so by plotting a graph with the goodness statistic on they-axis versus time scale

choice on thex-axis. Since computing goodness for all choices ofTs is infeasible computationally, we

limit Ts to powers of 2 beyond one packet transmission. In particular, in our experiments we only use

Ts = 1,2,4,8,10,20,40,80 msec.

3.6.2 Simulation setup

We use an Internet backbone trace provided by CAIDA [62]. Thetrace is collected at a San

Jose monitor point in 2008 with bandwidth 1.8 Gbps and length one minute. We simulate load balancing

schemes (ECMP, Flare, and Flame). in Perl using the CoralReef software suite [17]. To impose synthetic

traffic on top of any realpcap trace, we augment the software to support synthetic events (such as en-

queuing and dequeuing synthetic packets at synthetic timestamps) The synthetic events are managed by

an efficient implementation of a heap-based discrete-eventsimulation engine.

The number of heavy-hitters is an input parameter. Each heavy hitter comprises of start time, end

time, and traffic pattern. We simulate a heavy-hitter as a large constant-bit-rate FTP file transfer of 50-128

MB. based on the default Hadoop block size [6, 31]. The start time of each parameter is a parameter that

can be controlled. For example, we can simulate simultaneous arrival of flows to or have the start time

be sampled from a specified distribution.. The end time is either determined by fixing the duration of

heavy-hitter (say, 10 seconds) or by randomizing either theduration (e.g. as a Gaussian distribution with

mean 10 seconds) or the rate of a heavy-hitter.



66

0.001 0.01 0.1 1
Measurement time scale (sec, logscale)

D
ev

ia
tio

n 
(M

bp
s)

0

50

100

150

200

250

0.001 0.01 0.1 1
Measurement time scale (sec, logscale)

D
ev

ia
tio

n 
(M

bp
s)

0

150

300

450

600
ECMP

Flare (2048 entries)

Flame (HH)

Flame (HH + TCP 0.1%)

Flame (HH + TCP 0.1% + profiling)

(a) Mean absolute deviation (b) 99th absolute deviation

0.001 0.01 0.1 1
Measurement time scale (sec, logscale)

N
or

m
al

iz
ed

 d
ev

ia
tio

n

0

0.1

0.2

0.3

0.4

0.001 0.01 0.1 1
Measurement time scale (sec, logscale)

Ja
in

’s
 in

de
x

0.94

0.96

0.98

1

(c) Mean normalized deviation (d) Mean Jain’s fairness index
Figure 3.6. Load balancing performance on CAIDA trace across all measurement time scales.HH
denotes inclusion of a heavy-hitter table

Each heavy-hitter is represented by a random TCP 5-tuple. Static hash ECMP does badly when

the heavy-hitters have the same source and destination IP address. Finally, our framework allows the

simulation of sophisticated heavy-hitter traffic patternsto exhibit several burstiness and flowlet behaviors

including ON-OFF heavy-hitters with a Pareto distributionfor the OFF period. Such patterns exercise

the load balancing algorithms ability to continually admitand evict flows. The flowlet behavior can be

controlled; even when a heavy-hitter is OFF, it can send at least one packet every flowlet timeout so that

eviction only occurs under the “once everyF packets rule”. We also allow the introduction of spoilers

that capture a hash table bucket and send at a slow rate.

3.6.3 Simulation results

In the following set of experiments, we impose 8 synthetic flows on the CAIDA Internet trace.

The full CAIDA trace lasts for 52 seconds. Each synthetic flowsends at 100 Mbps by dispatching packets

of size 1250 bytes at 100 us intervals. The starting times arestaggered at 1 second apart, but added random

noise up to±100 ms. We let the synthetic flows run until experiment completion so that we can observe

their full impact. We limit the Flame table to 2048 and overflow to ECMP if the table is full. Our Flame

scheme use the heavy-hitterabrupt admissionandgraceful evictionpolicies as discussed in Section 3.3.4.

Unless otherwise stated, the default parameters are as follows: number of pathsp= 3, heavy-hitter filter



67

0.001 0.01 0.1 1
Measurement time scale (sec, logscale)

D
ev

ia
tio

n 
(M

bp
s)

0

50

100

150

200

250

0.001 0.01 0.1 1
Measurement time scale (sec, logscale)

D
ev

ia
tio

n 
(M

bp
s)

0

150

300

450

600
ECMP

Flare (2048 entries)

Flame (HH)

Flame (HH + TCP 0.1%)

Flame (HH + TCP 0.1% + profiling)

(a) Mean absolute deviation (b) 99th absolute deviation

0.001 0.01 0.1 1
Measurement time scale (sec, logscale)

N
or

m
al

iz
ed

 d
ev

ia
tio

n

0

0.1

0.2

0.3

0.4

0.001 0.01 0.1 1
Measurement time scale (sec, logscale)

Ja
in

’s
 in

de
x

0.94

0.96

0.98

1

(c) Mean normalized deviation (d) Mean Jain’s fairness index
Figure 3.7. Load balancing performance with synthetic data center-like traffic across all measurement
time scales.HH denotes inclusion of a heavy-hitter table

thresholdBH = 3 KBytes, heavy-hitter filter timeoutTH = 30 msec, flowlet aging timeoutTa = 30 msec.

Figure 3.6 and 3.7 compare the load balancing performance ofECMP, Flare, and Flame load

balancing schemes. Note that higher Jain’s fairness index means better fairness quality, which is opposite

to other deviation metrics. We also tease apart the effect ofeach individual Flame mechanisms. For

example, we illustrate how the performance changes with theaddition of each Flame mechanisms, i.e.

a heavy-hitter filter to track heavy-hitters, periodic rebalancing with ”1 every 1000 packets rule” and

profiling to prevent greedily rebalancing.

We observe that the synthetic heavy-hitters have a significant effect on ECMP and Flare but much

less on Flame with a heavy-hitter filter. To be sure, Flare would also improve with a heavy-hitter filter:

the real reason for Flame over Flare is the robustness and memory efficiency caused by remembering the

hash and not the path. In the figures, we call the ”1 in 1000” packets rule the TCP 0.1% rule. Note that

Flame with the “HH + TCP 0.1%” curves can be worse than the“HH” only curves because of rebalancing

oscillation which is removed by the “HH + TCP 0.1% + profiling” rule.

In Figure 3.6, there is little difference between static hash and Flare while the results of Flame

algorithm are better at all time scales. The relatively poorperformance of the Flare algorithm is likely due

to its state table becoming saturated. Note that while our analytical results went further and suggested that

Flare can doworsethan ECMP, the experimental scenario seems more plausible.Again, the difference is



68

Client C Middle-box M Server S 

Figure 3.8.Testbed for TCP packet reordering

the heavy-hitter filter which, to be fair, would improve Flare as well. However, the experiments do point

to the crucial need for robustness and graceful degradationwhen the memory does not suffice.

Figure 3.7 shows performance when synthetic traffic is addedto the real trace. Here we see a

large difference at all time scales between static hash, Flare and Flame with static hash much worse than

shown in Figure 3.6. The Flare results are somewhat worse than without the synthetic traffic although

noticeably better than static hash.

While Flare (without heavy-hitters) performs better than static hash because it is breaking the

synthetic flows into flowlets and balancing each one, by separating heavy-hitters Flame does not suffer

from table saturation the way Flare does. This allows Flame to intelligently balance a much larger fraction

of traffic. These results clearly show that Flame outperforms both static hash and Flare with the amount

of state being about the same as Flare. We also evaluated other synthetic heavy-hitter pattern (larger

number of heavy-hitters, simultaneous heavy-hitter launch, and rate-varying heavy-hitters) which showed

that Flame is resilient to all such combinations. We do not include these graphs due to space constraints.

3.6.4 Impact of packet reordering on TCP

Recall that Figure 3.4 has a parameterF that controls the frequency of reordering. While earlier

studies have suggestedF = 1000 we felt it was essential to update these studies to see the effects of

operating system changes, higher link speeds, and the subtle difference in reordering patterns caused

by load balancing compared to arbitrary reordering. To evaluate the impact of packet reordering on

TCP performance at 1 Gbps and 10 Gbps, we set up two hardware testbeds, each consisting of three

nodes connected serially as shown in Figure 3.8. The middle-boxM controls the forwarding of all traffic

between the clientC and the serverS.

Results from the 1 Gbps testbed:

In the 1 Gbps experiments, the middle-boxM was a 2-processor Intel Xeon 2.4 GHz machine

running Ubuntu 10.10 32-bit server with Linux kernel 2.6.35. The kernel was recompiled after applying

the Trace Control for Netem patch [50, 72] which enables the flexible addition of latency to packets

needed for our experiments. The client and server used the same model of machines as the middle-box.



69

For Linux client and server experiments, they were running Ubuntu 8.10 32-bit server with Linux kernel

2.6.27. For Windows experiments, they were running WindowsServer Standard 2008, 32-bit, SP2. All

machines had two Intel PRO/1000 MT Desktop Ethernet interfaces, but only one was enabled on the

client and server machines.

In the 1 Gbps experiments, the middle-box was configured to reorder packets by selecting a

number of packetsF . The firstF/2 packets sent out of a network interface had 0.9 msec of extralatency

added to the normal time required to forward the packet. The nextF/2 packets sent had 1.1 msec of extra

latency added. This pattern repeats everyF packets, so when the latency changes from 1.1 msec to 0.9

msec, one or more packets can be transmitted out of order. This emulates the situation where a flow’s

packets are switched from a low to high latency path, then switched from a high to low latency path, every

F packets.

The exact pattern in which the packets are reordered by this method varies with the timing that

packets arrive at, and are processed by, the middle-box’s kernel. From examination of the netem code,

the packets are time stamped when they begin their processing in the kernel. These time stamps are

maintained with a resolution of 64 nanoseconds. The latencyof 0.9 msec or 1.1 msec is added to the

packet’s arrival time to get its scheduled departure time. The packet is then placed in an output queue for

the target network interface, inserted at the appropriate place so that the queue is maintained in order of

scheduled departure time.

The typical pattern of reordering seen during experiments that achieve high throughput is the

same as ifN consecutive in-order packets arrive at the middle-box and are buffered, then the nextM

packets are allowed through, passing theN buffered packets on their way to the receiver. Then theN

buffered packets are forwarded. For example, withN= 9 andM = 7, if the sender sent packetsD1 through

D19 in that order, the packets would arrive in the orderD1,D11,D12, . . .D17,D2,D3, . . .D10,D18,D19, . . . at

the receiver, and would then be in order until the next time the latency went from high to low. Examples

of pairs of value(N,M) observed in actual packet traces recorded at the receiver are (10,12), (4,18),

(6,20), and(17,3).

This pattern of adding latency was done for packets in the forward (i.e. client-to-server) and

backward directions, with an independent state machine counting packets in each direction.

Figure 3.9 shows the throughput achieved by a single TCP connection for a Linux client and

server, and for a Windows Server 2008 client and server. The throughput measurement was made using

iperf with data transmission only in the client-to-server direction, and is the average rate over 10 seconds.



70

2 4 32 256 2K 16K 128K
Number of packets F 

 between reordering events (logscale)
T

hr
ou

gh
pu

t (
M

bp
s)

0

200

400

600

800

1000

Linux [0.9, 1.1]
Linux [0.5, 1.5]
Linux [0.25, 1.75]
Windows [0.9, 1.1]
Formula

Figure 3.9.TCP throughput experiments at 1 Gbps. Latency differentiation in msec.

