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As the human brain performs cognitive functions or generates spontaneous mental process-

es within ever-changing, real-world environments, states of the brain are inevitably nonstationary.

This calls for innovative approaches to both obtain objective and quantitative insights into hidden

cognitive and mental states and study the dynamics of brain states that give rise to behaviors and

mental disorders. Despite electroencephalography (EEG) offering a noninvasive, portable, real-

time measurement of brain activity, an urgent need remains for computational tools to effectively

decode brain states from continuous, unlabeled EEG data, to quantitatively assess state changes,
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and to provide neuroscientific insights.

In this dissertation, I present three computational approaches for quantitative assessment of

brain-state dynamics by modeling multichannel, nonstationary EEG data at the level of functional

brain sources. I first describe a hypothesis-driven approach which uses independent component

analysis (ICA) to model distinct source activities under different brain states, characterized as

stationary processes that involve specific brain networks. Two ICA models corresponding to alert

and drowsy states in a sustained-attention experiment are identified, and a quantitative measure

is proposed to assess the fluctuations in drowsiness. Next, I present a data-driven approach -

Adaptive Mixture ICA (AMICA) - as an unsupervised-learning method for exploring nonsta-

tionary dynamics of unlabeled data. AMICA effectively characterizes EEG dynamics during

sleep for automatic staging, reveals transitions between alert and drowsy states at millisecond

resolution, and provides neuroscientific insights into active brain sources in each brain state. In

the remaining chapters, I introduce the Online Recursive ICA (ORICA) approach for adaptive

tracking of nonstationary sources that underlie continuous state changes, which incrementally

updates the ICA model upon presentation of new data. A comparison study demonstrates ORICAs

fast convergence property and its feasibility for real-time and online processing. An adaptive

forgetting factor is proposed to facilitate ORICA’s adaptive capacity. For maximum utility, an

open-source Real-time EEG Source-mapping Toolbox (REST) is built that integrates ORICA for

the source-level analysis and interactive visualization of live-streaming data. These advances in

computational tools provide a framework to study unlabeled, hidden cognitive or mental states

and support developments toward objective, quantitative, continuous, and real-time assessments

of the dynamic brain and its health.
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Chapter 1

Introduction

How does the brain function? How can such understanding improve our lives? The

field of neuroscience and neuroengineering in the 21st century has significantly advanced with

technological innovations and scientific breakthroughs, evidenced and further supported by the

launches of the BRAIN Initiative of the United States and the Human Brain Project of Europe

in 2013. Yet most of such advancements and grand challenges focus on the study of brain

mechanism at the molecular, cellular, and network levels. It is still challenging to translate the

results from neuronal networks to brain systems, from structural imaging to functional decoding,

from sensory and motor functions to cognitive and mental processes, and from animal to human

studies. With the study of functional decoding of cognitive systems in human, the top-down

approach may provide insights and hypotheses for closing the gap of understanding the brain at

different levels and for developing real-world applications to improve our lives.

Within real-world, ever-changing environments, as a human brain performs various

cognitive functions or undergoes different mental processes, states of the brain are inevitably

nonstationary. This nonstationary brain dynamics [7, 59, 34] may arise from continual formation

and dissolution of interacting brain regions whose activities can be described as dynamic systems

featuring continuous transitions between intermittently stable states [18, 10]. This brain (func-
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tional) state can be described as the state when the brain elicits stationary activities, i.e. statistical

properties of such processes do not change over time, which usually correspond to predictable

behaviors or cognitive performance. Examples of brain states include sleep stages [31] that was

characterized 50 years ago and spontaneous covert cognitive states [69] during various input

conditions or performance of mental tasks.

The dynamics of brain states that gives rise to fluidity and rapid adaptability in human

cognitions and behaviors has become an expanding focus in neuroscience. Being able to decode

and monitor human cognitive and mental states will significantly impact the fields of cognitive

sciences, clinical diagnosis and monitoring, neuroergonomics, and brain-computer interfaces. For

example, a neurofeedback system that estimates drowsiness of drivers can be applied to prevent

catastrophic incidents [122, 72]. Automatic assessment of sleep dynamics and objective evaluation

of the effectiveness of mindfulness training or rehabilitation can provide quantitative measures

for clinical diagnosis and prognosis. In neuroergonomics, information of workers’ cognitive

workload can help reduce performance errors and increase productivity with adaptive scheduling

and task assignment [35]. Estimation of mental fatigue [103] and operator’s mindset [125] enables

adaptive human-machine interaction in brain-computer interfaces (BCI) [124, 118]. Furthermore,

successful decoding of emotional states and stress levels will help neuroscientists understand

the high-level human cognitions and will revolutionize the fields in consumer electronics and

wearable devices. However, much remains unknown regarding the large-scale neural dynamical

systems that underlie the human cognitive and mental states, and a need remains for technological

and computational innovations to objectively, quantitatively, robustly decode and monitor the

dynamics of the brain states.

Advances in functional neuroimaging and electrophysiological techniques such as func-

tional MRI (fMRI), magnetoencephalography (MEG), functional near-infrared spectroscopy

(fNIR) and electroencephalography (EEG) have enabled researchers to measure large-scale brain

activities in human noninvasively. Although none of these techniques have the spatial resolution
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of single-neuron recording, they offer the ability to measure rapidly-changing temporal dynamics

of the whole neural system at the spatial resolution of functional brain regions. Among these non-

invasive modalities, EEG provides a more direct measurement of brain activity with millisecond

temporal resolution. Recent technological advancements in EEG, including the design of wireless

devices for portability, the invention of dry-sensors for fast preparation and convenience, and the

low weight and bulk of its sensors for comfortability, have made EEG an appropriate modality

for studying fast-changing human brain states in real-world environments.

While EEG recordings have long been available, most of conventional EEG methods

were developed for the study of brain responses to the presentation of perceptual stimuli or cued

actions, i.e. event-related potentials, and did not apply to spontaneous, endogenous, nonstationary

brain activities reflecting dynamics of brain states that are unlabeled and continuous without

precise timing. Data analytic methods and techniques for assessing the nonstationary activities

recorded in EEG signals and studying the dynamics of brain states have only been an active

research topic in the recent decades, thanks to the increase in computational power and the need

for real-time applications like neurofeedback. Earlier works focused on monitoring power of EEG

signals or spectra [7], information theory-based measures like entropy [87], or change points of

nonparametric statistics [58] for detecting and segmenting piecewise stationary processes. These

methods had not taken into account the spatial patterns of nonstationary signals. More recent

studies such as microstate analysis [115, 61] and global functional connectivity analysis [18, 10]

incorporated the spatial information for brain state identification by examining topologies of

an electric potential across multichannel EEG electrode montage or measuring inter-electrode

signal synchrony. However, none of the aforementioned methods offered hypothesis-driven

computational models of nonstationary brain processes and provided interpretable connections to

particular brain source activities that underlie the observed scalp phenomena.

Toward developing an EEG-based brain state monitoring system, a need remains for:

computational models for effective and robust decoding of brain states from nonstationary EEG
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signals; quantitative measures for assessing and tracking state changes; data-driven (unsupervised

learning) approaches for addressing issues with unlabeled, continuous data; and hypothesis-driven

approaches for neurophysiological interpretations and scientific insights. Desired properties of

such approaches include: temporal specificity with sub-second resolution at the single-trial level;

spatial specificity by measuring dynamics at a brain-sources level rather than a scalp-sensor level;

adaptive capability for modeling nonstationarity in on-line live-streaming data; and real-time

capability for real-world applications in which computational power and memory resources are

limited. Finally, open-source software is in demand for deployment of such approaches for

maximum impact and utility within and beyond the scientific community.

In this dissertation, I address these challenges and present three different computational

models with quantitative measures for both hypothesis-driven analysis and unsupervised learning

of brain state dynamics at the brain-sources level from continuous, nonstationary, unlabeled

(and labeled) EEG data. Extensive validation of these methods on both simulation datasets and

experimental EEG datasets are performed. Throughout the dissertation, I leverage these tools

to study and address various forms of nonstationarity due to a shift of brain states or variability

in recording devices (noises/artifacts), which are open challenges in the fields of cognitive

neuroscience, clinical neuroscience, and brain-computer interfaces. These include monitoring

drowsy and alert states in a driving experiment, characterizing sleep EEG dynamics for automatic

sleep staging, tracking transitions of brain and non-brain sources in task-switching experiments,

and adapting to abrupt signal changes due to displacements of sensors.

The overarching theme of the thesis is built upon the capability of independent component

analysis (ICA) [57, 8], which has been widely applied to EEG as a means for blind source

separation [74, 55, 78], in modeling activities of functional brain sources that underlie the

observed scalp phenomena. The application of ICA to EEG data is justified by a reasonable

assumption that multi-channel scalp EEG signals, x, arise as an instantaneous linear mixture, A,

of latent independent sources dynamics s such that x = A · s. ICA has demonstrated great success
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Table 1.1: Proposed ICA-based frameworks for modeling nonstationary signals and tracking
brain state changes

Standard ICA Multi-model ICA ICA mixture model Adaptive ICA
Model assumption x(t) = A · s(t) xk(t) = Ak · sk(t) x(t) = Ak · sk(t) x(t) = A(t) · s(t)
Data assumption stationary quasi-stationary quasi-stationary non-stationary
State hypothesis single discrete (labeled) discrete continuous
Label requirement no yes no no
Online capability no no no yes
Computation cost medium medium high low
Thesis chapters - ch2 ch3 ch4, ch5, ch6

in modeling sources in EEG by separating artifacts such as eye blinks and muscle activities [54]

and identifying neurophysiological sources [91, 90, 30, 78]. However, it is limited in modeling

nonstationary changes in EEG source locations and activities because of its spatial-stationarity

assumption produced by its limited model complexity (e.g. its use of a fixed spatial mixing matrix,

A). Furthermore, standard ICA algorithms such as Infomax ICA [8] and FastICA [51] are only

suitable for offline applications, where a large amount of training data are available.

This thesis aims to establish the use of three computational models, namely the multi-

model ICA, the ICA mixture model, and the adaptive ICA, that relax the ICA assumption on

the spatial stationarity of sources, extend ICA to model nonstationary sources, and equip with

quantitative measures to enable tracking of brain state changes. Their assumptions and capabilities

are summarized in Table 1.1. The main hypothesis, the source nonstationarity hypothesis [44],

states that different brain or cognitive states may involve cortical macro- or meso-dynamics in

networks of cortical brain areas that can be identified by distinct ICA models.

The multi-model ICA approach extends the standard ICA model by training distinct ICA

models, i.e. mixing matrices Ak and source activities sk, on data recorded before and after the state

transition, xk. The assumption is that the nonstationary signals arise from transitions between

quasi-stationary data segments, each corresponds to the activities of a distinct brain state.

In Chapter 2, we introduce the multi-model ICA approach and test the hypothesis against

EEG data from subjects performing a sustained-attention task in a driving simulator. We show that
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EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges,

can be characterized by distinct ICA models. With ICA models of the brain states, i.e. fluctuation

of alertness and drowsiness, can be tracked by measuring the goodness-of-fit of each ICA model

to a sliding window of EEG data using the proposed model deviation index (MDI). Even though

the ICA models are trained offline, we demonstrate an effective online framework by using a

pre-trained ICA model on an initial reference state for tracking dynamics of the state changes.

However, this hypothesis-driven approach requires labels of brain states to select training data for

ICA models, which are usually hard to obtain in a real-world environment.

The ICA mixture model (ICAMM) approach is a general unsupervised learning approach

that models data as a mixture of distinct source (ICA) models, i.e. x(t) = Aksk(t), with the similar

assumption that distinct ICA models may better characterize different segments of quasi-stationary

data. Different from the multi-model ICA approach, the ICAMM approach can learn multiple

ICA models simultaneously on unlabeled data by jointly optimizing the data likelihood.

Chapter 3 explores the use of an ICAMM approach, namely the Adaptive Mixture ICA

(AMICA), as a data-driven approach to studying dynamic changes in cognition and brain states.

After validating AMICA on quasi-stationary simulated data, we demonstrate that AMICA can

usefully characterize sleep EEG dynamics and effectively classify six sleep stages. Next, when

applied to the driving EEG dataset described in Chapter 2, AMICA automatically identifies two

source models accounting for alert and drowsy states. The degree of activation for each model,

measured by the model likelihood, can serve as a quantitative estimator of levels of drowsiness.

Furthermore, we show that the dynamic switching of the most active models can reveal the

brain state changes at single-trail level with milliseconds resolution. In all of these applications,

AMICA learns interpretable results including spatial distributions and temporal activities of active

sources in each ICA model underlying distinct brain states.

Both multi-model ICA and ICA mixture model approaches model the nonstationary

sources using a discrete number of ICA models, assuming quasi-stationary states, and reveal the
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state changes as the deviation from or the activation of the corresponding state-associated models.

The two approaches require a pre-defined number of ICA models, are computationally expensive,

and are mainly designed for offline analysis.

In Chapter 4, Chapter 5, and Chapter 6, we study the adaptive ICA approach, which

recursively and incrementally learns a time-varying ICA model A(t) upon presentation of new

data x(t). Different from the first two approaches, the adaptive ICA approach assumes that brain

states are continuously changing and attempts to track the state changes by adapting the time-

varying ICA model to the nonstationary data. The adaptive nature and light-weight algorithm of

this data-driven approach enable its online application for tracking state changes in near real-time.

Chapter 4 introduces the adaptive Online Recursive ICA (ORICA) combined with online

whitening for blind source separation of high-density EEG data. We show that ORICA can rapidly

extract principal brain and artifact sources in real 61-ch EEG data recorded by a wearable EEG

system in a cognitive experiment. Furthermore, we demonstrate ORICA’s capability to detect and

adapt to nonstationarity in 64-ch simulated EEG data corresponding to abrupt displacements of

electrodes, a common source of spatial nonstationarity in real-world mobile applications.

For further validation, Chapter 5 systematically compares ORICA with standard offline

ICA algorithms on experimental EEG dataset as a benchmark. We demonstrate that ORICA

reduces the computational runtime while still obtaining comparable source decomposition quality

compared with most of the ICA methods. The properties of fast convergence and low computa-

tional complexity of ORICA enable the realization of real-time online ICA process.

In Chapter 6, we improve the adaptation performance of ORICA by proposing an adaptive

forgetting factor, which dynamically adjusts the weight applied to new data in the ICA recursive

update based on the measured nonstationarity of signals. We empirically show that the adaptive

forgetting factors outperform other commonly-used non-adaptive rules when underlying source

dynamics are changing both in the simulated nonstationary EEG dataset and in the actual EEG

data recorded from a task-switching experiment.
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To enable real-time processing for real-world applications, in Chapter 7, we introduce the

Real-time EEG Source-mapping Toolbox (REST). The REST integrates ORICA into an online

data processing pipeline and thereby allows separation and localization of nonstationary sources

in near real-time. Furthermore, the REST provides an easy-to-use and interactive platform to

perform source-level analysis on live-streaming EEG data with various visualizations options. It is

an open-source toolbox, and the code is available at https://github.com/goodshawn12/REST.

Finally, Chapter 8 concludes the contributions and the findings of this dissertation. We

also identify some key future steps toward building a real-time brain-state monitoring system

and describe our current efforts in addressing those challenges. We end with a discussion of

the potential impact of such system on applications such as continuous clinical monitoring and

real-world brain-computer interfaces.
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Chapter 2

Monitoring Alert and Drowsy States by

Modeling EEG Source Nonstationarity

As a human brain performs various cognitive functions within ever-changing environments,

states of the brain characterized by recorded brain activities such as electroencephalogram

(EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals

include finding neurocognitive sources that underlie different brain states and using EEG data to

quantitatively assess the state changes.

In this chapter, we hypothesize that brain activities under different states, e.g. levels of

alertness, can be modeled as distinct compositions of statistically independent sources using

independent component analysis (ICA). This study presents a framework to quantitatively assess

the EEG source nonstationarity and estimate levels of alertness. The framework was tested against

EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator.

Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by

reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying

the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI),

we found that MDIs were significantly correlated with the reaction speeds (r = −0.390 with
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alertness models and r = 0.449 with drowsiness models) and the opposite correlations indicated

that the two models accounted for sources in the alert and drowsy states, respectively. Based

on the observed source non-stationarity, this study also proposes an online framework using a

subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For

classification of alert against drowsy states, the proposed online framework achieved an averaged

area-under-curve of 0.745 and compared favorably with a classic power-based approach.

This ICA-based framework provides a new way to study changes of brain states and

can be applied to monitoring cognitive or mental states of human operators in attention-critical

settings or in passive brain-computer interfaces.

2.1 Background

The concept of nonstationarity, as a change of ongoing patterns [7], in recorded brain

activities such as electroencephalogram (EEG) has received increasing attention in the fields

of neuroimaging and electrophysiology. The EEG nonstationarity might arise from different

involvements of neurocognitive sources or brain processes underlying complex human cognition

and behaviors [59]. Conventional EEG analyses that assume stationary signals such as averaging

event-related potential may overlook rich information in inter-trial variability reflecting nonsta-

tionary brain processes, and brain-computer interfaces (BCI) having a stationary model may lead

to deteriorating performance due to increased mental fatigue during the experiment [117, 103].

On the other hand, previous studies have suggested that stages of sleep can be characterized by

EEG quasi-stationary patterns [14], the level of alertness fluctuates in a cycle of 4 minutes or

longer [77], and routine spontaneous EEG is a stationary process over a short 3.5-second period

[113]. Yet a big challenge is the lack of quantitative, objective, and online approach to assess

the nonstationarity of the brain signals when humans show different cognitive and behavioral

performance and to estimate and track the brain states.
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EEG-based state monitoring has been an active research topic that focuses on the study of

nonstationary EEG to continuously track human cognitive or mental states. Target states include

mental workload [35, 104], fatigue [35], vigilance [111] and drowsiness [93, 122]. This has many

applications in neuroergonomics [35] and passive brain-computer interfaces (BCI) [124] that can

make use of the state information to prevent catastrophic incidents, e.g. drowsy driving, or to

implicitly enhance human-machine interaction. This study centers on one of state changes known

to impact human performance – namely changes between alertness and drowsiness.

Researchers have studied EEG correlates of alertness and drowsiness for the past two

decades. In 1993 Makeig et al.[77] found coherence of fluctuations in EEG spectrum and subjects’

levels of alertness inferred by performance in an auditory detection task. Several subsequent

studies also reported that EEG alpha or theta band power at central, parietal, or occipital sites

correlate with performance in sustain-attention tasks, which is associated with alert or drowsy state

[56, 65, 98]. Hence these states can be monitored by tracking changes of these EEG biomarkers,

e.g. fluctuations of their statistical properties or deviations from classification models [93, 122].

However, these studies focused on spectrum analyses of individual EEG channels, which required

selection of discriminative channels and features or used machine-learning approaches that

had limited neurophysiological validity and interpretation of the results. It is still desirable to

develop approaches that could further our understanding in the dynamics underlying alertness

and drowsiness fluctuations and could be generalized across sessions and subjects.

To model EEG dynamics and identify neurophysiological sources, one popular approach is

to transform EEG data from channel-space to activities in a source space using source separation or

source localization methods [74, 90, 24, 30]. For example, a widely used blind source separation

method – Independent Component Analysis (ICA) [57, 8, 66] – assumes EEG channel data, x,

are linear mixtures, A, of underlying independent sources activities s, i.e. x = As, and learns

a linear unmixing matrix W such that y = Wx recovers the statistically independent source

activities and WA ideally is a permuted and scaled identity matrix. ICA has demonstrated great

11



success in modeling EEG dynamics and identifying neurophysiological sources [90, 30, 78].

Previous studies have applied ICA to obtain a stationary model, i.e. A or W (ideally W is the

pseudo-inverse of A), for drowsiness estimation, assuming the same sources were involved in

different levels of alertness [93, 73, 19].

However, studies in electrophysiology and functional imaging have accumulated evidences

that different brain states may involve neural activities arising from different brain areas and

networks. Sarter et al.. [109] summarized that sustained attention and vigilance are mediated

by a neuronal network consisted of an anterior attention system and a posterior attention system,

which thereby facilitate or bias sensory processing in sensory-associational regions. Other studies

suggested that activations of frontal and prefrontal cortical areas driven by anterior cingulate

cortex are typically associated with executive functions and attention [53]. From alertness to

drowsiness, fatigue or microsleep, brain activities seem to shift from high-frequency (beta and

gamma waves) to low-frequency activities (alpha, theta, and delta waves) [65, 100], and spread

through a larger brain area [65, 108]. For example, Lal et al.[65] reported that during the onset

of fatigue, delta and theta activity were present mostly in the frontal, central, and parietal areas

of the brain. Santamaria et al.[108] reported that during drowsiness there was a change in alpha

distribution: occipito-parietal alpha spreads to anterior areas and becomes more centro-frontal

and temporal.

Inspired and supported by these findings, this study assumed that different brain states,

i.e. drowsy versus alert states, involve not only different activities of brain sources but also

different networks of brain sources. This study further hypothesized that these distinct source

compositions and activities associated with alertness or drowsiness can be modeled by different

ICA models, i.e. (un-)mixing matrices A (W) and source activities s. The hypothesis was tested

against EEG data collected from 10 subjects participating in a sustained-attention task within a

driving simulator [72]. To demonstrate the utility of characterizing the EEG source nonstationarity,

this study proposed to measure the goodness-of-fit while applying each state-associated ICA
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model to EEG data, which was quantified by the model deviation index (MDI), an index for

estimating the levels of alertness or drowsiness. Finally, an online framework for alertness

estimation using the ICA model learned from an operator’s initial (alert) state was proposed, and

its performance was compared against a classic approach using alpha and theta power proposed

by Pal et al.[93].

Compared to existing studies, the proposed ICA model-based approach has the following

characteristics. (a) It is a generic approach that is not limited to assessing the levels of alertness

or drowsiness. It can potentially be applied to monitoring other cognitive or mental states such

as mental workload and emotions or brain states in clinical settings such as sleep stages and the

depth of anesthesia. (b) It estimates continuous levels of deviations from a known state as opposed

to classifying discrete states. (c) The ICA models of different brain states provide more insights

into neurophysiological sources and artifactual components under these states. In addition, the

proposed online framework for alertness estimation has the following advantages. (a) It is an

unsupervised approach, which does not require the availability of data from another namely the

drowsy state. (b) It does not require training data from other pilot sessions or subjects. (c) It

learns an individual model for each session using a small amount of training data from the session,

alleviating inter-session or inter-subject variability. In sum, this study aims to provide a new

way to study complex human cognition and behaviors by assessing the underlying EEG source

nonstationarity.

2.2 Methods

2.2.1 Modeling brain states with independent component analysis (ICA)

As a human shows different levels of alertness, we hypothesize that the EEG signals xk

under state k, e.g. alert or drowsy state, involve distinct EEG sources and can be modeled as

projections of distinct source compositions onto the scalp Ak and source activities sk of an ICA
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model.

xk(t) = Ak(t) · sk(t) (2.1)

The time-dependent ICA model, the mixing matrix A or the unmixing matrix W, resembles an ICA

mixture model [68, 55] and an adaptive ICA model [47] which assume data are quasi-stationary

or non-stationary.

Based on the hypothesis, rather than learning the mixture or adaptive model as described

in [68, 55, 47], we propose to learn individual ICA models from small segments of the training

EEG data under alert or drowsy state, i.e. alertness and drowsiness ICA models, and then measure

the goodness-of-fit while applying each model to a sliding window of EEG data over the whole

session. We expect that the goodness-of-it would be better, i.e. smaller model-fitting error, while

applying the alertness ICA model to other EEG data when a subject is alert than to the data when

a subject is drowsy, and vice versa. The goodness-of-fit of ICA models is quantified by a model

deviation index (MDI) to assess levels of alertness or drowsiness. The MDI is further explained

in Section 2.2.2, the detailed implementation of the approach is described in Section 2.3, and

alternative approaches are discussed in Section 2.5.6.

2.2.2 The model deviation index (MDI)

To quantify the goodness-of-fit of an ICA model, we start with the convergence criterion

for ICA. It is worth noting that this framework is not limited to any specific ICA algorithm. Here

we use Infomax ICA [66], which aims to maximize mutual information between source activities

and EEG data and has been demonstrated to achieve good performance in separating dipolar

neurophysiological sources in EEG data [30].