Each data point plotted is the median throughput of 11 runs with the same conditions. We also repeat the

Linux experiments with two other pairs of latency values,[0.5,1.5] msec (i.e. latency drops by 1.0 msec

when it decreases) and[0.25,1.75] msec (i.e. latency drops by 1.5 msec). With wider latency difference

range, we expect worse throughput because there is more reordering that can be introduced when the

drop from high latency to low latency is by a larger quantity of latency. Figure 3.9 shows that the Linux

throughput is still high in all cases, especially whenF is no less than about 128.

The “Formula” curve is the TCP throughput predicted by the 1/
√

p model of TCP perfor-

mance [45]. It is the value of(MSS·C)/(RTT
√

p) for p= 1/F, MSS= 1460 bytes,RTT= 2.2 msec,

andC= 1.22.

Linux achieves remarkably good throughput even with very frequent reordering. Wu et al [77]

ran similar experiments with a middle-box that added normally-distributed random latencies to each for-

warded packet. They found similarly good throughput, as long as the standard deviation of the normal

distribution was small compared to the mean. They attributethis resilience against reordering to: “an adap-

tive TCP reordering threshold mechanism. Under Linux,dupthreshis adaptively adjusted in the sender to

reduce unnecessary retransmissions and spurious congestion window reductions. Some network stacks [

... ] still implement a static TCP reordering threshold mechanism with a defaultdupthreshvalue of 3.”

Our experiments confirm this. We ran additional experimentswhere the middle-box dropped a

single packet everyF packets, and added 1 msec of latency to all packets (thus no reordering). Under

these conditions the throughput graphs for both Windows andLinux were nearly identical to the Windows

throughput graph of Figure 3.9, where reordering but no lossis introduced.

We also recorded packet traces on the sender in a few experiments (not used to create the graphs)



71

and usedtcptrace[73] to estimate the sender’s congestion window. This estimate is called “outstanding

data” in tcptrace. It is calculated as the largest data sequence number transmitted by the sender, minus the

largest cumulative ACK sequence number it has received so far. These graphs showed the Linux sender’s

congestion window increasing steadily despite packet reordering events, whereas the Windows sender’s

congestion window dropped every time it received 3 or more duplicate ACKs in a row. Thus the Windows

sender is misinterpreting the kinds of reordering we introduce as packet loss, as was also the case with

older versions of Linux (circa kernel version 2.6.14 and earlier).

We also ran Linux client to Windows server experiments, and vice versa. Although not identical,

they are substantially similar to the Windows throughput graph presented here. It is not enough that Linux

is the sender in order to achieve high throughput during reordering. The receiver TCP implementation is

also important.

The results here make a strong case that for Linux-to-Linux TCP traffic, per-packet load balanc-

ing such as DRR may be acceptable to increase overall application throughput, if the gain in throughput

from the more even load balancing is greater than the small throughput reduction caused by packet reorder-

ing. For the common case where multiple TCP connections share the network capacity, their competition

for bandwidth is likely to be the limiting factor before packet reordering effects are noticeable. For TCP

traffic that is not Linux-to-Linux, reordering that causes the sender to react as if there were a packet loss

(i.e. 3 or more duplicate ACKs in a row) as often as once every 1024 packets cuts throughput by a factor

of 4, according to the results in Figure 3.9.

Results from the 10 Gbps testbed:

NetBump [3] allows modification to packets betweenC andSat 10 Gbps by software (e.g. chang-

ing packet headers, adding delay, dropping packets, and crafting packet reordering). We set up a NetBump

testbed with fast machines equipped with Myricom 10 GigE so that packet processing can be done in real

time at full 10 Gbps by NetBump techniques to offload work on multiple CPU cores [3]. Since our

NetBump testbed is only Linux-based , we show only the resultfor Linux TCP in this part.

We consider a common pattern of packet reordering caused by load balancing in data center

networks. As an example, assume packetsD1 throughD5 go on pathP1 and then packetsD6 onward

switch to pathP2 with lower latency. Thus althoughD1 throughD5 have left the switch, packetD6 may

overtake some of them. A possible scenario at the receiver (in terms of received packets, assume no loss)

is D1,D2,D6,D3,D7,D4,D8,D5,D9,D10,D11, . . . back to normal. In other words, it is not a complete

burst of packets that are delayed but the delayed burstinterleaveswith the burst switched onto the lower



72

time (sec)
0 20 40 60

T
C

P
 th

ro
ug

hp
ut

 (
G

bp
s)

0

2

4

6

8

10

time (sec)
0 20 40 60

0

2

4

6

8

10

(a) No reorder (avg 9.51 Gbps) (b)F = 1000,b= 10 (avg 9.00 Gbps)

time (sec)
0 20 40 60

0

2

4

6

8

10

time (sec)
0 20 40 60

0

2

4

6

8

10

(c) F = 1000,b= 50 (avg 8.82 Gbps) (d)F = 1000,b= 100 (avg 8.81 Gbps)

Figure 3.10. Throughput experiments with one TCP flow at 10 Gbps with interleaving reordering burst
by load balancing.F is reordering frequency andb is length of interleaving burst.

latency path.

We emulate this reordering situation according to the following two parameters.

• Reordering frequencyF : we do packet reordering once everyF dispatched packets.

• Interleaving burstb: the amount of interleaved packets (b= 3 in our example)

Our method to craft the interleaving burst is by buffering upto b packets and alternating them

with the subsequent packets accordingly. To avoid infinite packet delay (especially for SYN packets), we

hold each packet in the interleaving buffer for at most 1 ms.

Figure 3.10 plots our TCP throughput benchmark with theiperf tool for one minute. Note that

we use the default TCP implementation of the Linux operatingsystem installed on the servers (64-bit

Debian on Linux kernel 2.6.32). The bandwidth measurement granularity is 0.5 sec. In our testbed, the

round-trip-time (RTT) between the client and server variesin the range 0.2−0.5 ms. From Figure 3.10,

we conclude that the TCP stack on our Linux kernel is highly tolerant to packet reordering. Indeed, we

also get consistent results with Figure 3.10 for several other patterns such as interleaving of short bursts



73

(instead of packets) and per-packet delay differentiation(not shown due to space limit).

3.7 Summary

Our testbed results surprised us a great deal. They suggest that rather than deploy new transport

protocols such as Multipath TCP [60], the simple TCP modifications to recent Linux stacks may allow

packet-by-packet rebalancing with only small loss in performance. The essential idea is to not to blindly

reduce the congestion window on getting a duplicate ack, or at least to increase rapidly again if the

situation is reordering and not loss.

In the interim, at least for Windows machines that are very common in data centers, the situation

is neatly reversed. We cannot afford to rebalance often without incurring severe throughput degradation: a

value of once every 32,000 packets seems to work well. Given the uncertainty, load balancing chips today

would be wise to have a controllable parameterF . We assert that hardware load balancing such as shown

in Figure 3.4 will be crucial. Software load balancing such as [5] (where the optimal flow assignments for

heavy flows is computed by software) will be too slow to allow values ofF below 1000 and hence miss

balancing opportunities in the future. The Flame hardware described in Figure 3.4 can also be deployed

one router at a time compared to the deployment issues for Hedera [5]. While Flame does not provide path

optimality, DRE estimation goes beyond local optimality based on local physical queues and attempts to

reduce downstream congestion.

Unlike Hedera, Flame also attempts to initially do a good flowassignment by stealing the basic

”place new flow on least loaded link” paradigm from Flare. However, Flame goes beyond Flare by having

a more robust link bandwidth estimator (DRE), a more resilient and memory-efficient method to remem-

ber flow state by memorizing one of multiple hash functions, and by integrating periodic rebalancing in

hardware. In conclusion, while Flame is deeply influenced byHedera and Flare, we believe it adds sig-

nificant new mechanisms (summarized in Figure 3.4) that willbe essential fordeployableandrobustdata

center routers at 10 Gbps and beyond. While our paper appearsto be narrowly about ”load balancing”,

the broader issue at stake is cheaply providing bandwidth for cluster computation in data centers, which

in turn underlies the promise and effectiveness of cloud computing.

Chapter 3, in part, is a reprint of the material as it appears in “Flame: Efficient and Robust Hard-

ware Load Balancing for Data Center Routers” inUCSD CSE Technical Report (CS2012-0980). Edsall,

Tom; Fingerhut, Andy; Lam, Vinh The; Pan, Rong; Varghese, George. UCSD, 2012 The dissertation

author was the primary investigator and author of this paper.



Chapter 4

NetShare and Stochastic NetShare: Predictable
Bandwidth Allocation for Data Centers

4.1 Introduction

Cloud services and enterprise networks are hosted by data centers that concurrently support many

distinct services — e.g., search and email for cloud services, and say accounting and engineering for an

enterprise data center. The services use a shared data center because the physical equipment is expensive,

costing over 100 M a year to maintain [31] and because statistical multiplexing using Virtual Machines

(VMs) is effective. However, the economics also require twoother characteristics of thenetwork, both

of which are imperfectly provided today. First, to be profitable, the networks must have highutilization.

Second, many services have stringent performance SLAs thatmust be met to keep customers satisfied:

thus the network should also ideally providebandwidth guaranteesto each service. Any new mechanism

to provide these should not require hardware changes to existing switches so that providers do not have

to retrofit their networks.

Service level agreements today specify network SLAs in terms of dollars per Gigabyte trans-

ferred and not in terms of network bandwidth. But the performance of frameworks such as Map Reduce

depends greatly on network performance. With current SLAs,a user may pay for 10 hours for a number

of VMs only to find that the VMs are mostly idle waiting for slownetwork transfers. The user job may

complete in one hour with a faster network rate and the user may be willing to pay more for the higher

bandwidth. In addition, as cloud computing and shared data centers gain momentum, there is a growing

demand to provide performance isolation between differentservices and tenants. While isolation can be

achieved by strict rate limits, this leads to inefficient useof the expensive data center network because

traffic is often bursty.

74



75

We propose a new mechanism for data center networks calledNetSharethat provides predictable

bandwidth allocation, bandwidth isolation, and high utilization — and can be implemented without any

changes to existing switches. NetShare does so usinghierarchical weighted max-min fair sharingin

which the bisection bandwidth of the network isi) first allocated to services according to weights andii)

the bandwidth of each service is then allocated equally among its TCP connections. Hierarchical max-min

fair sharing generalizes hierarchical fair sharing oflinks [27] to networks. We also generalize stochastic

fair queuing [46] to stochastic weighted max-min fair queuing. While the ideas in NetShare are extremely

simple and can be viewed as a repackaging of existing ideas, the fact remains that no such mechanism

exists in the market today.

We view “fairness” only as a mechanism for providing predictable and tunable application per-

formance. Section 4.6.1 for instance, shows that without NetShare, an FTP transfer of a 1 GB file slows

down by a factor of 10 if it happens to be concurrent with the sort phase of a Hadoop application. While

better latencies for the FTP transfer could be provided by rate-limiting the Hadoop application, in that

case the throughput of the Hadoop application halves. In contrast, NetShare allows both low latency for

FTP and high throughput for Hadoop.