The Infomax ICA with natural gradient [66] has a general learning rule:

W←W+η[I− f(y) ·yT ]W (2.2)

14



where W is an unmixing matrix that linearly projects data x into statistically independent

sources y = Wx, I is an identify matrix, η is a learning rate, and f is a nonlinear activation

function. The learning in 2.2 stops when W converges, i.e. the gradient term approaches zero or

〈f ·yT 〉 ≈ I, where 〈·〉 represents an average over the data. On the other hand, this convergence

criterion can also be used to indicate the fitting error of an ICA model W applied to other

data x. Previous studies have defined the nonstationary index ‖I−〈f · yT 〉‖F as a quantitative

measurement of the model fitting error and have demonstrated successful detection of abrupt

electrode displacements [47] and changes of underlying sources [48] in simulated EEG data using

the index.

Following our preliminary work in [43], we modify the index by dividing it with the

Frobenius norm of source activity to account for the scale ambiguity of an ICA model and define

the new index as model deviation index (MDI), as a function of an ICA model W0:

MDI(W0) =

∥∥〈f ·yT 〉
∥∥

F, off-diag

‖〈y ·yT 〉‖F
(2.3)

where y = W0x, x is the test data, f = 1−exp(−y)
1+exp(−y) for the non-extended Infomax ICA used in this

study, and ‖·‖F, off-diag is the Frobenius norm of the off-diagonal elements of the matrix. The

numerator in Equation 2.3 quantifies cross-talk errors of sources in the ICA model W0, indicating

changes in underlying source composition in x; the denominator is the covariance of source

activations. Taking the ratio of the two terms normalizes the index such that the MDI value is

bounded.

As mentioned in Section 2.2.1, the MDI enables quantitative measurement of EEG source

nonstationarity, including both the spatial source composition and the temporal source activities.

A small MDI corresponds to a small model fitting error and indicates that both the training and

the test data arise from the similar set of sources with similar activities. On the other hand, a large

MDI represents the model fails to fit the test data and thus the associated state has shifted away
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from that of the training data. Note that the definition of MDI could be modified when other ICA

algorithms or source separation methods are used, depending on their convergence criteria.

2.3 Materials

2.3.1 Subjects and experiments

Ten healthy volunteers participated in the 90-min experiment in an immersive VR-based

driving simulator, performing a sustained-attention driving task. They were 20-28 year-old with

normal or corrected-to-normal vision and had no history of neurological or sleep disorders and

no drug or alcohol abuse. No subject reported sleep deprivation on the day before the experiment.

The experiments were conducted in the early afternoon after lunch such that various levels of

alertness and drowsiness were observed. All subjects practiced the driving tasks for 10 minutes to

become familiar with the experimental procedures.

In the sustained-attention task, specifically an event-related lane-departure task [49],

the subjects were presented with lane-departure events every 8-12 seconds randomly and were

instructed to steer the car back to the cruising position quickly. On average a total of 550 trials

were performed in the 90-min experiment. The duration from the onset of a lane-departure event

to the onset of a steering action is defined as a reaction time (RT), which has been reported to

be associated with alert and drowsy states [19, 72]. The reaction time was transformed to the

reaction speed (RS = 1/RT ) for further analyses, and the reason was discussed in Section 2.4.1.

For the details of the subjects and the experiment, readers are referred to [19, 72].

2.3.2 EEG data acquisition and preprocessing

For each subject, 30-channel EEG data were recorded at a 500 Hz sampling rate using

a NeuroScan NuAmp Express System (Compumedics Ltd., VIC, Australia). The electrodes
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(Ag/AgCl) were arranged according to the international 10-20 system with a unipolar reference

at the right earlobe. The impedance of each electrode was kept under 5kΩ during the experiment.

Figure 2.1 displays the data preprocessing and analysis pipelines. The EEG data were

band-pass filtered (1-50 Hz) and were down-sampled to 250Hz. Bad channels in the recordings

such as flat channels due to poor contacts of electrodes and poorly correlated channels were

removed (2-6 channels were identified for the 10 subjects) and interpolated using the PREP

pipeline [11]. It is worth noting that the interpolation step is redundant for ICA but is what the

PREP pipeline automatically performed. In addition, artifact subspace reconstruction (ASR) [83],

implemented as a plug-in in EEGLAB toolbox [29], was applied to reduce the contaminations of

high-amplitude artifacts with a mild threshold (burst repair σ = 20). These artifact-correction

methods facilitate the convergence of an ICA model.

2.3.3 EEG data analysis: learning multiple ICA models

For each subject, the data from a 90-min session was split into 90-sec blocks with 30-

sec overlaps, and four types of ICA models were learned from specific blocks of data. (1) Five

alertness ICA models were individually trained with five 90-sec windows with the highest reaction

speeds (i.e. alert states). (2) Five drowsiness ICA models were trained with five 90-sec windows

with the lowest reaction speeds (i.e. drowsy states). (3) For a comparison, each subject’s offline

ICA model was learned from the EEG data of the entire session, i.e. how a conventional ICA is

usually applied. (4) To enable online alertness estimation, a session-specific initial ICA model

was learned from the first 90-sec window of EEG data at the beginning of the session.

All the ICA decompositions used the non-extended Infomax ICA implemented in EEGLAB

toolbox [29]. Principle Component Analysis (PCA) was applied before ICA to facilitate ICA

convergence and to account for the loss of data rank due to the removal of bad channels in the

PREP pipeline [11]. On average, 24-28 sources were retained for the 10 subjects.
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Figure 2.1: The block diagram of the data preprocessing pipeline (blue) and the data analysis
pipeline (orange) for the behavioral and EEG data.
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2.3.4 EEG data analysis: computing MDI and correlation analysis

Each ICA model was applied to the EEG data of the same session. For each trial in the

session, its MDI was computed by Equation 2.3 with a 90-second window of continuous data

right before the lane-deviation onset. The Pearson correlation coefficient was computed between

the reaction speed and the MDI of test trials, i.e. all except the trials selected to train the ICA

model. To illustrate the global fluctuations of the reaction speed and the MDI over an entire

driving session, a 90-second smoothing window was applied where their median values in the

window were taken. In addition, the effect of different MDI window lengths was also tested and

reported in Section 2.4.8.

2.3.5 Online framework for alertness estimation: the initial ICA model

approach

An online framework for alertness estimation was proposed and quantitatively evaluated

to fully demonstrate the usefulness of the proposed approach. In an online session, we first trained

the initial ICA model with the first 90-sec of EEG data at the beginning of the session. The initial

model was then applied to 90-sec sliding windows of EEG data across the rest of the online

session to obtain their MDIs.

For the drowsiness classification, the MDIs were compared with a threshold value: if

the MDI of the window before a lane-departure event was larger than the threshold, the trial

is classified as a non-alert trial; otherwise, it is classified as an alert trial. The true alert trials

were defined as the test trials whose reaction time RTalert ≤ 1.5 ·RT train, where RT train is the

mean value of RT of the training trials, and the non-alert trials were defined as those with

RTnon−alert ≥ 2.5 ·RT train. This criterion follows the definition in [119] to deal with the highly

skewed distribution of reaction times.

We varied the threshold, classified the test trials, computed the corresponding true positive
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rate (TPR = number of correctly classified non-alert trials / number of total non-alert trials) and

false positive rate (FPR = number of incorrectly classified alert trials / number of total alert trials),

plotted the Receiver Operating Characteristics (ROC) curve, and reported the area under curve

(AUC) as the effectiveness of the alertness estimation.

2.3.6 A comparison: the power-based approach

A classic approach proposed by Pal et al.[93] was implemented for a comparison. Similar

to the approach described in Section 2.3.5, the Pal’s approach is also an unsupervised approach

that trains an alert model and measures the distance of the test data from the model as an estimate

of alertness levels. Firstly, exactly the same first 90-sec of EEG data at Oz were used as the

training data, which were divided into 2-sec non-overlapping segments with their log power of

alpha band (8-12Hz) and theta band (4-8Hz) computed. The means µi and covariance matrices

Σi of the two band-power (i indicates alpha or theta) of the training segments were estimated.

Secondly, the Mahalanobis distance (MD) was used to measure the deviation of the alpha and

theta power of 2-sec test data from that of the training data x: MDi(x) =
√

(x−µi)T Σ
−1
i (x−µi).

The final index was a linear combination: MD(x) = a ·MDal pha+(1−a) ·MDtheta, as an estimate

of the alertness level. According to [93], the optimal a = 0.3 was used. The same evaluation

procedure such as computation of the AUC of the ROC curve was applied to enable a fair

comparison.

2.4 Results

2.4.1 Behavioral performance

Figure 2.2a shows, for a representative subject, 73% (430 out of 587) of the lane-departure

trials had the reaction time smaller than 1.26 seconds, illustrating the subject mostly stayed
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Figure 2.2: (a) The reaction time and (b) the reaction speed, RS = 1/RT , of each trial over
experimental time from a representative subject (Subject 1) is shown in the top panel. Their
histograms are shown in the bottom panel.

alert and reacted quickly to the lane-departure events in the experiment. To avoid bias in the

correlation analysis, the reaction time was transformed to the reaction speed to produce a less

skewed distribution as shown in figure 2.2b.

The averaged mean reaction speed of all the trials across subjects was 1.014 ± 0.164

(1/sec) and the averaged standard deviation was 0.428 ± 0.099 (1/sec), indicating the subjects’

levels of alertness fluctuated during the course of the experiments. For the selected most-alert

windows described in Section 2.3.3, 76% were within the first 30 minutes of the experiments,
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16% were in the 30-60 minutes, and 8% were from the 60 minute to the end of the 90 minute

session. For the selected most-drowsy windows, the distribution was 36% (0-30 min), 18% (30-60

min), and 46% (60 min - end). The subjects were mostly alert at the beginning of the sessions

and became drowsy over time-on-task.

2.4.2 Source compositions

Figure 2.3 shows the averaged power spectra and the scalp maps, i.e. the contribution or

projection on the scalp, of clusters of independent components (ICs) from all of the 10 subjects

for each of the four ICA models. The IC clusters were obtained using CORRMAP function

in EEGLAB [116] based on the component similarity measured by correlations of the inverse

weights of ICA, i.e. columns of W−1 in (1). Manually selected component templates and a

correlation threshold of 0.85 (0.9 for eye-blink and eye-movement clusters) were used, and the

number of ICs contributed by each subject was limited to two. The alertness (drowsiness) models

trained from the data windows with the highest (lowest) reaction speeds were used for reporting

the clustering results.

First of all, the results illustrate that the initial, alertness and drowsiness models, which

were trained with only 90-sec of EEG data, were able to reach converged solutions and find

dipolar components. Comparable ocular and neurophysiological IC clusters were identified

in all of the four models. For example, the eye-blink and lateral eye-movement clusters were

characterized by the distribution of scalp maps and the high power at low frequencies. The frontal

clusters with high theta or alpha power and the parietal and occipital clusters with high alpha

power were reported to be associated with alertness or drowsiness and were consistent with the

previous study involving the same driving task [19].

Although comparable IC clusters were found, the source compositions and power spectra

across the four ICA models as well as the numbers of contributed ICs and subjects in the clusters

still varied. From alert or initial state to drowsy state, fewer ocular components and more frontal
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and occipital components were observed, and the alpha power spread from the occipital and

parietal regions to a larger brain area including the frontal and even prefrontal regions. These

results were consistent with previous studies [65, 108]. In addition, lateral parietal clusters were

absence in the drowsiness models, and fewer frontal and central components were present in the

initial models.

Furthermore, the offline models contained the combination of ICs found in other three

models with almost all of the subjects contributed ICs to each category of the clusters. However,

the alpha peaks were not clearly observed in the frontal and central clusters because alpha

activities were not always present over the course of the experiment.

2.4.3 Source nonstationarity

Figure 2.4 plots the model deviation indices (MDI) of the four ICA models and the

measured reaction speed over the experimental time from the two representative subjects. Firstly,

the MDI curves of the alertness models significantly inversely correlated with the reaction speed

curves (correlation coefficients of -0.828 and -0.534 for the two subjects). The alertness models

could model the data segments with high reaction speed trials (alert state) and yielded small

MDI values, but they failed to fit the data with low reaction speed trials (drowsy state) and thus

yielded large MDI values. On the other hand, the MDIs of the drowsiness models could track

the dynamics of the reaction speed with significantly positive correlation coefficients of 0.768

and 0.724 for the subjects. The results indicate that the drowsiness models well characterized

the source compositions and dynamics of the data with low reaction speed trials (drowsy state),

leading to smaller MDI values.

As a comparison, the offline models showed smaller averaged MDI values across the

session but had the smallest correlation coefficient between the MDI and the reaction speed

among the four models. Since the offline models attempted to learn the stationary sources over

the entire session, they did not favor modeling the data segments with high or low reaction speed
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trials. The results of the initial models were discussed in Section 2.4.6.

2.4.4 Correlations between the MDI and the reaction speed

Table 2.1 shows the correlation coefficients between the smoothed reaction speeds and

the MDI of the test trials for all of the 10 subjects, where MDIs were computed with the subject-

specific offline, alertness, drowsiness, and initial models separately. Paired t-tests were performed

to test the significance levels of the correlation magnitudes between the different models.

First, the selected alertness models yielded significantly negative correlation compared

to the offline models (p < 1×10−4) and the corresponding drowsiness models (p < 1×10−6).

Similarly, the selected drowsiness models yielded significantly positive correlation compared to

the offline models (p < 0.05). In addition, no significant differences in the correlation coefficients

were found between the results of the top one alertness model and the averaged results of the top

five alertness models (p = 0.52), and between the results of the top one drowsiness model and

that of the top five drowsiness models (p = 0.76). This provides the evidence for the robustness of

the method to training window selection. However, inter-subject variability existed. For example,

the top one alertness model for Subject 2 and the top one drowsiness models for Subjects 4 and 8

did not show significant correlations. The sources of the variability may come from the selection

of training windows and from the percentage of time where the subjects were drowsy.

To summarize and visualize the results of the goodness-of-fit of each of the four models

across subjects, figure 2.5 shows the smoothed z-scored MDI and the reaction speed of all test

trials from the 10 subjects. The consistent results were observed: significant negative correlations

between MDI and reaction speed for the alertness models and the initial models, significant

positive correlations for the drowsiness models, and significantly weaker correlations for the

offline models. These results demonstrate that the z-scored MDI of the alertness, drowsiness,

and initial models could characterize the source nonstationarity underlying the alertness and

drowsiness fluctuations and could be used to estimate levels of alertness across subjects. It is
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Figure 2.4: The reaction speed (blue) and the model deviation index (orange) of all trials
using the alertness models (1st row), the drowsiness models (2nd row), the offline models
(3rd row) and the initial models (4th row) over time from two subjects. The colored windows
were selected for training the ICA models, with their time intervals specified on the left. The
selected alertness and drowsiness models were the ones with the highest correlation among the
five models presented in Table 2.1. The reaction speed and the MDIs were smoothed with a
90-second sliding window, and their correlation coefficients were shown.
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Table 2.1: The correlation coefficients between the 90-sec smoothed reaction speed and MDI of
the test trials for the 10 subjects. Subject-specific alertness models, drowsiness models, offline
models and initial models were used to compute the MDI. For alertness (drowsiness) models,
the results of both the top one and the averaged results of the top five windows with the highest
(lowest) reaction speed were reported. The means and standard errors of mean (SEM) were
reported.

Alertness models Drowsiness models Offline Initial
Subjects Top 1 Top 5 Top 1 Top 5 model model
1 -0.681 -0.673 0.694 0.740 -0.433 -0.682
2 -0.039 -0.273 0.384 0.549 0.079 -0.783
3 -0.388 -0.358 0.503 0.485 0.097 -0.569
4 -0.485 -0.343 -0.074 0.066 0.031 -0.480
5 -0.454 -0.378 0.377 0.425 0.036 -0.390
6 -0.242 -0.190 0.469 0.474 0.475 0.003
7 -0.679 -0.617 0.809 0.819 0.630 -0.564
8 -0.688 -0.676 -0.041 -0.041 0.091 -0.701
9 -0.510 -0.068 0.340 0.347 0.572 -0.425
10 -0.348 -0.326 0.642 0.629 0.122 -0.602
Mean -0.451 -0.390 0.410 0.449 0.170 -0.519
SEM 0.066 0.065 0.091 0.086 0.099 0.070

worth noting that the z-scoring was performed to enable a comparison across subjects but would

change the corresponding correlation coefficients.

2.4.5 Feature space of ICA models and the MDI

Using the alertness and the drowsiness models defined in figure 2.4, we constructed a

feature space spanned by MDIs of the two models, as shown in figure 2.6. We found that low

reaction-speed trials (red) distributed toward the top left corner in the feature space, illustrating

that those trials could be modeled by the drowsiness model and deviated from the alertness model.

On the contrary, the high reaction speed trials (blue) distributed toward the bottom right corner.

We also noted that some trials in figure 2.6b located in the top right corner, indicating that neither

the alertness model nor the drowsiness model fitted those data.

27



Figure 2.5: Scatter plots of the reaction speed and the z-scored MDI of the test trials pooled
across the 10 subjects. Each plot shows the MDI computed using the indicated subject-specific
models. The reaction speed and the MDI of the trials were smoothed with a 90-second sliding
window, and the MDIs were z-scored within each subject. The linear least-square fitted lines
and the corresponding correlation coefficients and R-squared values were shown.
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Figure 2.6: Scatter plots of all trials, from (a) subject 1 and (b) subject 2, in the feature space
spanned by the two model deviation indices computed using the drowsiness and alertness model
as specified in Figure 2.4. Each trial was color-coded with its reaction speed.

2.4.6 The initial model

Figure 2.4 illustrates that the MDI of the initial models negatively correlated with the

reaction speed. The findings could be generalized across the subjects as shown in Figure 2.5

and Table 2.1. Firstly, the initial models show significantly higher correlations than the offline

models do (p < 3×10−5 by a paired t-test) and are significantly different from the results of the

drowsiness models (p < 1×10−6). Secondly, no significant difference of the correlations was

observed between the initial models and the top 1 alertness models (p = 0.49), suggesting the

initial models resembled the alertness models in that they both fitted the high reaction speed trials

and deviated from the low reaction speed trials.

2.4.7 Performance of online alertness estimation: ICA versus power-based

approach

As shown in Table 2.2, the proposed ICA approach achieved higher than chance AUCs

(0.5) on all except Subject 6, with an average of 0.745 and half of the subjects had AUC higher
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Table 2.2: The AUC of the ROC curve obtained by the two methods for all 10 subjects. “ICA”
indicates the proposed method and Power indicates the method proposed by Pal et al.

Subject ICA Power
1 0.8312 0.7173
2 0.9167 0.6615
3 0.8229 0.6063
4 0.6241 0.5860
5 0.7817 0.4649
6 0.4646 0.6976
7 0.6166 0.8359
8 0.9222 0.6557
9 0.6186 0.7809
10 0.8513 0.7091
Mean 0.7450 0.6715
Std. 0.1537 0.1042

than 0.8. This result demonstrates the effectiveness of using the initial ICA models for alertness

estimation. In comparison, the Pal’s approach using alpha and theta power achieved a lower

averaged AUC of 0.6715. However, the power approach obtained much higher AUCs for a few

subjects (Subject 7 and 9) where the ICA approach performed poorly. Overall, the AUCs of the

two approaches showed no significant difference. It is worth noting that the two approaches have

variable success across different subjects and might be combined to improve the online alertness

estimation.

2.4.8 Optimal parameters for training the ICA models

We tested the effects of the data length for training the model (figure 2.7a) and the

window length for computing the MDI (figure 2.7b) on correlation magnitudes between the single-

trial MDI and the reaction speed across the 10 subjects. Figure 2.7a illustrates the correlation

magnitudes decreased as the training data exceeded 3 minutes and the optimal training data

length was around 2 minutes. It is worth noting that 0.5 minutes of the data was insufficient for a

converged ICA solution with 30 sources as described in Section 2.4.2. However, even this model
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Figure 2.7: The correlation magnitudes between the MDI of the initial models and reaction
speed of test trials for various (a) training data lengths and (b) MDI window lengths, averaged
across the 10 subjects. The MDI window length in (a) and the training data length in (b) are
both 90 seconds. Error bars show the standard errors of the mean.

yielded the significant correlation. Figure 2.7b illustrates that the correlation magnitudes were

significantly smaller when the MDI window was shorter than 10 seconds (p < 0.05 by paired

t-test) and also slightly decreased when the length is 300 seconds, and the optimal length was

around 60 to 120 seconds. Hence this study selected the length of 90 seconds for both the training

data and the MDI window. More details were discussed in Section 2.5.6.

2.5 Discussion

2.5.1 Nonstationary source compositions and activities

This study showed that ICA models trained with data segments when subjects showed

different levels of alertness, indexed by reaction speed to driving challenges, had distinct source

compositions and activities. From alert to drowsy state, there were fewer ocular components and

more frontal and occipital components, and the alpha power spread from the occipito-parietal

region into a larger brain area including the frontal and prefrontal regions, which were consistent

with previous studies [65, 108]. Furthermore, the offline model contained the combination of ICs
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found in the alertness and drowsiness models, indicating that it made a compromise between the

nonstationary source compositions and activities over the entire session.

Previous studies have also reported nonstationary source compositions. Jung et al.[55]

have shown that different ICA models, obtained by an ICA mixture model, accounted for different

time periods of data when subjects’ level of alertness fluctuated. Similarly, an adaptive ICA

model revealed changes in both source compositions and activities in an alternating eye-open and

eye-close experiment [48].

2.5.2 Distinct ICA models characterize different states

This study hypothesizes that neurocognitive processes or EEG sources that underlie differ-

ent states, e.g. levels of alertness, can be characterized by distinct compositions and activities of

independent sources obtained by ICA. Study results showed that the goodness-of-fit of the alert-

ness ICA models, quantified by the model-deviation index, had significantly negative correlations

with the reaction speed, demonstrating that the models were a good fit only when the subjects

were alert, i.e. with high reaction speed. However, when the EEG data deviated from the alertness

models where MDIs were high and subjects were drowsy, i.e. with low reaction speed, it only

meant the data were dissimilar from that of the alert state. It did not necessarily mean the data

were under the same (drowsy) state.

The story is only complete if we can model those data where the alertness models could

not explain. This was achieved by the drowsiness ICA models. We found that when subjects

were drowsy their EEG data shared the similar source composition and activation characterized

by the same drowsiness models. This led to significantly positive correlations between the MDI

and reaction speed, the opposite to the results of the alertness models. In summary, we have

demonstrated that the alertness and drowsiness ICA models, learned from the small segments of

the data based on the reaction speed, could characterize EEG data under alert and drowsy states

respectively. This supports our hypothesis.
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2.5.3 Estimating levels of alertness

If the hypothesis holds, we can estimate subjects’ levels of alertness by quantifying the

deviation of their EEG signals from each state-associated ICA models. This is based on the

observations that the degree of model deviation, i.e. the MDI value, correlated with the levels of

alertness inferred by the reaction speed. In other words, if different ICA models were applied to a

data segment containing higher reaction-speed trials, the resulting MDI value would be lower

for the alertness models and higher for the drowsiness model. Hence we can construct a feature

space using the MDIs of the alertness and the drowsiness ICA models, and Figure 2.6 clearly

demonstrates that trials with different reaction speeds can be separated in the feature space. The

combination of MDIs of the alertness and the drowsiness models, e.g. their ratio, serves as a direct

estimator of the alertness level.

So far we have focused on alertness and drowsiness models, but were there only two

ICA models and states in the driving experiment? The MDI feature space of Subject 2 (Figure

2.6) shows that there were some trials that could not be modeled by either the alertness or the

drowsiness model. These trials turned out to be at the beginning of the session. This indicates

that even though this subject performed well in both time periods, e.g. t = 0−15 min (beginning

of the session) and t = 60−75 min (awaken from the previous drowsy state), their underlying

ICA compositions and activities differed. Hence by exploring clusters in the MDI feature space,

it is possible to identify the existence of distinct states characterized by ICA models. It is worth

noting that this framework can be applied to model more cognitive or mental states beyond just

alertness and drowsiness.

2.5.4 Toward online alertness monitoring

While the MDI of ICA models allow the estimation of alertness levels, to apply this

approach as an online framework, either the models need to be transferable across sessions or the
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models need to be learned from limited amount of online training data. It is possible to use the

ICA models for each class, i.e. the alertness and drowsiness models, trained on other sessions and

apply both models to estimation of alertness levels in a test session. However, the generalizability

of the ICA models across sessions with different electrode placements or subjects with different

brain anatomies requires extra cautions and a significant amount of work. It is an open question

to the field of ICA, but beyond the scope of this study.