If Internet QoS did not succeed, why hope for data center QoS?First, Internet QoS issues are

often solved by overprovisioning, but overprovisioning core links in data centers from say 10 Gbps to 40

Gbps is very expensive. Current core links are indeed oversubscribed [31]. Second, users have begun to

notice latency degradation when VM traffic from different applications1 interfere [32]. Third, a reason for

the failure of QoS was that there was no simple policy for setting QoS parameters. NetShare uses a simple

set of per-service weights which can be set automatically based on VM placement, or set manually by a

manager based on the revenue or cost of each service analogous to VMware’s ESX server shares [32].

We present three simple mechanisms to implement NetShare including one that relies on TCP

and fair queuing, only requires configuration changes, and responds to changes in a few round trip de-

lays. We also show how this mechanism can scale to a larger number of applications using what we call

Stochastic NetShare. Our second mechanism handles UDP, and our third mechanism uses centralized

allocation to provide more general bandwidth allocations.

NetShare can also be viewed as a way to virtualize (i.e., statistically multiplex) a data center

network among multiple services. Together with virtualized CPUs and disks, it allows managers to create

”virtual data centers” with performance isolation. While one can argue whether our definition of network

1We use the termsapplicationandserviceinterchangeably.



76

virtualization is right, NetShare is perhaps the simplest starting point. Our contributions are:

• A specification of what it means to share data center bandwidth across services using hierarchical

weighted max-min fair sharing (Section 4.2).

• Three mechanisms to implement NetShare (Section 4.3) with tradeoffs (Table 4.1). They require

nohardware changes to existing routers and work with multipathing — earlier multipath Max-Min

allocations used complex and hard to implement mechanisms [41].

• An implementation using Fulcrum switches and using ns-2 (Section 4.5).

• Analysis (Section 4.4) and implementations (Section 4.6) that show the benefits and scalability of

NetShare.

• A scheme for automatic weight assignment (Section 4.7).

4.2 NetShare Specification

The generalization of fair sharing to multiple resources such as a network is called Pareto Opti-

mality (in economics) or max-min fair sharing (in networks). While max-min fair sharing at the TCP level

is an old goal, we argue this is insufficient. A large corporation may wish to split bandwidth between a

parallel CAD application, SAP, and Microsoft Exchange. Max-min fair sharing at the TCP level is not the

appropriate model for two reasons. First, services that open up multiple connections get an unfair share

of bandwidth. Second, the manager cannot allocate more bandwidth to certain services based on their

importance.

Thus we are led to:weighted hierarchical max-min fair sharing. First, the manager specifies

services with weights manually or automatically assigned (see Section 4.7 for a simple technique to assign

weights automatically). Next, there is a mechanism that allocates network bandwidth in weighted max-

min fair fashion among these services. The bandwidth assigned to each service is then recursively divided

(again in max-min fair fashion) among the individual flows for that service. In addition, each application

can be limited to some maximum bandwidth if needed using token bucket limiters though we do not

consider this further in the paper. We reiterate that fairness is not a primary goal; our foremost concern is

controlled allocation of network resources to maintain latency guarantees and high utilization.

Example:Figure 4.1 shows a simple data center topology consisting offour edge switchesE1,

E2, E3, andE4 and 1 core switchC1. Each edge switch is connected by a 10 Gbps link to the core.



77

C1

E1

10

E2 E3

A1, A2 A2, A3A1,A2 

10 10
10

A3

E4

Figure 4.1.Example of a data center network shared between three services A1, A2, and A3.

Assume that there are three servicesA1, A2, andA3. Further, assumeA1’s traffic needs to be sent from

switchE1 toE2. ServiceA2 needs to send traffic fromE1 toE2, and fromE1 toE3. ServiceA3 needs to

send traffic fromE4 toE3. For this simple example, assume the manager hasmanuallyset global weights

with only ServiceA1 having weight 4, while theA2, andA3 have weight 1.

The link fromE1 toC1 is shared by applicationsA1 andA2. Assuming weights of 4:1,A1 should

be assigned 8 Gbps whileA2 should be assigned 2 Gbps. However,A2 has traffic fromE1 toE2 and from

E1 to E3. Assuming equal sharing of each edge-to-edge traffic flowwithin a given service, serviceA2 is

allocated a bandwidth of 1 Gbps for traffic fromE1 to E2, and 1 Gbps for traffic fromE1 toE3.

But this allows serviceA3 to be assigned 9 Gbps for its traffic from switchE4 to E3 even

though it has only the same weight as serviceA2 with which it shares a link. This happens because

A2 is bottlenecked because of another link (the link fromE1 to C1). This kind of calculation where a

bottleneck limits the bandwidth of a flow, which then affectsthe bandwidth available to another flow, and

so on iteratively, is formalized in the so-called Weighted max-min fair share calculation.

Now assume that serviceA1 reduces its bandwidth need to 6 Gbps. After some amount of time

(measured by the responsiveness of the algorithm) NetSharecan allocate 2 Gbps toA2’s traffic on the link

fromC1 to E3. This in turn reducesA3’s share to 8 Gbps. We can formalize this allocation as follows.

Definitions: A feasible bandwidth allocation of a set of flows ismax-min fairif and only if a

rate increase of one flow must come at the cost of a rate decrease of another flow with a smaller or equal

rate. A feasible bandwidth allocation of a set of flows isweighted max-min fairif and only if a weighted

rate increase of one flow must be at the cost of a weighted rate decrease of another flow with a smaller or

equal weighted rate.

We extend to hierarchical weighted max-min sharing: A feasible bandwidth allocation to a set of



78

C1E1 E2

A3 (weight 1)

H1 10 10 10

H3

A1 (weight 4)

A2 (weight 1)

TCP at H1
limits at 2

TCP at H3
grows to 8

Figure 4.2.Simple fair queuing at switches together with TCP implements max-min fair sharing of TCP
flows [35].

applications ishierarchical max-min fairif and only if a rate increase of a flow within one application must

be at the cost of a rate decrease of some other flow either (i) within the same application with a smaller

or equal flow rate or (ii) within some other application with asmaller or equal weighted application

bandwidth.

For this paper, we assume that in hierarchical sharing, weights can be specified at the service

level, but all TCP connections within the same service have equal weights.

4.3 NetShare Algorithms

In this section, we describe how NetShare can be implemented. Section 4.3.1 describesgroup al-

locationwhich relies on TCP. Section 4.3.2 describesStochastic NetShareapproach to address the scalabil-

ity of weighted fair queuing. Section 4.3.3 describesrate throttlingfor UDP hosts. Finally, Section 4.3.4

describes a centralized bandwidth allocator that can implement more general allocation policies.

4.3.1 Group Allocation Leveraging TCP

Our starting point is a classic result by Hahne [35] which is paraphrased as follows in [12].

Proposition 1: [35]: A large sliding window at sender plus fair queuing achievesmax-min

allocation.

The intuition is illustrated in Figure 4.2. Assume 3 competing TCP flows: a first from service

A1 that traverses bottlenecked link fromC1 to E2; a second from serviceA2 starts at hostH1 and goes

from E1 toC1 and fromC1 to E2; finally, a third flow from serviceA3 that traverses the link fromE1 to

C1. Assume thatA1’s flow is configured to have a fair queuing weight of 4 at core switch C1 while other

flows are assigned weight 1.

Thus fair queuing atC1 will assign 1/5-th of the bandwidth of theC1,E2 link to theA2 flow



79

C1E1 E2

A3 (weight 1)

H1 10 10 10

H3

A1 (weight 4)
TCP at H1
limits to 1

TCP at H3
grows to 9

H2
TCP at H2
limits to 1

A2 (weight 1)

Figure 4.3. Simple fair queuing at switches at theservicelevel together with TCP achieveshierarchical
max-min fair sharing of services.

because theA1 flow has 4 times the weight. In a few round trip delays, TCP atH1 will adjust its rate to

2 Gbps. But this allows TCP at H3 to grow to 8 Gbps because only 2Gbps is used on the link fromE1

to C1. Hahne’s result formalizes this intuition but has a numberof caveats. For example, the proof [35]

applies to only some arrival distributions such as Bernoulli arrivals and to single path topologies.

However, in NetShare we wish to allocate in hierarchical max-min fashion first at the service

level and only then at the TCP connection level. So consider Figure 4.3 which adds one more hostH2

that also belongs to serviceA2 with weight 1 and shares the link fromC1 toE2 with A2’s other TCP flow

from H1 andA1’s flow. Fair queuing at theTCP connection level does notachieve hierarchical max-min

fair sharing. The TCP connection fromA1 is allocated 4/6th of the bandwidth and thus gets only 6.6

Gbps instead of 8 Gbps.

However, if we do fair queuing at theservicelevel, then both connections belonging to serviceA2

are treated identically at core routerC1 (i.e., mapped to the same queue). Assuming the fair mechanism

gives both the TCP connections fromH1 andH2 equal bandwidth, both limit themselves to 1 Gbps, which

then allows TCP atH3 to grow to 9 Gbps. Thus we state the following proposition:

Proposition 2:Window flow control plus fair queuing at service level achieves hierarchical max-

min allocation.

An informal argument is as follows. It follows the standard water-filling algorithm described in

[9] when modified to do hierarchical allocation. It starts byfinding theweighted bottleneck. NetShare

will emulate this by DRR at the bottleneck link to give each application its weighted share. Next, we

assume that the TCP flows of each application share the bottleneck link equally. While this is not strictly

true if the TCPs have very different RTTs, we assume this is true in the data center. We assume each of



80

these TCP flows cannot increase any further. Just as in the standard water-filling algorithm, we remove

these TCP flows and their bandwidths, and recurse to find the new bottleneck.

ECMP multipathing can also be handled as follows. We assume each path used by each appli-

cation flow is independent in the following sense. For example, we assume there are no cases where one

application uses two flowsF1 andF2 on disjoint paths and a second application uses a third flowF3

which overlaps partly with the path ofF1 and with the path ofF2. Such dependencies will cause the

dynamics of the two flows to be coupled. However, the use of multipathing in common data center topolo-

gies typically results in flows being independent due to symmetric structure. If the flow dynamics are

independent, then the above argument applies independently to each flow sent between the same pair of

hosts on multiple paths. By contrast, max-min allocation with path splitting in general topologies requires

complex optimization algorithms [41, 19].

Our argument above makes a number of simplifications. Despite this, we have found in our

experiments with real switches and ns-2 experiments on datacenter topologies that Proposition 2 holds

even with multipath topologies. Proposition 2 suggests an extremely simple mechanism that requires no

software or hardware changes to endnodes or switches.

Group Allocation Mechanism:For every switch and every outbound link configure separate fair

queuing queues for each service/application class with weights specified by the manager.

For example, in Fulcrum switches [1] we have used DRR [66] to configure fair queuing and

TOS bits to distinguish services. The queue weights are thenset (on all outbound links) to the NetShare

weights specified by the manager. Note that this is not the same as reservation. If a service is inactive or

is routed on a different path it will not consume bandwidth onthis link.

Current switches typically support a small number of DRR queues such as 16. While this often

suffices for the enterprise, we wish to handle a large number of services, especially in cloud data centers.

First, note that Approximate Fair Dropping (AFD)[54] is a replacement for DRR. Cisco routers will

appear within the next year with a few thousand AFD queues for16 DRR queues. Note that AFD scales

better because it uses a counter for each class as opposed to aqueue. We describe a temporary measure,

however, to deal with existing routers with small queues.