Nevertheless, we have demonstrated the feasibility of learning a session-specific “initial”

ICA model from limited training data, i.e. the first 90-sec of the online session, to monitor level of

alertness for the rest of the session. This online framework is based on the assumption that at the

beginning of the session the subjects are likely to be alert and thus their initial models resemble

their alertness models, which is supported by the empirical results across subjects. By learning

the initial models and measuring the corresponding MDIs of the test data, we can continuously

and quantitatively measure the deviation of the subjects’ current states from the initial (alert)

state.

This ICA model approach achieved the averaged AUC of 0.745 across 10 subjects, which

is higher than that of another state-of-the-art approach proposed by Pal et al.[93] using alpha

and theta power of the Oz channel (AUC = 0.6715). But the difference was not statistically

significant because of the inter-subject variability. It is worth nothing that we used the ROC

curves and AUC measures to characterize the performance of alertness estimation rather than

simply reporting the classification accuracy because levels of alertness should be continuous

values, which is intrinsically lack of a clearly defined threshold for binary classification. For

a truly online framework where a threshold is required for alertness/drowsiness detection, the

threshold can be determined by the mean and variance of MDIs of the training trials.
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2.5.5 Neurophysiology or artifacts?

ICA models not only assess neurocognitive or physiological brain sources but could

also separate non-brain sources such as eye-blink, eye-movement, and possible muscle artifact

components. Previous studies have demonstrated that eye and muscle activities were associated

with sustained attention [65]. To test the effects of EOG/EMG sources on the prediction of

the alertness levels, we firstly identified the artifactual components such as eye-blink and eye-

movement components in each ICA model for each subject by template matching, where the

templates were constructed by averaging the manually identified components in a few subjects.

Secondly, we computed the MDIs without the artifactual ICs and performed the correlation

analysis between the MDI and the reaction speed.

We found that the alertness models had reduced correlations after artifactual ICs were

excluded, but were still significantly higher than the correlations of the offline ICA models. On

the other hand, the drowsiness models with and without artifactual ICs showed no significant

difference in correlations. A possible explanation is that the alertness models had more identified

artifactual components and activities that were also associated with the alertness levels. These

results confirmed that the EOG/EMG components combined with the neurophysiological sources

in the ICA models could affect the prediction of the alertness levels. Nevertheless, even with the

EOG/EMG sources removed, both models still demonstrated high correlations between MDI and

reaction speed, suggesting the contribution of other brain sources in both models to the prediction

of the alertness levels.

2.5.6 Considerations in building ICA models

To build an effective ICA model, we found that both the optimal training data length

and MDI window length were around 90 seconds. An ideal training data length should be long

enough to warrant the convergence of the ICA solution and short enough to avoid including
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data from different brain states; the ideal MDI window length would be long enough to obtain a

robust estimate of the MDI and short enough to obtain a locally stationary EEG signals. Previous

studies have reported a 90-second window for measuring a global level of alertness [19, 72] and a

90-second alertness fluctuation cycle [77]. Our results were consistent with the previous findings

and implied that EEG source dynamics associated with alert or drowsy states also have a locally

stationary window around 90 seconds.

This ICA model-based framework is not limited to a specific ICA algorithm. We used

Infomax ICA since it has been demonstrated to achieve good performance in separating dipolar

neurophysiological sources in EEG data [30]. However, a limitation of the Infomax ICA algorithm

is that learning an ICA solution with N stable sources requires k ·N2 samples, where empirically

k≥ 25 [90]. For N = 30, k = 25 and 250 Hz sampling rate, this corresponds to 90 seconds of data.

The non-extended Infomax ICA has less computational complexity while the extended Infomax

ICA [66] can separate both supergaussian and subgaussian sources and can be applied when the

amount of training data are limited. The empirical results showed that both algorithms returned

comparable results. It is worth noting that an alternative class of source separation algorithms

based on second-order statistics (SOS) can also be applied. Congedo et al.[24] have suggested

that SOS algorithms such as SOBI [9] and AJDC [24] may achieve better performance for shorter

data segments and are more robust with respect to artifacts.

The selection of an ICA algorithm affects the derivation of the model deviation index

(MDI). The MDI associated with the non-extended Infomax ICA defined in equation 2.3 is

computationally efficient yet the normalization is not exact since f(y) is a nonlinear function. A

more accurate but computationally expensive approach is to measure the likelihood of the ICA

model applied to the data, as described in [68].
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2.5.7 Comparisons with existing works

This study aimed to test the hypothesis of source nonstationarity and evaluated the

feasibility of using multiple state-associated ICA models to monitor changes of the brain states.

Compared to existing works, the proposed approach has the following advantages. (a) It is a

generic framework that is not limited to assessing the levels of alertness or drowsiness. It can

be applied to monitoring other brain states such as sleep stages, depth of anesthesia, etc. (b) It

estimates continuous levels of deviations from a known state as opposed to classifying discrete

states. (c) The quantitative model deviation indices are informative and discriminative features

for state monitoring which are designable and interpretable. (d) The MDI feature space could

reveal the possible existence of other states where their source compositions and activities could

not be characterized by the existing models. (e) It does not require pre-selection of features such

as channels, components, and frequency bands that may vary widely across sessions and subjects.

Previous studies chose specific frequency bands, e.g. alpha- and theta-band power of

pre-selected channels, e.g. Oz [93], or independent components, e.g. bilateral occipital source

[72], and showed the selected features were highly correlated with changes in the subject’s

drowsiness levels. However, the optimal frequency bands and EEG channels could vary widely

across different subjects [93, 56].

We also proposed an online framework for alertness estimation using the initial ICA

models. This online framework has the following additional advantages: (a) it is an unsupervised

approach, which does not rely on the availability of data from both states (namely alertness and

drowsiness), (b) it does not require training data from other sessions or subjects, (c) it builds an

individual model for each session such that it avoids the problem of inter-session or inter-subject

variability, and (d) it only uses a small amount of training data namely 1.5 minutes for 30-channel

EEG, at the beginning of the session.

To make a fair comparison, we chose the Pal’s approach [93] because it is among a few

approaches that satisfied the training and testing requirements described above. Charbonnier et
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al.[16] have also proposed a similar online framework for mental fatigue estimation by measuring

the distance between the EEG spatial covariance matrices of 20-sec epochs to a mean covariance

matrix learned during an initial reference state. Most of the classic approaches for online

alertness/drowsiness estimation, which use discriminative machine-learning models or regression,

would not work in this case because they require a large amount of data from both states. Other

approaches that train classifiers and models on data from other sessions also do not apply because

they require additional training data.

2.5.8 Limitations and future works

One challenge of this approach is to select data window for training an ICA model of

a known brain state. In this study we selected training data based on the subjects’ reaction

speed, assuming that the reaction speeds reflect their alert and drowsy states. For unlabeled data,

one solution is to learn an ICA mixture model and perform unsupervised data segmentation as

described in [68, 55, 97]. However, these approaches are offline analyses.

Another challenge is to make this approach online capable. This study proposed the use

of the initial model to track the alertness level online. However, this still requires a small amount

of training data from the same session and assumes the initial reference state is known, which

might not be generalizable. An alternative approach could be applying the ICA models learned

offline from other sessions or subjects and using transfer learning to select or adapt the models

to the online session. Important future works include studying the generalizability of the ICA

models across subjects and building unifying source-level models associated with brain states.

2.5.9 Potential applications

This ICA model-based framework is a generic approach for assessing EEG source non-

stationarity associated with cognitive or psychophysiological processes or behaviors. With the
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association between the source composition/activity and different brain states, we can continuous-

ly monitor the state changes. This EEG-based state monitoring approach has several important

applications: (1) in monitoring the cognitive or mental states of humans in real-world situations,

e.g. mental workload [35, 104], mental fatigue [35], emotional responses, attention and drowsi-

ness [93, 122], (2) in monitoring patients’ brain states in clinical settings, e.g. seizure activities,

sleep stages, anesthesia level, etc., and (3) in neuroergonomics [35] and passive brain-computer

interfaces (BCI) [124] to prevent catastrophic incidents, e.g. drowsy driving and fatigue working,

and to implicitly enhance the effectiveness of human-machine interaction.

2.6 Conclusion

This study presents a generic framework to quantitatively assess EEG source nonstation-

arity based on ICA and the model deviation index and to track the performance fluctuation in

a sustained-attention task. Empirical results illustrate that both EEG source composition and

activity were nonstationary as subjects’ levels of alertness fluctuated. In general, when subjects

are alert, i.e. performing the task at high reaction speed, the source composition of the recorded

EEG signals shared the comparable source composition and activity characterized by the alertness

ICA model. On the contrary, the EEG signals collected when the subjects were drowsy could

be well modeled by the drowsiness ICA model. These results provide strong evidence for the

hypothesis that brain activities under different levels of alertness can be characterized by distinct

compositions and activations of independent sources, i.e. ICA models. Based on the idea of the

source nonstationarity, this study also proposes an online framework using a subject-specific ICA

model trained with an initial reference (alert) state to track the level of alertness. The proposed

online framework compared favorably with a state-of-the-art approach using alpha and theta

power for the classification of alert against drowsy states. This ICA-based framework can be

applied to monitoring cognitive or mental states of human operators in attention-critical settings
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or in passive brain-computer interfaces.
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Chapter 3

Modeling Brain Dynamic State Changes

with Adaptive Mixture Independent

Component Analysis (AMICA)

In this chapter, we explore the use of adaptive mixture independent component analysis

(AMICA) to model multichannel electroencephalographic (EEG) data with a set of ICA models,

each of which decomposes an adaptively learned portion of the data into statistically independent

sources. We first show that AMICA can segment simulated quasi-stationary EEG data and

accurately identify ground-truth sources and source model transitions. Next, we demonstrate

that AMICA decomposition, applied to 6-13 channel scalp recordings from the CAP Sleep

Database, can characterize sleep stage dynamics, allowing 75% accuracy in identifying transitions

between six sleep stages without use of EEG power spectra. Finally, applied to 30-channel data

from subjects in a driving simulator, AMICA identifies models that account for EEG during

faster and slower response to driving challenges, respectively. We show changes in relative

probabilities of these models allow effective prediction of subject response speed and moment-

by-moment characterization of state changes within single trials. AMICA thus provides a generic
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unsupervised approach to identifying and modeling changes in EEG dynamics. Applied to

continuous, unlabeled multichannel data, AMICA may likely be used to detect and study any

changes in cognitive states.

3.1 Background

An expanding focus in neuroscience has been on endogenous temporal dynamics of neural

network activity that gives rise to fluidity and rapid adaptability in cognition and behavior. A grow-

ing body of evidence suggests that these temporal dynamics may arise from continual formation

and dissolution of interacting cortical and allied subcortical source activities in large-scale brain

regions whose joint electrical activities can be described as dynamic systems featuring continuous

transitions between intermittently stable states [18, 10].The temporal dynamics and network

topology of these “brain states” can be identified using functional neuroimaging techniques

including invasive electrophysiological recordings, functional MRI (fMRI), magnetoencephalog-

raphy (MEG), and electroencephalography (EEG) [34, 18]. Among noninvasive modalities, EEG

provides a more direct measurement of brain activity with millisecond resolution that, because of

the low weight and bulk of its sensors, is appropriate for studying fast-changing brain states in

real-world environments.

Earlier methods applied nonparametric statistical approaches that used EEG power spectral

density, autocorrelation function, and entropy measures [87] to detect change points allowing

segmentation of EEG into piecewise stationary processes [58]. Microstate analysis (see Khanna et

al.[61] for a review) takes the spatial distribution of electrodes into account and attempts to define

quasi-stable “microstates” in terms of unique electric potential patterns across the multichannel

EEG scalp electrode montage during behavioral states or resting states [70, 115]. The global

functional connectivity approach [18, 10] measures inter-electrode channel signal synchrony to

attempt to characterize brain states as stable functional networks. However, both the microstate
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and global connectivity models analyze scalp electrode signals that in themselves are highly

correlated through common volume conduction and summation at the electrodes of potentials

arising from brain and also non-brain sources (eye movements, ECG, etc.). The results of both

methods have few or no interpretable connections to particular brain source activities that underlie

the observed scalp phenomena.

To study source-resolved EEG activities, independent component analysis (ICA) [57, 8]

has been widely applied as a means for blind source separation [74, 55, 78]. ICA models data, x,

as an instantaneous linear mixture of statistically independent source processes, s (x = A · s, where

A is a mixing matrix). A physiological interpretation of ICA applied to scalp EEG recordings

can be found in [91] and [30]. In short, this research has clarified: 1) functional independence

across brain regions, similar to the regional dependence and independence now measured by

functional brain mapping using fMRI, should be accompanied by temporal independence of the

source EEG activities; 2) linear and instantaneous mixing of source EEG activities is produced by

volume conduction and scalp mixing. While ICA works well in separating out localized cortical

sources of event-related potentials and eye-movement related activity, it is limited in modeling

nonstationary changes in EEG source locations and activities because of its spatial-stationarity

assumption produced by its limited model complexity (e.g. its use of a fixed spatial mixing matrix

in which the number of learned temporally independent components is equal to the number of

channels measured).

Our recent study [44] hypothesized that transitions to a different cognitive state may

involve cortical macro- or meso-dynamics in new networks of cortical brain areas that can be

identified by distinct ICA models trained on data recorded before and after the state transition,

respectively. This hypothesis motivates the application of an extension of ICA – the ICA mixture

model (ICAMM) [67] – an unsupervised learning approach to modeling EEG activities in different

brain states and detecting brain dynamic state changes associated with cognitive state changes

[55]. The ICAMM assumes distinct ICA models may better characterize different segments
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of nonstationary data, i.e. x(t) = Ahsh(t) where h is the model index. By allowing multiple

ICA models to focus simultaneously on different parts of the data, ICAMM relaxes the spatial-

stationarity assumptions and allows more total sources to be learned than the number of channels.

ICAMM is thereby capable of modeling nonstationary, multi-state data and thus is a promising

approach to studying dynamic changes in cognition and brain states. While the few prior attempts

to apply ICAMM to EEG data were able to monitor attention [55], to detect microarousals during

sleep [106], and to detect mental state changes during a memory test [105], the full power of the

ICAMM approach has not yet been demonstrated, including modeling of multiple brain states,

tracking of state transitions in continuous recordings, consistency of the learned models across

subjects, and more precise physiological interpretation of those models.

Here we report an EEG study using an unsupervised ICAMM to investigate dynamics

of cognitive states. For this we chose an adaptive mixture ICA (AMICA), proposed by Palmer

et al.[97] that adaptively learns individual source probability density functions (PDFs) as well

as source scalp projection patterns. Palmer et al.[97] has also provided an efficiently optimized

algorithm for learning an ICAMM from multichannel data using a parallel implementation (the

code is available at https://sccn.ucsd.edu/˜jason/amica_web.html and also as an open

source plug-in for EEGLAB [28] at https://sccn.ucsd.edu/wiki/EEGLAB_Extensions_

and_plug-ins). In the following sections, we will show: 1) AMICA learns the ground truth

in simulated quasi-stationary data – we test the effect of numbers of ICA models on AMICA

performance; 2) AMICA usefully characterizes sleep EEG dynamics, producing consistent results

across subjects that can be applied to classify six sleep stages; 3) AMICA can quantitatively

assess subjects’ continuous changes in attention and drowsiness levels during simulated driving

and thereby can track brain dynamic state changes at single-trial level with millisecond resolution;

and 4) AMICA provides interpretable models allowing computation of the spatial distribution

and frequency content of active sources in each brain state.
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3.2 Materials and Methods

3.2.1 Datasets and preprocessing

Dataset I: simulated quasi-stationary data

To systematically validate AMICA, we use the EEG data simulator in the Source Informa-

tion Flow Toolbox (SIFT) [29] to simulate a quasi-stationary dataset in which underlying sources

are alternatingly active and inactive. We first generate 28 source time-series using EEG-like

autoregressive models driven by super-Gaussian noise (simulated 250-Hz sampling rate, 135k

samples). The nine total minutes of simulated source data are partitioned into three 3-min seg-

ments, each with a different set of 16 active sources. For each of the 23 = 8 possible combinations

of active/inactive sources over three segments, e.g. active-inactive-active, etc., we simulate 4

sources that follow such a pattern, excluding the inactive-inactive-inactive pattern in which no

sources are active. This results in 16 active sources in each segment with 8 active sources changing

between segments. Each source is assigned to the center of a randomly selected cortical region in

the MNI brain atlas, with its dipole moment oriented normal to the cortical surface. Finally, the

simulated source-level activities are projected through a zero-noise three-layer boundary element

method (BEM) forward model (MNI Colin27), yielding simulated 16-channel EEG data. More

details are included in [48].

Dataset II: CAP sleep database

We used 17 human EEG recordings, each consisting of 6-10 hours of sleep, from the

CAP sleep database [112] on the PhysioNet [37]. Excluding subjects whose recordings had less

than 5 channels gave 7 EEG datasets from healthy subjects. We also used EEG recordings from

10 patients with nocturnal frontal lobe epilepsy (NFLE), selected on the basis of data quality,

i.e. longer data length, higher number of channels and more balanced numbers of sleep labels.

We included NFLE patient recordings in an attempt to test ability of the proposed approach to
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generalize across subjects and patients.

The EEG data comprise 6-13 bipolar channels (e.g. F3-C3, C3-P3, P3-O1, O1-A1, without

common reference) affixed at scalp sites in the International 10-20 System and recorded with

a sampling rate of 128 Hz using a Galileo System (Esaote Biomedica). After collection, the

EEG signals were band-pass filtered between 0.5 Hz to 25 Hz. The hypnograms had been

annotated by expert neurologists at 30-second intervals using standard R&K rules into 6 sleep

stages: wake (W), rapid eye movement (REM), and 1 to 4 non-REM sleep stages (N1, N2,

N3 and N4). More detailed description of the data and their hypnograms can be found at

https://physionet.org/pn6/capslpdb/.

Dataset III: drowsiness fluctuation in simulated driving

Ten healthy volunteers participated in a 90-min experiment in an immersive VR-based

driving simulator, performing an event-related lane-departure task [49]. The subjects experienced

visually presented lane-departure events every 8-12 seconds (with randomized event onset asyn-

chronies) and were instructed to steer the car back to the cruising position quickly using a steering

wheel. The duration between the onset of a lane-departure event to the onset of a responsive

steering action was defined as subject reaction time (RT), which can be used to index degree of

subject alertness / drowsiness [72]. The RT data were transformed to reaction speed (RS = 1/RT)

to partially normalize the highly skewed RT distribution. For more details on the subjects and the

experiment, refer to [72].

For each subject, 30-channel EEG data were recorded with a 500-Hz sampling rate using

a NeuroScan System (Compumedics Ltd., VIC, Australia) with electrode sites according to the

International 10-20 System. The EEG data were band-pass filtered (1-50 Hz) and downsampled

to 250 Hz. Using the PREP pipeline [11], poorly recorded channels in the recordings, such as

channels with flat signals arising from poor electrode contacts, and channels whose signals were

poorly correlated with those of neighboring channels were removed. Two to six channels were so
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Figure 3.1: Adaptive Mixture ICA (AMICA) in a nutshell. AMICA consists of three layers of
mixing. As shown in illustration, the first layer is mixture of ICA models A1 and A2 that learn
the underlying data clusters, simulated based on Laplace and uniform distribution respectively.
The second layer is mixture of independent components A11 and A12 that decompose the data
cluster into statistically independent sources’ activations s11 and s12. The third layer is mixture
of generalized Gaussian distributions q11 j that approximate the probability distribution of the
source activation p(s11).

identified and removed for each of the 10 subjects. In addition, artifact subspace reconstruction

(ASR) [82], implemented as a plug-in to the EEGLAB environment [28], was applied using a mild

threshold (burst repair σ = 20) to reduce data contamination by high-amplitude artifacts. These

artifact-correction methods were chosen to facilitate convergence of the ICA models. Detailed

description of the data pre-processing can be found in [44].

3.2.2 Method description

Comprehensive formulation of the ICAMM problem and detailed derivation of the AMICA

algorithm have been presented in [67] and [97] respectively. The following sections give a brief

summary of the multi-model AMICA approach in an attempt to provide intuition and facilitate

readers’ understanding.

47



Adaptive mixture ICA (AMICA)

Figure 3.1 gives a schematic overview of the architecture of AMICA and its models.

AMICA is, conceptually, a three-layer mixing network: the top two layers constitute one or more

ICA mixture models and the bottom layer, specific to AMICA, focuses each learned model on

accounting for a subset of the data.

Starting from the top layer, the key assumption of multiple mixture models is that data

X = {x(t)} (N-channel by T -time samples) are nonstationary, so that different models may be

dominant in characterizing the data at different times, i.e. x(t) = xh(t) where h is the model index.

Previous studies have provided evidence that EEG activities during different brain states (e.g. alert

versus drowsy) are nonstationary and can be modeled by a finite set of distinct ICA models [44].

In the top two layers of the AMICA network, a standard ICA model is employed to

model the data x as an instantaneous linear mixture A (N×N matrix) of statistically independent

components s, i.e. x = As. The first two layers consist of the ICA mixture model:

x(t) = xh(t) = Ahsh(t)+ ch, h = 1, . . . ,H (3.1)

where h = h(t) and Ah is the dominant or active model at time t with source activities sh(t) and

bias ch. For simplicity, it is assumed that only one of the H models is active at each time and that

the model index h and the data x(t) are temporally independent. Hence the likelihood of data

given the ICA mixture model can be written as:

p
(
X
∣∣Θ)= T

∏
t=1

H

∑
h=1

p
(
x(t)
∣∣Ch,θh

)
· p(Ch) (3.2)

where Θ = {θ1, . . . ,θH} contains the parameters of ICA models and p(Ch) = γh is the probability

of the h-model being active that satisfies ∑
H
h=1 γh = 1.

Given the assumption of statistical independence between components shi(t) (i= 1, . . . ,N),
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the likelihood of the data given the active ICA model W h = A−1
h is:

p
(
x(t)
∣∣Ch,θh

)
= |detW h| ·

N

∏
i=1

p
(
shi(t)

)
(3.3)

In the third layer of the AMICA network, the probability density function (PDF) of

each component p
(
shi(t)

)
is approximated by a mixture ( j = 1, . . . ,M) of generalized Gaussian

distribution q(s) [95, 97]:

p
(
shi(t)

)
=

M

∑
j=1

αhi j ·q
(
shi(t);ρhi j,µhi j,βhi j

)
(3.4)

where αhi j is the weight for each PDF. The generalized Gaussian distribution parameterized by

shape ρ, scale β and location µ is defined as:

q(s;ρ,β,µ) =
ρ

2β ·Γ(1/ρ)
exp
(
−
∣∣∣s−µ

β

∣∣∣ρ) (3.5)

It is worth noting that most standard ICA mixture models, in contrast to AMICA, assume pre-

defined PDFs for sub-Gaussian and super-Gaussian sources [67]. A previous study has shown that

by adaptively learning the PDFs for each source, AMICA is able to achieve higher decomposition

quality than other ICA approaches [30] when applied to 70-channel EEG data.

In the three-layer AMICA mixing network, the parameters to be estimated are Θ =

{W h,ch,γh,αhi j,βhi j,ρhi j,µhi j} that correspond to the model index h = 1, . . . ,H, the component

index i = 1, . . . ,N and the PDF index j = 1, . . . ,M. The next section describes an efficient

approach to estimating these parameters.

Parameter estimation and interpretation

The expectation-maximization (EM) algorithm is employed to estimate the parameters Θ̂

that maximize the data likelihood function in Equation 3.2. The algorithm consists of two-step
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iterative learning involving alternating E-steps and M-steps. The E-step uses equations 3.3 and 3.4

to construct the expectation of the likelihood function in equation 3.2 using current estimates

of the parameters Θ̂l . The M-step maximizes the likelihood function returned by the preceding

E-step. Instead of using standard or natural gradient approaches [67, 107], AMICA uses the

Newton approach as derived by Palmer et al.[97] based on the Hessian (matrix of second-order

derivatives) to achieve quadratic, and thus faster, convergence. For a detailed derivation and

learning rules, see [97].

As an unsupervised approach with generative models, the Θ parameters learned by

AMICA provide rich information about the underlying data clusters and their temporal dynamics.

As illustrated in Figure 3.1, ICA models W h and ch can characterize distinct data clusters that

represent different quasi-stationary states in the data. In addition, the corresponding source

activations shi can be better estimated by αhi j, βhi j, ρhi j, and µhi j instead of assuming a fixed PDF

as in many other ICA models including the original Infomax ICA [8]. Furthermore, the activation

of each ICA model h(t) can be represented as the likelihood of the data sample x(t) given the

estimated parameters of the model θh, using equations 3.2, 3.3 and 3.4:

Lh(t) = p(Ch) · |detW h| ·
N

∏
i=1

M

∑
j=1

αhi j ·q
(
shi(t);ρhi j,µhi j,βhi j

)
(3.6)

Therefore the probability of activation of each ICA model at time t can be calculated by normaliz-

ing Lh(t) across all models:

p
(
h(t)

)
= Lh(t)

/
H

∑
h=1

Lh(t) (3.7)

This value, p
(
h(t)

)
, characterizes the temporal dynamics of activations of distinct states modeled

by ICA and is referred to as “ICA model probability” in following sections.
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Table 3.1: Parameters of Adaptive Mixture ICA for analyzing three datasets: I, simulated data;
II, CAP sleep EEG data; III, drowsy driving EEG data.

Dataset I II III
# of models (H) 2-6 8 2-4
# of sources (N) 16 6-13 24-28
# of PDFs (M) 3 3 3
# of rejection steps 0 15 15
Rejection thresholds N/A 3 3
Max learning steps 2500 2000 2000

Application of multi-model AMICA

Multi-model AMICA decompositions were applied to all datasets described in Sec-

tion 3.2.1 with the parameters specified in Table 3.1. For datasets II and III, rejection of data sam-

ples based on their posterior probabilities was applied to alleviate the effects of transient artifacts,

such as data discontinuities, that might disrupt ICA learning. An efficient implementation of AM-

ICA with parallel computing capability by Palmer et al.[97] was used in this study. The code for

that implementation is available at https://sccn.ucsd.edu/˜jason/amica_web.html and

also as an open source plug-in for EEGLAB [28] at https://sccn.ucsd.edu/wiki/EEGLAB_

Extensions_and_plug-ins.

3.2.3 Validation and quantitative analyses

Decomposition errors of ICA models

To determine whether AMICA could accurately decompose the simulated quasi-stationary

data, three different measures were employed: model errors for unmixing matrices W h, the

signal-to-interference ratios (SIR) for source activities sh, and the symmetric Kullback-Leibler

(KL) divergence [64] for parameters of the source probability densities Θ = {α,β,µ,ρ}. These

measures are defined as follows:
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Model errors For a known ground truth (N-by-N) mixing matrix A, the model error E(h) of the

learned unmixing matrix W h and sphering matrix S can be defined [32]:

E(h) = 1
N−1

[
N− 1

2

N
∑

i=1

(
max

1≤ j≤m
|C(h)

i j |2

∑
N
j=1 |C

(h)
i j |2

+
max

1≤ j≤m
|C(h)

ji |2

∑
N
j=1 |C

(h)
ji |2

)]
(3.8)

where C(h) =W h ·S ·A. This measure is a normalized total cross-talk error and accounts for

scale and permutation ambiguities. In the case of perfect separation, E(h) equals zero. For

three quasi-stationary segments and the three ground-truth mixing matrices Ak, we report

the sum of logarithm of the model error for each segment k, i.e. total log error =
3
∑

k=1
logEk,

where Ek = min
h=1...H

E(h)
k .

SIR SIR estimates the log-scaled normalized mean-squared errors of the decomposed time series

of the ith component, ŝi(t), compared with ground-truth source activities, s(t), defined as

SIRi = min
j=1...N

10log10

(
∑

T
t=1 s j(t)2/∑

T
t=1
(
ŝ2

i (t)− s2
j(t)
))

[107] where T is the number of

data samples. The final SIR is averaged across all components and then summarized across

three quasi-stationary segments.

KL divergence The KL divergence quantifies the difference between the estimated PDF Pi(x)

of the ith source and the ground-truth source PDF Q(x), which is defined as: KL-Divi =

min
j=1...N

1
2

[
DKL(Pi||Q j)+DKL(Q j||Pi)

]
where DKL(P||Q) = ∑

x
P(x) log P(x)

Q(x) . Q(x) was ap-

proximated by histograms because the ground truth source activities was generated by an

autoregressive process instead of a parametric model.

Classification of sleep stages

To quantitatively assess results of unsupervised segmentation of the sleep EEG data by

AMICA decomposition, we used ICA model probabilities (equation 3.7) as features and applied

a Gaussian Bayes classifier to 30-second data windows to classify the data into six sleep stages.
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The Gaussian Bayes classifier models the features of each class as a D-dimensional multivariate

Gaussian distribution:

G(x;µ,Σ) =
1√

(2π)D det |Σ|
exp
(
− 1

2
(x−µ)T

Σ
−1(x−µ)

)
(3.9)

where µ is the mean and Σ is the covariance matrix estimated from the training data with the same

class. To classify a test data window, the classifier compares the posterior probabilities of each

class given the test data x:

Ck = argmax
k

p(Ck|x) = argmax
k

p(x|Ck) · p(Ck) = argmax
k

G(x;µk,Σk) · p(Ck) (3.10)

where p(Ck) is the prior distribution of class k. In this study, the relative proportion of labels in

each class is used as the prior distribution.

Five-fold cross-validation was performed for each subject data set. To ensure each fold

had enough training data for each class, the data were first pooled according to their labels

and then divided into five folds. The cross-validation accuracy and the confusion matrix were

computed and the results summarized across subjects. The effect of the number of features used,

i.e. model probabilities, on classification accuracy was also tested. It is worth noting that a

generative classifier like the Gaussian Bayes classifier was here employed not to produce optimal

classification accuracy but to illustrate the separability of EEG activities into six sleep stages

using the feature space learned by AMICA decomposition.

Distinguishing alert versus drowsy behavior

A relational analysis was performed for dataset II (Section 3.2.1) to quantitatively evaluate

the relationship between ICA model probabilities and drowsiness level as indexed by decreased

reaction speed to driving challenges introduced into a simple driving simulation. Here AMICA

model probabilities were first computed for 5-second data windows immediately preceding onsets
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of lane-departure event (as might be produced during actual driving by unseen crosswinds). Pear-

son correlation coefficients were computed between preceding model probabilities and reaction

speeds across all driving challenge trials. To assess longer-lasting fluctuations in behavioral

drowsiness level over a driving session, a 90-sec smoothing window was applied [77]. Median

reaction speed and model probabilities were computed across the 5-10 trials in each 90-sec

window. The effects of model probability smoothing length is discussed in [44].

Clustering ICA models across subjects

To examine the consistency of the learned AMICA models across subjects, the mod-

els were clustered using iterative template-matching according to the relation between model

probabilities and data labels (sleep stages). For each subject, mean model probabilities were

obtained for each model in each sleep stage, giving a matrix of 6-stages by 8-models, Pi, for

each subject (i). Each column of Pi was normalized to sum to one for further analysis. Next,

a typical (template) subject was selected and his/her P0 was used as an initial condition. The

ICA models for each subject (i) and the template subject were matched. Model pair Pearson

correlation coefficients (between models in columns of Pi and columns of P0) were computed

using matcorr() in EEGLAB [28]. The sorted model probabilities P̂i were averaged across the N

subjects to obtain the new template P(1)
0 = 1

N

N
∑
i

P̂i in place of P0. The above template-matching

process was iterated until the difference between new and old templates was smaller than a

pre-defined threshold, i.e. ∑
i

∑
j
|P(t)

0,i j−P(t−1)
0,i j | ≤ ε for t-th iteration. This study used ε = 0.1 to

ensure that the results were consistent regardless of the choice of template subject.

Clustering independent components across subjects

Clustering of independent components (ICs) was performed to identify across-subject IC

equivalences within model classes. The IC clusters were obtained using the corrmap() plug-in

in EEGLAB [116] using component similarity assessed by scalp map correlations. An IC scalp
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map is the set of relative contributions or projections of the IC source to the scalp channels, i.e.

a column of W−1 in equation 3.3. Component templates were selected visually. The number

of ICs contributed by each subject was limited to two for the centro-occipital cluster and one

for the other clusters. The following correlation thresholds were used: 0.9 for eye-blink and

eye-movement clusters; 0.85 for the other clusters. These parameters were carefully chosen to

avoid assignments of near-duplicate ICs to different clusters and to reduce variability produced

by template selection.

3.3 Results

3.3.1 Dataset I: Validation using simulated data

Automatic data segmentation by ICA model probability

Figure 3.2 shows mean and upper/lower-bound model probabilities of the model clusters

at each time point, across 100 repeated runs each decomposed using 3-, 4-, 5- and 6-model

AMICA. All the 3-, 4-, 5- and 6-model AMICA decompositions successfully segregated data

within the three simulated quasi-stationary segments, assigning them distinct ICA models (those

with the highest probabilities, here labeled M1-M3).

Variability in model cluster probabilities across simulations, indicated by the heights of the

shaded regions representing the 90 and 10 percentiles of the probability distributions, increased

as the numbers of models used were larger than the simulated ground truth (3 models). For these

(over-complete) mixture model decompositions, model clusters M4-M6 were more probable than

model clusters M1-M3 only in small portions (3% to 7%) of the data. Under-complete 1-model

and 2-model AMICA decompositions (Figure 3.2) tended to model ground truth in one or two of

the three simulated data segments. Overall, complete and over-complete AMICA decompositions

accurately segmented the nonstationary simulated data in an unsupervised manner.
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Figure 3.2: Mean changes in AMICA model probabilities clustered across AMICA decom-
positions of 100 repeated runs applied to the simulated quasi-stationary data. (a) AMICA
decompositions using 3 models, (b) 4 models, (c) 5 models, and (d) 6 models. Upper and
lower edges of the shaded regions represent the 10th and 90th percentiles of the cluster normed
probability distribution. Figure legends give the mean probabilities p(Ch) for each model cluster.
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Figure 3.3: (a) Model errors in the learned model unmixing matrices versus simulated ground
truth, (b) signal-to-interference ratios (SIR) of the decomposed model source activities, and (c)
symmetric KL divergence of the learned source probability densities for AMICA decompositions
using 1-6 models each averaged across 100 simulations. Red dashed line indicate the perfor-
mance of single-model Infomax ICA applied to each single-model data segment. Significant
differences in unpaired t-tests are shown (* p < 0.01, ** p < 1×10−4, *** p < 1×10−6). Red
asterisks denote comparisons between AMICA and Infomax ICA models; blue asterisks denote
comparisons between AMICA model orders. Overall, model errors were lowest for veridical
(3-model) and slightly over-complete (4-model) AMICA decompositions.

AMICA decomposition errors

Figure 3.3a shows that 3- and 4-model AMICA decompositions achieved model errors

comparable to the combined results of Infomax ICA decompositions of the single-model data

segments (difference probability, p = 0.11 by unpaired t-test), demonstrating the three ground-

truth mixing matrices could be learned accurately by AMICA without identified model boundaries.

By comparison, the performance of 5-model AMICA was slightly worse and model errors

for 6-model AMICA were significantly higher for 3- and 4-model AMICA decompositions.

Nevertheless, 6-model AMICA still outperformed under-complete 1-model and 2-model AMICA

decompositions applied to the three data model segments.

Figure 3.3b shows that 3- and 4-model AMICA decompositions gave the highest SIR, 5-

and 6-model decompositions marginally lower and 1- and 2-model AMICA decompositions still

lower SIR. Both 3- and 4-model AMICA decompositions achieved SIR results comparable to

Infomax ICA run on the single-model data segments (p = 0.24 and 0.14 respectively). These re-

sults show that the ground-truth source activities for each model segment were well reconstructed
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by complete (or, here, slightly over-complete) AMICA decompositions.

Figure 3.3c shows that 3- to 6-model AMICA decompositions produced the smallest (on

average, near-zero) KL divergence values, suggesting that the source probabilities densities were

also properly approximated. Here, 2-model AMICA performed slightly worse (p < 0.05) and

1-model AMICA much worse.

In summary, 3-model AMICA decomposition could simultaneously and accurately learn

the true mixing matrices, source activities, and probability densities for three independent compo-

nent models used to simulate 3-segment quasi-stationary data. AMICA performance using an

unsupervised learning approach was comparable to Infomax ICA applied to each segment sepa-

rately in a supervised fashion. Further, slightly over-complete (4-model) AMICA decompositions

produced nearly comparable results, and performance only marginally decreased as the number

of AMICA models was further increased.

3.3.2 Dataset II: Classify sleep stages

We applied 8-model AMICA to 17 sleep EEG datasets to evaluate AMICA performance

applied to actual EEG data and to assess its capability to distinguish the 6 conventional sleep stages

from the data themselves without regard to changes in spectra or other time series properties.

Model probabilities characterize sleep dynamics

To illustrate the temporal dynamics learned by 8-model AMICA from the sleep EEG

data, Figure 3.4 shows the sleep stages annotated by experts and the probabilities of AMICA

models ordered by overall data likelihood in one sleep session. Four distinct patterns of model

probability changes were observed: (1) Models M1 and M2 were relatively active, i.e. had high

model probabilities, during light sleep (N1 and N2) and had low probabilities during deep sleep

(N4). Model M1, however, was more probable in rapid eye movement (REM) sleep than model

M2. (2) In contrast, both models M3 and M5 were active only during deep sleep (N3 and N4).
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Figure 3.4: The top panel shows the hypnogram, i.e. sleep stages annotated from the EEG record
by a sleep expert, of a sleep session from a single subject. Bottom panels show probabilities of
ICA models learned by 8-model AMICA decomposition applied to the EEG record. Red-shaded
regions highlight changes in model probabilities for relevant models during transitions to and
periods of deep sleep (N4). Gray-shaded regions highlight probability value changes for relevant
models during REM sleep.
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These first two patterns sufficiently characterized changes from light sleep to deep sleep and back

again (red-shaded regions) over the course of the sleep session. (3) Model M4 was most probable

(gray-shaded regions) during REM sleep and in the wake state. (4) Probabilities of models M6,

M7 and M8 rose only sporadically, mainly in the wake state.

Thus, the probabilities of the 8 learned ICA models for this session had notable relation-

ships to the annotated sleep stages, but ICA model probabilities could not be mapped one-to-one

with sleep stages. Some ICA models appeared to jointly characterize a sleep stage (e.g. M1 and

M2 for N2, and M3 and M5 for N4), while probabilities for other models rose in different sleep

stages (e.g. M1 probability rose briefly during N1, N2 and REM stages).

The dynamics of the model probabilities suggested that the changes in EEG activities

during transitions between sleep stages were continuous as opposed to discrete – unlike as

indicated by the hypnogram (scored by convention in successive 30-second intervals). Transition

times varied across sleep stages. For example (red-shaded regions), major model probability

shifts for models M1, M2, M3 and M5 had slower transitions (5-10 min) from stage N2 to N4

than from N4 to N2 (2-5 min). Some model probability transitions began before changes in the

annotated sleep-stage labels. These results provide compelling evidence that AMICA model

probabilities might be used to study the dynamics of EEG changes during sleep at much finer

(e.g. approaching sample-by-sample) temporal resolution than offered by standard sleep scoring.

Relationships between ICA models and sleep stages across subjects

Next, we explored relationships between ICA models and sleep stages to assess if these

relationships could be generalized across subjects using iterative template-matching of models

from different subjects (Section 3.2.3). Figure 3.5 shows that ICA model clusters across subjects

could be built based on relationships between data-driven model probabilities and annotated

sleep stages. Resulting standard deviations of cluster model probability in each sleep stage

were surprisingly small. Furthermore, each AMICA model cluster probability profile across
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Figure 3.5: Cross-subject mean (plus one standard deviation) model probabilities of 8 AMICA
model clusters in six sleep stages. Model clusters were composed of best-matched models across
subjects, as found by iterative template matching.
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sleep stages was distinct. For example, model A was relatively active in lighter sleep (N2 and

N3), models B and D in deep sleep (N4), models C, E, and F in REM and stages N1 and N3,

respectively. Models G and H were most probable during the wake state.

To visualize relationships between ICA model probabilities and sleep stages, Figure 3.6

presents 30-sec window-mean model probabilities for model clusters A, B, and C (cf. Figure 3.5)

for all 17 subjects. Model probability values in the different (color-marked) sleep stages are

clearly separated in this feature space. The progression from light sleep (N2, green) to deeper

sleep (N3, yellow, to N4, red) is associated with smooth changes in cluster model probabilities.

Model probabilities in the (purple) wake state were mostly low (near the (0,0,0) corner). These

characteristics were consistent across AMICA models from 7 healthy subjects and 10 patients

with nocturnal frontal lobe epilepsy.

Quantitative analysis: classification accuracy

To quantitatively assess the potential utility of model probabilities for separating sleep

stages, we entered the window-mean model probabilities from the 8-model AMICA decompo-

sition into a Gaussian Bayes classifier that fits a Gaussian distribution of 8-model probability

vectors for each of the six annotated sleep stages (Section 3.2.3), and measured classification

accuracy using 5-fold cross validation for each subject.

Figure 3.7a shows classification accuracy across all subjects. Accuracy improved when

the number of model clusters was increased up to the use of the first three clusters. For all data

(blue curve), mean accuracy was 74% - 76% when using three or more cluster model probabilities

as features (no significant difference was observed by paired t-test). Classification accuracy was

much lower (to 45% - 49%, yellow curve) for 30-sec data windows near a state change (e.g. when

the sleep-stage label was different from that of the previous or succeeding windows). Accuracy

was higher (78% - 80%, red curve) when the window was not near a state change.

Note that classification accuracy was biased by the unbalanced class sample sizes. Fig-
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Figure 3.6: Scatter plot of window-mean model probabilities for AMICA model clusters A, B,
and C (cf. Figure 3.5), each point representing mean model probability within a 30-sec data
segment from sleep recordings of 7 healthy subjects and 10 patients. Colors represent expert
designated sleep-stage labels for the same data segments. Note the distinct deep sleep (N4)
pattern and the relative closeness of wake and REM sleep characteristics.

63



Figure 3.7: (a) Means and standard deviations in accuracy of classification between 6 sleep
stages across the 17 subjects using cluster model probabilities for different numbers of models
as features. Results were separated into two conditions, depending on whether the data window
was or was not near a sleep state change. (b) Confusion matrix of 6-class classification across
all the data using 8 cluster model probability features.

ure 3.7b shows the sleep-stage confusion matrix for the classification using all 8 model cluster

probabilities. For the most distinctive sleep stages (REM and N4), the sensitivity (true positive

rates) were 86% and 90%. For sleep entry stage N1 (with fewer class samples), sensitivity was

significantly lower (43%), in line with clinical expectation. In addition, misclassification between

sleep stages shown as nearest neighbors in Figure 3.7b accounted for 87% of the total errors.

3.3.3 Dataset III: Estimating behavioral alertness

Given the results using multi-model AMICA decompositions on sleep stage classification,

described in the previous section, we assessed whether nonstationary AMICA decomposition can

be used to estimate more continuous state transitions, e.g. changes in drowsiness level defined by

changes in behavior in a continuous performance task.
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Figure 3.8: The top panel shows reaction speed changes (inverse of reaction times) in response
to lane-departure challenges in one simulated driving session. The three bottom panels show
shifting probabilities of the three ICA model learned by three-model AMICA decomposition
of the whole EEG data session. Correlation coefficients (r) between each model probability
time course and reaction speed are indicated. Black arrows in the lower panel mark brief (alert)
periods when model M3 was dominate and reaction speed high.
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Model probability shifts accompanying changes in behavioral alertness level

Figure 3.8 plots model probability time courses for a three-model AMICA decomposition

of data from one subject, with the subject’s reaction speed in response to driving challenges. The

probability of model M1 correlated positively with reaction speed (r = 0.594), implying that this

model was dominant during (more alert) periods when the subject responded quickly to driving

challenges. In contrast, the probability of model M2 was strongly negatively correlated with

reaction speed (r =−0.825), rising when subject reaction speed was low (less alert or drowsy

periods). Surprisingly, model M3 was active at the beginning of the experiment and during quick

transitions from slower to faster responding (arrows in Figure 3.8). These single-subject results

provide evidence that model probabilities learned by three-model AMICA may co-vary with

changes in reaction speed (often used, in long experiment sessions, as an index of behavioral

alertness), and that the three models each accounted for EEG activity under a different set of

performance conditions. Below, we will call models whose model probabilities have the most

positive and negative correlations to reaction speed as “fast-response models” and “slow-response

models” respectively. The remaining models may be dubbed “intermediate-response models”.

To summarize the relation between model probabilities and reaction speeds for all subjects,

we applied 3-model AMICA to individual subjects, aggregated ICA models according to their

categories (fast response, slow response and intermediate models) across subjects, and plotted

their model probabilities of 5-second windows before onset of the lane-departure trials, as shown

in Figure 3.9. The trials with different levels of reaction speeds appeared to be organized in the

feature space spanned by the model probabilities. The data were distributed on a probability

simplex because model probabilities are compositional data, which sum up to one. The trials with

slow reaction speeds (red) tend to distribute toward the bottom right corner of the triangle, where

the probability was high for slow response model. In contrast, the trials with fast reaction speeds

(blue) appeared to scatter at the other two corners where either fast response model or the third

intermediate model was active. It is worth noting that the ICA model probabilities can be directly
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Figure 3.9: A scatter plot of lane-departure trials from all subjects in the feature space spanned
by model probabilities of the three ICA models learned by 3-model AMICA. Each trial was
color-coded with its reaction speed.
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Figure 3.10: Across-subject mean correlation coefficients between reaction speed and model
probabilities for fast-response versus slow-response models learned by unsupervised 2-to-4
model AMICA and by separate (supervised) decompositions of fast-response and slow-response
periods using separate single-model ICA [44]. Standard errors of the mean (I-bars) and (*
p < 0.05) results of paired t-tests are shown.

summarized across subjects without normalization, which is consistent with the results shown in

Figure 3.6.

Relationships of model probabilities to performance changes

In Figure 3.10, we report subject mean correlations between model probabilities and

reaction speed to study inter-subject variability, enable significance tests between AMICA decom-

positions with different numbers of models, and compare results against a previous study [44]. For
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all subjects, AMICA decompositions with 2 to 4 models always included at least one fast-response

model and one slow-response model, i.e. models whose model probability correlations to reaction

speed were significantly positive and negative, respectively. This is a striking result: AMICA, an

unsupervised learning approach, automatically and consistently identified two linearly unmixed

source models of EEG data acquired when subjects were producing faster and slower responses,

respectively.

A two-way repeated measures ANOVA with bootstrap significance testing showed

(p < 0.05) significant interaction between model types (fast-response vs. slow-response) and

different decomposition types. Post-hoc paired t-test results revealed no significant differences

between behavior / model probability correlations for the fast-response models. However, model

probabilities of slow-response models in 3-model and 4-model AMICA decompositions were

significantly more negatively correlated with reaction speed than measures derived using the

ICA-based approach proposed in Hsu et al.[44] in which fast- and slow-response models were

learned from 90-sec data segments in which reaction speeds were fastest and slowest, respectively.

Significantly more negative correlations were produced by slow-response models from 3-model

than from 2-model AMICA decompositions; there was no significant correlations difference

between models from 3-model and 4-model AMICA decompositions. This observation supports

our choice to focus further analysis on the 3-model AMICA decompositions.

Rapid model switching dynamics during driving challenges

Changes in model probabilities can also characterize moment-by-moment state changes

within single trials. The Figure 3.11 plots, for each latency across trials sorted by driver reaction

speed, the index of the highest probability AMICA model time locked to the driving challenge

onset, the driver’s response onset or response offset. The results for the same subject as in

Figure 3.8) are shown above the results for all the trials from the ten drivers to demonstrate that

the results generalize across subjects and across (vertical) smoothing of smaller (top) or larger
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Figure 3.11: Event-related changes in the dominant AMICA model in 3-model AMICA de-
compositions within data trial epochs (horizontal colored lines) sorted by driver reaction speed.
Model probabilities were computed in non-overlapping 20-msec windows. The same trials in
the same top-to-bottom order shown are time locked either to (a) driving challenge onsets (black
traces), (b) subsequent driver response onsets (white traces), or (c) driver response offsets (gray
traces). Top panels show results for 600+ epochs for one subject (same as in Figure 3.8). AMICA
models associated with fast, slow, and intermediate response speeds, respectively, were found
among each subject’s AMICA models. Bottom panels merge model cluster results for all 5000+
available epochs from all 10 subjects. Results shown are smoothed across trials (vertically)
using a (single subject) 3-trial or (all subjects) 50-trial sliding window. Note the dominance of
the (red) “slow-response” AMICA model (top panels) or model cluster (lower panels) results
preceding and following driving challenge onsets in trials in which drivers responded relatively
slowly. Notice also the transient dominance of the (green) “intermediate” models following
driving-challenge and driver-response onsets in slower-response trials.
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(bottom) numbers of trials.