4.3.2 Stochastic NetShare

Large enterprises or web service providers like Amazon EC2 or Google App Engine could have

several customers or classes that they wish to isolate. One technique to scale NetShare to several appli-



81

cation classes is what we callStochastic Weighted Max Min Fair Sharing. Applications are randomly

hashed to specific DRR queues at each switch port. Each DRR group is assigned weight equal to the sum

of weights of the individual applications that are hashed onto the DRR queue. The DRR grouping of ap-

plications in each switch can be different and can also be different at each switch port. Also, the grouping

of applications on DRR queues is changed periodically to avoid any intermittent hashing imbalances.

Stochastic Max-Min Fair sharing is a generalization of Stochastic Fair Queuing [46]. We, how-

ever, have to deal with three more issues. First, current routers do not support hashing to queues based on

packet headers. However, they do support mapping from header fields to queues via ACLs. Thus, a way

to simulate hashing is to have a central allocator provide labels to services; these labels can be random

labels and can be changed periodically. Second, note that McKenney described his scheme at a single

router. When we do this across the data center, deviations ata single hop can cascade across the network

(think of errors at each stage of the water-filling algorithm). Third, McKenney’s scheme assumed all

weights were equal.

Clearly, pure random assignment regardless of weights willnot work well because a high weight

service may be assigned to the same queue as a low weight service. Since allocation within a queue is

done by TCP which allocates bandwidth regardless of weights, a small weight service can steal more

bandwidth than its share. We propose a mixture of random and weight-based allocation as follows.

First, group services based on weight classes (say all services of weight 1, all of weight 2, all of

weight 4, etc.). Then map each weight class into a set of queues and randomly assign services to a specific

queue within each set. In practice, given the small number ofexisting queues, we suggest grouping large

weight services and low weight services into 2 classes, and randomly assigning within each set of 8 queues.

Clearly, this introduces errors due to weight aggregation and these errors can cascade but it provides a

solution to the difficult problem of combining scalability together with tunability. In a theoretical sense,

if there areS services,M misbehaving applications, andW possible weights, our mechanism requires

O(M log2W) queues instead ofO(S) queues.

The mixture of deterministic (weight-classes) and random assignment to queues can also be

achieved on existing routers by a centralized label allocator. For example, using 16 values of the IP TOS

Bits (as supported by many routers including Fulcrum and Cisco): the allocator could assign values 0

through 7 to low priority applications, and values 8 through15 to high priority applications. In all routers

and switches, valueI is mapped to queueI using say ACLs.

Next, the allocator assigns each high priority service a random value between 8 and 15, and each



82

low priority service a random value between 0 and 7. The labelallocator periodically changes these at

intervals of a few seconds to avoid cases where one service persistently gets assigned to the same queue as

a misbehaving service. Note that the sources are using random labels directly instead of router rehashing.

4.3.3 Rate Throttling for UDP

Group allocation relies on TCP. However, many important applications including Tibco’s multi-

cast protocols, Veritas, and Oracle [8] do not use TCP. Buggyor erroneous settings can cause such traffic

to flood the network. While we could use existing TCP-friendly UDP congestion control protocols, this

would require modifying all UDP applications (not easy to find) and change them to send packets via the

TCP friendly code, which requires finding the calls in the code. Instead, we show a very simple scheme

that can be implemented as a kernel patch (some effort but easier than modifying applications) that is

layeredbelowUDP and is thus transparent to existing applications.

Further, most TCP-friendly congestion protocols measure drops and use the TCP equation [52]

unlike our simple scheme. In particular, the simplicity of our scheme also allows it to be implemented in

switches which can be useful in cloud environments and multi-tenanted data centers where host software

cannot be trusted.

First, what goes wrong in Figure 4.3 ifH1 andH2 use UDP? In that case,H1 could continue to

send at 10 Gbps on the link toE1 and the fair queuing mechanism atE1 will assign it 5 Gbps on the link

to C1 (dropping the remaining traffic) providing only 5 Gbps toA3’s traffic fromH3. This is unfortunate

because the fair queuing mechanism atC1 will only allocate 1 Gbps to the traffic fromH1. Thus ifH1

sends at 10 Gbps, 5 Gbps of traffic is dropped atE1 and 4 Gbps is dropped atC1. There is no congestion

collapse but the allocation is far from optimal. Instead, using our UDP rate throttler, the hostH1 will send

at 1 Gbps and the extra traffic will be buffered at the host.

We propose a simple idea as follows. Assume that each host hasa rate throttling shim layerjust

below UDP. For example, in Figure 4.3 suppose thatH1 sends at 10 Gbps to some other hostH4 as shown

in Figure 4.4. The shim layer atH4 measures received traffic of 1 Gbps fromH1. This is sent back to the

corresponding rate throttling layer atH1 which rate limits the traffic at close to 1 Gbps.

Unfortunately,H1 cannot rate limit exactly to 1 Gbps. This is because if say the flow fromH2

disappears,H1 could grow to 2 Gbps. But the rate limit atH1 will preventH1 from ever finding that

it can grow. Thus we need to set the throttled rate to somewhatmore (sayx%) than the measured rate

to allow ramp up. Higher values ofx allow faster ramp-up but increase the amount by which a flow can



83

C1E1 E2H1 10 10 10

H3

A1 (weight 4)
rate throttler
limits to 1

H2
rate throttler
limits to 1

A2 (weight 1)

H4

TCP at H3
grows to 8

A3 (weight 1)

feedback received rate via control message

rate measurement
measures 1 Gbps

Figure 4.4. Simple fair queuing at switches at theservicelevel together with rate measurement and rate
throttling implements hierarchical max-min fair even withUDP.

overshoot its allocation. We chose a value ofx= 20% as a compromise.

The throttling code we use is slightly more complicated and is described in Algorithm 2. Note

that Rate Throttling requires weighted fair queuing at eachrouter as well. We assume the receiver mea-

sures received throughput in some periodT (we use 50 msec in our experiments) and sends a control (e.g.,

ICMP) message to the sender with the current measured rateC everyT msec. The sender then executes

Algorithm 2 to set the throttled rateR.

First, the code adds some hysteresis to prevent changes whenthe difference between the last

measured rate (stored inL) and the current rate is too small (say, less than 5%). Next, if the current

measured rate is greater than the last measured rate, the newsending rate is set to an additional factor

rI of the measured rateC. If the current measured rate is smaller than the last measured rate, the new

sending rate is set to an additional factorrD of the measured rateC. The valuesrI andrD are performance

tuning knobs, indicating how much network bandwidth can be wasted.

For example, if we userD = 10%, we could have upto 10% of the bandwidth wasted since we

set the rate to 10% more than current measured rate. So this motivates us to reduce this value. On the

other hand, if the valuesrI or rD are larger, then any newly freed up bandwidth can be acquiredfast by

the UDP traffic class. So this is an essential tradeoff. We note that very large differences betweenrI and

rD would also cause instability and would make it harder for therate to stabilize. In our experiments, we

achieved good performance withrI = 20% andrD = 10%.

There are two final subtleties. First, even if the differenceis too small, if the sender had increased

on the last iteration (this is kept track of by flagf ), the sending rate is set to a factorrO (say, 10%) higher

than the measured rateC. This limits the final overshoot to 10%. For example, supposethe target max-

min rate is 100 and the last measured rate is 94 and the currentmeasured rate is 100. The sender goes



84

Algorithm 2. Compute NetShare Rates at Rate Throttler

Performance tuning knobs:
d: threshold of rate difference
rI : factor for increasing flows
rD: factor for decreasing flows
rO: factor for overshooting flows

Measurement parameters:
L: last measured rate
C: current measured rate at receiver
f : flag indicating that the flow increased on last iteration.
R: current rate limit

if (|(L−C)/L| ≥ d) then {is rate change substantial?}
if C−L > 0 then {increasing, allow overshoot byrI}

R←C∗ (1+ rI)
f ← true

end if
if C−L < 0 then {decreasing, allow overshoot byrD}

R←C∗ (1+ rD)
end if

else
if f = true then {limit overshoot byrO}

R←C∗ (1+ rO)
f ← f alse

end if
end if
if R< Th then {do not lower below threshold}

R← Th
end if
L←C

20% higher in the next iteration to roughly 120. However, if the next measured rate is also 100, the next

iteration will set the sending rate to 110. Thus after a briefovershoot of at most 20% the final overshoot

will be 10%. Finally, we do not let the rate to fall below a threshold, because if a flow’s rate becomes too

small it will take too long to ramp up.

Implementation Choices:Rate throttling can be implemented entirely in the hosts through a

kernel patch which is gradually deployed. It can also be implemented in the network at switches with open

APIs or OpenFlow [47] switches. For our experiments, we usedthe Fulcrum switch API to implement

rate throttling with just under 100 lines of code.

4.3.4 Centralized Bandwidth Allocator

While NetShare based on fair queuing is efficient, it can onlycalculate a hierarchical max-min

allocation. A more general policy would allow some connections between important servers to be allo-

cated higher bandwidth. As a more complex example of a usefulallocation policy, consider the single



85

C1E1

A1, min weight = 1, excess weight = 2

A2, min weight = 1, excess weight = 1

A3, min weight = 1, excess weight = 1

Figure 4.5.Allocation mechanisms that divide excess bandwidth using different weights.

link example shown in Figure 4.5 with 3 servicesA1,A2,A3 sharing a congested link from an edge to a

core switch.

With 10 Gbps link bandwidth and equal weights, each service is guaranteed 3.33 Gbps. However,

if A3 idles, thenA1 andA2 get 5 Gbps each. Suppose, however, we wish to limit the “excess” bandwidth

thatA2 gets. Then we can define a second set of weights for sharing the excess bandwidth. For example,

if the excess bandwidth weight ofA1 is twice that ofA2, then ifA3 idles, the excess is allocated among

A1 andA2 in the ratio 2:1, so thatA1 gets 2.22 Gbps of the excess andA2 gets 1.1 Gbps. Thus, in sum

A1 gets 5.55 Gbps andA2 gets 4.4 Gbps. By setting the excess weight to zero we can prevent a service

from getting any excess bandwidth. While such an allocationmay seem contrived, the ability to do such

general allocations for a single storage resource (we do it for the entire network) is a key motivation for

MCLOCK [32] implemented in VMWare’s ESX server.

However, such an allocation is impossible using fair queuing at switches. Instead, inspired by

centralized routing schemes like RCP [16] or [18] we proposethe use of a centralized bandwidth allocator

based on four simple mechanisms.

1. Rate Measurement:The rate of each flow (TCP or UDP) for each service is measured at

either the switches (using ACLs) or at the hosts (using a shimlayer) in intervals ofT seconds and used to

predict a demand for the next interval.

2. Rate Reporting: The predicted rates are sent to a centralized bandwidth allocator (imple-

mented on a PC in the network) that is also supplied with the service weights and the topology via routing

updates.

3. Centralized Calculation: The centralized allocator calculates rates for each flow andeach

service and sends back rate updates to the switches or hosts.

4. Rate Enforcement:Token bucket rate limiters are used at the hosts or ingress switch ports

to limit the rates to the calculated rates. As in rate-throttling, each flow (especially TCP flows) must be



86

Table 4.1.Comparison of different NetShare mechanisms

Deployment Responsiveness Generality

Group Configuration at routers < 1 msec Only TCP flows
Allocation Only Hierarchical max-min

Rate Configuration at routers
Throttling Added endnodeor 10-50 msec Only Hierarchical max-min

router software
Centralized Centralized allocation software 10 - 100 msec More general allocation policies
Allocation Added router software

allocated say 10% higher than its optimal centralized allocation to allow it to grow.

We have designed and implemented such a centralized allocator. The predictor in Step 1 is a

standard least squares predictor using the last 5 measurements of offered traffic. The algorithm in Step

3 is a variant of the standard water-filling algorithm [9] which starts by finding theweighted bottleneck.

We implemented the centralized algorithm on several large simulated 2-tier data center topologies. On a

simulated topology with 16 cores, 128 edge switches and 128 million flows, the algorithm took less than

100 msec on a standard Intel Core2Duo 3GHz desktop. Smaller and more common topologies took less

than 10 msec.

Table 4.1 shows the tradeoffs between the three NetShare algorithms: group allocation, rate

throttling, and centralized allocation. Note that increasing generality must be paid for by smaller respon-

siveness and more software deployment.

4.4 Analysis

Section 4.4.1 gives a bandwidth model for NetShare with Stochastic DRR. Section 4.4.2 proves

the stability of the central bandwidth allocator in a control theoretic framework.

4.4.1 Stochastic NetShare Model

Assume we haveN applications (as large as several thousands). LetM be number of misbehaving

applications. Initially, assumeM = 1. LetQ be number of queues per switch port (Q= 16 in a standard

commercial switch). For scaling analysis, assumeQ≪N.

Since one misbehaving application is hashed to one ofQ queues, with probability 1/Q a well-

behaved application will hash onto the same queue and get no bandwidth (in the worst case). On the

other hand, with probability(Q−1)/Q it gets the normal bandwidth of a queue, which isB/Q (the queue



87

bandwidth assuming perfect weighted fair queuing with DRR)divided by average number of applications

in the queue (N/Q). Thus the average bandwidth for a good application is 0·1/Q+B/N · (Q−1)/Q=

(B/N) · (Q−1)/Q.

In other words, if there is one bad application, the average bandwidth is slightly degraded by

a factor(Q−1)/Q. So if Q≫ M, the degradation is small (1/16-th for 16 queues). The upshot is that

it is feasible toscale the queues with the number of bad applications, instead of the number of active

applications.

4.4.2 Stability of Centralized Allocation

While the stability and equilibrium behaviors of TCP and active queue management schemes

(Schemes 1 and 2) have been studied before [44], our centralized algorithm (Scheme 3) also involves a

feedback loop for which we need to guarantee its stability and convergence. We analyze its properties in

this section.

Following the general structure in [53], our design can be modeled as the feedback control system

shown in Figure 4.6a.R(s) represents the transfer function of rate measurement with an interval ofT

seconds. It is shown in [29] that a time averaging system withan intervalT can be approximated with a

transfer functionR(s) = 2/T
s+2/T .

We model the other steps of our algorithm (rate reporting, desired rate calculation and enforce-

ment) as adding an aggregated system delay,τ, together with a general proportional gain factorκ . Hence,

our overall loop transfer function isL(s) = 2κ/T
s+2/T e−τs. This equation indicates two key factors that would

determine the system’s response time:T andτ. As T < τ would mean more rate reporting traffic is intro-

duced into the system, which is not desirable, we study the case whenτ < T. Whenτ≪ the measurement

window T, it means that the delay caused by rate reporting, calculation and enforcing is much smaller

than the rate measurement window. The system is reduced to a single pole system that is guaranteed to be

stable. This implies that if we measure rates in an interval of a few seconds, the centralized scheme with

a few milliseconds delay would certainly not be a concern.

Now let’s look at the interesting case whenT andτ are of similar order. Figure 4.6b shows the

Nyquist plot of the system: the system would be stable if the curve touches the negative real axis to the

right of the critical point−1. As the first order lag can be used to approximate1T/2s+1 [29], the transfer

function can be rewritten asL(s)≈ κe−(τ+T/2)s.

Therefore, if we setκ < 1, then our loop can reach stability. This indicates that even when the



88

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1

−0.5

0

0.5

1
Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

(a) Feedback diagram (b) Nyquist plot

Figure 4.6.Feedback control model for the Centralized Bandwidth Allocator

system delayτ gets close to the rate measurement windowT, we can still choose the system gain in such

a way that guarantees stability. Note that our stability analysis only gives guidance regarding the order of

magnitude of the time intervals involved; we leave detailedanalysis for future work. The result indicates

that with a properly designed measurement window,T, the system is stable.

4.5 Implementation

In this section, we show the effectiveness of NetShare in sharing real data center applications,

providing both bandwidth isolation and statistical multiplexing. For simplicity, we model each application

as a Hadoop instance. We implemented NetShare on a small scale data center testbed consisting of a 24-

port Fulcrum Monaco 10GigE switch[1], a commercial switch with an extensive programming API for

advanced customization. Twelve switch ports are directly connected to servers. Each server has 2 quad

core Intel Xeon E5520 2.26GHz processors, 24 GB of RAM, and 16local hard disks with 8 TB of total

capacity. The remaining twelve ports are all connected to a Glimmerglass optical MEMS switch which is

used like a patch panel to setup loopbacks between these twelve ports on the Fulcrum switch. This gives

us the flexibility to partition the 24 port physical switch into virtual switches using VLANs and create

interesting multi-switch data center topologies through the loopbacks.

We configured two data center topologies shown in Figure 4.7.Multipathing on the edge

switches to utilize both core switches in Figure 4.7b is based on Equal Cost Multipath (ECMP). End to

end RTT between any two nodes was less than 100us. Also, in ourtopologies, the term pod corresponds



89

(a) Single path (1 core) (b) Multipath (2 cores)

Figure 4.7.NetShare testbed topologies

to an edge switch and there are four servers connected to eachpod.

We implemented Group Allocation by configuring Deficit RoundRobin (DRR) at a service level.

DRR already existed on the switch but we had to implement UDP rate throttling in the switches; we did

not modify servers. To classify application traffic, we marked the application ID in the Type of Service

(ToS) field in the packet header.

4.6 Evaluation

We describe experiments using a single path topology in Section 4.6.1, and using a multipath

topology in Section 4.6.2. We evaluate the effectiveness ofrate throttling in Section 4.6.3. We examine

NetShare scalability to a large network topology in Section4.6.4, and show how Stochastic NetShare

scales to smaller number of queues and large number of applications in Section 4.6.5. All experiments

were conducted on the Fulcrum testbed except the scalability experiments which used ns-2.

4.6.1 Single Path Experiments

We evaluated the performance of one latency critical application (modeled with FTP) in the

presence of a large Hadoop Sort application with and withoutNetShare. We used a single-path topology

with a single core switch as shown in Figure 4.7a. HDFS was configured with a default replication factor

of 3 and the HDFS block size was set to 256 MB. For Hadoop, one ofthe servers was configured as a

master while all the servers were configured as slaves. The Hadoop application was configured to use 8

disks (4 for HDFS and 4 for the task tracker) on each server.

Before the experiment began, we generated 56GB of data usingthe Hadoop RandomWriter

application. To start the experiment, we ran a Hadoop Sort job on the 56 GB of random data using 36

maps (3 per slave) and 36 reducers (3 per slave). During the sort, we introduced an FTP job of various



90

Table 4.2.Completion time of the latency-sensitive FTP job for different file sizes

File size NetShare (sec) Without NetShare (sec)
1 MB 0.02 0.3
10 MB 0.2 1.9
100 MB 1.7 31
1 GB 18 240

file sizes ranging from 1 MB to 1 GB from Host 1 to Host 5 at different times.

In the map phase of the Hadoop application, there is minimal network utilization and the jobs

are mainly CPU/disk bottlenecked. During the reduce phase,there is considerable data shuffling and

the network is highly utilized. In particular, the Hadoop application opens up a large number of TCP

connections between its reducers. Thus one would hypothesize that during the reduce phase, the latency

an FTP job of a few Gbytes or less could greatly increase without ”protection” from NetShare because of

contention for bandwidth on the core links.

Figure 4.8a shows the bandwidth obtained by the FTP and Hadoop jobs on one of the core links

without NetShare where the FTP job was started after time t = 200 when the map phase of the Sort job

finished. Note that the FTP job could only acquire less than 50Mbps of the core bandwidth of 1 Gbps

and completed in 240 seconds. This is because the Hadoop application often has 20 concurrent TCP

connections competing with the single TCP connection of theFTP for bandwidth on the core link. By

contrast, using NetShare with equal weights for both applications, the FTP job immediately acquired 500

Mbps, i.e. the fair share, and completed in 18 seconds (Figure 4.8b). With NetShare the 1 Gbyte FTP job

completed in 18 seconds (a speed of slightly less than 0.5 Gbps possibly because the speed of writing to

disk is also a factor).

Note also that before t = 200 s, the map phase of the Hadoop application uses very little core

bandwidth. Thus one would suspect that if the FTP application was started during the map phase, the FTP

would complete much faster. Figure 4.8c shows this is indeedthe case by showing the core bandwidth

usage when the FTP job was started in the map phase. In this case, the FTP job acquires the full link

capacity of 1 Gbps and completes in 9 seconds.

To show that these results scale down to small file sizes, Table 4.2 shows the completion time

for the FTP job using file sizes as small as 1 MB. Each FTP was started in the reduce phase as described

above and the completion times are described with and without NetShare. It is easy to see that with

NetShare, the FTP application gets a guaranteed bandwidth of roughly 0.5 Gbps regardless of network



91

time (sec)
0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

M
bp

s)
0

200

400

600

800

1000

Large Hadoop job
Short file transfer (1GB)

(a) Without NetShare

time (sec)
0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

M
bp

s)

0

200

400

600

800

1000

Large Hadoop job 
Short file transfer (1GB)

(b) With NetShare

time (sec)
0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

M
bp

s)

0

200

400

600

800

1000

Large Hadoop job 
Short file transfer (1GB)

(c) No job overlapping

Figure 4.8. Competition for bandwidth between a short latency sensitive (1GB file transfer) job and a
long running Hadoop job on a core link



92

activity. Without NetShare, FTP performance is 10 to 15 times worse, depending on the aggressiveness of

the other job. To see how these results are affected by the number of reducers, we repeated the experiment

with a file size of 100 MB and changed the Hadoop application touse 14 instead of 36 reducers. The FTP

transfer time without Hadoop improved from 31 to 12 seconds (corresponding to a factor of 2.5 reduction

in number of connections). The FTP time with NetShare remained unchanged.

The transfer of a small file is a representative of a latency critical application. Without NetShare,

the latency of such an application can vary from feast (during the Map phase) to famine (during the

Reduce phase). With NetShare, on the other hand, a minimum level of performance for SLAs is possible

regardless of timing. While the samelatencyguarantees can be obtained by rate-limiting the Hadoop

application to 0.5 Gbps, in that case the Sort phase for the Hadoop application doubles from 800 sec to

1600 seconds. With NetShare, the Hadoop application gets 0.5 Gbps during the 18 seconds it is concurrent

with the FTP but gets 1 Gbps during the remaining 780 seconds of the Sort and finishes in around 810

seconds. It is precisely this ability to provide maximalthroughputfor big jobs together with predictable

latency guarantees for smaller jobs that makes mechanisms such as NetShare essential for data centers.