Figure 3.11a shows that in trials with faster responses, before driving challenge onset,

the (blue) fast-response model best fit the data, while before driver challenges in slow-response

trials, the (red) slow-response model best fit the data. Switching between the two models occurs

as driver response onsets increase from 0.9 sec to 1.1 sec (single subject, top) and from 1 sec to

1.2 sec for all drivers (bottom).

The dynamic switching between best-fitting AMICA models documented in Figure 3.11

thus measure brain dynamic changes preceding behavior on a near-millisecond time scale. Plotting

the same trials time locked to driver response onsets (Figure 3.11b) shows that from 0.9 sec to

1.2 sec before response onset (white vertical trace), and again in the 1 sec following response

onset, the third, (green) “intermediate” model became dominant briefly, possibly indicating

brief hypnagogic (“dreamy”) periods moving into and again out of relative alertness. Note

that circa 0.5 sec spent by drivers in the relative (blue) alert state preceding response onsets in

slow-response (upper) trials is close to the minimum time required by the drivers to respond

to driving challenges in fastest-response (lower) trials. All these details are consistent with

the driver challenge (lane deviation) and driver response (car-steering action) constituting a

(briefly) arousing event sequence. Figure 3.11c shows that in (upper) slower-response trials the

slow-response model learned by AMICA dominated for less than 0.5 sec after the offset of the

car-steering action, suggesting that the drivers then relapsed into a more drowsy state, e.g. as soon

as attention could safely be withdrawn from the task for some seconds.

Clustering ICs within AMICA models

So far we have demonstrated that shifting AMICA model probabilities can accompany

changes in EEG dynamics supporting different cognitive and brain states. Another substantial

advantage of the AMICA approach is that it learns generative models, i.e. sets of independent

components and their activities and probability density functions (pdfs), that can be related to neu-
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Figure 3.12: Average scalp maps and power spectra of independent component (IC) clusters
from slow-response models versus clusters learned from fast-response models from separate
three-model AMICA decompositions of data for each subject. The number of subjects and
ICs contributing to each cluster are specified and are also indicated by the width of the power
spectral traces.
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rophysiological locations and functions, thereby enabling biologically plausible interpretations.

Figure 3.12 shows IC clustering results for fast-response and slow-response models across

the 10 subjects (clustering details are described in Section 3.2.3). Both model class clustering

solutions included ocular, frontal, central, parietal, and occipital clusters. Slow-response models

included more dipolar sources and source clusters (108 ICs, 15 clusters) compared to fast-response

models (72 ICs, 12 clusters). This difference appears most notable in right lateral clusters. found

only among ICs in the slow-response models. By contrast, the slow-response model left central,

parietal, and occipital clusters included 25 ICs, while the corresponding clusters for fast-response

models included only 15 ICs.

3.4 Discussion

3.4.1 Unsupervised learning of brain dynamics by modeling source non-

stationarity

This study aims to demonstrate the utility of AMICA as a general, unsupervised approach

to assessing nonstationary dynamics of cortical dynamic states from nonstationary multichannel

EEG signals. Our underlying hypothesis is that the ever-changing formation and dissolution of

locally synchronous (or near-synchronous) cortical effective source activities and the network

interactions they reflect and support give rise to the fluidity of cognition and behavior. Our

results show that these nonstationary dynamics in cortical and cognitive state may be effectively

modeled using an ICA mixture model and, specifically, by multi-model AMICA decomposition.

Here we applied multi-model AMICA decomposition to one simulated and two actual EEG

data sets to evaluate the efficacy of AMICA to estimate abrupt and continuous state changes, to

classify multiple sleep stages, and to reveal moment-to-moment cortical (and likely cognitive

state) dynamics supporting performance in a simulated driving task. In so doing, we tested the
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capability of AMICA to estimate continuous state changes, to return consistent model sets across

subjects, and to return models suitable for biological interpretation. We also tested the effects of

the number of ICA models used. The following subsections discuss these topics in more detail.

3.4.2 Classification of multiple brain states

Our results demonstrate the capability of AMICA decomposition, applied to low channel-

count (6- to 13-channel) sleep data, to separate six recognized sleep stages with high classification

accuracy based only on changes in the likelihoods of the models AMICA learned from the data.

Although the relationship between sleep stages and dominant ICA models was not a one-to-one

mapping, the ICA models each captured different source dynamics that jointly characterized

differences in EEG activities during the six sleep stages. Hence, in the feature space of model

probabilities shown in Figure 3.6, EEG activities from different sleep stages could be clearly

separated. Applying a simple Gaussian Bayes classifier to quantitatively assess state separability,

we found that based on multi-model AMICA decomposition and using only 4 to 8 data features,

we could achieve an average cross-validation accuracy of 75%, significantly higher than chance

(17% for a general 6-class problem, 38% taking into account the unbalanced numbers of class

labels). This sensitivity was higher for REM and N4 stages and lower for stage N1, in alignment

with clinical expectations.

Furthermore, classification errors occurred more frequently near sleep stage transitions,

and particularly between more strongly related stages ( 3.7ab). This may in part reflect the

relatively coarse grain (30-sec) of the manual sleep staging, and possible lower inter-scorer

consistency in distinguishing strongly related stages. Figure 3.4 shows that during stage changes

in model probabilities and thus in EEG activities were not discreet or regular but were continuous

and irregular. In particular, in REM or between progressive stages N1 to N4, changes in model

probabilities were distributed continuously (Figure 3.6). Thus, the AMICA results suggest that

transitions between sleep stages were more continuous, across both time and AMICA “feature
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space”, than as measured by standard sleep stage scoring.

3.4.3 Estimation of rapid state changes

While AMICA assumes and learns discrete ICA models, the relative probabilities of

each model measure the “fitness” or likelihood of each model at each data point or group of

neighboring data points, that can be effective estimators of moment-to-moment cognitive and

behavioral state changes. Applied to the drowsy driving dataset, AMICA automatically and

consistently learned fast-response and slow-response trial models for each subject whose model

probability changes across time were positively and negatively correlated, respectively, with

drowsiness level as indexed by driver speed in reacting behaviorally to occasional lane-deviation

driving challenges. These strong and opposite correlations signified that higher likelihood for the

fast-response model predicted higher reaction speed, while higher likelihood for the slow-response

model predicted lower reaction speed in response to an immediately upcoming driving challenge.

Further, rapid (sub-second scale) patterns of shifts between most probable models were consistent

with interpretations that appearance of driving challenges induced brief changes from less alert

to more alert EEG dynamics, and that during less alert (slow-response model) periods, EEG

dynamics typically shifted back to less alert model a second or less after the offset of the drivers

behavioral response. Further, these brief transitions between less alert and more alert state often

involved momentary transitions through a third (“intermediate”) AMICA model. The models

returned by AMICA decompositions exhibited these close relationships to the behavioral data

record despite not using any direct information about the nature or timing of experimental events

and behavioral responses.

Our previous studies have employed other measures to quantify EEG state changes during

simulated driving and sleep, including a nonstationary index [44] and relative likelihoods [80] of

separately-trained ICA models. Compared with these studies, AMICA here learned multiple ICA

models that proved able to better characterize the EEG dynamics and could be generalized to
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follow both irregular and transient shifts between more than two brain states. Instead of training

separate ICA models on separate sets of data segregated by behavior [44], AMICA, an unsuper-

vised learning approach, here automatically learned distinctions between EEG activities occurring

in different brain/behavioral states. More importantly, as shown in Figure 3.10, unsupervised

AMICA outperformed the previous supervised multiple ICA decomposition approach [44] in

estimating drowsiness levels.

By examining switching between dominant models within single trials with sub-second

temporal resolution, we found a consistent sequence and timing of brain state changes immediately

before and after driver responses to experimental driving challenges. When drivers were drowsy,

i.e. exhibiting EEG best fit by their “slow-response” model, they were slow in detecting lane-

departure events. In many trials, drivers began their behavioral response to these challenges within

about a second (0.9 to 1.2 secs) after their EEG exhibited a very brief transition to “intermediate”

model dynamics, their motor response appearing about half a second after their faster-response

model then became dominant. Following the end of these motor responses, drivers relapsed

into the slow-response model dynamics after only about a second. These results demonstrate

capability of multi-model AMICA decomposition to track cortical dynamic state changes on the

sub-second time scale.

3.4.4 Consistency across subjects

Although AMICA, as an unsupervised learning approach, need not give learned ICA

models that are similar across subjects, applied to actual experiment data AMICA here produced

results that were surprisingly consistent across subjects in three senses:

(1) Consistent relations between ICA models and brain states were clearly observed in

both applications (sleep and driving challenges). In the sleep dataset, Figure 3.5 shows that ICA

models with similar probability distributions over sleep stages were found across all subjects.

In other words, for each subject some ICA models were dominant during specific sleep stages
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(e.g. group B model during stage N4). Similarly, Figure 3.10 shows that slow-response and

fast-response models were consistently learned for all subjects in the drowsy driving experiment.

(2) Results included consistent differences in AMICA model probabilities across subjects.

As shown in Figure 3.6 and Figure 3.9, although the model probabilities were here based on

subject-specific ICA models, their values could be directly summarized across all subjects without

normalization. These results provide strong evidence that model probabilities, intrinsically

bounded from 0 to 1, can be global indices that generalize across subjects.

(3) Differences between independent component (IC) clusters (here based on IC scalp

maps) for different model classes appeared and are discussed in the next subsection.

3.4.5 Biological interpretation of AMICA models

Besides its unsupervised segmentation of nonstationary data into putative brain dynamic

and function states, another benefit of the AMICA approach is that it learns a generative model

that characterizes a complete set of active, statistically maximally independent components (ICs)

in each state, plus a set of time series giving the probability of each model at each time point

based on a probability density function (PDF) learned for each model IC from the data. During

iterative training, each model becomes adapted to time points at which it is most probable. We

validated this characterization by applying multi-model AMICA decomposition to simulated

quasi-stationary data, showing that multi-model AMICA can accurately learn the ground-truth

source IC scalp projection patterns, activities, and PDFs. A growing amount of evidence suggests

an association between many ICs and localized biological and functional processes in cortex

[78, 91]. By constructing an individualized subject electrical forward model from an MR head

image, a subset of (brain source) ICs can be further localized using either single or dual equivalent

dipole or distributed cortical patch models [2, 40, 1].

Applied to the drowsy driving dataset, IC processes learned by AMICA were generally

consistent across subjects. ICs compatible with a compact cortical source area or eye movement
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artifact could be clustered into similar fast-response and slow-response model source clusters

based on scalp map correlations. The identified IC clusters, including frontal-scalp projecting

clusters with high theta or alpha power and occipital and parietal clusters with high alpha power,

were consistent with previous studies applying single-model ICA decomposition to these data

[19, 44]. There, differences in the dynamics of similar ICs were shown to be associated with alert

and drowsy states respectively. Interestingly, more dipolar sources were returned by AMICA in

the slow-response models. This result may be related to the fact that brain activities, especially

alpha waves, spread through larger cortical areas during drowsiness as reported in [108] and [65].

In our results, stronger alpha activities appear in frontal and prefrontal (indicated as ocular) fast-

response cluster ICs. These clusters may be driven by anterior cingulate activity [53]. Compared

to the results of the supervised multi-model ICA decomposition approach in our previous report

(Figure 3 in [44]), an larger number of dipolar ICs compatible with a localized cortical source

were identified in the data, suggesting that unsupervised multi-model AMICA may be a more

effective approach to learning state-related ICA models and model changes than a supervised

multi-model ICA approach.

We could not study the cortical origins of the ICs learned from these sleep data as the

CAP sleep database offers only low-density sleep EEG data recorded using bipolar channels. The

application of AMICA decomposition to high-density sleep EEG data could be of interest to sleep

research exploring changes in effective EEG sources and source network activities in each sleep

stage.

3.4.6 Choosing the model order

One of the most important parameters required to apply AMICA is the number of ICA

models, i.e. H in equation 3.1. Since the ground-truth model order of the data is typically

unknown, the present work focuses on examining the effects of assumed model order on AMICA

performance. Applied to simulated 3-segment quasi-stationary data, complete 3-model AMI-
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CA decomposition and over-complete (4- to 6-model) AMICA decomposition all successfully

segmented the data and accurately learned the ground-truth sources, suggesting that in many

applications choice of model order might not crucially affect the validity of AMICA results in

particular when a complete (ground-truth) number of models, or at most only a few excess models

are learned. Typically, excess models only account for a small portion of data not well modeled

by the other ICA models, e.g. data points at which many sources are unusually co-activated

(in the presence of adventitious artifact, for example). When applied to the simulated driving

data, AMICA decomposition using 2, 3, or 4 models consistently returned “fast-response” and

“slow-response” models accounting for the EEG data in alert and drowsy behavioral conditions,

respectively. A third (“intermediate”) model (M3 in Figure 3.8) accounted for EEG activities not

well fit by the two dominant models, e.g. during brief transitions between the two dominant EEG

states.

The above results provide evidence that choosing a precise number of models is not critical

to the information value of AMICA decomposition (including model probabilities and brain

source characteristics). For example, applying 2-model through 10-model AMICA decomposition

to the sleep data from a single subject, we found that that adding or eliminating one model

typically returned models with almost identical model probability dynamics. As with other

clustering analyses, adding another model may give a model accounting for lower-probability

data points of one or two of the existing models and leave other existing models intact.

Several approaches have been proposed to help select the number of nonstationary data

models. For example, one may compare the marginal likelihood for different candidate models

by adding a penalty on model complexity, for example the Akaike information criterion (AIC) [3]

or Bayesian information criterion (BIC) [110]. Some adaptive approaches including variational

Bayesian learning [15] and online adaptive learning [71] have also been proposed. However,

these methods are computationally expensive and also require heuristic setting of thresholds for

splitting or merging source clusters.
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3.4.7 Limitations and open questions

Like most unsupervised-learning and data-driven approaches, successful AMICA decom-

position has data and computation requirements. Source-level analyses such as ICA require

multichannel EEG data to achieve meaningful source separation. They also implicitly assume

that the number of data channels is as least as large as the number of effective sources. Although

AMICA relaxes the ICA assumption by learning multiple ICA models, AMICA still requires a

minimum number of data channels to produce interpretable results. For example, applied to the

sleep dataset, AMICA achieved an average accuracy of 75% in 6-class classification using EEG

data with only 6-13 channels. However this accuracy dropped to 68% for subjects with only 5

EEG channels available.

Another requirement for successful AMICA decomposition is a reasonable number of

data samples. Learning H ICA models, each with N stable sources, requires approximately

k ·H ·N2 samples, where empirically k ≥ 25 [90]. For H = 6, N = 16, k = 25, and a 250-Hz

sampling rate, this corresponds to ∼2.5-min of data; hence here we generated 3-minute stationary

segments in the simulated data. Lastly, AMICA decomposition requires significant computation

time to run on a personal computer. For 13-channel sleep EEG data from 9-hour recordings with a

512-Hz sampling rate, multi-model AMICA decomposition required 13-15 hours on a 2.40-GHz

CPU. However, AMICA computation time can be significantly reduced through parallelization, as

featured in the AMICA code made available (https://sccn.ucsd.edu/˜jason/amica_web.

html) by its author, Jason Palmer, and interested users might explore use of the Neuroscience

Gateway (www.nsgportal.org) to run AMICA decompositions on larger data sets.

Although this study focuses on AMICA decomposition, the results might be able to

generalize to other ICAMM approaches that may have other desirable properties. For example,

different approximations of source probability density functions (PDFs) can be used to better

match the underlying source activity in the data, such as a generalized exponential model [102], a

mixture of Gaussians [15], and a nonparametric model [107]. In addition, a sequential ICAMM
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approach which considers temporal dependence using a hidden Markov model [106] may be

suitable for modeling sleep data in which state transitions are continuous.

Results of this study support the use of multi-model AMICA decomposition for assessing

brain state changes by validating its performance on sleep stage classification and alert versus

drowsy performance estimation. These results provide evidence to support the application

of multi-model AMICA decomposition as a general unsupervised-learning approach to study

the continuous, endogenous, and nonstationary brain dynamics in either EEG, MEG [52], or

electroencephalographic (ECoG) data [120]. For example, AMICA decomposition might be

applied to multichannel brain electrical signals to explore brain dynamics during rest, movie

watching, or hypnotherapy, to identify the nonstationary, task-irrelevant brain source activity

changes during performance of a complex cognitive task, or even to study mental strategy or

emotional shifts using a brain-computer interface.

3.5 Conclusions

Here we have demonstrated that AMICA decomposition provides a general unsupervised

approach to mining changes in effective source dynamics in nonstationary multichannel EEG

signals. The underlying hypothesis here is that different brain states may involve different active

effective sources (each typically compatible with an emergent area of locally-synchronous cortical

field activity), and that the locations and source-level probability density functions (PDFs) of

these state-specific effective source activities can be well modeled by transitions between ICA

data models.

We showed that, applied to simulated quasi-stationary data, AMICA decomposition could

accurately learn the ground truth sources and source activities, either when directed to return

complete or (mildly) over-complete model sets. Applied to some sleep EEG data, multi-model

AMICA decompositions could be used to meaningfully characterize sleep dynamics, giving
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consistent results across subjects and allowing 75% cross-validation accuracy in classifying data

from six sleep stages validated by expert sleep scoring.

Applied to EEG datasets recorded during simulated driving, AMICA automatically identi-

fied two models accounting for EEG activity in slow- and fast-response trials respectively. The

corresponding model probability differences could be used as an effective estimator of reaction

speed in single trials and appeared to track brain dynamic state changes on the sub-second scale.

In addition, AMICA decomposition also learned physiologically interpretable results including

the spatial distribution and temporal activity pattern of the effective brain sources in each ICA

model.

Thus multi-model AMICA decomposition can be applied to continuous and unlabeled

EEG (or other electrophysiological) data to study, for example, non-stationarities in brain dynam-

ics during resting states, accompanying mental strategy changes, or through different states of

emotion, fatigue, and arousal.
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Chapter 4

Real-time Adaptive EEG Source

Separation Using Online Recursive ICA

In this chapter, we study and validate an optimized online recursive ICA algorithm

(ORICA) with online recursive least squares (RLS) whitening for blind source separation of

high-density EEG data, which offers instantaneous incremental convergence upon presentation

of new data. Empirical results of this study demonstrate the algorithm’s: (a) suitability for

accurate and efficient source identification in high-density (64-channel) realistically-simulated

EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and

(c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data

recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented

as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG

Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection,

feature extraction for real-time biosignal monitoring in clinical environments, and adaptable

classifications in brain-computer interfaces.
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4.1 Background

Independent Component Analysis (ICA), as a means for blind source separation (BSS),

has enjoyed great success in telecommunications and biomedical signal processing [50]. In

biomedical applications, such as scalp electroencephalography (EEG), ICA methods have been

widely used to separate artifacts such as eye blinks and muscle activities [54] and to study brain

activities [78]. For example, ICA can extract fetal electrocardiography (ECG) from maternal

abdomen electrode recordings [27], and it can also isolate pathological activities associated with

disease states of epilepsy [84]. In addition, applying ICA to remove task-irrelevant activities and

reduce dimensionality of data can improve the performance of Brain-Computer Interfaces (BCI)

[118].

The application of ICA to EEG data is justified by a reasonable assumption that multi-

channel scalp EEG signals arise as a mixture of weakly dependent latent non-Gaussian sources

[30]. Although several ICA algorithms have been developed [50] to learn these sources from

channel mixtures, most of the algorithms require access to large amount of training data and are

only suitable for offline applications. Furthermore, the offline ICA algorithms commonly assume

spatiotemporal stationarity of the data, as in the widely used Infomax ICA [8] and FastICA [51]

algorithms. For a few ICA methods that allow non-stationarity such as Adaptive Mixture ICA

[96], they are computationally expensive. In many real-world applications, including real-time

functional neuroimaging [83], artifact rejection and adaptive BCI [118], online (sequential) source

separation methods are needed. Desirable properties of an online method include fast convergence,

real-time computational performance, and adaptivity to non-stationary data.

Many existing online ICA methods are listed in Table 4.1. Two major learning rules are

least-mean-squares (LMS) and recursive-least-squares (RLS) methods. LMS-type algorithms

use stochastic gradient descent approaches and are computationally simple, but they require

careful selection of an appropriate learning rate for stable convergence. Examples include

84



Table 4.1: Comparison of online ICA methods, including the learning rules, the optimization
approaches, and the pre-whitening methods.

Name Author Year Learning rule and optimization method Pre-whitening
EASI Cardoso et al.[12] 1996 Relative gradient-based (LMS) that max. kurtosis LMS
NG Amari et al.[6] 1996 Natural gradient-based (LMS) that min. mutual information no

RLS-NPCA Karhunen et al.[60] 1997 RLS that min. LSE of NPCA criterion PCA
Iterative
Inversion Cruces-Alvarez et al.[26] 2000

Quasi-Newton method with iterative inversion
that decorrelates high order statistics no

NG-RLS Zhu et al.[126] 2004 RLS with natural gradient that min. LSE of NPCA criterion RLS

ORICA Akhtar et al.[4] 2012
Recursive rule with iterative inversion from

fixed-point solution of Infomax with natural gradient no

Equivariant Adaptive Separation via Independence (EASI) [12] and Natural Gradient (NG) [6]

methods. RLS-type algorithms accumulate past data in an exponentially decaying fashion and

use Sherman-Morrison matrix inversion to achieve higher convergence rate and better tracking

capability, yet require complex computation [36, 127]. This category includes the RLS approach

of Nonlinear PCA (RLS-NPCA) [60], Iterative Inversion [26], and Natural Gradient-based RLS

(NG-RLS) [126]. Alternatively, Online Recursive ICA (ORICA) [4] gives an RLS-type recursive

rule by solving a fixed-point approximation and has been shown to exhibit fast convergence and

low computational complexity [45]. Readers can refer to [127], [26] and [121] for theoretical

relationships and comparisons between the above methods.

The aforementioned papers focused on theoretical derivations and proofs of convergence

and only demonstrated applications of the methods to low-density data (fewer than 10 channels)

and simulated “toy” examples such as sinusoidal and square waves. When the number of channels

and sources increases, many existing algorithms exhibited slow convergence and poor real-time

performance [51]. In a recent study, a real-time online ICA method for high-density EEG was

proposed [45]. The method was compared with other offline ICA methods, and its stability and

steady-state performance were analyzed in [46].

Additionally, an important advantage of online ICA methods is their ability to adapt

to spatiotemporal non-stationary data, a common occurrence in real-world applications. For

instance, spatial non-stationarity in the ICA (un)mixing matrix can arise as a consequence of

location shifts in either sensors or sources, or changes in electrode impedances. However, few of
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the online ICA methods have been carefully studied under non-stationary conditions. Further

investigation is needed to characterize algorithmic performance and optimal parameter selection

using non-stationary simulated and real EEG data.

In this study, we extend ORICA as formulated in [4] and [45], and the contributions

are three-fold. Firstly, we demonstrate ORICA’s suitability for accurate and efficient source

identification in a realistic simulation of stationary 64-channel EEG data. Specifically, we

include a serial orthogonalization step of the unmixing matrix in the ORICA algorithm, and we

systematically examine the impact of parameters such as the forgetting factor and block sizes

for pre-whitening and ORICA on algorithmic performance. Secondly, we examine ORICA’s

capability to adaptively decompose spatially non-stationary 64-channel EEG data corresponding

to abrupt displacements of electrodes, a common source of spatial non-stationarity in real-world

mobile applications. We introduce a non-stationarity index and an adaptation approach for

non-stationarity detection and online adaptation. Thirdly, we evaluate ORICA’s real-world

applicability for rapidly extracting principal brain and artifact sources using 61-channel real

EEG data recorded from a subject performing an Eriksen flanker task [81]. We demonstrate that

ORICA and offline Infomax ICA [90] obtain comparable results in terms of extracting informative

independent components (ICs) and their single trial and averaged event-related potentials (ERPs),

yet ORICA can learn the ICs online with less than half of the data. Finally, the proposed ORICA

pipeline is made freely available as functions supported in BCILAB [63] and EEGLAB [29], and

it is also integrated in an open-source Real-time EEG Source-mapping Toolbox (REST) [101].