4.6.2 Multipath Experiments

We have seen NetShare’s ability to divide the network bandwidth fairly on demand for asingle

path topology. We now show that the isolation extends to a multipath topology where NetShare truly

divides the bisection bandwidth (both core links) on demand. We configured the Fulcrum switch to use the

two-core switch topology shown in Figure 4.7b. Each edge/pod switch performs ECMP to hash flows onto

the two paths for interpod flows. Again the core switches werethe bottlenecks with an oversubscription

factor of 2:1 for interpod traffic. Instead of a single FTP application and a single Hadoop application,

we usedtwo Hadoop Sort applicationsA1 with 96 maps and 96 reducers, andA2 with 96 maps and 48

reducers. Note that since ECMP only divides TCP flows across multiple paths, we need two applications,

each of which opens up multiple flows.

Concretely, we first generated 96GB of data for each instanceusing the Hadoop RandomWriter

application (8 maps per slave× 12 slaves). We subsequently ran two Hadoop Sort jobs in the two Hadoop

instancesA1 andA2. A1 used a total of 96 maps (8 per slave) and 96 reducers (8 per slave) whileA2 used

96 maps (8 per slave) and 48 reducers (4 per slave). All other Hadoop parameters were as described in

Section 4.6.1.

First we ran the sort jobs without NetShare in the network. Inthis case,A1 used twice the



93

time (sec)
0 30 60 90 120 150

T
hr

ou
gh

pu
t (

M
bp

s)
0

200

400

600

800

1000
App 1

App 2

App 3

Figure 4.9.NetShare with Group Allocation (DRR) + Rate Throttling

bandwidth (summed over all core links, the “bisection bandwidth”) when compared toA2 because it

opens up nearly twice the connections. Next, we set up NetShare by configuring DRR with equal weights

for the 2 applications. Note that the bandwidths on the various core links are not shared as uniformly

because of hashing effects and because the sort does not saturate all links consistently.

Using NetShare,A1 completed sorting in 1633s whileA2 completed sorting the data in 1810s.

To show that NetShare is sharing the bisection bandwidth, weran A1 andA2 in exactly the same way

except using the single core topology. Using NetShare in thesingle core topology we found thatA1 and

A2 finished sorting in 3070s and 3212s. After factoring out the500s for the map phase (that is unaffected

by the extra bandwidth), the bisection bandwidth appears tobe nearly equally shared between the two

“services” and both have been sped up by nearly a factor of 2. Some difference is not surprising because

A1 has more connections, and thus its use of ECMP load balancing is likely more effective thanA2.

4.6.3 How Effective is Rate Throttling?

We deploy three applications with the testbed in Figure 4.7a: A1 generates a TCP flow from host

H1 to host H5;A2 generates a UDP flow from hostH2 to hostH9; andA3 generates a UDP flow from

hostH6 to hostH10. The weights of the applications A1,A2, A3 were set to 1:3:9 respectively.

Table 4.3 shows the traffic pattern. During the time 5-35s,A3 is inactive and thus the TCP flow

A1 (weight 1) contends with the UDP flowA2 (weight 3) for the core linkE1,C. From time 35-65, the

two UDP applicationsA2 andA3 (with weights 3 and 9) contend for the core linkC,E3. From time 65-95,

the TCP applicationA1 contends with the high weight UDP application but only on the link from edge



94

time (sec)
0 30 60 90 120 150

T
hr

ou
gh

pu
t (

M
bp

s)

0

200

400

600

800

1000
App 1

App 2

App 3

Figure 4.10.No NetShare mechanisms

time (sec)
0 30 60 90 120 150

T
hr

ou
gh

pu
t (

M
bp

s)

0

200

400

600

800

1000
App 1

App 2

App 3

Figure 4.11.NetShare with Group Allocation Alone

time (sec)
0 30 60 90 120 150

T
hr

ou
gh

pu
t (

M
bp

s)

0

200

400

600

800

1000
App 1

App 2

App 3

Figure 4.12.NetShare with Rate Throttling Alone



95

Table 4.3.Traffic pattern that indicates times during which differentflows are active.

Time(s) A1 A2 A3 Bottlenecks
5-35 X X X E1,C
35-65 X X X C,E3
65-95 X X X E2,C
95-125 X X X All of the above

routerE2 to core routerC. Thus the UDP application can only interfere with TCPacknowledgementsfor

A1 destined to HostH1.

We evaluate the following scenarios.

1. Group Allocation and Rate Throttling: As shown in Figure 4.9, each application receives

its weighted share of the network resources. For instance, during the period 5-35s,A2 gets 750 Mbps

andA1 gets 250 Mbps as they are sharing the bottleneckE1,C in the ratio 3:1 of their weights. However,

from t=95-125sA1’s TCP flow gets close to 725Mbps, which exceeds the share allocated by its application

weight, but sinceA2’s UDP flow has a downstream bottleneck on the linkC,E3 only 250 Mbps of the

UDP flow is “useful” (that is the throughput of the UDP flow thatactually reaches the receiverH9). So

in this case,A2 gets rate limited at the ingress switch to 275 Mbps (250 * 1.1) which results inA1 getting

close to 725 Mbps. Without rate throttling we will see thatA1 will send at much higher rates and get

dropped atC.

2. No NetShare:As shown in Figure 4.10, whenA1 andA2 are both active in time 5-35s,A1’s

TCP flow is overwhelmed byA2’s UDP flow and receives zero throughput. Note that from t=65-95s,A1’s

throughput does not reach 1 Gbps although its path fromH1 to H5 is not affected byA3’s UDP flow.

However, the ACKs fromH5 toH1 share a link withA3’s UDP flow; some of the ACKs get dropped, this

results inA1’s throughput dropping to sometimes as low as 750 Mbps.

3. Group Allocation Only: Figure 4.11 shows the impact of omitting Rate Throttling. In

the period t=95-125s,A2 andA3 share the bandwidth of their shared bottleneck link in the ratio of their

application weights (3:9). ThusA2 only receives 250Mbps. Unfortunately,A1 also receives only 250Mbps

becauseA2 continues to send greedily at 750Mbps on theE1,C link of which 500Mbps gets dropped at

C.

4. Rate Throttling Only: In Figure 4.12, the behavior is similar Case 1 from t=5-95s. However

from t=95-125s,A1 only achieves nearly 450-500Mbps. This is becauseA2 gets rate limited atE1 to a

little over 500Mbps, soA1 is able to use the remaining bandwidth on theE1,C link. Thus rate throttling



96

Figure 4.13.Three-tiered data center topology used for scalability experiments

and fair queuing are orthogonal and complementary mechanisms.

4.6.4 Scaling to Larger Topologies

Due to the constraints of our hardware testbed, we explore the scalability of NetShare to larger

topologies and more applications by ns-2 simulation. As shown in Figure 4.13, each application has its

own dedicated node at each edge switch. Two different applications such asA1 andA2 are assigned to

nodes alternately. All links between the switches are 10 Mbps. We vary number of applications and TCP

connections per application.

Within each application, the communication pattern is all-pairs. Furthermore, each pair of nodes

open up toC connections in parallel, whereC is a parameter. We explore the parameter space of the

number of applications (N), application connections (C) and policies with and without NetShare.

We vary the parameters of the first applicationA1 and keep same configurations for the remaining

N−1 applicationsA2, ...,AN. We report only the maximum and minimum bandwidths for the applications

in setA2, ...,AN. W denotes the DRR weights.

We observe that NetShare with Group Allocation via DRR comesclose to achieving the desired

network sharing independent of the number of connections that each individual application makes. For

example, as shown in Table 4.4, each of the four applicationswith two connections between any pair

of nodes get 36 Mbps. Without NetShare, one heavyweight application can acquire more bandwidth by

increasing its connections per node pair (e.g. upto 84 Mbps with 8 connections and 106 Mbps with 16

connections). On the other hand, NetShare always prevents that application from getting more that 40

Mbps. Note that this is slightly above its fair share (36 Mbps) but independent of the connections made

by other applications.



97

Table 4.4. Application bisection bandwidth under several traffic parameters and with and without Net-
Share (DRR only).

N C DRR? W
Bandwidth (Mbps)

A1 max
A2..N

min
A2..N

1 2 - - 131.7
1 8 - - 141.7
4 2, 2 Y 1, 1 35.6 35.1 37.0
4 2, 2 Y 1, 2 22.6 40.0 41.5
4 8, 2 Y 1, 1 40.2 34.0 36.0
4 8, 2 N - 83.8 19.4 20.6
4 8, 2 Y 1, 2 24.7 38.5 41.9
4 16, 2 Y 1, 1 40.1 35.1 35.8
4 16, 2 N - 105.5 12.2 14.0
4 16, 2 Y 1, 2 25.2 39.4 40.7
8 2, 2 Y 1, 1 18.3 17.7 19.0
8 2, 2 Y 1, 2 10.4 18.9 20.0
8 8, 2 Y 1, 1 20.4 17.1 18.5
8 8, 2 Y 1, 2 11.6 18.3 19.8
8 8, 2 N - 53.1 11.6 13.9
8 16, 2 Y 1, 1 20.2 17.1 18.4
8 16, 2 Y 1, 2 11.7 19.0 20.2
8 16, 2 N - 77.9 9.1 10.4



98

(a) Single path (1 core) (b) Multipath (2 cores)

Figure 4.14.Topologies for Stochastic DRR experiments

Furthermore, bisection bandwidths also reflect NetShare administrative weights. For example,

the bisection bandwidths for the four applications, one of which having weight 1 and the remaining

having weight 2, are 22 Mbps and 41 Mbps respectively. Also, the application with smaller weight

cannot increase its share by increasing the number of connections between its nodes. Finally, we scale

the experiments from 2 to 4 to 8 applications and observe similar effects.

4.6.5 Scalability of Stochastic NetShare

A concern with Group Allocation is that it requires a number of queues equal to to the number

of applications. To scale beyond the 16 queues available today and the 1000’s available shortly with AFD-

based routers[54], we proposed stochastic NetShare. We nowevaluate this scheme and compare it with

the analysis in Section 4.4.1.

Figure 4.14a shows our experimental setup with one core switchC0, four edge switchesE1 to

E4, and eight serversS1 to S8 (two servers per edge switch). Note that all links have equal capacity with

an oversubscription factor of 2 at core links. There is an instance of each application on all servers and

the traffic pattern is all-to-all. We evaluateN = 32 applications, in which one application is “bad”, i.e.

with low priority weight and competing aggressively for bandwidth by opening ten times the number of

connections. Link capacity isB= 100 Mbps. We evaluate the scalability of Stochastic DRR by varying

the number of DRR queues per switch portQ= 4,8,16.

Stochastic DRR with equal weights Table 4.5 shows the application bandwidth at one typical server.

All DRR queues are assigned the same weights and independentof the number of applications being

hashed into them. The rates fluctuate but the bandwidth mean and variance are consistent among all

applications. As captured by our model in Section 4.4.1, theimpact of the bad application declines with



99

Table 4.5. Scalability of Stochastic DRR: application bandwidth at one typical server in (mean, stddev)
over time. All queues have equal weights.B̄= B

N ·
Q−1

Q is the expected bandwidth per application. Ideal

bandwidth isB
N = 3.1 Mbps.T is rehashing period (in seconds).

T=5 T=10 T=20
Q=4 Bad app (13.6, 3.3) (14.3, 2.6) (12.4, 2.8)

B̄= 2.3 Good app (2.2, 1.5) (2.2, 1.3) (2.4, 1.4)
Q=8 Bad app (8.9, 2.1) (8.9, 1.9) (9.0, 2.0)

B̄= 2.7 Good app (2.8, 2.2) (2.3, 1.7) (2.5, 1.8)
Q=16 Bad app (6.7, 1.5) (6.6, 1.6) (6.7, 1.7)

B̄= 2.9 Good app (2.8, 1.9) (3.1, 2.2) (3.3, 2.5)

additional queues in the system. The mean is close to our prediction (the ideal bandwidth isB/N which

around 3.1 Mbps, together with a degradation ofQ−1
Q , whereQ is the number of queues). Note that while

we have simulated only 32 applications because of ns-2 limitation, the model, which is validated here,

should scale to larger numbers of applications.

Note that periodic rehashing of applications onto DRR queues reduces variance. Clearly the

rehashing periodT should neither be too small (for good stability and minimizing out-of-order packets)

nor too large (for good bias correction). 10 seconds appearsto be a good compromise.

Priorities and Stochastic NetShare In this experiment, we divided 32 applications into two buckets:

16 of low priority (weight 1) and 16 of high priority (weight 2). All the low priority applications are

more bandwidth-aggressive. We omit the details but note that there was isolation between low priority

and high priority applications. However, the final bandwidth ratios averaged across all 8 connections of

each service show a ratio of approximately 1:1.4 between lowweight and high weight services, which is

less than the ideal ratio of 1:2.

Note that if there is only one single hop, DRR guarantees bandwidth per application being di-

vided exactly according to weight assignment. However, in ageneral topology with with multiple hops,

bandwidth per application is only approximately related toits weight because, as we said earlier, errors

can cascade across hops. If no high priority traffic is available at a core router because it is queued at an

edge switch, the core router can send more of the low priorityqueue traffic. We conclude that Stochastic

NetShare works well with equal weights; with unequal weights, it only works approximately. It will work

best with routers that should be entering the market soon with 1000’s of AFD [54] classes.



100

4.7 Automatic Weight Assignment

We propose a simple scheme for automatic weight assignment for applications or services. In

an enterprise or cloud data center, when resources are provisioned for an application or customer, the

customer usually requests some number of servers or VMs (instances) each with some number of CPUs,

RAM and disk. Besides this, each instance must also be allocated some units of network bandwidth. For

example, if each server has a 10Gbps NIC, we could place upto 10 VMs on the server each allocated

1Gbps of bandwidth.

We leverage two fundamental ideas. First, we use per switch-port weights, i.e. weights per

application can vary from switch to switch, and even from oneswitch port to another. Second, we assign

weights based on VM placement. In particular, we compute both thedownstreamandupstreamsums of

the bandwidths assigned to all VMs allocated to applicationA with respect to switch portP. Then the

weight assigned toA at P is the smaller of the two.

As an example, suppose there is an accounting application with 2 servers connected to an edge

switch and each server has 4 instances of an accounting application. The uplink of the edge switch is

connected to a core switch and from there to other servers with 8 instances of the accounting application.

Assume each VM instance is allocated 1 Gbps. Then we set the accounting application’s weight at each

of the 2 downlink ports of the edge switch to be 4 (smaller of 4 and 12), while we set its weight at the

uplink port to be 8 (smaller of 8 and 8). Note that taking the minimum makes sense because even if there

are 8 VMs upstream that can transmit at 8 Gbps, there are only 4VMs downstream that can receive only

at an aggregate capacity of 4 Gbps.

We make the following assumptions. First, VM bandwidths at servers are enforced using mech-

anisms like Linux HTB qdisc. Second, we have knowledge of thecomplete topology and placement of

each VM instance. Third, in a multirooted tree network, forwarding is based on ECMP. We assume that

each egress port in a switch either forwards traffic upwards from a server towards the core layer (up facing

ports) and the rest of the fabric or forwards traffic down towards a server (down facing ports). This is a

technique that simplifies the routing while also avoiding routing loops. Finally, in this setup, each egress

port on the switch has a definite role in terms of the which server’s traffic flows through it. For example

in a two level multirooted tree network, a down facing port ona core switch can forward traffic to servers

in a particular edge switch from all other edge switches while an upfacing port on an edge switch can

forward traffic from the servers on that edge switch to all servers in other edge switches. Servers to which



101

the particular port forwards traffic are called downstream servers and the servers from which this traffic

could be coming are called upstream servers of that port.

While we have used global weights for the bulk of this paper for simplicity, we note that ex-

tending the definitions to per-port weights is straightforward. For example, the standard water-filling

algorithm [9] must be modified to use the weight of each application/service at the current bottleneck link

as opposed to a global weight.

4.8 Related Work

The need for QoS in data centers has become apparent in several recent papers. Seawall[65]

performs isolation by enforcing VM-to-VM rates for VMs belong to one application/customer in the

hypervisor using congestion feedback. Seawall mechanismsare more complex but they are more granular

(VM to VM) and can handle large numbers of applications/customers. AF-QCN [38] is an approximation

to the standard QCN Layer congestion control scheme that canuse different drop rates for each application.

However, the scheme requires router hardware changes and currently provides guarantees only for a single

link. mClock [32] proposes an algorithm specific to I/O resource allocation in the hypervisor at end

hosts. SecondNet[34] proposes a heuristic to mapvirtual data centerspecifications into the physical data

center infrastructure with constraints on resource demands. SecondNet uses reservations and hence is

complementary to NetShare. Flowvisor [63] virtualizes a testbed network to allow multiple experiments

to run concurrently but does so using suboptimal hop-by-hopallocation. The HP QoS Framework [40]

allows network QoS to be implemented centrally but is only a framework that can, in fact, be used to

implement NetShare. [7] discusses a VM placement policy based on the network requirements for each

customer. Bandwidth is reserved for each customer’s VMs andthe fair share for each flow is computed

by a centralized controller for that customer. Multiplexing across customers requires coordination among

controllers of different customers or a single central controller similar to NetShare.

Fair queuing [21] and Core-stateless fair queuing(CSFQ) [71] do not guarantee max-min allo-

cation. [67] and [64] extend CSFQ to obtain max-min allocations but require header changes. DiffServ

allows statistical multiplexing by marking traffic exceeding the allocated share and dropping marked pack-

ets if needed. For lack of space, we omit experiments that show that DiffServ dropping reduces efficiency

compared to NetShare. NetShare differs from DRL which controls bandwidthin and outof the cloud as

opposed towithin the cloud.

Many papers (e.g., [41, 19]) show that max-min allocation inthe presence of load balancing or



102

multipath is, in general, NP-complete. However, the hardness result does not apply to regular data center

topologies where routes are fixed. Duffield et al introduce a hose model [23] to specify aggregate demand

but requires complex algorithms which decrease responsiveness. NetShare assumes that routing is fixed by

a routing protocol such as OSPF. Thorup and Rexford show thatthere is considerable flexibility to change

routes by changing OSPF weights [28] without pinning every route using MPLS. Traffic engineering

such as OSPF-TE (RFC 3630) can be used to efficiently route traffic but does not allocate bandwidth

across services. RFC 3630 (Traffic Engineering Extensions to OSPF) only supports static reservation.

4.9 Summary

NetShare allows managers to use weights to tune the relativebandwidth allocation for different

services, providing allocation, isolation and statistical multiplexing without changing routers. Managers

can use NetShare with Virtual Disks and Virtual Machines to create Virtual Data Centers. While NetShare

is based on a simple packaging of existing ideas (max-min fair share, stochastic fair queuing, UDP rate

throttling) no such mechanism exists today.

Without NetShare, latency critical jobs can be slowed down by Hadoop jobs. With NetShare,

latency critical jobs can be protected without artificiallyslowing down large jobs. Group allocation works

well with only configuration changes at routers; it can be extended to scale to more applications than

the number of DRR queues available today either using AFD [54] or stochastic methods. Rate throttling

protects against UDP application misbehavior and may be simpler than deploying TCP-friendly UDP.

Finally, centralized allocation can implement arbitrary bandwidth allocation policies, and can provide

stability. We suggest a simple automatic weight assignmentalgorithm based on finding the number of

VMs upstream and downstream from a port.

Chapter 4, in part, is a reprint of the material as it appears in “NetShare and Stochastic NetShare:

Predictable Bandwidth Allocation for Data Centers” inProceedings of ACM SIGCOMM Computer Com-

munication Review (CCR)2012. Lam, Vinh The; Radhakrishnan, Sivasankar; Pan, Rong;Vahdat, Amin;

Varghese, George. ACM, 2012. The dissertation author was the primary investigator and author of this

paper.



Chapter 5

Conclusions

In this dissertation, we have discussed novel designs for scalable bandwidth allocation on horizon

of emerging technologies: event loggers, load balancing, and cloud services. Our solutions are based on

probabilistic algorithms and designs because these approaches are inexpensive to implement, require

constant memory and processing time, and are applicable to awide range of contexts. In Chapter 2, we

showed that our Carousel scalable logger can collect nearlyall sources, assuming they send persistently, in

nearly optimal time while it is easy to implement in both software and hardware. Furthermore, Carousel is

applicable to other monitoring tasks where the events must be logged at high speed, but with low logging

memory and small logging speeds. In Chapter 3, we have described Flame, a system to do dynamic

load balancing in data center networks. Our key techniques include the proxy queue to measure traffic

load accurately, the power of choice to select the optimal path in a hardware-friendly manner, and the

aging mechanism and heavy-hitter filter to optimize memory usage. We demonstrated the efficacy of

Flame through analytical studies as well as simulations on realistic network traces and synthetic data

center workloads as inspired by recent studies of production data centers. In Chapter 4, we showed

that the notion of a virtual data center requiresboth computing and bandwidth guarantees. NetShare

allows managers to use weights to tune the relative bandwidth allocation of different services. Without

NetShare, a service can be held hostage by other services that either open multiple connections or use

non-compliant congestion control protocols. We introduced three simple techniques for implementing the

NetShare abstraction ranging from group allocation per link to centralized allocation that trade decreasing

responsiveness for more general allocation policies.

103



Bibliography

[1] Fulcrum Monaco http://www.fulcrummicro.com/.

[2] . IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force. http://www.ieee802.org/3/ba/.

[3] Mohammad Al-Fares, Rishi Kapoor, George Porter, SambitDas, Hakim Weatherspoon, Balaji Prab-
hakar, and Amin Vahdat. User-extensible Active Queue Management with Bumps on the Wire. In
ANCS, 2012.

[4] Mohammad Al-Fares, Alex Loukissas, and Amin Vahdat. A scalable, commodity data center net-
work architecture. InSIGCOMM, 2010.

[5] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vah-
dat. Hedera: Dynamic Flow Scheduling for Data Center Networks. InNSDI, 2010.

[6] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji
Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center TCP (DCTCP). InSIGCOMM,
2010.

[7] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards predictable data
center networks. InPrc. SIGCOMM’11.

[8] D. Bergamasco and Rong Pan. Backward Congestion Notification (BCN) Version 2.0.IEEE 802.1
Meeting, 2005.

[9] D. Bertsekas and R. Gallager.Data Networks. P. H., 1992.

[10] Burton Bloom. Space/time trade-offs in hash coding with allowable errors. InCommunications of
the ACM, 1970.

[11] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. InCambridge University
Press, 1998.

[12] J. L. Boudec. Rate adaptation, congestion control and fairness: A tutorial. 2008.