4.2 Methods

Standard ICA assumes a linear generative model x = As, where x represents scalp EEG

observations, s contains unknown sources, and A is an unknown square mixing matrix. The

objective is to learn an unmixing matrix B = A−1 such that the sources are recovered exactly, up
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to an unknown permutation and scaling matrix, by y = Bx, where y represent the recovered source

activations. A column of B−1 represents the spatial distribution of a source over all channels,

often referred to as a “component map.”

It is desirable to optimize the ICA contrast function, a measurement of the degree of

independence between sources such as kurtosis or mutual information, under the decorrelation

constraint Ry = E[yyT ] = I. Hence the separating process can be factored into two stages as

B = WM, where M is the whitening matrix that decorrelates the data and W is the weight

(preferably orthogonal) matrix that optimizes the ICA contrast function [12, 126]. Serial update

rules of M and W and detailed features are presented in the following subsections.

4.2.1 Online recursive-least-squares (RLS) pre-whitening

Pre-whitening (decorrelating) the data reduces the number of independent parameters an

ICA update must learn, and can improve convergence [50]. Pre-whitening may be efficiently

carried out in an online RLS-type learning rule [126]:

Mn+1 = Mn +
λn

1−λn

[
I− vn ·vT

n
1+λn(vT

n ·vn−1)

]
Mn, (4.1)

where n is the number of iterations, Mn is the whitening matrix, vn = Mnxn is the decorrelated

data, λn is a forgetting factor, and I is the identity matrix. A non-overlapping block of data xn

with a block size Lwhite is used at each iteration to reduce the computational load and to increase

the robustness of the estimated correlation matrix vnvT
n . This RLS-type whitening rule exhibits

faster convergence than LMS whitening methods [126].
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4.2.2 Online recursive ICA (ORICA)

The ORICA algorithm can be derived from an incremental update form of the natural

gradient learning rule of Infomax ICA [66]:

Wn+1 = Wn +η[I− f(yn) ·yT
n ]Wn (4.2)

where yn = Wnvn, η is a learning rate, and f (·) is a nonlinear activation function. In the limit of a

small η and assuming a fixed f (·), the convergence criterion 〈f(y) ·yT 〉= I leads to a fixed-point

solution in an iterative inversion form [4]:

W+
n+1 = (1−λn)W+

n +λnvn · fT (yn) (4.3)

where W+
n is the Moore-Penrose pseudoinverse of Wn and λn is a forgetting factor for an

exponentially weighted series of updates. It should be noted that λn differs from η, which is the

step size for stochastic gradient optimization.

Following [4], applying the Sherman-Morrison matrix inversion formula to Equation 4.3,

the final online recursive learning rule becomes:

Wn+1 = Wn +
λn

1−λn

[
I− yn · fT (yn)

1+λn(fT (yn) ·yn−1)

]
Wn (4.4)

The near-identical forms of Equation 4.4 and Equation 4.1 allow us to understand ORICA as a

nonlinear (or kernel) form of the RLS whitening filter: ORICA’s use of non-linearity f (·) allows

for independence of sources for moments above second order.

Following the Equation 4.4, the orthogonality of the weight W is not guaranteed. To

preserve the decorrelation property of recovered source activities y = WMx and maintain learning
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stability, we apply an orthogonal transformation to W after each ICA update:

Wn+1← (VD−1/2V−1)Wn+1, (4.5)

where D and V contain, respectively, the eigenvalues and eigenvectors of Wn+1WT
n+1. Note that

this orthogonalization step is costly compared to the ORICA update. A possible alternative would

be to reformulate the ORICA update rule under the orthogonal constraint or combine the serial

whitening and weight updates into a single update rule [12].

Block-update rule

The typical single measurement vector approach [17] requires application of the update

rule (Equation 4.4) for each data sample, which can be computationally expensive, particularly

for the commonly-used MATLAB (The Mathworks, Natick, MA) runtime environment. To

reduce the computational load and ensure consistent real-time performance, we may adopt an

multiple measurement vector approach [17] and perform updates on short blocks of samples. To

achieve this without loss of accuracy, we solve Equation 4.4 for time index l = n to l = n+L−1,

assuming yl is approximated as Wnvl and λl is small. This leads to a block-update rule [45]:

Wn+L ≈
(n+L−1

∏
l=n

1
1−λl

)
·
[
I−

n+L−1

∑
l=n

yl · fT (yl)
1−λl

λl
+ fT (yl) ·yl

]
Wn (4.6)

In this form, the sequence of updates can be vectorized for fast computation. Note that

Equation 4.6 appropriately accounts for the decaying forgetting factor at each time point. This

keeps the approximation error to a minimum.

Forgetting factor

The forgetting factor λ determines an effective length of a time window wherein data are

aggregated. A large value of λ corresponds to a short window length. In this case, much heavier
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weights are applied to new data than past data, yielding fast adaptation and convergence yet large

errors and variability. As a general rule, a large λ is preferred during initial learning to promote

fast convergence; a small λ is suggested at convergence to minimize variance. To this end, we

adopt the forgetting factor with time-varying annealing defined in [4]:

λn =
λ0

nγ
(4.7)

where λ0 is a fixed initial forgetting factor and γ determines the rate of exponential decay of λ

towards zero as a function of time. The same forgetting factor is applied to the RLS whitening

filter, although theoretically it can be different.

Nonlinear function

The choice of non-linearity f (·) depends on the probability distribution of the sources. Lee

et al.[66] proposed an extended Infomax ICA algorithm that adopts distinct activation functions to

separate subgaussian and supergaussian sources based on an estimate of source kurtosis. Here we

follow [50, 4] and choose the component-wise non-linearity f (y) =−2tanh(y) for supergaussian

sources and f (y) = tanh(y)− y for subgaussian sources.

Number of sub- and super-gaussian sources

While approaches for adaptively selecting f (y) within ORICA have been proposed [4],

these are heuristic and presently lack convergence proofs. In practice, we found that both

convergence speed and run-time performance were improved by preassuming a fixed number of

sub- and super-Gaussian sources. The detail of selecting an appropriate number was discussed in

Section 4.5 and the effect of inaccurate assumptions was explored in Section 4.4.
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4.2.3 Non-stationarity detection

In this study, the non-stationarity refers to any changes in the ICA model x=As, including

spatial non-stationarity of the mixing process between sources and the measurements A and

temporal non-stationarity of probability distributions of source activities s. Hence the non-

stationarity might arise from switching of active brain sources, transient muscle activities, sensor

displacement, or impedance changes. Our goal is to propose a generic approach to detect and

adapt to the non-stationarity in EEG data.

Non-stationarity index

As previously described, ORICA is derived from a fixed point solution to the convergence

criterion 〈y · f(y)T 〉 = I, reflecting independence of sources for moments above second order.

Violation of this criterion once an algorithm reaches steady-state can be interpreted as a change

in the latent source or mixture distribution, which leads us to define the following heuristic

non-stationarity index:

δns = ||ynfT (yn)− I||F (4.8)

where || · ||F represents the Frobenius norm and n is the current sample point. After ICA

decomposition converges, δns would remain small when data are stationary, while δns would

increase and fluctuate when data are non-stationary.

Adaptation of the forgetting factor

If the non-stationarity index δns increases above a threshold, we may interpret this as

evidence of a change in the latent mixing matrix and increase the RLS forgetting factor allowing

ORICA to more rapidly adapt to the new mixing matrix. In this study, the threshold value was

heuristically chosen to be a percentage (e.g. 1-10%) of initial δns, which was several standard

deviations above the mean of δns at convergence in the simulated stationary data. Once δns
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reached the threshold, we increased the forgetting factor to its initial value.

4.3 Materials

4.3.1 Data collection

The performance of ORICA was evaluated under simulated and real-world conditions.

Previous works of online ICA mostly used “toy” simulations with artificially constructed sources

(sinusoids, i.i.d. random data, etc), stationary mixing matrices, and relatively small numbers of

channels and sources. Here we generated high-density EEG (64 channels and 64 sources) under

more realistic conditions, including use of auto-correlated stochastic sources, realistic source

locations and mixing matrices derived from Boundary Element Method (BEM) modeling, and

spatial non-stationarity. Simulated data were generated using the EEG simulation module in

Source Information Flow Toolbox (SIFT) [85], using an approach similar to [42].

Simulated spatially stationary EEG data

To test ORICA’s performance in separating stationary EEG sources, we generated 64

supergaussian independent source time-series from stationary and random-coefficient order-3

autoregressive (AR-3) models (300Hz sampling rate, 10-min), assigned each source a random

cortical dipole location, and projected these through a zero-noise 3-layer BEM forward model

(MNI “Colin27”) with standard 10-20 electrode locations matching the 64-channel Cognionics

montage used subsequently for real-world ORICA evaluation. This yielded 64-channel EEG data.

Simulated spatially non-stationary EEG data

To evaluate ORICA’s capability to adapt to spatial non-stationarity, we simulated abrupt

shifts of the electrode montage during continuous recording. We first generated 30 minutes of

temporally stationary AR-3 source data, as described above. The data was partitioned into thirds.
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For each 10 minute segment, 64 channel EEG data was generated using a unique BEM forward

(mixing) matrix, corresponding respectively to (a) the standard electrode montage, (b) a 5 degree

anterior cap rotation, and (c) a subsequent 10 degree posterior cap rotation (5 degree posterior

rotation from standard position). The procedure is illustrated in Figure 4.5a.

Real EEG data

One session of high-density EEG data was collected from a 24 year-old right-handed male

subject using a 64-channel wearable and wireless EEG headset with dry electrodes (Cognionics,

Inc) [41]. In the 20 minutes session, the subject performed a modified Eriksen flanker task

[81] with a 133 ms delay between flanker and target presentation. The subject was asked to

press buttons according to the target stimuli as quickly as possible. Flanker tasks are known to

produce robust error-related negativity (ERN, Ne) at frontal-central electrode sites. The goal here

is to extract these event-related potential (ERP) components from high-density EEG data in a

real-world setting using the proposed ORICA pipeline.

4.3.2 The ORICA pipeline

As shown in Figure 4.1, the ORICA pipeline continuously fetched the streamed data with

variable size LB in the online buffer and processed the data with the three filters in sequence:

a Butterworth IIR high-pass filter, an online RLS whitening filter, and an ORICA filter. The

high-pass filter removed the trend and low-frequency drift, ensuring the zero-mean criterion for

ICA was satisfied. For each update, the pipeline computed and output the whitening matrix M

and the weight matrix W according to Equation 4.1 and Equation 4.6. The next non-overlapping

data chunk was then used for the subsequent update.

The pipeline was implemented and analyzed in a simulated online environment using

BCILAB, an open source MATLAB toolbox designed for BCI research [83, 63]. It was initialized

with the first second of data segment from the dataset. For the simulated 64-ch stationary data,
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Figure 4.1: The ORICA pipeline for online EEG data processing. X(t) is the input data vector
at time t and LB is the size of data in the online buffer.
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Table 4.2: List of parameters for the ORICA pipeline: IIR high-pass filter (IIR), online RLS
whitening filter (RLS) , and online recursive ICA filter (ICA).

Filters Parameters Values Description
IIR BW 0.2−2 Hz Transition bandwidth

RLS Lwhite 1∼16 Block-average size
RLS λ0 0.995 Initial forgetting factor
ICA γ 0.60 Decay rate of forgetting factor

ICA
LICA 1∼16 Block-update size
nsub 0 Number of subgaussian sources

we investigated the effect of the parameters on empirical convergence, and we used block sizes

Lwhite = LICA = 16 as an example to show the decomposed components since the block sizes

returned satisfactory results in the shortest computational time. For the simulated 64-ch non-

stationary data and real 61-ch data, we used Lwhite = 8 and LICA = 1, which were found to be

optimal for the simulated stationary data. Table 4.2 summarizes the parameters of the three filters.

4.3.3 Data processing and analysis

We applied additional procedures to process and analyze the recorded EEG data from the

subject. Firstly, an automatic removal of bad (e.g. flatlined or abnormally correlated) channels

was applied prior to the ORICA pipeline using BCILAB routines, which removed 3 out of 64

channels. Secondly, following application of the ORICA pipeline, the source activities were

epoched in a -400 to 600 msec window time locked to subject’s responses (button press), yielding

693 epochs (104 error and 589 correct trials). The epochs were averaged to produce ERPs and

were analyzed offline in EEGLAB [29].
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4.3.4 Performance evaluation

Performance index

If the ground truth (N-by-N) mixing matrix A is known, a performance index PI for

assessing quality of source separation can be defined as [32]:

PI =
1

N−1

[
N− 1

2

N

∑
i=1

( max
1≤ j≤m

|Ci j(n)|2

∑
N
j=1 |Ci j(n)|2

+

max
1≤ j≤m

|C ji(n)|2

∑
N
j=1 |C ji(n)|2

)]
(4.9)

where C(n) = WnMnA. This measures a normalized total cross-talk error of the estimated

whitening matrix M and weight matrix W, accounting for scale and permutation ambiguities. For

perfect separation at convergence, PI approaches zero.

Best-matched correlation coefficients and Hungarian algorithm

PI reflects ORICA’s global performance across all components. However, it is also useful

to evaluate convergence of individual independent components (ICs), i.e. rows of W. One metric

is the Pearson correlation between an estimated IC and its counterpart in a “ground truth” weight

matrix, W∗. Due to permutation ambiguities, a matching algorithm is required for optimal pairing

of rows of W and W∗. This study used the Hungarian method [13] to maximize the sum of

absolute pairwise correlations. We used Niclas Borlin’s implementation in EEGLAB’s matcorr(·)

function.
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Figure 4.2: (a) Evolution of component-wise correlation magnitudes between ORICA-
decomposed ICs and ground truth on simulated stationary 64-ch EEG data [45]. ICs sorted with
respect to time required to reach a correlation magnitude of 0.95 (solid curve). The dotted line
is the heuristic time for separating 64 stable ICs. (b) Evolution of correlation magnitudes (blue)
and component maps of a randomly selected IC #29. One minus the performance index (green)
is superimposed.
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4.4 Results

4.4.1 Simulated 64-ch stationary EEG data

Evaluation of the decomposed components

Figure 4.2a plots the correlation magnitudes between ORICA components and their

ground-truth counterparts. The components were sorted such that smaller component ID repre-

sented faster convergence. We observed that all components converged, i.e. correlation magnitudes

approached 1, by the end of the 10-minute session. A common empirical heuristic for the number

of training samples required for separating N stable ICA sources using Infomax ICA was kN2,

where k > 25 [90]. For 64 channels, the heuristic time required for convergence amounted to

642× 25 = 102400 samples = 5.7 minutes with a 300 Hz sample rate. By 5.7 minutes, 77%

(91%) of ICs reached a correlation magnitude of 0.95 (0.8); by 3.5 minutes, more than half of the

ICs reached a correlation magnitude of 0.95. Figure 4.2b shows the evolution of the component

maps of a randomly selected IC #29 and its correlation magnitudes with ground truth. This IC

converged to a steady-state correlation magnitude of 0.95 under 4 minutes. The superimposed

global performance index (1−PI, in green) exhibited a similar convergence trajectory. Figure 4.3

shows 300-msec time-series of four representative ICs reconstructed by ORICA at 3, 6, and 9

minutes. At 9 minutes, ORICA correctly reconstructed all the source dynamics with the errors

approached 0. At the heuristic time 5.7 minutes, only ID #58 had not converged. Interestingly,

components such as IC #3 converged within 3 minutes. Both decomposed component maps

and recovered source dynamics demonstrated ORICA’s suitability for accurate and efficient

decomposition of high-density (64-channel) data, albeit with systematic variation in convergence

speed.
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Figure 4.3: Source dynamics and the corresponding component maps of four representative
components reconstructed by ORICA at (a) 3 min, (b) 6 min, or (c) 9 min of simulated mixed
64-channel stationary EEG data. Reconstructed source dynamic (blue) is superimposed on
ground truth (green) with error, i.e. difference, (red). The oscillatory (autocorrelated) and burst-
like source dynamics, as well as homogeneous component maps of the four depicted ICs, are
characteristic of real EEG source dynamics.
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Figure 4.4: Effect of ORICA pipeline parameters on convergence trajectory, i.e. performance
index over time, applied to 64-ch simulated stationary EEG data. (a) Decay rate γ of forgetting
factor, (b) block size LICA of ORICA, (c) block size Lwhite of the online whitening, and (d)
pre-assumed number nsub of subgaussian sources.
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Table 4.3: Averaged execution time (ms) for 1 sec (300 samples) 64-channel data using online
RLS whitening and ORICA with different block sizes Lwhite and LICA.

Time (ms) Block Size
Algorithm 1 2 4 8 16 32 64 128

RLS 35.2±5.2 23.8±7.9 13.5±6.0 8.6±4.3 5.3±1.5 4.1±4.5 3.0±4.2 2.5±4.9
ORICA 332±29 174±37 79.5±14.5 36.3±11.8 21.0±5.2 15.1±7.2 10.6±9.4 6.6±2.6

Run in MATLAB 2012a on a dual-core 2.50GHz Intel Core i5-3210M CPU with 8GB
RAM.

Effect of ORICA parameters

As shown in Figure 4.4, we systematically evaluated the effects of four ORICA parameters

on convergence. The decay rate of forgetting factor γ had a significant impact on convergence

speed, with the fastest convergence for γ = 0.6 (Figure 4.4a). A sigmoidal profile for the

convergence trajectory was observed for γ≤ 0.6, while an exponential decay profile was observed

for γ > 0.6. The ORICA block size LICA had negligible effect on the convergence for LICA ≤ 64

(Figure 4.4b). This demonstrated the approximation error of the block update rule (Equation 4.6)

was negligible for small to moderate block sizes. The block size of online whitening Lwhite

significantly affected the ICA convergence (Figure 4.4c). Lwhite between 4 and 8 samples

achieved the best performance. Interestingly, Lwhite = 1 was not the optimal value, mainly due to

the effect of variable time scale of adjustments in the whitening matrix on the convergence of the

subsequent ORICA. The pre-assumed number of subgaussian sources nsub had little effect on the

convergence, within the range of nsub = 0∼ 3, with the true number nsub = 0. The performance

of ORICA was rather insensitive to assumptions on the kurtosis of the sources. For the above

results, we set γ = 0.6, LICA = 1, Lwhite = 1, and nsub = 0 unless otherwise noted.

Quantification of computational load

Table 4.3 shows the average execution time required to apply the ORICA pipeline to

1-second of data, computed by averaging the processing rates (data size divided by time) of the

incoming data chunks for 1 minute. Runtime was uniformly less than one second, illustrating the
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64-ch data were processed faster than accumulated in the input buffer, and thus the pipeline was

capable of real-time operation. The online whitening filter ran 3 to 9 times faster than ORICA did

and the runtime monotonically decreased as the block size increased. The execution time of the

ORICA filter was nearly halved as block size doubled when L≤ 8, with diminishing returns for

L≥ 16. This allows us to balance the trade-off between runtime of the pipeline and accuracy of

the block-update rule.

4.4.2 Simulated 64-ch nonstationary EEG data

Figure 4.5 plots ORICA’s performance in tracking spatial non-stationarity in simulated

64-channel EEG data, with the simulated abrupt shifts of the EEG cap (Figure 4.5a). Figure 4.5b

plots the non-stationarity index δns as a function of time. The index robustly identified changes in

the mixing matrix due to cap displacements. Figure 4.5c plots the performance index of ORICA’s

decomposition as a function of time. Following the detection of non-stationarity, ORICA’s

forgetting factor was reset to its initial value, and ORICA smoothly adapted to the new mixing

matrix. Figure 4.5d plots the ground truth and the estimated component maps for a representative

IC at different time-points, superimposed on a plot of log-transformed PI. For this IC, suitable

convergence was obtained within 15 minutes, and improved further over time. The effect of

cap rotation was captured by the concomitant shift of the component maps, indicating ORICA’s

capability to detect and adapt to the spatial abrupt non-stationarity.

4.4.3 Real 61-ch EEG data from the Flanker task

Since the ground truth was unknown for real EEG data, we adopted the offline Extended

Infomax ICA algorithm [66], as implemented in the EEGLAB [29] function RUNICA, as a “gold

standard”. The robustness and stability of the algorithm on high-density EEG data had been

shown to outperform most blind source separation algorithms [30].
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Figure 4.5: Application of ORICA to 64-ch simulated non-stationary EEG data consisting
of three concatenated 10-minute sessions which simulate a 5-deg forward EEG cap rotation
followed by a 10-deg backward cap rotation. (a) Electrode locations for each session. (b)
non-stationarity index δns = ||yfT − I||F detects the abrupt change between sessions. (c) The PI
convergence curve shows the adaptation behavior. (d) Zoomed-in plots of log-scaled convergence
curve with ground truth component maps (top row) and reconstructed IC at different time points.
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To confirm whether ORICA yielded a comparable solution at convergence (average over

the last minute) as RUNICA, we investigated event-related activities of three sets of components

with stereotypical fronto-central, occipital, and prefrontal spatial topographies. Figure 4.6a

revealed that the ORICA- and RUNICA-decomposed fronto-central ICs and their characteristic

ERN were comparable and consistent with the results from previous studies [83, 33]. Figure 4.6b

shows that averaged occipital visual-evoked potentials (VEP) elicited by flanker (0-50 msec

window after the onset of stimulus) and target (100-150 msec window after) presentation were

clearly observed using both methods. Figure 4.6c shows eye blinks time-locked to response

(click of button), as previously described in [33]. The ERN and VEP shown in Figure 4.6 were

representative, with comparable results obtained from all subjects, indicating the reproducibility

of the ORICA pipeline. In summary, the empirical results demonstrated comparable performance

of ORICA to RUNICA in separating informative ICs and resolving single trial and averaged

ERPs. Furthermore, ORICA required significantly less computation time than RUNICA.

Adopting a procedure similar to Figure 4.2, Figure 4.7a plots the correlation magnitudes

between all ICs learned by ORICA and their best-matched RUNICA counterparts. Firstly, only

10% (26%) of the ORICA components reached a correlation magnitude of 0.9 (0.8) at the end

of the session (average over the last minute). Secondly, 8% (21%) of the components reached a

correlation magnitude of 0.9 (0.8) within 3-4 minutes, only half of the empirical heuristic time

suggested by [90].

Among those ICs with the highest correlation magnitudes (larger than 0.95), we found

a number of ICs with stereotypical and plausible component maps. Figure 4.7b plots the con-

vergence profile (evolution of correlation magnitudes) for three such informative ICs: prefrontal

(IC 1, accounting for eye-blink), occipital (IC 12, accounting for VEP), and fronto-central (IC 7,

accounting for ERN) components. These ICs converged to their RUNICA counterparts within 3-4

minutes. The correlation magnitude curves of both the occipital and fronto-central components

fluctuated across time and eventually reached a steady-state. In contrast, the correlation magnitude
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time series of the prefrontal component was relatively stable across the whole session.

Figure 4.2a and Figure 4.7a exhibit significant performance differences in decomposing

simulated versus real EEG data, which can be attributed to the differences in the quality of the

gold standard. Those ICs producing poor correlation corresponded to non-dipolar sources in

the gold standard, i.e. , sources with high residual variance in dipole fitting, such as mixtures of

sources or noise [30]. This phenomenon is commonly observed and reported when applying ICA

methods to real EEG data that are inevitably noisy and likely non-stationary [50], [118].

4.5 Discussion

4.5.1 Fast convergence speed

The ORICA pipeline was capable of accurately decomposing 64-channel simulated EEG

data within the required heuristic convergence time (kN2) [90]. The fast convergence could

be attributed to three important factors: (a) combining online RLS pre-whitening and ORICA,

(b) choosing an optimal forgetting factor profile and parameters, and (c) fixing the numbers of

modeled sub- and super-gaussian sources.

Simulation results showed that faster convergence of the whitening matrix facilitated ICA

convergence. This was consistent with the findings in previous studies [50, 126], which suggested

pre-whitening could significantly improve the ICA convergence by reducing the dimensionality of

the parameter space. For online whitening, a local block-average approach could provide a more

robust estimate than a stochastic (single sample) update approach. Besides RLS whitening, online

LMS whitening method [12] can also be considered, which has lower computational complexity,

but slower convergence [126].

The forgetting factor, especially its decay rate γ, had a significant effect on ORICA’s

convergence. For highly non-stationary data, a large γ and thus a shorter effective window

size were preferred. Factors including data dimension (number of channels) and underlying
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stationarity of the data affected the choice of optimal parameters. Alternative approaches for

adapting the forgetting factor were suggested in [26] and [94].