[13] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering,D. Estrin, S. Floyd, V. Jacobson, G. Min-
shall, C. Pamidge, L. Pererson, K. Ramakrisbnan, S. Shenker, J. Wroclawski, and L. Zhang. Rec-
ommendations on queue management and congestion avoidancein the Internet. InIETF RFC (In-
formational) 2309, April 1998.

[14] R. Braden and L. Zhang et al. Resource reservation protocol (rsvp) – version 1, function specifica-

104

http://www.ieee802.org/3/ba/


105

tion, rfc 2205. Inhttp://www.rfc-editor.org/rfc/rfc2205.txt, 1997.

[15] A. Broder and M. Mitzenmacher. Network applications ofBloom filters: A survey.Internet Math,
1(4), 2003.

[16] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh, and Jacobus
van der Merwe. Design and implementation of a routing control platform. InProceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation, pages 15–28, 2005.

[17] CAIDA. CoralReef Software. http://www.caida.org/tools/measurement/coralreef/.

[18] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott Shenker.
Ethane: taking control of the enterprise. InProc. SIGCOMM ’07.

[19] J. Chou and B. Lin. Optimal multi-path routing and bandwidth allocation under utility max-min
fairness. InIWQoS ’09.

[20] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing algorithm. InProc.
SIGCOMM ’89.

[21] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing algorithm. InProc.
SIGCOMM ’89.

[22] S. Dharmapurikar and V. Paxson. Robust tcp stream reassembly in the presence of adversaries. In
14th USENIX Security Symposium, pages 5–5, 2005.

[23] N. G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K. Ramakrishnan, and Jacobus
E. Van Der Merwe. Resource management with hoses: point-to-cloud services for virtual private
networks.IEEE/ACM Trans. Netw. 2002.

[24] Cristian Estan and George Varghese. New Directions in Traffic Measurement and Accounting. In
SIGCOMM, 2002.

[25] Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. Summary Cache: A Scalable Wide-
Area Web Cache Sharing Protocol.IEEE/ACM Transactions on Networking, 8(3), 2000.

[26] S. Floyd and V. Jacobson. Random Early Detechon Gateways for Congestion Avoidance. In
IEEE/ACM Transaction on Networking, 1993.

[27] Sally Floyd and Van Jacobson. Link-sharing and resource management models for packet networks.
IEEE/ACM Trans. Netw.’95.

[28] B. Fortz, J. Rexford, and M. Thorup. Traffic engineeringwith traditional ip routing protocols.IEEE
Comm., 2002.

[29] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic Sys-
tems. In3rd ed, Addison Wesley.

[30] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark Buffers in the Internet. InCommunications of
the ACM, January 2012.

http://www.caida.org/tools/measurement/coralreef/


106

[31] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim, Paran-
tap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. VL2: a scalable and flexible data
center network. InSIGCOMM, 2009.

[32] Ajay Gulati, Arif Merchant, and Peter Varman. mClock: Handling Throughput Variability for Hy-
pervisor IO Scheduling. InProc. OSDI ’10.

[33] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen Tian, Yong-
guang Zhang, and Songwu Lu. Bcube: a high performance, server-centric network architecture for
modular data centers. InSIGCOMM, 2009.

[34] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, Peng Sun, Wenfei Wu, and
Yongguang Zhang. SecondNet: A Data Center Network Virtualization Architecture with Bandwidth
Guarantees. InProc. ACM CoNEXT ’10.

[35] Ellen L. Hahne. Round-robin scheduling for max-min fairness in data networks.IEEE J. Comms,
1991.

[36] S. Hogg. Security at 10 Gbps:
http://www.networkworld.com/community/node/39071. InNetwork World, 2009.

[37] Raj Jain. Congestion Control and Traffic Management in ATM Networks: Recent Advances and A
Survey. InComputer Networks and ISDN Systems, 1996.

[38] Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, RongPan, and Balaji Prabhakar. AF-QCN:
Approximate Fairness with Quantized Congestion Notification for Multi-tenanted Data Centers. In
Proc. Hot Interconnects ’10.

[39] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. Flare: Responsive Load Bal-
ancing Without Packet Reordering. InACM CCR, 2007.

[40] Wonho Kim, Puneet Sharma, Jeongkeun Lee, Sujata Banerjee, Jean Tourrilhes, Sung-Ju Lee, and
Praveen Yalagandula. Automated and scalable qos control for network convergence. InUSENIX
INM/WREN, 2010.

[41] J. Kleinberg, Y. Rabani, and E. Tardos. Fairness in routing and load balancing. InJ. Comput. Syst.
Sci, pages 568–578, 1999.

[42] B Lampson. Alto: A personal computer. InComputer Structures: Principles and Examples, 1979.

[43] Michael Laor and Lior Gendel. The Effect of Packet Reordering in a Backbone Link on Application
Throughput. InIEEE Network, 2002.

[44] Steven H. Low. A duality model of TCP and Queue Management Algorithms. InIEEE/ACM Trans.
Net. Vol 11, 2003.

[45] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of the TCP congestion
avoidance algorithm. InSIGCOMM CCR, 1997.

[46] P. McKenney. Stochastic fairness queueing. InInternetworking,1991.



107

[47] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru M.Parulkar, Larry L. Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan S. Turner. OpenFlow: enabling innovation in campus net-
works. SIGCOMM CCR’08.

[48] M. Mitzenmacher and E. Upfal.Probability and Computing: Randomized Algorithms and Proba-
bilistic Analysis. Cambridge University Press, 2005.

[49] Michael Mitzenmacher. The Power of Two Choices in Randomized Load Balancing. InPhD thesis,
1996.

[50] netem. The Linux Foundation.
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.

[51] Kathleen Nichols and Van Jacobson. Controlling Queue Delay. InACM Queue, 2012.

[52] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP Throughput: A simple
model and its empirical validation. InACM SIGCOMM’98.

[53] Fernando Paganini, Zhikui Wang, John C. Doyle, and Steven H. Low. Congestion control for high
performance, stability and fairness in general networks. In IEEE/ACM Trans. Net. Vol 13, 2005.

[54] R. Pan, B. Prabhakar, F. Bonomi, and B. Olsen. Approximate Fair Bandwidth Allocation: A Method
for Simple and Flexible Traffic Management. In46th Allerton Conf., 2008.

[55] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis.CHOKe: A stateless active queue manage-
ment scheme for approximating fair bandwidth allocation. In IEEE Infocom, 2000.

[56] Arash Partow. General purpose hash functions: http://www.partow.net/programming/hashfunctions/.

[57] J. B. Postel. Transmission control protocol. Technical Report Technical Report RFC 793, Informa-
tion Sciences Institute, September 1981.

[58] M. Raab and A. Steger. Balls into bins: a simple and tightanalysis. InWorkshop on Randomization
and Approximation Techniques in Computer Science, 1998.

[59] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain, and Barath Raghavan. Tcp fast
open. InACM CoNEXT, 2011.

[60] Costin Raiciu, Sebastien Barre, Christopher Pluntke,Adam Greenhalgh, Damon Wischik, and Mark
Handley. Improving Datacenter Performance and Robustnesswith Multipath TCP. InSIGCOMM,
2011.

[61] A. Ross. The coupon subset collection problem. InJournal of Applied Probability, 2001.

[62] Colleen Shannon, Emile Aben, kc claffy, and Dan Andersen. The CAIDA Anonymized 2008 Inter-
net Traces. http://www.caida.org/data/passive/passive2008dataset.xml.

[63] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick McKeown,
and Guru Parulkar. Flowvisor: A network virtualization layer. 2009. Technical report.

[64] Z. Shi. Token-based congestion control: Achieving fair resource allocations in P2P networks. In

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.caida.org/data/passive/passive_2008_dataset.xml


108

K-INGN’08.

[65] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. Seawall: Performance
Isolation in Cloud Datacenter Networks. InProc. HotCloud’10.

[66] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin. InSIGCOMM’95.

[67] Raghupathy Sivakumar, Tae-Eun Kim, Narayanan Venkitaraman, Jia-Ru Li, and Vaduvur Bhargha-
van. Achieving per-flow weighted rate fairness in a core stateless network. InProc. ICDCS’00.

[68] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. Deflating the big bang: fast and scalable
deep packet inspection with extended finite automata.SIGCOMM CCR’08.

[69] Snort. Snort ids: http://www.snort.org.

[70] W. Stadje. The collector’s problem with group drawings. In Advances Applied Probability, 1990.

[71] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing: a scalable architecture to
approximate fair bandwidth allocations in high-speed networks. IEEE/ACM Trans. Netw. ’03.

[72] tcn. Trace Control for Netem. http://tcn.hypert.net.

[73] tcptrace. . http://www.tcptrace.org.

[74] G. Varghese, J. Fingerhut, and F. Bonomi. Detecting evasion attacks at high speeds without reassem-
bly. SIGCOMM, 36(4), 2006.

[75] M. Vutukuru, H. Balakrishnan, and V. Paxson. Efficient and robust tcp stream normalization. InSP
’08: Proceedings of the 2008 IEEE Symposium on Security and Privacy, pages 96–110, 2008.

[76] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert G. Greenberg. COPE:
Traffic Engineering in Dynamic Networks. InProc. SIGCOMM ’06.

[77] W. Wu, P. Demar, and M. Crawford. Sorting Reordered Packets with Interrupt Coalescing. In
Comput. Netw., 2009.

[78] C. Zou, W. Gong, and D. Towsley. Code Red Worm Propagation Modeling and Analysis. InACM
CCS ’02.

http://tcn.hypert.net
http://www.tcptrace.org

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Carousel: Scalable Logging for Intrusion Prevention Systems 
	Introduction
	Model
	Analysis of a Naïve Logger
	The Naïve Logger Alone
	The Naïve Logger with a Bloom Filter

	Scalable logging using Carousel
	Partitioning and logging
	Collection Times for Carousel

	Carousel Implementations
	Snort Implementation
	Hardware Implementation

	Simulation Evaluation
	Baseline Experiment
	Logger Performance with Logistic Model
	Non-uniform source arrivals
	Effect of Changing Hash Functions
	Adaptively Adjusting Sampling Bits

	Snort Evaluation
	Related Work
	Summary

	Flame: Efficient and Robust Hardware Load Balancing for Data Center Routers
	Introduction
	Related Work
	Mechanisms
	Discounting Rate Estimator (DRE)
	Choosing the least loaded link
	State table design
	Handling heavy-hitters
	Profile-based rebalancing

	Hardware implementation
	Analysis
	DRE analysis
	Analysis of Flame state table design

	Evaluation
	Load balancing goodness metrics
	Simulation setup
	Simulation results
	Impact of packet reordering on TCP

	Summary

	NetShare and Stochastic NetShare: Predictable Bandwidth Allocation for Data Centers
	Introduction
	NetShare Specification
	NetShare Algorithms
	Group Allocation Leveraging TCP
	Stochastic NetShare
	Rate Throttling for UDP
	Centralized Bandwidth Allocator

	Analysis
	Stochastic NetShare Model
	Stability of Centralized Allocation

	Implementation
	Evaluation
	Single Path Experiments
	Multipath Experiments
	How Effective is Rate Throttling?
	Scaling to Larger Topologies
	Scalability of Stochastic NetShare

	Automatic Weight Assignment
	Related Work
	Summary

	Conclusions
	Bibliography