Fixing the numbers of sub- and super-gaussian sources increased both the stability and

the speed of convergence, especially for high-density data. The experiments with synthetic data

showed that the choice was not critical, and a model mismatch in these numbers could be tolerated.

This study further examined the kurtosis of the real 61-ch EEG data and found that all sources

were supergaussian distributed, which was consistent with previous studies [54, 29] that EEG

signals from most brain activities and non-brain artifacts were primarily supergaussian. For

greater accuracy under general conditions, online kurtosis estimation as described in [4] and [22]

can be incorporated into the ORICA pipeline. This may lead to better steady-state performance

but potentially decreased stability of convergence.

Several approaches not yet implemented in this study can further improve the convergence

speed of ORICA. For example, dimensionality reduction methods such as PCA, or selecting a

subset of channels prior to ORICA decomposition, can reduce the empirical convergence time.

Another promising approach is to pre-process the data using artifact reduction methods such as

Artifact Subspace Reconstruction [83] to mitigate sensitivity to transient artifacts in noisy high

dimensional EEG data.

4.5.2 Real-time processing

ORICA was implemented as a BCILAB function with block-update vectorization, and

could easily perform real-time processing with a user-defined block-size for 64-channel EEG on

a standard laptop. The block update rule, while approximate, incurred negligible loss in accuracy

up to LICA = 64 for 64-channel simulated data. Even without the block-update (Lwhite = LICA =

1), the ORICA pipeline still ran in real-time. The block update may be most valuable when

computational resources are constrained; for instance, when applying multiple data processing

operations in serial or operating on a low-power mobile device.
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4.5.3 Application to real EEG data

Empirical results on the 61-channel EEG data collected in the flanker task experiment

demonstrated that ORICA could decompose brain sources and artifact ICs that resembled results

from standard RUNICA. We observed that the most informative ICs, such as VEP and ERN

brain sources and eye-blink artifacts, had the highest correlation magnitudes among all ICs

and converged much quicker than the heuristic convergence time—a fortunate circumstance for

real-time applications in mobile EEG BCI. We speculate that those components exhibit robust

and frequently occurring statistical patterns which facilitate ICA separation. These observed

phenomena support applications of ORICA for rapid decomposition of high-density data as much

less time is required to decompose brain and artifact components.

The ORICA pipeline also revealed non-stationarity in the experimental data, captured by

the dynamics of component maps and the non-stationarity index. One challenge for ORICA and

RUNICA is the order switching of ICs, especially for non-stationary real EEG data. This hinders

the identification of informative ICs over time, i.e. tracking the same set of components regardless

of the weight matrix permutations. One solution to the problem is to sort the current weight

matrix W(t) based on the correlation matching with the previous weight matrix W(t−1) using

the Hungarian method described in section 4.3.4 to keep track of the same components. This is

useful for online identifying and separating artifact components from noisy EEG recordings.

4.5.4 Nonstationarity detection and adaptation

This study proposed using the Frobenius norm of ICA error matrix, ||yf(y)T − I||F , for

the ORICA pipeline as an index to detect non-stationarity events in the data, identified as abrupt

changes in the mixing matrix. This non-stationarity index measurement captured the fitness of

the ICA model to the current data, i.e. the degree to which nonlinear decorrelation was achieved.

Alternative forms for the non-stationarity index can be used depending on applications, for
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instance mutual information reduction (MIR) in windowed data provides a measure of statistical

independence between sources [30] and thus can capture the changes in data statistics as MIR

varies.

This study also presented a method of non-stationary adaptation by increasing the for-

getting factor when the non-stationarity index exceeds a hard threshold, e.g. 1-10% of the initial

value when ICA had not converged. However, this method required prior knowledge of the hard

threshold and did not address continuous variation in degree of non-stationarity. For selection of

the threshold, it is possible to design an adaptive threshold that depends on the online estimated

mean and standard deviation of δns. For adaption of the forgetting factor, one possible solution

is to adopt the strategy similar to the adaptive learning rate proposed by Murata et al.[86] for a

gradient-based algorithm in an online environment. An adaptive forgetting factor for ORICA, as

an RLS-like recursive online algorithm, is crucial for its ability to track non-stationarity, calling

for further investigation.

4.5.5 Applications and future directions

The proposed online ICA method for real-time processing of high-density EEG opens

up new opportunities for the following potential applications: (1) ICA-based real-time artifact

removal (especially for sporadic muscle activities), (2) ICA-based brain activity monitoring

(e.g. epilepsy, etc) for clinical practice, and (3) adaptable ICA-based features for brain state

(e.g. cognitive functions, fatigue level, etc) classification in real-time brain-computer interfaces.

A significant next step is to leverage ORICA for real-time source localization, for instance

using anatomically constrained low resolution electrical tomographic analysis (LORETA) [114].

A recent study [101] attempted to combine online ICA and source localization, yet further

validation of sources’ reliability were needed. Knowledge of the source locations in the brain can

be used to assess the reliability of the sources (e.g. validate consistency of the source locations over

time and with anatomical expectations), to provide biological interpretation of the decomposed
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sources, and to integrate with other real-time source-level methods such as connectivity analysis

in SIFT [83, 85].

4.6 Conclusion

This study proposed and demonstrated an efficient computational pipeline for real-time,

adaptive blind source separation of EEG data using Online Recursive ICA. The efficacy of the

proposed pipeline was demonstrated on three datasets: a simulated 64-channel stationary dataset,

a simulated 64-channel non-stationary dataset, and a real 61-channel EEG dataset collected

under an Eriksen flanker task. Through application of ORICA to simulated stationary data we

(a) systematically evaluated the effects of key parameters on convergence; (b) characterized

the convergence speed, steady state performance, and computational load of the algorithm; and

(c) quantitatively compared the proposed ORICA method with a standard offline Infomax ICA

algorithm. Our analysis of a simulated non-stationary 64-channel EEG dataset demonstrated

ORICA’s ability to adaptively track changes in the mixing matrix due to electrode displacements.

Applied to 61-channel experimental EEG data, we demonstrated ORICA’s ability to

decompose brain and artifact subspaces online, with comparable performance to offline Infomax

ICA. Furthermore, we found that subspaces of biologically plausible ICs (e.g. eye, occipital and

frontal midline sources) could be reliably learned in much less time than required by the kN2

empirical heuristic for ICA convergence. To serve the EEG and BCI communities, the proposed

pipeline has been implemented as BCILAB [63] and EEGLAB compatible functions, it has also

been integrated into an open-source Real-time EEG Source-mapping Toolbox (REST) [101].

Future work will focus on further validation of this promising method as well as application to

artifact rejection, clinical monitoring, and brain-computer interfaces [83].
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Figure 4.7: (a) Evolution of component-wise correlation magnitudes between ORICA- and
RUNICA-decomposed ICs on real 61-ch EEG data from the flanker Task. (b) Evolution of
correlation magnitudes and spatial filters of three rapidly converged ICs: prefrontal (eye-blinks),
occipital (VEP), and fronto-central (ERN) components.
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Chapter 5

Validating Online Recursive ICA on EEG

data

The needs for online Independent Component Analysis (ICA) algorithms arise in a range

of fields such as continuous clinical assessment and brain-computer interface (BCI). Among

the online ICA methods, online recursive ICA algorithm (ORICA) has attractive properties of

fast convergence and low computational complexity. However, there hasn’t been a systematic

comparison between an online ICA method such as ORICA and other offline (batch-mode) ICA

algorithms on real EEG data.

In this chapter, we compared ORICA with ten ICA algorithms in terms of their decompo-

sition quality, validity of source characteristics, and computational complexity on the thirteen

experimental 71-ch EEG datasets. Empirical results showed that ORICA achieved higher mutual

information reduction (MIR) and extracted more near-dipolar sources than algorithms such as

FastICA, JADE, and SOBI did while the performance of ORICA approached that of the best-

performed Infomax-based algorithms. Furthermore, ORICA outperforms most of ICA methods in

terms of the computational complexity. The properties of fast convergence and low computational

complexity of ORICA enable the realization of real-time online ICA process, which has further
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applications such as real-time functional neuroimaging, artifact reduction, and adaptive BCI.

5.1 Background

Many ICA algorithms have been developed to separate the sources from the channel

signals [50], with the assumption of spatiotemporal stationarity of the data, such as widely used

Infomax ICA [8] and FastICA [51]. For non-stationary EEG signals, ICA methods such as

Adaptive Mixture ICA (AMICA) [96] can generate good component decomposition but are

computationally expensive. However, the aforementioned ICA algorithms are all offline analyses.

In many real-world applications, including real-time functional neuroimaging [83], artifact

rejection, and adaptive brain-computer interface (BCI), online (sequential) source separation

methods are needed. Desirable properties in these applications are fast convergence and low

computational complexity.

Among the online ICA methods, online recursive ICA (ORICA) [4] has such attrac-

tive properties of fast convergence and low computational complexity because it employs a

recursive-least-squares (RLS) type method derived from a fixed point solution to Infomax ICA.

Subsequently, a computationally real-time and online ICA pipeline has been proposed [45] which

incorporates the whitening step prior to the application of ORICA to improve the convergence

speed and employs a block-update rule to accelerate the computational speed. It has been shown

that the ORICA method can decompose 64-ch simulated EEG data and extract informative com-

ponents from the 61-ch experimental EEG data. However, some questions remained unanswered:

how consistent are the ORICA components across experimental EEG datasets and how is its

performance compared to other ICA methods.

This study tested the ORICA algorithm on thirteen experimental 71-ch EEG datasets

and compared the results to those obtained by ten popular batch-mode ICA or BSS algorithms,

following the ICA comparison approach published by [30]. Both quantitative and qualitative per-
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formance of ORICA are given in terms of decomposition quality, validity of source characteristics,

and computational complexity.

5.2 Methods

With the standard ICA model x = As, complete decomposition is performed, i.e. estimate

unmixing matrix W such that all sources are recovered by y = Wx, where x are scalp EEG

observations, A is an unknown mixing matrix, and s and y are original and reconstructed source

activation time courses respectively.

5.2.1 Online recursive ICA and other ICA/BSS algorithms

ORICA is an online ICA algorithm with a recursive update rule derived from a fixed-point

solution to the natural-gradient Infomax ICA, proposed by [4]. The final learning rule is extended

to a block-update form [45] to reduce the computational load, as shown in Equation 4.6. Followed

the optimized parameters used in [45], we chose the block size L = 8, the heuristic time-varying

forgetting factor λn = 0.995/n0.6, and the nonlinear projection function f (y) =−2tanh(y) with

the assumption that all EEG sources are supergaussian. The assumption is verified on the datasets

and is generally hold for filtered, e.g. line-noise removed, EEG data.

A whitening step is added prior to ORICA to decorrelate the data and improve the ICA

convergence. Pre-whitening provides a fair comparison between ORICA and other batch-mode

ICA algorithms where data are also pre-whitened. ORICA with pre-whitening (denoted as

ORICA) is highlighted in pink in Section 5.4). ORICA with two to three passes over the data

(denoted as ORICA-2 or ORICA-3) are also tested to see the improvement of performance as

more data points are available.

Ten ICA or BSS algorithms from three groups plus principle component analysis (PCA)

are used for comparisons. The first group is the natural gradient ICA algorithms, including
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AMICA [96], Infomax [8], and Extended Infomax [66], highlighted in yellow in Section 5.4. This

group is known for its ability to extract dipolar sources from EEG data while it is computational

expensive. The second group includes FastICA [51] that maximizes negentropy, JADE [12] that

maximizes the fourth-order cumulants, and ThinICA (TICA) [25], highlighted in green. The

third group belongs to the second-order time-delay approach [20] to the BSS problem including

SOBI, icaMS, FOBI, and EVD, highlighted in blue. PCA is also tested to characterize the effect

of pre-whitening, highlighted in purple. The detailed selection of parameters and references of

the above algorithms are described and listed in [30].

5.2.2 Evaluation methods

Mutual Information Reduction (MIR)

ICA aims at maximizing the independence and mutual information reduction (MIR)

provides an estimation of independence in terms of mutual information between sources, defined

as

MIR = I(x)− I(y) = log |detW|+[h(x1)+ · · ·+h(xN)]− [h(y1)+ · · ·+h(yN)] (5.1)

where I is mutual information and h is marginal entropy. Better ICA decomposition will have

more independent sources and higher MIR.

Equivalent dipole modeling

It has been demonstrated that independent EEG sources are dipolar [30]. Hence to

quantify the quality of the decomposed individual sources, the surface spatial distribution of each

IC is fitted into a single equivalent dipole in a spherical four-layer head model using the DIPFIT

plug-in in the EEGLAB toolbox [29]. The error of the dipole fitting is the residual variance (r.v.).

Near-dipolar sources are defined as r.v. < 5%. More near-dipolar components correlates with
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better ICA decomposition for EEG data.

5.3 Materials

5.3.1 EEG data

The EEG datasets used in this study are available at http://sccn.ucsd.edu/wiki/

BSSComparison, from thirteen subjects performing the visual working memory task described in

[89]. Each dataset has EEG signals from 71 channels with sampling rate of 250Hz and data length

of 296,000 to 315,000 samples (around 20 minutes of recording). The data have been high-pass

filtered with cutoff frequency at 0.5Hz to remove trend, and the epochs with high-amplitude or

high-frequency abnormalities have been removed [30].

5.3.2 Data analysis

Data were loaded into MATLAB and analyzed by the open source EEGLAB toolbox

[29]. We ran each algorithm on each dataset, recorded the runtime, solved for unmixing matrix,

and evaluated the decomposition performance with the methods described in Section 5.2.2.

The MATLAB scripts for running the comparisons can be found at http://sccn.ucsd.edu/

wiki/BSSComparison. The MATLAB functions of the algorithms in Section 5.2.1 can be

downloaded from EEGLAB [29] (http://sccn.ucsd.edu/eeglab) and ICALAB [21] (http:

//www.bsp.brain.riken.jp/ICALAB).

5.4 Results

The informative independent components (ICs) decomposed by ORICA from each dataset

are manually selected based on their scalp maps and mean activity spectra and grouped into the
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Figure 5.1: Scalp maps and mean activity spectra of four ORICA component clusters (central
occipital alpha, frontal midline theta, left mu and right mu) accounting for non-artifact brain
sources from four subjects. Components in each cluster are selected by visual inspection
according to their scalp maps and power spectra.

following four non-artifact brain source clusters: central occipital alpha (8-12Hz), frontal midline

theta (near 6Hz), left and right motor mu (near 10Hz with harmonics) clusters.

Each ORICA cluster contains similar ICs from 5-8 subjects, demonstrating the consistency

of ORICA decomposition across the datasets. The results from the four selected subjects are

shown in figure. 5.1. Due to variability across subjects, not every dataset returns the same

informative ICs. However, the scalp maps and the source dynamics of the ORICA components

are consistent with those from the previous study [30] using AMICA, which has shown to be the

ICA algorithm with the best performance.

Figure 5.2 gives the qualitative comparisons across algorithms by looking at the five

informative ICs from ORICA on the dataset S2 and their counterparts decomposed by AMICA,

Infomax, FastICA, and SOBI algorithms from the same dataset. Similar components were found

by best-matching the ICs, in terms of the correlation of the scalp maps, of ORICA and the other

algorithms using the Hungarian method.
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Figure 5.2: Scalp maps of the five informative components - the occipital alpha, the frontal
midline theta, the left mu, the right mu, and the horizontal eye movement (EOG) - decomposed
by AMICA, Infomax, ORICA, FastICA, and SOBI from the dataset S2. The similar components
are found by best-matching ICs with the results of ORICA.
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ORICA components strongly resemble the ICs from the best-performed ICA methods

such as Infomax and AMICA. The FastICA returned the similar components but some ICs such

as fMθ and hEOG are less homogeneous. Spatial distribution of the SOBI components are even

worse. Results of the PCA components are not shown because PCA failed to decompose similar

components. The components from AMICA, Infomax, and ORICA have lower r.v. values than

those from FastICA, and SOBI.

Figure 5.3 provides the quantitative comparisons of the five groups of the fourteen

algorithms, assessed by mutual information reduction (MIR) and percentage of near-dipolar

components with r.v. < 5% averaging across the thirteen datasets. Along the linear regressed

curve, algorithms at top right have better decomposition performance and more near-dipolar

sources. ORICA (pink) has worse performance than the standard Infomax-based algorithms

(yellow), whereas it outperforms the other groups of algorithms such as FastICA (green), SOBI

(blue), and PCA (purple).

It should be emphasized that even the ORICA with single-pass performs better than

several batch-mode algorithms. With more passes through the dataset, the performance of

ORICA-n improves and approaches the performance of the leading Infomax group, which has a

few hundreds passes. This suggests ORICA has fast convergence characteristic.

Figure 5.4 compares the computation time, i.e. complexity, and shows the number of

near-dipolar sources averaged across the thirteen datasets for all algorithms. ORICA runs four

times faster than Infomax does and is able to decompose 80% of Infomax’s near-dipolar sources.

Furthermore, ORICA outperforms FastICA (green) in both computation time (three times faster)

and performance (13% more near-dipolar sources). SOBI and PCA run faster than ORICA but

have poor decomposition quality. The result of AMICA is not shown because it requires parallel

processing and runs for hours.

Algorithms that decompose more near-dipolar components require more computation

time. In the performance-complexity relations, ORICA stands out with its low computational
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Figure 5.3: Percentage of the components (out of 71 ICs) with near-dipolar scalp maps (residual
variance <= 5%) and mean mutual information reduction (MIR) averaged across thirteen
datasets for the five groups of the fourteen algorithms described in Section 5.2.1. The color of
each group is manually added. Results of ORICA with n-passes over the data (ORICA-n) are
shown.

complexity while the performance remains at high level. It is worth noting that ORICA can

on average decompose a 71-ch dataset with 300,000 samples in about 40 seconds on a laptop

without the feature of parallel processing. The even more powerful feature of ORICA is that the

computation time can be further reduced by increasing the block-update size [45].
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Figure 5.4: The log-scale computation time and the number of near-dipolar scalp maps (r.v.
<= 5%) of the five groups of the fourteen algorithms are shown. The dots and bars show the
mean and standard deviation of the number of near-dipolar sources averaged across the thirteen
datasets. The standard deviation for the computation time is too small to plot. Algorithms at
lower right are better. The datasets are processed in MATLAB 2012a on a dual core 2.5GHz
Intel i5-3210M CPU with 8GB RAM.
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5.5 Conclusion

This study provides both qualitative and quantitative evaluation of the performance of

the ORICA method. Qualitatively, the results confirm that ORICA can extract the informative

ICs (brain and artifact sources) from the 71-ch experimental EEG data. The decomposed ICs

are consistent across the datasets from different subjects and also agree with the previous study

using AMICA. Quantitatively, in terms of decomposition performance (MIR) and validity of

source characteristics (number of near-dipolar sources), ORICA’s performance approaches the

best-performed Infomax-based method as number of passes over data increases and is uniformly

better than other algorithms. Furthermore, ORICA outperforms most of ICA methods in terms

of computational complexity, except the algorithms with poor decomposition such as SOBI and

PCA.

The results of this study indicate ORICA can achieve good decomposition with low

computational complexity, which can be an alternative for ICA decomposition of high-density

EEG data, compared to the standard ICA methods such as Infomax. These attractive properties of

ORICA enable the realization of real-time online ICA process, which has further applications

such as real-time functional neuroimaging, artifact rejection, and adaptive BCI.
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Chapter 6

Tracking Non-stationary EEG Sources

using Adaptive Online Recursive ICA

In Chapter 4 and 5, we show that Online Recursive ICA (ORICA) can achieve fast

convergence in decomposing high-density EEG data for real-time applications. However, its

adaptation performance has not been fully explored due to the difficulty in choosing an appropriate

forgetting factor: the weight applied to new data in a recursive update which determines the

trade-off between the adaptation capability and convergence quality.

In this chapter, we propose an adaptive forgetting factor for ORICA (adaptive ORICA) to

learn and adapt to non-stationarity in the EEG data. Using a realistically simulated non-stationary

EEG dataset, we empirically show adaptive forgetting factors outperform other commonly-used

non-adaptive rules when underlying source dynamics are changing. Standard offline ICA can only

extract a subset of the changing sources while adaptive ORICA can recover all. Applied to actual

EEG data recorded from a task-switching experiments, adaptive ORICA can learn and re-learn

the task-related components as they change. With an adaptive forgetting factor, adaptive ORICA

can track non-stationary EEG sources, opening many new online applications in brain-computer

interfaces and in monitoring of brain dynamics.
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6.1 Background

A variety of analytical tools for biosignals such as EEG have successful uncovered

functional features related to human cognitive functions and non-brain activities [29]. In order

to obtain robust estimates from noisy measurements, most of the analyses are done offline and

assuming stationary data. However, in practical applications such as brain-computer-interfaces

and clinical monitoring of brain dynamics, batch learning is rather infeasible in the online

environment due to the large number of samples required and high computational load [86].

Furthermore, assumptions of stationarity often do not apply to real-life situations, where humans

organize their behavior with respect to a complex, multi-scale and ever-changing environment.

Therefore, EEG source activities are inevitably non-stationary.

To address this, several online learning methods have been proposed which take into

account non-stationarity in the data to study brain dynamics or mitigate non-stationarity problem

[86][117][7]. Among these methods, Akhtar et al.[4] have proposed Online Recursive ICA

(ORICA), derive from iterative inversion of the fixed point solution to natural gradient Infomax

ICA rule, yielding the fast convergence of a recursive-least-squares (RLS) type filter and low

computational load. Previous studies have shown that ORICA is capable of real-time processing

of high-density EEG data and extracting informative sources from experimental EEG data

comparable to those of standard ICA approaches [45, 46]. However, one important advantage

of online ICA—adaptation performance—has not been explored. The difficulty lies in choosing

a forgetting factor: the weight applied to new data in a recursive update rule determining the

trade-off between adaptation capability and convergence quality.

This study proposes an adaptive forgetting factor for ORICA (adaptive ORICA), modified

from the adaptive rule of [86] and [23], to learn and adapt to the non-stationary data. To compare

the performance of adaptive and non-adaptive forgetting factors, we use a realistically simulated

non-stationary EEG dataset with the underlying sources activating and deactivating alternatively.
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We also compare the results of adaptive ORICA to those of a standard offline ICA (Infomax) [29].

Finally, we demonstrate the real-world applicability of adaptive ORICA using 14-ch EEG data

recorded from a subject performing a task-switching experiment.

6.2 Adaptive forgetting factor for online ICA

6.2.1 Online recursive ICA: revisit

Comprehensive formulation of the online ICA problem and detailed derivation of the

Online Recursive ICA algorithm have been presented in Section 4.2. This section gives a brief

summary in an attempt to provide intuition and facilitate readers’ understanding.

With the assumption that scalp EEG signals, x, are linear mixtures of underlying inde-

pendent sources, s, i.e. x = As, ICA aims to learn an unmixing matrix B such that the estimated

source activations y are recovered, with permutation and scaling ambiguities, by y = Bx. An

online framework is proposed which separates the unmixing process into two stages B = WM

[45]. The whitening matrix M is updated by an online RLS whitening update [126] to decorrelate

the signals:

Mn+1 = Mn +
λn

1−λn

[
I− vn ·vT

n
1+λn(vT

n ·vn−1)

]
Mn, (6.1)

where vn = Mnxn are the decorrelated signals and λn is a time-varying forgetting factor. This is

followed by ORICA update on the weight matrix W [4]:

Wn+1 = Wn +
λn

1−λn

[
I− yn · fT

n
1+λn(fT

n ·yn−1)

]
Wn (6.2)

where yn = Wnvn are the recovered source activations and f (y) =−2tanh(y) are the component-

wise nonlinear functions for super-gaussian sources and f (y) = tanh(y)− y for sub-gaussian

sources. An orthogonalization step is applied after each update to ensure W matrix remains or-

thogonal. Following [45], we assume all EEG sources are super-gaussian to improve convergence
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and we concurrently update the M and W matrix for a block of samples (here we used 8 samples

to a block) to reduce the computational load. The forgetting factors in Equations 6.1 and 6.2 are

chosen to be the same.

6.2.2 Design of adaptive forgetting factor

In adaptive RLS filtering, the forgetting factor λ determines the effective length for a

time window wherein data are exponentially weighted. A small value of λ corresponds to a long

window length which yields small errors and good stability at the expense of tracking capability

[94].

Three update rules for forgetting factors are considered: constant, monotonically decreas-

ing (cooling), and adaptive. In a conventional RLS filter, a constant forgetting factor rule is often

used so that it has moderate tracking performance, but the error at convergence can be large.

In order to achieve better learning performance, it is desirable to have a large λ during initial

learning to increase convergence speed and a small λ near convergence to minimize error. To this

end, a cooling forgetting factor may lead to satisfactory performance. We use the rule defined in

[123] as λn =
λ0
nγ , where λ0 is the initial forgetting factor and γ determines its decay rates. The

convergence rate of the cooling scheme is analyzed in [5]. Despite the good convergence, the

annealed λ cannot follow non-stationarity in the data. Clearly, there is a need for an adaptive

forgetting factor which increases during the presence of non-stationarity and otherwise decreases

for fast and stable convergence.

To realize an adaptive forgetting factor, we need to quantify the non-stationarity in the

data. Since ORICA is derived from the fixed point solution of minimizing <I− yfT>, the

non-stationarity can be assessed by the error of nonlinear decorrelation, i.e. I−ynfT
n . To increase

the robustness of the estimates, a leaky average with weight δ is used:

Rn+1 = (1−δ)Rn +δ(I−ynfT
n ) (6.3)
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The final non-stationarity index zn is a scalar indicator of convergence for all sources which is

defined as:

zn = ||Rn||F (6.4)

Motivated by Murata et al.[86], we use the following adaptive forgetting factor:

λn+1 = λn−αλ
2
n +βG(zn+1)λn (6.5)

where α controls the decay rate of λ in the learning stage (when data are relatively stationary)

and β sets an upper bound on how fast λ can increase during the tracking stage (when data are

non-stationary). In [86], the βG(z) term in Equation (6.5) is defined as zn/zmax. However, the

linear mapping between zn and λn does not work effectively when data dimension increases due

to a large initial value of z.

To address the issue, inspired by the synaptic update from [23], we design G(z) as a

modified tanh function which maps the non-stationarity index zn to a value from 0 to 1 indicating

the level of λ adjustment:

G(z) =
1
2

{
1+ tanh

[1
b
(

z
max(zmin,ε)

− c)
]}

(6.6)

where b and c determine the bandwidth and the center of the tanh function. The term zmin is

an indicator for initial convergence and ε controls the switching from learning stage to tracking

stage. In the learning stage, we want G(z) to be small so that λ can decrease to a small value to

ensure convergence. In the tracking stage, we want G(z) to be large when non-stationarity index

increases.

Although many parameters are introduced in Equation 6.5, Murata et al.[86] have dis-

cussed how to choose α, β and δ. As for b and c in Equation 6.6, they can be designed according

to the mean and variance of the non-stationarity index. This study follows the principles to search
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Figure 6.1: Source dipole locations and orientations (red dots and black arrows respectively in
cortical head models), 10 second examples of source time-series, and component maps of select
components in three sessions for the simulated 16-ch non-stationary EEG data. The red dashed
boxes indicate which sources changed between sessions. Each source is labeled for comparisons
with Figure 6.3.

for optimal parameters.

6.3 Experiments

6.3.1 Simulated EEG data

We simulate a realistic form of non-stationarity in the EEG data where the underlying

sources in the brain are activating and deactivating alternately, using the EEG simulator in Source

Information Flow Toolbox (SIFT) [29]. We first generate source time-series using a random-

coefficient stationary autoregressive models with super-gaussian noises (128Hz sampling rate,

nine minutes). In addition, two sources simulating eye blinks and alpha burst activities are

manually designed (source #1 and #17 in Figure 6.1). Each source is assigned to the center of a

randomly selected cortical region from MNI brain atlas, with its dipole orienting normal to the
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cortical surface. Cortical regions for eye-blink and alpha components are manually selected to

match reality (see head models in Figure 6.1).

The nine minutes of source data are partitioned into three 3-min sessions, each with a

different set of 16 selected (active) sources. Between each session, six sources are changed,

including alternating between the eye-blink and alpha components, while ten sources remain

the same. The active sources in each session are designed such that all simulated sources (27 in

total) are active in at least one session. Finally, the source-level activities are projected through a

zero-noise 3-layer Boundary Element Method (BEM) forward model (MNI Colin27), yielding

16-channel EEG data.

6.3.2 Actual EEG data

Three sessions of EEG data are collected from a 26 year-old male subject using a 14-

channel wearable wireless Emotiv headset. The first and third session are 3-min eye-closed music

listening, and the second session is 3-min eye-open typing, with ten second transitions between

sessions. Artifact Subspace Reconstruction (ASR) [83], an online-capable method to detect and

repair temporal burst artifacts based on signals’ covariance, is applied prior to online ICA pipeline.

Our goal is to see the switching of active sources in each session.

6.3.3 Data processing

For running adaptive ORICA, both simulated and actual EEG data are processed in a

simulated online environment using BCILAB [63]. The online ICA pipeline consists of an

IIR high-pass filter (cutoff at 1Hz), an online RLS whitening filter, and an ORICA filter. As a

comparison, we also apply a standard batch mode ICA (Infomax) available in EEGLAB [29]

to both simulated and actual EEG datasets. Note that the Infomax ICA is performed on whole

datasets instead of on data in each session.
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6.4 Results

6.4.1 Simulated 16-ch non-stationary EEG data

Figure 6.2 demonstrates the learning and tracking performance of ORICA with three types

of forgetting factors. The performance is quantified as the cross-talk error in Figure 6.2c, which

is a measurement of ICA decomposition given the ground truth as defined in Equation (5) in [45].

The error zero implies perfect source separation, except for permutation and scaling ambiguities.

In the initial learning stage (0 to 3 minute), adaptive and cooling forgetting factors can

achieve smaller errors comparing to the constant λ. In the tracking stage (3 to 9 minute), the

non-stationarity index can successfully detect when the underlying sources change between

sessions (Figure 6.2a), which leads to an increase of the adaptive λs (Figure 6.2b). This enables

ORICA to relearn a new set of sources. The convergence speed after such a change is faster than

that of the initial learning and reaches a comparable error level to previous sessions. Constant λ

allows tracking to some extent; and while bigger λ values increase the convergence speed, they

limit the quality of convergence. Cooling λs decline to values so small that tracking becomes

impossible.

Figure 6.3 shows that adaptive ORICA can separate all sources in each session while

Infomax ICA can only extract a subset of the sources, as it is inherently an over-complete problem:

the number of distinct sources (27) across three sessions is larger than the number of channels

(16). Infomax ICA successfully decomposes the simulated eye-blink component (#1) which

activates in sessions 1 and 3 while losing one dimension to account for a new source in session 2.

Similarly, Infomax ICA finds the occipital alpha component (#17) which only activates in session

2, at the expense of missing sources in sessions 1 and 3. Other sources activating during different

sessions are presented. The errors of Infomax ICA decompositions are near -10dB, as opposed to

-30dB of adaptive ORICA.
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Figure 6.2: Time evolution of (a) the non-stationarity index zn, (b) the forgetting factor λn, and
(c) cross-talk error of ORICA decompositions with adaptive, cooling, and constant forgetting
factor profiles applied to the simulated EEG data. Parameters are defined belows: for constant
case, λ = 0.0078; for cooling case, λn = 0.995/n0.6, for adaptive case, λ0 = 0.1,α = 0.03,β =
0.012,δ = 0.05,b = 1.5,c = 5.
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Figure 6.3: Component maps of select sources corresponding to those in Figure 6.1 (matched
by correlation of component maps) decomposed and reconstructed by (a) Infomax ICA and
(b) ORICA with an adaptive forgetting factor for the three sessions of simulated EEG data.
10 second windows of their reconstructed source time-series from the end of each session are
presented. See Figure 6.1 for an explanation of source numbering.
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6.4.2 Actual 14-ch EEG data from the task-switching experiment

Figure 6.4 demonstrates that adaptive ORICA can learn, forget, and relearn the task-

specific sources in the task-switching experiment. In the first session (eye-closed), adaptive

ORICA can quickly learn the alpha IC but not the eye-movement IC. In the second session (eye-

open), the adaptive λ responds to the change of EEG sources at the transition between sessions

(at 3 min 10 sec) and thus enables ORICA to learn the new eye-movement IC while gradually

forgetting the alpha IC as it is not active anymore. Switching back to the eye-closed third session,

adaptive ORICA can relearn the fading alpha IC and gradually lose the eye-movement IC. This

demonstrates the applicability of adaptive ORICA to actual non-stationary EEG data. Note that

some within-session non-stationarity is also present. Auditory and motor components are not

clearly observed due to the limited scalp coverage of the Emotiv headset.

6.5 Conclusions

This study proposes and validates an adaptive forgetting factor update rule, which allows

ORICA to adapt to changes in the underlying structure of the data. A realistically simulated EEG

dataset mimicking brain sources activating and deactivating tests the performance of adaptive

ORICA. Empirical results show that the adaptive rule maintains the fast and stable convergence

of a cooling forgetting factor while presenting the ability to track changes when non-stationarity

is detected. Standard offline ICA cannot solve the over-complete problem, while adaptive

ORICA can learn the switching sources. Applied to actual EEG recorded from a task-switching

experiment, we demonstrate adaptive ORICA can learn, forget, and relearn the task-related

components.

Future works include (a) the development of an automatic, data-driven approach for

selecting parameter values in the adaptive rule and (b) the integration of an online artifact removal

method to stabilize ORICA convergence. The ability to track the changes in EEG source activities
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Figure 6.4: Adaptive ORICA applied to actual 14-ch EEG data from the task-switching experi-
ment. Time evolution of (a) the adaptive forgetting factor and (b) the similarity (correlation)
between two components decomposed by adaptive ORICA and Infomax ICA. The two com-
ponents correspond to occipital alpha and horizontal eye movement activities. Dashed lines
indicate the end of each session. The component maps solved by adaptive ORICA at the end
of each session are shown to the left of the dashed lines with the component maps solved by
Infomax ICA applied to the whole dataset are shown in a dashed box. Parameters used for
adaptive ORICA: λ0 = 0.1,α = 0.03,β = 0.005,δ = 0.05,b = 0.5,c = 3.
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by the proposed method might lead to many real-world applications where modeling and tracking

source dynamics are imperative.
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Chapter 7

Real-time EEG Source-Mapping Toolbox

(REST): Online ICA and Source

Localization

In this chapter, we introduce the Real-Time Source Mapping Toolbox (REST), an exten-

sion to the EEGLAB environment. REST allows blind source separation of EEG data in real

time using Online Recursive ICA (ORICA), plus real-time localization of separated sources. Two

source localization methods are available to fit equivalent current dipoles or estimate spatial source

distributions of selected sources. Two experiments demonstrate the accuracy and functionality of

REST. We discuss some relevant applications.

7.1 Background

EEG source analysis combining ICA and source localization has generally been solved

offline because of its computational cost. With faster processors and algorithmic advances, near

real-time online applications are becoming even more viable. Bringing these analysis methods to
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the domain of real-time processing would allow for the use of more specific neurophysiological

information in closed-loop brain-computer interfaces (BCI) and neurofeedback paradigms, and

could also provide experimenters online feedback useful for data quality control.

Analyzing EEG data at the level of cortical source dynamics is a complicated problem,

but allows for much more biologically plausible, physiologically meaningful, and functionally

significant results than treating scalp data channels as if they indexed single brain sources. A

source-resolved imaging approach models the collected EEG as the sum of electric fields produced

by many small patches of cortex whose local field activities are fully or partially synchronous,

each such patch thus functioning as an effective EEG source with a scalp projection identical to

that of a single equivalent current dipole (ECD). Source localization requires solutions to both the

forward and inverse imaging problems: the forward problem (FP) determining the scalp projection

patterns of the possible brain sources based on accurate modeling of head tissue geometries and

conductivities, and the inverse problem (IP) estimating the locations and orientations or cortical

surface distributions of one or more source projection patterns.

Many existing EEG processing toolboxes attempt to solve these problems, including core

EEGLAB [28], BCILAB [63], LORETA-KEY [99], and Fieldtrip [92]. They all operate off-line

or attempt to solve the IP by directly operating on, e.g. response-averaged EEG channel data.

Approaching the IP directly from the EEG channel data complicates the problem by requiring

determination of the number of sources to localize, a problem whose computational cost and

number of false local minima increase dramatically with the number of sources being estimated.

Other approaches simply attempt a low-resolution joint spatial estimate of all the active sources.

Blind source separation can be used as an initial unmixing step to simplify an inverse problem

by separating it into much simpler problems of finding the locations of the individual effective

sources [74][75][79].

ICA has been shown to work exceedingly well when applied to EEG [30] as EEG data

and ICA share many important assumptions. ICA assumes that input data is the result of a linear
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mixing of spatially stationary independent time series or independent components (ICs). Here,

we present the Real-Time EEG Source-Mapping Toolbox (REST), a collection of automated

EEG analysis methods accessible through a graphic user interface (GUI). By applying Online

Recursive ICA (ORICA) [4], we can estimate a solution to the source separation problem in near

real-time, allowing low-latency access to source information, making possible innovations in

experimental designs including a wide variety of clinical and non-clinical BCI paradigms. REST

also allows the user to estimate the brain locations of the estimated sources using either LORETA

or minimum-variance ECD fitting.

REST provides estimates of source activations and their current PSD, plus source scalp

maps (source scalp projection patterns) and cortical source locations. Below, we show the layout

of the REST GUI and detail the measures used in its analysis pipeline. We then test its accuracy

and efficacy by applying it to simulated EEG data with known source locations and activations.

Finally, we demonstrate the real-world utility of REST and its ease of use by applying it in a

common BCI paradigm recording session.

7.2 REST: Architecture

REST is coded in MATLAB [39] using the EEGLAB environment. It uses a processing

pipeline, shown in Figure 7.1A, designed to run from beginning to end with minimal user input.

Preprocessing and source separation are implemented as a BCILAB pipeline followed by source

localization implemented in part using routines in MoBILAB [88].

7.2.1 Preprocessing

The toolbox pulls EEG data from a data stream received through the Lab Streaming Layer

framework [62]. The data are first preprocessed by IIR high-pass filtering. Artifact Subspace

Reconstruction (ASR) [83] may be introduced as an additional preprocessing step to remove large
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movement-based artifacts.

7.2.2 Source separation

Next, the EEG data are whitened using an online RLS whitening algorithm (to improve

convergence) and then linearly unmixed using ORICA. ORICA is a centerpiece of this toolbox.

It is, so far as we know, the only ICA implementation that is real-time capable with acceptable

convergence rates for relatively large numbers of channels [45]. The output of ORICA is a set of

linear IC filters that are used to separate the IC activation time courses and scalp maps from the

EEG channel data. When the data sources are spatially and statistically stationary, the ICs that

ORICA provide asymptotically approach those that (offline) Infomax ICA [66] returns. Unlike

Infomax ICA (though compare AMICA [97]), ORICA can also adapt to source non-stationarities

[4][45].

7.2.3 Source localization

Estimated IC source locations are calculated using one of two cortically-constrained

source model (either distributed or ECD). Both the ECD and distributed source methods require

a MoBILAB head model object to be created in advance, which can be computed easily using

the included helper function. The head model uses spatial meshes representing the geometry of

the cortex, scalp and one or more intervening head tissue types (e.g. skull, CSF, white matter). A

lead field matrix (LFM) is calculated (automatically) using OpenMEEG [38], as well as a surface

Laplacian operator for the cortical mesh. By default, the included helper function creates a 3-layer

(scalp, skull, cortex) boundary element method (BEM) head model based on the MNI Colin

27 brain. The primary input to the source localization methods is an estimated ICA scalp map

for the source being localized. Distributed source location model estimates are calculated using

cortically-constrained LORETA with Bayesian hyper-parameter estimation [15] from MoBILAB,
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while the ECD model estimates are computed using minimum residual variance fitting.

7.2.4 Graphical user interface

The REST main window, on the left of Figure 7.1B, displays either raw EEG or estimated

IC activations. It also shows estimated scalp maps and power spectra for the estimated ICs, as

well as convergence statistics. All the visualized information updates in near real-time. The

(partially occluded) window in the top rights of Figure 7.1B provides an easy way to select

which ICs are displayed on the main window. On the bottom right of Figure 7.1B is the source

localization window which shows the current estimated source location for an IC as either an

ECD or a distributed source.

7.3 Experiments

To show the utility of REST, we designed two experiments. One, using simulated source-

resolved EEG data, for which we know the ground truth, tested the integrity of the REST pipeline.

The other used actual EEG collected during a steady-state visually evoked potential (SSVEP)

BCI paradigm to test the utility of the toolbox in interactive paradigms.

7.3.1 Simulated EEG Data

For the simulation, we used the default head model with ECD sources constrained to

be normal to the cortical surface. We simulated 10 minutes of 64 channel EEG using SIFT

[29] by placing ECDs at various vertices of the cortical mesh and generated source activation

time-series for each. Two sources were handcrafted to imitate eye-blinks and occipital alpha

while the rest were VAR processes driven by super-Gaussian noise. These are then mixed together

using the LFM associated with the head model. As this was a test for accuracy rather than speed

of convergence, we evaluated the accuracy of the ORICA decompositions and resulting source
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location estimates at the end of the simulated data collection. For information on the convergence

properties of ORICA, see [45].

7.3.2 Actual EEG Data

To collect the actual EEG we used a low-cost 14 channel Emotiv headset. This setup

wirelessly streams data to a computer via Bluetooth. The streaming data were transferred to an

LSL stream for REST. During the experiment, 2 minutes of eyes-closed resting allowed ORICA

to identify relevant ICs. This was followed by 2 trials in which the subject (age 26) looked at

flashing phone-pad style digits on a tablet. The subject first focused on the symbol “1” and then

afterwards at “#” which were flashing at 9 Hz and 11.75 Hz respectively. This tested the adaptivity

of the pipeline, since going from eyes-closed rest to viewing flashing stimuli could be expected to

produce a noticeable change in brain sources and source activities.

7.4 Results

7.4.1 Synthetic 64-Channel Stationary EEG

As shown in Figures 7.2 and 7.3, ORICA quite accurately identifies the simulated source

processes. Figure 7.2 visualizes the full REST pipeline applied to 3 of the 64 simulated sources

and illustrates the accuracy of the reconstructed ORICA scalp maps as well as of their estimated

dipole positions and orientations which were generally correct within 3 cm and 20 degrees

respectively (Figure 7.3). The majority of the errors in dipole position were related to the depth of

the dipole as the true source positions tended to be closer to the scalp than their estimates. Here

we used the same simulated FP head model to solve the IP, something not possible in actual use

where the true FP head model can only be estimated. Nevertheless, these results indicate that

REST can generate accurate source locations and activations provided a minimum level of data
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Figure 7.2: The simulated data experiment: data simulation to source estimation. (Green box)
The simulated data source activations are mixed. (Blue box) The simulated EEG data are first
decomposed within REST into estimated independent components (ICs) using ORICA. Then
the source location of each IC is estimated as either an equivalent current dipole (ECD, left) or
as a low-resolution cortical distribution (right).
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Figure 7.3: Source localization accuracy in the simulated data experiment using an equivalent
current dipole (ECD) model for each estimated independent component (IC). Each disk repre-
sents an IC. Disk size shows how well the recovered IC scalp map correlated with the simulated
source scalp map. For 48 of the 64 recovered sources, map correlations were above 0.95 with
ECD model errors less than 3 cm and 20 degrees (lower left).
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quantity and quality and sufficient head model accuracy.

7.4.2 Real 14-Channel EEG during SSVEP

The application of REST to data collected in an SSVEP paradigm showed that ORICA

can converge to useful source solutions in real-life applications. Figure 7.4 compares REST

outputs during eyes-closed rest and attention to 9 Hz and 11.75 Hz flashing stimuli. Clearly,

ORICA extracted an occipital IC, first during rest with a weak 10 Hz peak (top panel), and then

during attention to 9-Hz (middle panel) and 11.75-Hz (lower panel) flashing stimuli. The ECD

during the latter condition (not shown) changed in orientation as indicated by the change in its

scalp map.

7.5 Conclusion and future works

We have shown that REST can be accurate when applied to simulated data, and potentially

usable in practice. There are many possible applications for real-time monitoring of sources of

interest during an EEG experiment. The REST toolbox design allows possible extensions to

implement near real-time computation, visualization, and application of other source-resolved

EEG measures. REST could aid online data quality analysis, as when collecting EEG from

particular sources if of specific importance. Additionally, the ORICA implementation in REST

might be used to make a wide range of BCI paradigms more robust [76]. We plan to add more

flexible and detailed data preprocessing, since ICA can be highly influenced by large amplitude

artifacts, and also automated IC classification. In theory, the ORICA decomposition and, with

some modifications, the source localization methods in the REST pipeline should be as applicable

to MEG as to EEG data. Finally, this work follows in spirit, and some details, previous work [83]

demonstrating a real-time application of the BCILAB [63] and SIFT [29] toolboxes, into which

the source identification and localization methods in REST might easily be introduced.
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Figure 7.4: Screen captures of the REST GUI during an actual EEG experiment. At 1.3 min
(top panel) during eyes-closed rest, the baseline PSD for IC had a peak at 10 Hz (alpha). At 2.1
min (middle panel), the subject attended the symbol “1” flashing at 9 Hz (note change in the
IC4 spectrum). At 2.8 min (bottom panel), the subject attended the symbol “#” flashing at 11.75
Hz (note IC4 spectral shift and possible scalp map change).
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Chapter 8

Conclusion and Future Works

As a human brain performs various cognitive functions or undergoes different mental

processes within ever-changing, real-world environments, states of the brain are inevitably

nonstationary. While noninvasive, high temporal-resolution EEG recordings of brain activities

have been available, there still lack computational data analysis tools for assessing the spontaneous,

endogenous, nonstationary brain activities that reflect dynamics of brain states. Toward building

an EEG-based brain-state monitoring system, specific challenges include the needs for: (1)

computational models for effective and robust decoding of brain states from nonstationary

EEG signals, (2) quantitative measures for assessing and tracking state changes, (3) data-driven

approaches for addressing issues with unlabeled, continuous data, and (4) hypothesis-driven

approaches for neurophysiological interpretations and scientific insights.

In this dissertation, the first need is addressed by the establishment and applications of

three computational models (Table 1.1), namely the multi-model ICA (Chapter 2), the ICA mixture

model (Chapter 3), and the adaptive ICA (Chapter 4), for modeling nonstationary, multichannel

EEG signals at functional brain-sources level. Extensive studies of these models applied to

both simulation datasets and experimental EEG datasets demonstrate successful detection of the

nonstationarity and effective decoding of brain states, e.g. drowsiness, alertness, and sleep stages,
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that are robust across subjects and experiments. To address the second need, this dissertation

introduces the model-deviation index (Section 2.2.2 in Chapter 2) and non-stationarity index

(Section 4.2.2 in Chapter 4) and explores the use of the model probability or data likelihood

(Section 3.2.2 in Chapter 3) for quantitative assessment of brain state changes. As for the

third challenge, the AMICA (Chapter 3) and ORICA (Chapter 4 and Chapter 6) approaches

can be applied as data-mining tools to explore and reveal nonstationary brain dynamics from

unlabeled data at milliseconds temporal resolution. Finally, these computational models inherent

ICA’s capability in separating non-brain artifact sources and identifying functional brain sources.

With the source nonstationarity hypothesis – synchronized activities of functional brain sources

under a brain state can be uniquely described by an ICA model, we demonstrate how these

hypothesis-driven approaches can lead to neuroscientific insights in cognitive experiments.

The dissertation significantly contributes to the development of computational data analy-

sis tools for decoding and monitoring rapidly-changing human cognitive and mental states, which

may help advance the fields of cognitive sciences, clinical diagnosis and monitoring, neuroer-

gonomics, and brain-computer interfaces. The ultimate goal is to make the EEG-based brain-state

monitoring system capable of near real-time processing and applicable in addressing real-world

problems. The Real-time EEG Source-mapping Toolbox (Chapter 7) shows our initial attempt at

building such system and making it available to the scientific community and beyond. Toward

this goal, remaining challenges include (real-time) separation of non-brain and brain signals in

EEG to improve the robustness of brain-state decoding, automatic identification of functional

sources in ICA models to enable neurophysiological interpretations and automatic labeling of

brain states, and application of these tools to studying more variety of brain states (e.g. cognitive

state changes during rest or meditation, mental strategy shifts during task performance, changes

in fatigue and arousal, and changes in emotional states).
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